340 research outputs found

    TuBound - A Conceptually New Tool for Worst-Case Execution Time Analysis

    Get PDF
    TuBound is a conceptually new tool for the worst-case execution time (WCET) analysis of programs. A distinctive feature of TuBound is the seamless integration of a WCET analysis component and of a compiler in a uniform tool. TuBound enables the programmer to provide hints improving the precision of the WCET computation on the high-level program source code, while preserving the advantages of using an optimizing compiler and the accuracy of a WCET analysis performed on the low-level machine code. This way, TuBound ideally serves the needs of both the programmer and the WCET analysis by providing them the interface on the very abstraction level that is most appropriate and convenient to them. In this paper we present the system architecture of TuBound, discuss the internal work-flow of the tool, and report on first measurements using benchmarks from Maelardalen University. TuBound took also part in the WCET Tool Challenge 2008

    WCET-aware prefetching of unlocked instruction caches: a technique for reconciling real-time guarantees and energy efficiency

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2015.A computação embarcada requer crescente vazão sob baixa potência. Ela requer um aumento de eficiência energética quando se executam programas de crescente complexidade. Muitos sistemas embarcados são também sistemas de tempo real, cuja correção temporal precisa ser garantida através de análise de escalonabilidade, a qual costuma assumir que o WCET de uma tarefa é conhecido em tempo de projeto. Como resultado da crescente complexidade do software, uma quantidade significativa de energia é gasta ao se prover instruções através da hierarquia de memória. Como a cache de instruções consome cerca de 40% da energia gasta em um processador embarcado e afeta a energia consumida em memória principal, ela se torna um relevante alvo para otimização. Entretanto, como ela afeta substancialmente o WCET, o comportamento da cache precisa ser restrito via  cache locking ou previsto via análise de WCET. Para obter eficiência energética sob restrições de tempo real, é preciso estender a consciência que o compilador tem da plataforma de hardware. Entretanto, compiladores para tempo real ignoram a energia, embora determinem rapidamente limites superiores para o WCET, enquanto compiladores para sistemas embarcados estimem com precisão a energia, mas gastem muito tempo em  profiling . Por isso, esta tese propõe um método unificado para estimar a energia gasta em memória, o qual é baseado em Interpretação Abstrata, exatamente o mesmo substrato matemático usado para a análise de WCET em caches. As estimativas mostram derivadas que são tão precisas quanto as obtidas via  profiling , mas são computadas 1000 vezes mais rápido, sendo apropriadas para induzir otimização de código através de melhoria iterativa. Como  cache locking troca eficiência energética por previsibilidade, esta tese propõe uma nova otimização de código, baseada em pré-carga por software, a qual reduz a taxa de faltas de caches de instruções e, provadamente, não aumenta o WCET. A otimização proposta é comparada com o estado-da-arte em  cache locking parcial para 37 programas do  Malardalen WCET benchmark para 36 configurações de cache e duas tecnologias distintas (2664 casos de uso). Em média, para obter uma melhoria de 68% no WCET,  cache locking parcial requer 8% mais energia. Por outro lado, a pré-carga por software diminui o consumo de energia em 11% enquanto melhora em 15% o WCET, reconciliando assim eficiência energética e garantias de tempo real.Abstract : Embedded computing requires increasing throughput at low power budgets. It asks for growing energy efficiency when executing programs of rising complexity. Many embedded systems are also real-time systems, whose temporal correctness is asserted through schedulability analysis, which often assumes that the WCET of each task is known at design-time. As a result of the growing software complexity, a significant amount of energy is spent in supplying instructions through the memory hierarchy. Since an instruction cache consumes around 40% of an embedded processor s energy and affects the energy spent in main memory, it becomes a relevant optimization target. However, since it largely impacts the WCET, cache behavior must be either constrained via cache locking or predicted by WCET analysis. To achieve energy efficiency under real-time constraints, a compiler must have extended awareness of the hardware platform. However, real-time compilers ignore energy, although they quickly determine bounds for WCET, whereas embedded compilers accurately estimate energy but require time-consuming profiling. That is why this thesis proposes a unifying method to estimate memory energy consumption that is based on Abstract Interpretation, the very same mathematical framework employed for the WCET analysis of caches. The estimates exhibit derivatives that are as accurate as those obtained by profiling, but are computed 1000 times faster, being suitable for driving code optimization through iterative improvement. Since cache locking gives up energy efficiency for predictability, this thesis proposes a novel code optimization, based on software prefetching, which reduces miss rate of unlocked instruction caches and, provenly, does not increase the WCET. The proposed optimization is compared with a state-of-the-art partial cache locking technique for the 37 programs of the Malardalen WCET benchmarks under 36 cache configurations and two distinct target technologies (2664 use cases). On average, to achieve an improvement of 68% in the WCET, partial cache locking required 8% more energy. On the other hand, software prefetching decreased the energy consumption by 11% while leading to an improvement of 15% in the WCET, thereby reconciling energy efficiency and real-time guarantees

    Bus access design for combined worst and average case execution time optimization of predictable real-time applications on multiprocessor systems-on-chip

    Get PDF
    Optimization techniques for improving the average-case execution time of an application, for which predictability with respect to time is not required, have been investigated for a long time in many different contexts. However, this has traditionally been done without paying attention to the worst-case execution time. For predictable real-time applications, on the other hand, the focus has been solely on worst-case execution time optimization, ignoring how this affects the execution time in the average case. In this paper, we show that having a good average-case delay can be important also for real-time applications for which predictability is required. Furthermore, for real-time applications running on multiprocessor systems-on-chip, we present a technique for optimizing the average case and the worst case simultaneously, allowing for a good average-case execution time while still keeping the worst case as small as possible

    Classification of Code Annotations and Discussion of Compiler-Support for Worst-Case Execution Time Analysis

    Get PDF
    Tools for worst-case execution time (WCET) analysis request several code annotations from the user. However, most of them could be avoided or being annotated more comfortably if the compilers would support WCET analysis. This paper provides a clear categorization of code annotations for WCET analysis and discusses the positive impact on code annotations a compiler-support on WCET analysis would have

    Fast, Interactive Worst-Case Execution Time Analysis With Back-Annotation

    Get PDF
    Abstract—For hard real-time systems, static code analysis is needed to derive a safe bound on the worst-case execution time (WCET). Virtually all prior work has focused on the accuracy of WCET analysis without regard to the speed of analysis. The resulting algorithms are often too slow to be integrated into the development cycle, requiring WCET analysis to be postponed until a final verification phase. In this paper we propose interactive WCET analysis as a new method to provide near-instantaneous WCET feedback to the developer during software programming. We show that interactive WCET analysis is feasible using tree-based WCET calculation. The feedback is realized with a plugin for the Java editor jEdit, where the WCET values are back-annotated to the Java source at the statement level. Comparison of this treebased approach with the implicit path enumeration technique (IPET) shows that tree-based analysis scales better with respect to program size and gives similar WCET values. Index Terms—Real time systems, performance analysis, software performance, software reliability, software algorithms, safety I

    WCET-Aware Scratchpad Memory Management for Hard Real-Time Systems

    Get PDF
    abstract: Cyber-physical systems and hard real-time systems have strict timing constraints that specify deadlines until which tasks must finish their execution. Missing a deadline can cause unexpected outcome or endanger human lives in safety-critical applications, such as automotive or aeronautical systems. It is, therefore, of utmost importance to obtain and optimize a safe upper bound of each task’s execution time or the worst-case execution time (WCET), to guarantee the absence of any missed deadline. Unfortunately, conventional microarchitectural components, such as caches and branch predictors, are only optimized for average-case performance and often make WCET analysis complicated and pessimistic. Caches especially have a large impact on the worst-case performance due to expensive off- chip memory accesses involved in cache miss handling. In this regard, software-controlled scratchpad memories (SPMs) have become a promising alternative to caches. An SPM is a raw SRAM, controlled only by executing data movement instructions explicitly at runtime, and such explicit control facilitates static analyses to obtain safe and tight upper bounds of WCETs. SPM management techniques, used in compilers targeting an SPM-based processor, determine how to use a given SPM space by deciding where to insert data movement instructions and what operations to perform at those program locations. This dissertation presents several management techniques for program code and stack data, which aim to optimize the WCETs of a given program. The proposed code management techniques include optimal allocation algorithms and a polynomial-time heuristic for allocating functions to the SPM space, with or without the use of abstraction of SPM regions, and a heuristic for splitting functions into smaller partitions. The proposed stack data management technique, on the other hand, finds an optimal set of program locations to evict and restore stack frames to avoid stack overflows, when the call stack resides in a size-limited SPM. In the evaluation, the WCETs of various benchmarks including real-world automotive applications are statically calculated for SPMs and caches in several different memory configurations.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Reducing the WCET and analysis time of systems with simple lockable instruction caches

    Get PDF
    One of the key challenges in real-time systems is the analysis of the memory hierarchy. Many Worst-Case Execution Time (WCET) analysis methods supporting an instruction cache are based on iterative or convergence algorithms, which are rather slow. Our goal in this paper is to reduce the WCET analysis time on systems with a simple lockable instruction cache, focusing on the Lock-MS method. First, we propose an algorithm to obtain a structure-based representation of the Control Flow Graph (CFG). It organizes the whole WCET problem as nested subproblems, which takes advantage of common branch-and-bound algorithms of Integer Linear Programming (ILP) solvers. Second, we add support for multiple locking points per task, each one with specific cache contents, instead of a given locked content for the whole task execution. Locking points are set heuristically before outer loops. Such simple heuristics adds no complexity, and reduces the WCET by taking profit of the temporal reuse found in loops. Since loops can be processed as isolated regions, the optimal contents to lock into cache for each region can be obtained, and the WCET analysis time is further reduced. With these two improvements, our WCET analysis is around 10 times faster than other approaches. Also, our results show that the WCET is reduced, and the hit ratio achieved for the lockable instruction cache is similar to that of a real execution with an LRU instruction cache. Finally, we analyze the WCET sensitivity to compiler optimization, showing for each benchmark the right choices and pointing out that O0 is always the worst option

    Whole-System Worst-Case Energy-Consumption Analysis for Energy-Constrained Real-Time Systems

    Get PDF
    Although internal devices (e.g., memory, timers) and external devices (e.g., transceivers, sensors) significantly contribute to the energy consumption of an embedded real-time system, their impact on the worst-case response energy consumption (WCRE) of tasks is usually not adequately taken into account. Most WCRE analysis techniques, for example, only focus on the processor and therefore do not consider the energy consumption of other hardware units. Apart from that, the typical approach for dealing with devices is to assume that all of them are always activated, which leads to high WCRE overestimations in the general case where a system switches off the devices that are currently not needed in order to minimize energy consumption. In this paper, we present SysWCEC, an approach that addresses these problems by enabling static WCRE analysis for entire real-time systems, including internal as well as external devices. For this purpose, SysWCEC introduces a novel abstraction, the power-state-transition graph, which contains information about the worst-case energy consumption of all possible execution paths. To construct the graph, SysWCEC decomposes the analyzed real-time system into blocks during which the set of active devices in the system does not change and is consequently able to precisely handle devices being dynamically activated or deactivated

    WCET Optimizations and Architectural Support for Hard Real-Time Systems

    Get PDF
    As time predictability is critical to hard real-time systems, it is not only necessary to accurately estimate the worst-case execution time (WCET) of the real-time tasks but also desirable to improve either the WCET of the tasks or time predictability of the system, because the real-time tasks with lower WCETs are easy to schedule and more likely to meat their deadlines. As a real-time system is an integration of software and hardware, the optimization can be achieved through two ways: software optimization and time-predictable architectural support. In terms of software optimization, we fi rst propose a loop-based instruction prefetching approach to further improve the WCET comparing with simple prefetching techniques such as Next-N-Line prefetching which can enhance both the average-case performance and the worst-case performance. Our prefetching approach can exploit the program controlow information to intelligently prefetch instructions that are most likely needed. Second, as inter-thread interferences in shared caches can signi cantly a ect the WCET of real-time tasks running on multicore processors, we study three multicore-aware code positioning methods to reduce the inter-core L2 cache interferences between co-running real-time threads. One strategy focuses on decreasing the longest WCET among the co-running threads, and two other methods aim at achieving fairness in terms of the amount or percentage of WCET reduction among co-running threads. In the aspect of time-predictable architectural support, we introduce the concept of architectural time predictability (ATP) to separate timing uncertainty concerns caused by hardware from software, which greatly facilitates the advancement of time-predictable processor design. We also propose a metric called Architectural Time-predictability Factor (ATF) to measure architectural time predictability quantitatively. Furthermore, while cache memories can generally improve average-case performance, they are harmful to time predictability and thus are not desirable for hard real-time and safety-critical systems. In contrast, Scratch-Pad Memories (SPMs) are time predictable, but they may lead to inferior performance. Guided by ATF, we propose and evaluate a variety of hybrid on-chip memory architectures to combine both caches and SPMs intelligently to achieve good time predictability and high performance. Detailed implementation and experimental results discussion are presented in this dissertation

    Optimizing compilation with preservation of structural code coverage metrics to support software testing

    Get PDF
    Code-coverage-based testing is a widely-used testing strategy with the aim of providing a meaningful decision criterion for the adequacy of a test suite. Code-coverage-based testing is also mandated for the development of safety-critical applications; for example, the DO178b document requires the application of the modified condition/decision coverage. One critical issue of code-coverage testing is that structural code coverage criteria are typically applied to source code whereas the generated machine code may result in a different code structure because of code optimizations performed by a compiler. In this work, we present the automatic calculation of coverage profiles describing which structural code-coverage criteria are preserved by which code optimization, independently of the concrete test suite. These coverage profiles allow to easily extend compilers with the feature of preserving any given code-coverage criteria by enabling only those code optimizations that preserve it. Furthermore, we describe the integration of these coverage profile into the compiler GCC. With these coverage profiles, we answer the question of how much code optimization is possible without compromising the error-detection likelihood of a given test suite. Experimental results conclude that the performance cost to achieve preservation of structural code coverage in GCC is rather low.Peer reviewedSubmitted Versio
    • …
    corecore