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Abstract

In a multi-user context, the Bluetooth data from the smartphone could give an approximation of
the distance between users. Meanwhile, the Wi-Fi data can be used to calculate the user’s position
directly. However, both the Wi-Fi-based position outputs and Bluetooth-based distances are affected by
some degree of noise. In our work, we propose several approaches to combine the two types of outputs for
improving the tracking accuracy in the context of collaborative positioning. The two proposed approaches
attempt to build a model for measuring the errors of the Bluetooth output and Wi-Fi output. In a non-
temporal approach, the model establishes the relationship in a specific interval of the Bluetooth output
and Wi-Fi output. In a temporal approach, the error measurement model is expanded to include the time
component between users’ movement. To evaluate the performance of the two approaches, we collected
the data from several multi-user scenarios in indoor environment. The results show that the proposed
approaches could reach a distance error around 3.0m for 75 percent of time, which outperforms the
positioning results of the standard Wi-Fi fingerprinting model.

Keywords: indoor localization, indoor navigation, collaborative positioning, Wi-Fi, Bluetooth,
smartphone applications.

1 Introduction
In a GPS denied environment, Wi-Fi and Bluetooth could be considered as alternative wireless-based solutions
for positioning purpose. Novel Wi-Fi-based positioning methods on smartphones can find the position by
scanning the available Wi-Fi access points in the surrounding environment. The mean distance error is around
5m [1], due to the unreliable characteristics of the Wi-Fi signal propagation in indoor environment. In the
case of Bluetooth-based positioning, the Bluetooth technology available on smartphones nowadays is much
similar to the Wi-Fi technology in terms of underlying radio physical characteristics and application level.
Therefore, it is possible to create a positioning system similar to the Wi-Fi ones. However, the Bluetooth
communication range is smaller than that of Wi-Fi. To be of interest in a large area, it requires to deploy a
high number of static beacons [2].

When several users are present, the Bluetooth data can be joined with the Wi-Fi data to create a
collaborative positioning framework. When each user moves with a smartphone in a public area, it is possible
to keep the smartphone’s Bluetooth in visible mode. Then, if a device sees another device nearby, the Receive
Signal Strength (RSS) from Bluetooth data could give an approximation of the relative range between the
two devices. Given the estimating pair-to-pair distance, it is possible to refine the output positions from
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Wi-Fi data. This approach does not require to install additional infrastructures and is compatible with the
standard Bluetooth protocol which is generally supported by smartphones.

There are several key challenges of the proposed approach. The first difficulty is the noisy propaga-
tion characteristics of radio signals in indoor environment. The noise affects both Wi-Fi output positions
and Bluetooth output distances, moreover in the case of moving users. The second difficulty is the mis-
synchronization between the Wi-Fi and Bluetooth scanning processes in the smartphone. In other words,
the scanning cycle for each technology in the smartphone are not guaranteed to start and finish at the same
time.

In this work, we try to overcome these problems by considering non-temporal and temporal approaches.
In the non-temporal approach, the distance error of the Wi-Fi output position is modeled by a Gaussian
distribution. Similarly, another Gaussian distribution is used to describe the distance error between two
devices from the Bluetooth inquiry process. Wi-Fi and Bluetooth outputs within a short time period are
treated as if they happen in a same time window. An error function is then created to measure the mismatch
between the two distributions. By neutralizing the mismatch, it is possible to improve the position results
of Wi-Fi output. In the temporal approach, the time component of the users’ movement is incorporated
into the error function. The error function uses the positions of all the users as parameters. We employ
particle-filter-based tracking to minimize the error function. The particle filter uses as observation model
the combination between Wi-Fi and Bluetooth scanning data. The experiments were conducted with real
scenarios with up to four users. Both the non-temporal and temporal approach results are tested against the
standard Wi-Fi fingerprinting model. Our results show that it is possible to make use of Bluetooth signal to
improve the positioning output of the Wi-Fi fingerprinting model.

The remaining parts of the paper are arranged as follow: in the section II, the related works on smartphone-
based indoor positioning and collaborative positioning are introduced. Our approaches for combining Wi-Fi
and Bluetooth data are presented in section IV. The experiments and results are carried out in section IV.
The section V contains the conclusion and future works.

2 Related works
The usage of Wi-Fi for positioning is well-studied. Popular approaches included geometry-based approaches
[3, 4] or fingerprinting based approaches [5]. The fingerprinting based are preferred because it takes benefit
from the deployment of WLAN infrastructure. Recently works on smartphone-based with Wi-Fi fingerprint-
ing have reached a mean distance error of around 5m [1,6]. For learning techniques, the well-known K-Nearest
Neighbors (KNN) and its alternative are among the most popular technique [7, 8]. In [9], the authors differ
a wide range of KNN parameters to get a set of models. An ensemble result of the generated KNN models
has a mean distance error of around 6m. Besides KNN-based learning methods, decision tree-based learning
methods can be used for learning the Wi-Fi signal characteristics with prominent results [10].

For positioning purpose, Bluetooth technology can be employed in the same way with Wi-Fi technology.
Bandara et al. [11] use up to four Bluetooth antennas as static stations. The proposed system is able to
locate a Bluetooth tag within a room with area of 4.5m × 5.5m. The RSSI value is used to classify the
tag’s position between different subareas of the room. Pei et al. [12] employ fingerprinting-based approach
to track a moving phone. The setup includes only three Bluetooth beacons in a corridor-like space of 80m
long approximately. The horizontal error is reported at 5.1m. For comparison, the Wi-Fi-based solution
has an error of 2.2m in the same area. However, these results are possible thanks to the 8 installed WLAN
access points. More recent works employ the new BLE technology. The BLE beacons are smaller and more
energy efficient. They are able to power up for a longer period of time [13]. Thus, they are more convenient
to create Bluetooth beacon networks for positioning purpose. Faragher and Harle [2] provide an in-depth
study of using BLE for indoor localization purpose. The distance error of Bluetooth-based approach could
reach as low as 2.6m for 95% of times. However, a high number of beacons should be deployed to reach the
above performance. The study also addresses some issues of the BLE signal such as the scanning cycle, fast
fading effects and Wi-Fi scanning interference. A similar performance for BLE-based indoor positioning is
reported in [14]. The authors employed fingerprinting-based approach with the RSS value from the installed
BLE beacons.

In a scenario involving multiple devices, there are several works on collaborative localization. Those
works rely on some specific wireless technologies, which support the peer-to-peer communication. These
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technologies include Bluetooth, Wi-Fi Direct and Sound. They are capable to discover the existence of
nearby neighbors. In [15], the task of detecting face-to-face proximity is studied. The smartphones are used
to scan nearby visible Bluetooth devices in daily usage. From the received RSSI, relative distance between
two devices is calculated. The distance is then used to detect whether the two users are closed to each
other. To deal with noisy Bluetooth signals, additional techniques such as RSSI smoothing and light sensor
data are introduced for calculating a more accurate distance. [16] propose the Social-Loc system, which
uses Wi-Fi Direct technology for detecting two events: Encounter and Non-Encounter between each pair of
users. In their work, the authors find the RSSI peak for separating Encounter and Non-Encounter events.
These detected events are then used to improve the Wi-Fi fingerprinting and Dead Reckoning tracking.
The drawback of Wi-Fi Direct technology is that it does not allow a regular Wi-Fi scanning. Therefore, the
proposed Social-Loc is more suitable for improving the Dead Reckoning tracking than the Wi-Fi fingerprinting
tracking. Sound-based ranging is also useful to detect the relative distance between two devices. In [17], the
authors use the sound-based distance to improve Wi-Fi fingerprinting-based positioning system. The acoustic
ranging is designed with TOA method for calculating the distance between devices. The estimated ranges
are then used to form a graph between devices. The graph’s vertices are derived from the Wi-Fi positioning
output. A search within the graph is then performed to find the best match position. The searching task
aims to find an agreement between the vertices’ position and the edges’ length. The proposed approach has a
mean error of around 1.6m, depending on specific setups. However, the study only mentions the cases when
all the devices are in static position.

3 Using Bluetooth Data to Improve Wi-Fi Positioning
Wi-Fi data and Bluetooth data are two data streams which carry different information of users’ position.
For indoor positioning, the positioning of a user can be derived the Wi-Fi technology by scanning RSS signal
of nearby access points. When there are multiple users, the distance from one user to other user can be
calculated from the Bluetooth scanning process. A way to combine the two different data streams is to use
an additional central server. The server keeps all the available positioning information from each participate
devices. More precisely, the information includes the estimated position from Wi-Fi data and the estimated
distances between pairs of devices from Bluetooth-data. There are several works in the literature which take
the same approach for indoor positioning based on fusing different data streams. For example, [18] uses a
server-based solution for combining different information to improve the localization results.

3.1 Centralized Positioning Framework with Wi-Fi and Bluetooth
In our task of fusing Wi-Fi and Bluetooth data, two types of required information must be send to the server
side. The first type is the scanned Wi-Fi information of access points. For each completed scan cycle, the
device sends identifier (Wi-Fi MAC address) of the seen access points and their RSS values. Each scan cycle
lasts several seconds and is device dependent. The second type is the Bluetooth scanned information. The
scanned information contains the Bluetooth MAC addresses of seen devices and their RSS values. The time
of a complete Bluetooth scan is not defined. When a new Bluetooth device is seen, it could be sent to the
server immediately. In practice, there can be many visible Bluetooth devices within the environment such
as wireless headphones or mice. The server side maintains a list of active devices. From the list, only the
Bluetooth information from the participant devices is kept for positioning purpose.

On the server side, the data from Wi-Fi and Bluetooth scans give different ways to calculate the users’
positions. Figure 1 illustrates the principle of our approach. For simplicity, we consider the positioning
problem within a single floor. Each user is identified by his smartphone. The example context involves two
users, namely the ith and jth users. The two users’ devices keep gathering Wi-Fi access points data and
Bluetooth inquiry data within the environment and send them to the server. The server receives the data
and stores them as typed Events (Wi-Fi or Bluetooth). In Figure 1, there are three Events: two Wi-Fi
scans and a Bluetooth scan. The real positions of users ith and jth are denoted as (xitruth,t, y

i
truth,t) and

(xjtruth,t, y
j
truth,t), respectively. The subscript t is the timestamp. The real distance between the two users is

dijtruth,t.
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Figure 1: The data send from two devices to the central server and the derived information at the server for
estimating each devices’ position

At time t1, one can determine the position of user ith as (x̂it1 , ŷ
i
t1) from the WLAN scan information of the

ith device. The Wi-Fi position output, however, could be different from the real position (xitruth,t1 , y
i
truth,t1

)

of the user. Similarly, at time t2, when the jth device completes a Wi-Fi scan, we can compute the Wi-Fi
position output of user jth. Let the result of this computation be (x̂it2 , ŷ

i
t2). Besides that, the Bluetooth

scanning process could give an estimated distance between the two users. At time t3, if the two users ith and
jth are within the Bluetooth scanning range, we could find the relative distance lijt3 from the RSS value of
Bluetooth scanning process. The value of lijt3 is an approximation of the real distance dijtruth,t3 between the
two users at time t3. An alternative way for calculating dijtruth,t3 is using the output position from the Wi-Fi
data for both users ith and jth.

In order to benefit from the relationship between Wi-Fi and Bluetooth for improving positioning results,
we question two different approaches. The first one is a Non-temporal approach. The temporal relationship
between events which are within a time interval window is removed. They are treated as they happened at
the same time. The Wi-Fi fingerprinting approach is used for finding user’s positioning from Wi-Fi scan.
The Log Distant Path Loss (LDPL) model [19] is used to find the distance from the input Bluetooth RSS
value. An error estimation function is established by using the users’ position as the function’s parameters.
By minimizing the error function, ir can be used to smooth the mismatch between Wi-Fi data and Bluetooth
data, thus, to reduce the positioning error from Wi-Fi. The second approach is the Temporal one. We
introduce the time component into the basic error function of the first approach. More precisely, the new
error function includes the devices’ position at each timestamp. For minimizing the new error function, a
particle-based approximation is carried out.

3.2 Non-temporal Approach
In the Non-temporal approach, a sliding window of length ∆t is used. All the events from t to t + ∆t are
considered to happen at the same time. Given a pair of user ith and jth, one can assume that there exists
both Wi-Fi data and Bluetooth data within the time frame from t to t+∆t. Let wi and wj be the Wi-Fi scans
from the two users, and rssij is the RSS value of the Bluetooth scan. In this Non-temporal approach, we
remove the time variable t from the parameters. The likelihood function with the two users’ position (xi, yi)
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and (xj , yj), and the parameters P (xi, yi, xj , yj |wi, wj , rssij), is created by splitting down the function into
three separate components:

P (xi, yi, xj , yj |wi, wj , rssij) =PW (xi, yi|wi)×
PW (xj , yj |wj)×
PB(xi, yi, xj , yj |rssij)

(1)

In the equation, PW (xi, yi|wi), PW (xj , yj |wj) are the error estimation from Wi-Fi data of user ith and jth

and PB(xi, yi, xj , yj |rssij) is the error from the Bluetooth data.
Let (x̂i, ŷi) be the computed position from the scan wi. By assuming the distribution of the real position

(xi, yi) to be a 2D Gaussian around the estimated position (x̂i, ŷi), PW (xi, yi|wi), and is measured by:

PW (xi, yi|wi) ∼ 1√
2πδw

e
− (xi−x̂i)2+(yi−ŷi)2

2δ2w (2)

Similarly, it is possible to compute PW (xj , yj |wj), given the estimated position (x̂j , ŷj) from Wi-Fi posi-
tioning models:

PW (xj , yj |wj) ∼ 1√
2πδw

e
− (xj−x̂j)2+(yj−ŷj)2

2δ2w (3)

To estimate the Bluetooth part of the estimated likelihood, we first calculate lij from rssij by using the
well-known LPDL model:

lij = l0 × 10
rssij−rssl0

10n (4)

where rssl0 is the RSS value at the distance l0, n is the path loss exponent. The three values rssl0 , n, and
l0 are known constants. The value of lij is an approximation of the real distance, which comes directly from
the real position of users ith and jth, (xi, yi) and (xj , yj):

dij =
√

(xi − xj)2 − (yi − yj)2 (5)

One can assume that lij has a Gaussian distribution around dij , the Bluetooth likelihood can be estimated
by another Gaussian kernel:

PB(xi, yi, xj , yj |rssij) ∼ 1√
2πδw

e
− (dij−lij)2

2δ2
b (6)

with δb is a constant indicating the reliability of the LDPL on the RSS Bluetooth signal.
From Equations 2, 3 and 4, the likelihood function in Equation 1 could be rewritten as:

P (xi, yi, xj , yj |wi, wj , rssij) = C × e−g (7)

with C is an constant, g is a function of xi, yi, xj , yj , and

g =
(xi − x̂i)2 + (yi − ŷi)2 + (xj − x̂j)2 + (yj − ŷj)2

2δ2w
+

(
√

(xi − xj)2 − (yi − yj)2 − lij)2

2δ2b

(8)

For a fast computing of the minimum value of g, two constraints can be added based on the symmetric
properties of g. The first constraint is that the four points (xi, yi), (xj , yj), (x̂i, ŷi), (x̂j , ŷj) are aligned. The
second constraint is that the distance between (xi, yi) and (x̂i, ŷi) and the distance between (xj , yj) and
(x̂j , ŷj) are equal. The function is then rewritten as a function of the distance r between (xi, yi) and (x̂i, ŷi),
whose minimum value can be easily computed.

g(r) =
r2

δ2w
+

(d̂ij − 2r − lij)2

2δ2b
(9)
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The removing time information of the incoming Wi-Fi and Bluetooth data make the error probability
can be approximated by the function g. However, it introduces several drawbacks. The first one is due to
the users’ movement. In different time windows ∆t, the Wi-Fi position and the Bluetooth-based distances
are variable. The second drawback is the difficulty to determine the time interval length ∆t for grouping
consecutive Wi-Fi data and Bluetooth data. The later temporal approach is designed to overcome those
drawbacks of the non-temporal approach.

3.3 Temporal Approach
In our Temporal approach to the problem, we attempt to use the temporal relationship in the likelihood
function P . Instead of relying only on the position of two users at specific timestamp to measure the errors,
the likelihood function could be extended to include the moving path of all the users. Each moving path is
considered as a sequence of points. The new likelihood function would receive all the points as parameters.

We first construct the likelihood function F , which is a more complete form of P that bases on three
probability functions. A motion model M is used to establish the relationship between the position at time
t and the position at time t + 1 when the user moves within the area. A probability distribution function
W describes the distribution probability from Wi-Fi scan results. The B function describes the distance
distribution based on the Bluetooth RSS value from each pair of devices.

Let assume that there are N users to track in T seconds. The time component is added to the position
of user ith at time t as (xit, y

i
t). Normally, we can select the time delta value based on the specific purpose

of the positioning system. For modeling purpose, it is required that the time index t contains all the event
timestamps from Wi-Fi and Bluetooth of all the participant devices. Approximately, all the float-typed
timestamps could be rounded to the nearest integer values. The motion model for each user ith is defined
as a probability function between the previous position and the present position, M(xt, yt|xt−1, yt−1). The
moving component for T seconds for each user ith is then calculated by:

FM
i =

T∏
t=1

M(xit, y
i
t|xit−1, yit−1) (10)

For each specific user ith, assuming that there are K timestamps within the T seconds which have the
Wi-Fi scan results. One can set the timestamps for Wi-Fi events as u1,u2,...,uK . Then for each uk, the Wi-Fi
data is denoted as w(u

k)i, the function W is used to estimate the likelihood probability W (xiuk , y
i
uk
|wi

uk
).

Then, the Wi-Fi component FW
i of the user ith is built from all the available K Wi-Fi scans:

FW
i =

K∏
k=1

W (xiuk , y
i
uk
|wi

uk
) (11)

The Bluetooth evolves for a specific pair of user ith and user jth. Assuming that there are L Bluetooth
data which arrive at timestamps v1,v2,...,vL, it is possible to chain the error function over the L timestamp
as follow:

FB
ij =

L∏
l=1

B(xivl , y
i
vl
, xjvl , y

j
vl
|rssijvl) (12)

By joining the three functions, the total likelihood function F could be written as:

F = (

N∏
i=1

FM
i )(

N∏
i=1

FW
i )(

N∏
i=1,j=1

FB
ij ) (13)

At this step, one could select the explicit form of M , W and B and process them to find the maximum value
of F . The number of estimated parameters in F totally depends on the number of users and the tracking
time. As the F function includes a motion model M , particle filter-based approximation is a natural way for
approximating the maximum value of F . In addition to that, the particle filter process would have a more
flexible way for selecting the explicit forms of W and B.
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Figure 2: A simple moving model with the black dot is the initial particle.

For each user ith at time t, there is a set of particles St
i , which represents the position distribution

probability. For the motion modelM , without the additional information from inertial sensors, the movement
of the user could take random values as the moving speed v and the heading direction h. While there is no
constraint on the value of h, the moving speed v should be suitable with a typical indoor movement. In our
specific implementation, we generate the moving speed from a normal distribution around a speed average
value. The speed average is chosen according to the walking action in indoor environment. The heading
is generated from the uniform distribution in the range [0, 2π]. An additional wall-crossing checking step
is added for removing bad particles. Figure 2 gives an example of the motion model M for generating the
new particles. The center black dot is the initial particle. The walls are represented with black lines. New
particles are then generated with a normal distribution moving speed around the speed average value and a
uniform heading direction. The green particles are kept. The gray ones, which cross the wall, are removed.

With the particle filter-based approximation, the likelihoods given byWi-Fi component FW and Bluetooth
component FB could be transformed into an observation model. The score a specific pti ∈ St

i is calculated
by:

score(pti) = scoreW (pti) + scoreB(pti) (14)

with scoreW (pti) is the Wi-Fi component and scoreB(pti) is the Bluetooth component.
If there exists a Wi-Fi scan w at time t, the scoreW (pti) is then computed by using a local estimation on

the probability output of Wi-Fi fingerprinting model. The area is first divided into separated clusters, C1,
C2, ...,CD. Using the clusters, we can transform the Wi-Fi fingerprinting model from a standard regression
problem into a classification problem [10]. Let probw = {a1, a2, .., aD} is the chance of the predicted output
of w belong to the clusters. scoreW (pti) can be computed as followed:

scoreW (pti) =

D∑
i=1

scoreCi(p) (15)

where scoreCi(p) is a scaled-value from probw, with respect from the maximum distance dmaxCi and mini-
mum distance dminCi to all the available particles:

scoreCi(p) = ai × (1− d(p, Ci)− dminCi
dmaxCi − dminCi

) (16)

A constant ∆1 t is the effective window length for each Wi-Fi scan.
Similarly, the scoreB(pti) can be calculated if there is any Bluetooth scan involving the user ith around

time t. Without loss of generality, we assume that the available Bluetooth scan is rsstij that specifies the
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Table 1: The four participated devices in the testing scenarios

Device ID Name Type
1 Samsung Galaxy Note 4 Smartphone
2 HTC One ME Smartphone
3 Asus ME Tablet
4 Samsung Galaxy Tab Tablet

RSS value from the device ith and jth. The update rule for scoreB(pti) is defined as follow:

scoreB(pti) =
∑

ptj,k∈S
t
j

scoreW (ptj,k)×B(pti, p
t
j,k|rsstij) (17)

The subscript k indicates the need to calculate repeatedly for each pj,k ∈ St
j . The likelihood B(pti, p

t
j,k|rsstij)

is computed by using similar process as the computation of the likelihood PB in the Non-temporal approach.
Using the Equation 6, the likelihood B can be rewritten as a function of the distance d is the distance between
two particles pti, ptj,k and the distance l is derived from rsstij by the LDPL model. A constant ∆2t is added
to define the effective interval length for a Bluetooth scan.

4 Experiment and Results

4.1 Experiment Setup
To evaluate the performance of the two proposed approaches, we setup an experiment within an office
environment which includes two floors. All recordings follow one common trajectory which is composed by
the corridor, office rooms and stairs. This trajectory is defined by several checkpoints. The path is illustrated
in Fig. 3. The length of the path is approximately 200m, which usually takes about 300s of walking at an
average speed.

Different scenarios were designed in such a way that the additional Bluetooth scanning data could provide
useful information for smoothing the Wi-Fi positioning output. Each of them involves groups of 2 to 4 users.
The users were instructed to carry the devices and move around the experimental area. They walk along the
same path, with different relative distances between each other. In the recordings, we used an interval of 0.5s
for tracking the users. Each time a checkpoint is reached, the time is registered. The checkpoint’s position
and its reaching time are then used to calculate the user’s trajectory as the ground truth movement.

We selected four devices including two smartphones and two tablets for the positioning scenario (see table
1). Each device is set to scan Wi-Fi access points and available Bluetooth devices in the environment. All
of them run Android operating system and use the same application for collecting the Wi-Fi and Bluetooth
data.

Three approaches are used to localize the users when they are moving within the area: Wi-Fi only (for
comparison), Non-temporal and Temporal. In the Wi-Fi only approach, the output of Wi-Fi fingerprinting
method is provided as the reference tracking results. First, the data is collected over the walking path. A
Random Forest (RF) regressor model is trained on the collected data, using the method described in [10]. In
the testing phase, with each completed Wi-Fi scan from the tested devices, the RF model is used to produce
the position output.

In the Non-temporal approach, firstly, the output positions from the pre-trained RF regressor model onWi-
Fi are calculated for each device. If there is any Bluetooth data available, the Bluetooth scanned information
is used for adjusting the positions of two involved devices. To solve the problem of non-simultaneous events
between Wi-Fi scans and Bluetooth scans, we use a time window of length ∆t = 10 seconds for grouping
successive events into the same timestamp. The resulting position is calculated as the mean value of these
positions.

In the Temporal approach, a RF classifier model is built on top of the RF regressor model. To transform
the real world coordinates to label index, we perform a K-means clustering of all the available training
positions from the training data. The new learning targets are the indices of the corresponding clusters. In
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Figure 3: The moving path, colored in blue color, which includes two floors. The checkpoints are numbered
along the moving path.

9



Table 2: Positioning errors as averages among different devices in several contexts, where the users are asked
to move in different groups

N of N of Wi-Fi Only Non-temporal TemporalUsers Groups
2 1 3.7m ± 2.0m 2.4m ± 1.6m 2.2m ± 1.5m
2 2 3.4m ± 2.4m 3.2m ± 2.3m 2.5m ± 2.0m
3 1 4.0m ± 2.4m 3.5m ± 2.2m 2.1m ± 1.8m
3 3 3.6m ± 2.1m 3.1m ± 2.2m 2.2m ± 1.9m
4 1 3.8m ± 2.6m 3.6m ± 2.6m 2.8m ± 2.0m
4 2 3.8m ± 2.4m 3.5m ± 2.3m 2.6m ± 2.1m

our experiments, we use K = 30 for clustering all the available points in the tested area. The radius of each
cluster in this configuration is 4.0m approximately. The probability output of the classifier model is then
used to update the Particle Filter within a time window of 10 seconds. If there are multiple completed scans
within this time window, the nearest completed scan is selected. The Bluetooth data has the effective range
set to 2.0 seconds. For the moving model, the average speed of each particle is set to 1m/s. In the simulation
step, the number of particles is set to 1000.

4.2 Results and Discussion
The tracking results of three discussion approaches are illustrated in the Table 2. In the “one group” setups,
every user is instructed to move as a group throughout the corridors. In other configuration, users are
instructed to move with a distance under 10m to each other. The special case is with 4 users: there are 2
groups of 2 users, which let the system use Bluetooth data to identify both closed and distant devices. The
results are reported as the mean average distance errors across all the testing devices in the specific scenario.

The Wi-Fi Only approach reaches a stable performance of under 4.0m in mean distance error. Both
Non-temporal and Temporal approaches have better results than the Wi-Fi Only approach. However, the
Non-temporal approach’s results are not as stable as the Temporal one. In the setup where the users’
distance could change within a specific time interval, the Non-temporal approach has similar performance as
the output from the Wi-Fi fingerprinting model. In this case, it raises the difficulty to measure the distance
in the Equation 5. Meanwhile, the Temporal give a more stable performance. It can decrease the errors from
25% to 50% based on specific testing setups. The biggest relative improvement is the setup of three users
moving in one group.

Figure 4 illustrates the distance error for three approaches over all the scenarios. Both the Wi-Fi Only
and the Non-temporal have a closed performance. For 75% of times, the distance errors of two approaches are
around 5m. The Bluetooth-based relative distance are employed more efficiently in to Temporal approach. It
has a significant improvement from the Wi-Fi-based tracking. For 75% of times and 90% of times, the errors
of Temporal approach stay around 3.0m and 5.0m, respectively. Beside the Bluetooth information, adding of
map-based information and moving model constraint also reduce noisy output from the standard RF Wi-Fi
fingerprinting model.

Individual distribution error for each tested device is given in Figure 5. Both smartphones, Samsung
Galaxy Note 4 and HTC One ME, have a similar distribution. The Non-temporal approach presents a slightly
improvement from using only Wi-Fi data and the temporal approach can reduce the error significantly for
the regions less than 7.5m. However, the addition of Bluetooth data does not help when the tracking errors
exceed 7.5m. The errors of all three models are distributed similarly at the error regions larger than 10m.
It even adds more noise to the tracking results of Device 2. In the case of Device 3 and Device 4, both
Non-temporal and Wi-Fi Only have nearly identical distributions and the temporal one outperforms the
two others. The Temporal has the highest improvement with Device 4, which can overcome the issue of
non-training data.
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Figure 4: Cumulative distance errors for three approaches

(a) Device 1 (b) Device 2

(c) Device 3 (d) Device 4

Figure 5: Cumulative distance errors for each testing devices
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5 Conclusion
In this work, we have presented a collaborative tracking framework based on the smartphone’s Wi-Fi and
Bluetooth scanning data. The Wi-Fi data is used as a raw positioning output, which is then improved by the
relative distance from Bluetooth inquiry RSS signals. Two combination approaches are introduced, which is
the Non-temporal approach and Temporal approach. The Non-temporal approach attempts to simplify the
information fusion task by removing the time-relationship between different Wi-Fi scan and Bluetooth scan.
The Temporal approach takes a more direct way to establish the conditions between the two types of data.
Both approaches have been tested and compared with the standard Wi-Fi fingerprinting model. From the
testing results, while the Non-temporal is only applicable in some specific scenarios, the Temporal approach
outperforms the Wi-Fi fingerprinting models significantly. This study has shown that the collaborative
positioning based on the Wi-Fi and Bluetooth data would be applicable in a multi-user context. Combining
two type of wireless data can reduce the noise from Wi-Fi fingerprinting model significant. However, the
testing scenario are still dealing with simple contexts of multiple users. There are also some remaining issues
on the technical aspects, such as the communication between the users and the server, energy impact on the
smartphone and signal inference between multiple devices.
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