
UNIVERSIDADE FEDERAL DE SANTA CATARINA

PROGRAMA DE PÓS-GRADUAÇÃO EM

ENGENHARIA DE AUTOMAÇÃO E SISTEMAS

EMILIO WUERGES

WCET-AWARE PREFETCHING OF UNLOCKED

INSTRUCTION CACHES: A TECHNIQUE FOR

RECONCILING REAL-TIME GUARANTEES AND

ENERGY EFFICIENCY

Florianópolis, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da UFSC

https://core.ac.uk/display/30410707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

EMILIO WUERGES

WCET-AWARE PREFETCHING OF UNLOCKED

INSTRUCTION CACHES: A TECHNIQUE FOR

RECONCILING REAL-TIME GUARANTEES AND

ENERGY EFFICIENCY

Tese de doutorado apresentada à Banca
Examinadora do Programa de Pós-
Graduação em Engenharia de Automação e
Sistemas do Centro Tecnológico da
Universidade Federal de Santa Catarina,
como requisito parcial para a obtenção do
título de Doutor em Engenharia de
Automação e Sistemas, sob a orientação do
Professor Doutor Luiz C. V. dos Santos e
coorientação do Professor Doutor Rômulo
Silva de Oliveira.

Florianópolis, 2015

EMILIO WUERGES

WCET-AWARE PREFETCHING OF UNLOCKED INSTRUCTION

CACHES: A TECHNIQUE FOR RECONCILING REAL-TIME

GUARANTEES AND ENERGY EFFICIENCY

Tese de doutorado apresentada ao Programa de Pós-Graduação em
Engenharia de Automação e Sistemas do Centro Tecnológico da
Universidade Federal de Santa Catarina em cumprimento a requisito
parcial para a obtenção do título de Doutor em Engenharia de Automação
e Sistemas.

APROVADA PELA COMISSÃO EXAMINADORA

EM FLORIANÓPOLIS, 26/02/2015

__

Prof. Rômulo Silva de Oliveira, Dr. (Coordenador do Curso)

__

Prof. Luiz C. V. dos Santos, Dr. – INE/UFSC (Orientador)

__

Prof. Rômulo Silva de Oliveira, Dr. – DAS/UFSC (Coorientador)

__

Prof. Flávio Rech Wagner, Dr. – Instituto de Informática/UFRGS

__

Prof. Sandro Rigo, Dr. – Instituto de Computação/UNICAMP

__

Profª Patricia Della Méa Plentz, Drª. – INE/UFSC

__

Prof. Carlos Barros Montez, Dr. – DAS/UFSC

__

Prof. Laércio Lima Pilla, Dr. – INE/UFSC

5

ACKNOWLEDGMENTS

This work was partially funded by the National Program of Mi-
croelectronics (PNM) of CNPq, by a scholarship (Process n. 141732/2010-
5). Part of the costs of this work used resources from INCT NA-
MITEC: National Institute of Science and Technology of Micro and
Nano-electronic Systems (Process CNPq. 573738/2008-4).

7

RESUMO

A computação embarcada requer crescente vazão sob baixa po-
tência. Ela requer um aumento de eficiência energética quando se exe-
cutam programas de crescente complexidade. Muitos sistemas embar-
cados são também sistemas de tempo real, cuja correção temporal pre-
cisa ser garantida através de análise de escalonabilidade, a qual costuma
assumir que o WCET de uma tarefa é conhecido em tempo de projeto.
Como resultado da crescente complexidade do software, uma quanti-
dade significativa de energia é gasta ao se prover instruções através da
hierarquia de memória. Como a cache de instruções consome cerca de
40% da energia gasta em um processador embarcado e afeta a energia
consumida em memória principal, ela se torna um relevante alvo para
otimização. Entretanto, como ela afeta substancialmente o WCET,
o comportamento da cache precisa ser restrito via “cache locking” ou
previsto via análise de WCET.

Para obter eficiência energética sob restrições de tempo real, é
preciso estender a consciência que o compilador tem da plataforma de
hardware. Entretanto, compiladores para tempo real ignoram a ener-
gia, embora determinem rapidamente limites superiores para o WCET,
enquanto compiladores para sistemas embarcados estimem com pre-
cisão a energia, mas gastem muito tempo em “profiling”. Por isso,
esta tese propõe um método unificado para estimar a energia gasta em
memória, o qual é baseado em Interpretação Abstrata, exatamente o
mesmo substrato matemático usado para a análise de WCET em ca-
ches. As estimativas mostram derivadas que são tão precisas quanto
as obtidas via “profiling”, mas são computadas 1000 vezes mais rápido,
sendo apropriadas para induzir otimização de código através de melho-
ria iterativa.

Como “cache locking” troca eficiência energética por previsibi-
lidade, esta tese propõe uma nova otimização de código, baseada em
pré-carga por software, a qual reduz a taxa de faltas de caches de instru-
ções e, provadamente, não aumenta o WCET. A otimização proposta
é comparada com o estado-da-arte em “cache locking” parcial para 37

8

programas do “Malardalen WCET benchmark” para 36 configurações
de cache e duas tecnologias distintas (2664 casos de uso). Em média,
para obter uma melhoria de 68% no WCET, “cache locking” parcial
requer 8% mais energia. Por outro lado, a pré-carga por software dimi-
nui o consumo de energia em 11% enquanto melhora em 15% o WCET,
reconciliando assim eficiência energética e garantias de tempo real.

9

ABSTRACT

Embedded computing requires increasing throughput at low power
budgets. It asks for growing energy efficiency when executing programs
of rising complexity. Many embedded systems are also real-time sys-
tems, whose temporal correctness is asserted through schedulability
analysis, which often assumes that the WCET of each task is known at
design-time. As a result of the growing software complexity, a signif-
icant amount of energy is spent in supplying instructions through the
memory hierarchy. Since an instruction cache consumes around 40% of
an embedded processor’s energy and affects the energy spent in main
memory, it becomes a relevant optimization target. However, since it
largely impacts the WCET, cache behavior must be either constrained
via cache locking or predicted by WCET analysis.

To achieve energy efficiency under real-time constraints, a com-
piler must have extended awareness of the hardware platform. However,
real-time compilers ignore energy, although they quickly determine
bounds for WCET, whereas embedded compilers accurately estimate
energy but require time-consuming profiling. That is why this thesis
proposes a unifying method to estimate memory energy consumption
that is based on Abstract Interpretation, the very same mathematical
framework employed for the WCET analysis of caches. The estimates
exhibit derivatives that are as accurate as those obtained by profiling,
but are computed 1000 times faster, being suitable for driving code
optimization through iterative improvement.

Since cache locking gives up energy efficiency for predictability,
this thesis proposes a novel code optimization, based on software pre-
fetching, which reduces miss rate of unlocked instruction caches and,
provenly, does not increase the WCET. The proposed optimization is
compared with a state-of-the-art partial cache locking technique for
the 37 programs of the Malardalen WCET benchmarks under 36 cache
configurations and two distinct target technologies (2664 use cases).
On average, to achieve an improvement of 68% in the WCET, partial
cache locking required 8% more energy. On the other hand, software

10

prefetching decreased the energy consumption by 11% while leading
to an improvement of 15% in the WCET, thereby reconciling energy
efficiency and real-time guarantees.

11

CONTENTS

Contents . 11

List of Figures . 13

List of Tables . 14

List of Abbreviations and Acronyms 15

List of Symbols . 17

1 INTRODUCTION 19
1.1 Trends in embedded computing 19
1.2 Motivation . 20
1.3 Illustrative examples 23
1.4 Contributions and publications 30
1.4.1 A fast energy-aware estimation technique 30
1.4.2 A new optimization technique 31
1.4.3 Energy consumption evaluation of two real-time tech-

niques . 31
1.4.4 Scope of application 32
1.4.5 Publications . 32
1.5 Organization of this thesis 32

2 FAST ENERGY ESTIMATION 35
2.1 Main methods for estimation 35
2.2 The proposed energy-aware workflow 36
2.3 Experimental evidence of suitability for iterative im-

provement . 38
2.3.1 A formulation to evaluate accuracy 38
2.3.2 Normalization . 38
2.3.3 Correlation . 39
2.3.4 Experimental results 40
2.3.5 Magnitude accuracy 41

12 Contents

2.3.6 Derivative’s accuracy 42
2.3.7 Estimation efficiency 43

3 RELATED WORK 45
3.1 Prefetching . 45
3.1.1 Prefetching for energy efficiency 46
3.1.2 Prefetching under real-time constraints 46
3.2 Cache locking . 47

4 MODELING AND PROBLEM FORMULATION 49
4.1 Cache behavior . 49
4.2 Conditional execution 50
4.3 Determination of the WCET scenario 51
4.4 Problem formulation 51

5 THE PROPOSED TECHNIQUE 53
5.1 Abstract program representation 53
5.2 Illustrative examples 54
5.3 How loops are handled 57
5.4 The joint improvement criterion 59
5.5 The novel optimization algorithm 60

6 EXPERIMENTAL EVALUATION 65
6.1 Experimental setup 65
6.2 Experimental results 68

7 CONCLUSION . 75
7.1 Concluding remarks 75
7.2 Limitations and extensions 76
7.3 Perspectives . 79

Appendix A – Formal Guarantees 81

Bibliography . 85

13

LIST OF FIGURES

Figure 1 – Typical processor energy consumption (DALLY et al.,
2008) . 21

Figure 2 – Detailed energy consumption of a processor 21
Figure 3 – Behavior of an unlocked cache 24
Figure 4 – Fully locked cache . 26
Figure 5 – Partially locked cache 27
Figure 6 – Unlocked cache with prefetching 29
Figure 7 – Energy-aware workflow based on AI and IPET 37
Figure 8 – Normalized energy consumption for each program . . . 42
Figure 9 – Correlation between energy estimates for each config-

uration . 42
Figure 10 – Estimation speed-up for each program 43
Figure 11 – Estimation overhead on compilation time for each pro-

gram . 43
Figure 12 – The technique applied to a straight-line program 56
Figure 13 – How conditional control flows are handled 57
Figure 14 – How the technique handles loops 58
Figure 15 – Impact of prefetching 69
Figure 16 – Impact of cache locking 69
Figure 17 – Impact on miss rate 70
Figure 18 – Percentage of locked blocks 70
Figure 19 – Prefetching: higher energy efficiency with smaller caches 71
Figure 20 – Cache locking: smaller energy efficiency with smaller

caches . 71
Figure 21 – The negligible overhead of the technique 74

LIST OF TABLES

Table 1 – Program characterization 41
Table 2 – The adopted benchmark suite 65
Table 3 – Cache configurations 66

15

LIST OF ABBREVIATIONS AND ACRONYMS

RTOS Real-time operating system

ALU Arithmetic logic unit

I-cache Instruction cache

D-cache Data cache

R-file Register file

ACET Average case execution time

WCET Worst-case execution time

LRU Least recently used

CFG Control flow graph

AI Abstract interpretation

BCET Best-case execution time

ACEC Energy consumption of the average-case execution
time

SoC System on Chip

ILP Integer linear programming

IPET Implicit path enumeration technique

IR Intermediate representation

RPT Reference prediction table

FCL Full cache locking

PCL Partial cache locking

WCEP Worst-case execution path

ACFG Abstract control flow graph

16 List of abbreviations and acronyms

MRU Most recently used

VIVU Virtual interpretation of virtual unrolled (loops)

PFU Prefetching unit

17

LIST OF SYMBOLS

I An invalid cache block

ri An address of an instruction

si A block in memory

πsi A prefetch for the block si

p ∈ P A program p and the set of programs P

c ∈C A memory configuration c and the set of memory
configurations C

c = (n,s) A memory configuration c, associativity s and cache
size n

t ∈ T A process technology t and the set of technologies T

a Average-case execution scenario

w Worst-case execution scenario

b Best-case execution scenario

τ A time estimate

ε An estimate for the energy consumption

ν Execution time normalized to the average-case exe-
cution time

η Energy consumption normalized to the average-case
energy consumption

Ti The set of time estimates under an execution time
scenario i

Ei The set of energy estimates under an execution time
scenario i

18 List of symbols

ρ Pearson’s coefficient

τ+ Correlation between worst-case execution time esti-
mate with average case estimates

τ− Correlation between best-case execution time esti-
mate with average case estimates

ε+ Correlation between worst-case execution energy es-
timate with average case estimates

ε− Correlation between best-case execution energy esti-
mate with average case estimates

L The set of cache lines

S The set of memory blocks

U A cache update function

Ĉ The set of abstract cache states

B The set of basic blocks

bbi A basic block of a program

nbbi The number of times a basic block is executed

t p
i (r) The execution time of the program p under the sce-

nario i

πs A prefetch to the block s

J A join function

B(ĉ) The set of blocks in a cache state ĉ

19

1 INTRODUCTION

1.1 TRENDS IN EMBEDDED COMPUTING

Various embedded applications demand increasing energy effi-
ciency, because they combine high throughput requirements with power
constraints, ranging from low power control (for instance, hard driver
controllers and automotive control units) to high speed and low power
communication devices (for instance, baseband processing in wireless
modems and mobile devices).

Many embedded systems are also real-time systems in the sense
that they must meet real-time requirements. Results must be not only
logically correct but they also must be produced at the right moment.
The temporal correctness of a system is asserted through its schedula-
bility analysis. Most schedulability analyses are based on the assump-
tion that the worst-case execution time (WCET) of each task is known
at design-time.

With the rise of smartphones and tablets, Mobile Computing
requires increasing energy efficiency to execute programs whose com-
plexity keeps raising. Mobile devices are essentially a combination of
two subsystems – a “PC” and a “radio”. The former runs the end-user
interface and application programs on a multi-threading environment
supported by a conventional operating system, whereas the latter im-
plements baseband, protocol-stack, and security processing by relying
on a multi-tasking environment built on top of a Real-Time Operat-
ing System (RTOS). Baseband processing, for instance, involves in-
creasingly energy efficiency, real-time constraints and growing software
complexity. According to Dally et al. (DALLY et al., 2008), for a
power constraint of around 1W, the energy efficiency had to increase
from 25pJ/operations (for a 3G receiver) to 3-5pJ/operation (for a 4G
receiver). This is an example of a scenario asking for techniques that
do not jeopardize predictability when improving energy efficiency.

Figure 1 (DALLY et al., 2008) shows that around 70% of the
energy spent in an embedded processor is due to data and instruction

20 Chapter 1. Introduction

supply (D-supply and I-supply). Figure 2 shows the contribution of
the main hardware components to energy consumption1. Note that,
while the consumption of pipeline registers (R-pipe) is marginal, the
on-chip memories (I-cache and D-cache) and the register file (R-file)
are responsible for more than 60% of the total energy consumption of
the processor: 39% of the energy is spent in the instruction cache, 14%
in data cache, and 11% in the register file. Since the contribution of the
arithmetic-logical unit (ALU) is marginal (6%), code optimizations that
reduce the energy spent in arithmetic operations have little impact on
energy efficiency. The same reasoning applies to the pipeline registers.
Although, the energy spent in control logic (clock+control) is signifi-
cant, it could hardly be reduced through embedded code optimization.
Fortunately, the energy spent in storage components (I-cache, D-cache,
and R-file) can be shrinked with the help of code optimizations (e.g.
register allocation, basic-block placement, procedure sorting, etc.). The
major energy consumer is the instruction cache. Part of the energy
represented by the shaded area in Figure 2 corresponds to dynamic
consumption, which is proportional to the number of accesses to the
instruction cache. Another part corresponds to static consumption,
which is mainly due to leakage.

Figure 2, however, does not account for the energy spent in lower
levels of the memory hierarchy. For instance, part of such energy cor-
responds to the dynamic consumption in main memory, which is pro-
portional to the global miss rate in higher hierarchical levels. Another
part corresponds to static consumption, which is proportional to the
execution time and to the static power consumption in main memory.

1.2 MOTIVATION

Given a task of a real-time system, code optimizations should
reduce the energy spent in supplying instructions through the whole
memory hierarchy, while preserving real-time guarantees, but without

1 The values reported in Figure 2 were obtained by combining the data available in Figures 1,
2, and 3 from (DALLY et al., 2008).

1.2. Motivation 21

I-supply

42%

D-supply

28%

Clock+Control

24%
ALU

6%

Figure 1 – Typical processor energy consumption (DALLY et al., 2008)

I-cache

39%D-cache
14%

R-file

11%

R-Pipe

6%

Clock+Control

24%
ALU

6%

Figure 2 – Detailed energy consumption of a processor

decreasing the average throughput. Therefore, for energy-efficient in-
struction supply, code optimizations should:

∙ Reduce the dynamic consumption in the instruction cache: this
can only be done by decreasing the number of executed instruc-
tions. Fortunately, this is accomplished by common optimizations
available in conventional compilers (e.g. dead code elimination,
constant/copy propagation, common subexpression elimination,
code motion of the loop invariant).

∙ Reduce the dynamic consumption in the main memory: this

22 Chapter 1. Introduction

can be obtained by decreasing the miss rate. Although some
optimizations address that goal in conventional compilers (e.g.
basic block placement, procedure sorting), they do not provide
real-time guarantees.

∙ Reduce the static consumption in both the instruction cache and
main memory: this can be done by reducing the miss rate (since
this decreases the average execution time of a task).

Since an instruction cache may consume around 40% of an em-
bedded processor’s energy (DALLY et al., 2008), since it affects the
energy consumption in main memory, and since it impacts predictabil-
ity and throughput, it becomes a relevant optimization target.

Cache controllers exploit locality of reference through on-demand
fetching. When it is fully exploited, further miss rate reductions can
only be obtained by fetching in advance the items that will not be in
cache before they are referenced. To keep the processor from stalling,
such prefetching mechanism relies on a non-blocking cache port or
prefetch buffer. A smaller miss rate not only decreases the dynamic
consumption, but it also shrinks the static energy consumption as it
shortens the average-case execution time (ACET).

Despite its impact on consumption and worst-case execution time
(WCET), instruction prefetching is underexploited in real-time sys-
tems, although a solid basis for accurately predicting cache behavior
(FERDINAND et al., 1999; THEILING; FERDINAND; WILHELM,
2000) has been laid. One work extended cache abstract semantics to
take hardware prefetching into account (YAN; ZHANG, 2007), another
exploited it for optimizing the WCET (DING; YAN; ZHANG, 2009).
On the other hand, cache locking (PUAUT; ARNAUD, 2006) (DING;
LIANG; MITRA, 2012) increases the predictability of cache-based real-
time systems. Although it allows a large reduction in the WCET, no
concern is shown for the impact on energy consumption. Despite the
proposition of a recent technique combining hardware prefetching with
cache locking (APARICIO et al., 2010), the joint impact on energy ef-

1.3. Illustrative examples 23

ficiency was not evaluated. Besides, the use of software prefetching for
real-time systems is even less exploited than hardware prefetching.

For these reasons this thesis focuses on WCET-aware software
prefetching for instruction caches and compares it with cache locking
in terms of WCET, ACET, and energy consumption.

1.3 ILLUSTRATIVE EXAMPLES

This section employs a chain of simple examples to illustrate
the basic mechanisms of cache locking and software prefetching when
applied to instruction caches. It allows us to clearly pinpoint their
sources of improvements and limitations, which will be the keys to the
analysis of related work (Chapter 3) and to the interpretation of the
experimental results (Chapter 6).

In the examples, a given program is run on the same cache config-
uration under four distinct scenarios: unlocked cache with on-demand
fetching, full cache locking, partial cache locking, and unlocked cache
with software prefetch. After showing the resulting behavior of the
cache in each scenario, we analyze the impact of each technique on miss
rate (which affects energy consumption and ACET) and on predictabil-
ity (which affects the accuracy of an upper bound for the WCET). Al-
though in real-life scenarios, the cache state space may be too large to
explore (WILHELM et al., 2008), for our examples, we assume that
WCET analysis is able to determine every cache state. For a simple
estimation of the WCET, we suppose that the access time of a cache
is one cycle, and the access time of main memory is 2 cycles.

For simplicity, all the examples assume a 2-way set associative
cache with only two blocks (note that this is equivalent to assuming
that we are observing one of the sets of a larger cache, but all the
references in the example map to that same set). We adopt the least
recently used (LRU) replacement policy and denote cache states as
[X ,Y], where X and Y represent the most and the least recently used
memory blocks residing in cache, respectively. We use I to denote an
invalid block. Therefore, [I, I] represents the initial state.

24 Chapter 1. Introduction

r00 r01 r02 r1

∙

r2 r3 r4 r5

r6 r7 r8 r9

r10 r11 r12 r13

⊙

s1

s2

s3

s4

(a) CFG

First reference Subsequent references
State Result State Result
[I, I] r1 Miss
[s1, I] r2 Miss
[s2,s1] r3 Hit
[s2,s1] r4 Hit [s3,s2] r4 Hit
[s2,s1] r5 Hit [s2,s3] r5 Hit
[s2,s1] r6 Miss [s2,s3] r6 Hit
[s3,s2] r7 Hit [s3,s2] r7 Hit
[s3,s2] r8 Hit [s3,s2] r8 Hit
[s3,s2] r9 Hit
[s3,s2] r10 Miss
[s4,s3] r11 Hit [s4,s3] r11 Hit
[s4,s3] r12 Hit [s4,s3] r12 Hit
[s4,s3] r13 Hit [s4,s3] r13 Hit

(b) Cache states

Figure 3 – Behavior of an unlocked cache

Figure 3a shows a control-flow graph (CFG) representation for
the program, where edges denote the flow of control and vertices rep-
resent references to memory locations. Each reference ri represents the
address of an instruction. Each dotted rectangle represents the bound-
aries of a block s j in memory. The example assumes that each block
contains four instructions. For instance, r2, r3, r4, and r5 refer to in-
structions belonging to memory block s2. Note that the program has
two loops, which are indicated by the back edges (r8,r4) and (r13,r11).

1.3. Illustrative examples 25

For all the examples in this section, we suppose that each loop executes
exactly ten iterations.

Figure 3b shows the resulting cache behavior when conventional
on-demand fetching is used to update cache blocks. The table has
two partitions, one showing the behavior induced by the references in
the first iteration of each loop, another showing the behavior for the
subsequent iterations. Each line represents the cache state before a
given reference and the outcome after that reference.

Since the cache is initially empty, r1 induces a miss. As a result,
block s1 is loaded into the cache. Similarly, r2 also induces a miss
and causes the loading of s2, which becomes the most recently used
block in cache. Since the state of the cache is [s2,s1] when r3, r4, and
r5 are successively reached, they all lead to hits. Then r6 induces a
miss and block s3 is loaded. As a result, the next two references, r7

and r8, lead to hits, closing the first iteration of the first loop. For
the subsequent iterations of that loop, r4 to r8 induce hits, since they
reference blocks s3 and s2, which are not replaced. For the same reason,
on exit of that loop, r9 also leads to a hit. Then r10 leads to a miss
and block s4 is loaded. As r11, r12, and r13 all refer to the same block
s4, they all hit, closing the first iteration of the second loop. For the
subsequent iterations, r11 to r13 induce hits, since they refer to block
s4, which is not replaced. Note that r6 has induced hits for all but
the first iteration of the first loop, because it references the first item
of a block. In contrast, r11 has always induced hits, because it does
not reference the first item. In this scenario, the program results in 4
misses and 89 hits, i.e. a miss rate of approximately 4%. This example
reviews the fact that the effectiveness of on-demand fetching strongly
relies on the temporal locality induced by loop iterations and the spatial
locality induced by references to successive addresses within a block.
The WCET for this scenario is 97 cycles.

Figure 4 illustrates the scenario for a fully locked cache. In
this example, blocks s3 and s4 are locked in the cache. Such locking
is indicated in the CFG by the solid rectangles. Since as a result of
full locking, no block will ever be replaced, the prediction of memory

26 Chapter 1. Introduction

r00 r01 r02 r1

∙

r2 r3 r4 r5

r6 r7 r8 r9

r10 r11 r12 r13

⊙

s1

s2

s3

s4

(a) CFG

First reference Subsequent references
State Result State Result
[s3,s4] r1 Miss
[s3,s4] r2 Miss
[s3,s4] r3 Miss
[s3,s4] r4 Miss [s3,s4] r4 Miss
[s3,s4] r5 Miss [s3,s4] r5 Miss
[s3,s4] r6 Hit [s3,s4] r6 Hit
[s3,s4] r7 Hit [s3,s4] r7 Hit
[s3,s4] r8 Hit [s3,s4] r8 Hit
[s3,s4] r9 Hit
[s3,s4] r10 Hit
[s3,s4] r11 Hit [s3,s4] r11 Hit
[s3,s4] r12 Hit [s3,s4] r12 Hit
[s3,s4] r13 Hit [s3,s4] r13 Hit

(b) Cache states

Figure 4 – Fully locked cache

behavior is trivial. Since there are only two blocks and both are locked,
only the references to instructions belonging to blocks s3 and s4 will lead
to hits; all the others result in misses. In this scenario, the program
induces 25 misses and 68 hits, i.e. a miss rate of around 27%. As
compared to the previous scenario, despite the higher predictability, the
energy consumption and the ACET are largely increased, as a result of
a larger miss rate. The WCET for this scenario is 118 cycles.

Figure 5 illustrates the behavior of a cache where only block s3

1.3. Illustrative examples 27

r00 r01 r02 r1

∙

r2 r3 r4 r5

r6 r7 r8 r9

r10 r11 r12 r13

⊙

s1

s2

s3

s4

(a) CFG

First reference Subsequent references
State Result State Result
[s3, I] r1 Miss
[s3,s1] r2 Miss
[s3,s2] r3 Hit
[s3,s2] r4 Hit [s3,s2] r4 Hit
[s3,s2] r5 Hit [s3,s2] r5 Hit
[s3,s2] r6 Hit [s3,s2] r6 Hit
[s3,s2] r7 Hit [s3,s2] r7 Hit
[s3,s2] r8 Hit [s3,s2] r8 Hit
[s3,s2] r9 Hit
[s3,s2] r10 Miss
[s3,s4] r11 Hit [s3,s4] r11 Hit
[s3,s4] r12 Hit [s3,s4] r12 Hit
[s3,s4] r13 Hit [s3,s4] r13 Hit

(b) Cache states

Figure 5 – Partially locked cache

is locked, as denoted by the solid rectangle in the CFG. To indicate
such partial locking in cache state, we show the locked block as if
permanently stuck at the same position. Note that, since one of two
blocks is locked, the 2-way set associative cache essentially degenerates
into a direct-mapped cache. Although, there is no need to predict cache
behavior for references to instructions belonging to block s3 (which will
always hit), prediction is required for all the other references.

Although a valid block is in cache when reference r1 is reached,

28 Chapter 1. Introduction

a miss is induced because the locked block is not s1. As a result, s1

is loaded into the single unlocked block. That is why the cache state
is [s3,s1] when r2 is reached, leading to a miss. Since s3 is locked, s2

replaces s1 in cache. As a result, r3, r4, and r5 lead to hits. Since s3 was
locked in cache, a hit is induced when r6 is reached for the first time (as
opposed to what happened for the unlocked cache). In this scenario, the
program induces 3 misses and 90 hits, i.e. a miss rate of approximately
3%, which is smaller than the one obtained for the unlocked cache
and much smaller than the one observed under full cache locking. This
illustrates the fact that partial cache locking tends to reduce the energy
consumption and the ACET as compared to full locking. The WCET
for this scenario is 96 cycles. Indeed, the literature shows that partial
cache locking outperforms full cache locking both in terms of ACET and
WCET (PUAUT; ARNAUD, 2006) (DING; LIANG; MITRA, 2012).

Figure 6 shows an optimized version of the program used in
the previous examples, where prefetch instructions were inserted. In
that figure, πs2 , πs3 , and πs4 are references to prefetch instructions
that load blocks s2, s3, and s4, respectively. Note that, when a prefetch
instruction is inserted, it may displace references that are located before
the prefetch instruction to previous blocks. For instance, r6 was moved
from block s3 (in the previous scenarios) to the block s2 (in the current
scenario). For simplicity, we assume that the latency of the prefetch
instructions is zero.

Since πs2 is the first reference to block s1, it leads to a miss. As
a consequence, two blocks are loaded into the cache: one as a result of
on-demand fetching (s1), another due to the first prefetch instruction
(s2). Thus, when r1 is reached, the cache state is [s1,s2], resulting in
a hit. For the same reason, r2 and r3 also lead to hits. Despite be-
ing a reference to the first instruction of a block, πs3 leads to a hit.
This illustrates that, although the reference to a prefetch instruction
may raise a miss (e.g. πs2), another may result in a hit (e.g. πs3)
if it lies in a block that was prefetched by a former prefetch instruc-
tion. Therefore, the overhead of inserting a prefetch instruction can be
eliminated by properly inserting another prefetch instruction before it.

1.3. Illustrative examples 29

∙

πs2 r1 r2 r3

πs3 r4 r5 r6

r7 r8 πs4 r9

r10 r11 r12 r13

⊙

s1

s2

s3

s4

(a) CFG

First reference Subsequent references
State Result State Result
[I, I] πs2 Miss
[s1,s2] r1 Hit
[s1,s2] r2 Hit
[s1,s2] r3 Hit
[s1,s2] πs3 Hit
[s2,s3] r4 Hit [s3,s2] r4 Hit
[s2,s3] r5 Hit [s2,s3] r5 Hit
[s2,s3] r6 Hit [s2,s3] r6 Hit
[s2,s3] r7 Hit [s2,s3] r7 Hit
[s3,s2] r8 Hit [s3,s2] r8 Hit
[s3,s2] πs4 Hit
[s3,s4] r9 Hit
[s3,s4] r10 Hit
[s4,s3] r11 Hit [s4,s3] r11 Hit
[s4,s3] r12 Hit [s4,s3] r12 Hit
[s4,s3] r13 Hit [s4,s3] r13 Hit

(b) Cache states

Figure 6 – Unlocked cache with prefetching

When prefetch instructions lie in prefetched blocks or when they are
not the first reference of a block fetched on demand, their contribution
to the execution time narrows down to the time of a hit. Since the
program was optimized so that a block was loaded in cache before it
was referenced, all references except the first one induce hits. In this
scenario, the optimized program induces a single miss and 95 hits, i.e.

30 Chapter 1. Introduction

a miss rate of 1%, which is the smallest value among all four scenarios.
The example illustrates that, as compared to partial cache lock-

ing, proper prefetching may lead to smaller ACET, since the processor
is stalled less frequently.

The WCET for this scenario is 97 cycles. Since, for simplicity,
we assumed that WCET analysis is able to explore every state of the
cache, prefetching led to a similar value for WCET as compared to
partial cache locking. As the unlocked cache state space is generally too
large to explore (WILHELM et al., 2008) and since locking essentially
degenerates the cache into a simpler one, partial cache locking typically
leads to a much smaller WCET, as will be shown in Section 6.2.

The examples illustrate that, when targeting energy-efficient real-
time systems, the key is to reduce not only the WCET, but also the
miss rate, for two reasons. First, a reduction in miss rate decreases
the number of accesses to main memory. Second, since it reduces the
ACET, it also decreases static consumption. Although a reduction
in miss rate only decreases dynamic consumption in main memory, it
decreases the static consumption in both, main memory and cache.

1.4 CONTRIBUTIONS AND PUBLICATIONS

1.4.1 A fast energy-aware estimation technique

Although average-case assessment is time consuming, best-case
and worst-case scenarios can be identified with less computational ef-
fort: they can rely on the Abstract Interpretation (AI) (COUSOT;
COUSOT, 1977) of a program, instead of executing it. In the field
of Real-Time Systems, AI is employed to find tight bounds for worst-
case and best-case execution times (WCET and BCET)

This thesis proposes a unified technique to estimate the ACET
and average-case energy consumption (ACEC) from the time and en-
ergy computed for the worst-case and the best-case execution scenarios
(WCET and BCET). Instead of employing it to provide execution time
bounds for real-time scheduling, our technique uses Abstract Interpre-

1.4. Contributions and publications 31

tation at compile time to optimize the average-case energy efficiency
of the memory subsystem. The key idea lies in the fact that com-
pilers often drive optimization based on iterative improvement. As a
consequence, the accuracy of the cost function is less important than
its derivative’s, since the variation in cost will be the actual driver for
decision making.

1.4.2 A new optimization technique

This thesis proposes a novel technique that inserts prefetch in-
structions for improving the energy efficiency of instruction caches. In
contrast with most real-time optimization techniques (DING; YAN;
ZHANG, 2009; DING; LIANG; MITRA, 2012; PLAZAR et al., 2012),
which target the minimization of the WCET as a single objective, our
algorithm relies on the results of preliminary WCET analysis to identify
the most profitable prefetches and to determine their insertion points
in the execution flow. We claim that our non-conventional use of static
WCET analysis drives code optimization towards energy-efficient bi-
naries for real-time applications. We provide theoretical guarantees
that the new algorithm does not increase the memory’s contribution
to the WCET (Appendix A). Our experiments show that, as compared
to standard fetching alone, the technique can provide energy reduc-
tions up to 21% with cache capacities from 2 to 4 times smaller, while
sustaining the same or superior performance.

1.4.3 Energy consumption evaluation of two real-time techniques

This thesis compares the proposed optimization technique, which
relies on prefetching of unlocked instruction caches (WUERGES; OLI-
VEIRA; SANTOS, 2013), with a state-of-the-art technique suitable
for real-time systems, which employs instruction cache locking (DING;
LIANG; MITRA, 2012). The main contribution is a direct compari-
son in terms of their impact on worst-case execution time (WCET),
average-case execution time (ACET), and energy consumption. To our
knowledge, this is the first time two techniques suitable for real-time

32 Chapter 1. Introduction

systems are compared both in terms of the energy efficiency and the
predictability of the memory subsystem.

1.4.4 Scope of application

The techniques proposed in this thesis suppose the access to the
memory hierarchy from the perspective of a single processor, which
might be one among multiple cores of a system-on-chip (SoC). As op-
posed to applications targeting the end-user, which generally rely on
multiple threads allocated to distinct cores, real-time applications gen-
erally assume multi-tasking on a single core (often relying on a more
deterministic architecture than those used for end-user applications).
To be performed for a task running on a same processor along with
other tasks, the proposed optimization technique should be applied in
the scope determined by two successive preemption points predefined
in the code of the task, as explained in Section 7.2.

1.4.5 Publications

The description of the proposed estimation technique (reported
in Chapter 2) was published in the proceedings of the IEEE Interna-
tional Conference on Electronics, Circuits, and Systems (ICECS 2011)
(WUERGES; OLIVEIRA; SANTOS, 2011). The description of the
proposed optimization technique (reported in Chapter 5) and its ex-
perimental evaluation (reported in Chapter 6) were published in the
proceedings of the 50th IEEE/ACM Design Automation Conference
(DAC 2013) (WUERGES; OLIVEIRA; SANTOS, 2013). The experi-
mental comparison of the proposed technique with partial cache locking
(also reported in Chapter 5) is part of an article submitted for publi-
cation in the Springer Journal of System Architecture (JSA).

1.5 ORGANIZATION OF THIS THESIS

This thesis is structured as follows. The next chapter describes
the main fundamental concepts and techniques supporting the proposed

1.5. Organization of this thesis 33

optimization technique. Particularly, it shows preliminary experimen-
tal evidence that the WCET scenario can be used to induce energy
optimization through iterative improvement. Chapter 3 analyzes re-
lated work in prefetching and cache locking. Chapter 4 presents the
notions required to model the target optimization problem. Chapter 5
presents the proposed WCET-aware instruction prefetching technique.
Chapter 6 experimentally evaluates the impact of the proposed opti-
mization with respect to on-demand fetching and directly compares the
results with a state-of-the-art partial cache locking technique. Chapter
7 summarizes our concluding remarks and perspectives for future work.
Appendix A provides the formal WCET guarantees.

35

2 FAST ENERGY ESTIMATION

This chapter describes a novel technique that makes unconven-
tional use of Abstract Interpretation for fast energy estimation. First,
it summarizes the main methods used to track execution time and en-
ergy consumption in conventional, embedded, and real-time compilers
(Section 2.1). Then it shows how a compiler’s workflow can be adapted
for fast energy-aware estimations (Section 2.2). Finally, it shows exper-
imental evidence that the derivatives of our estimates are as accurate
as those obtained from trace-based approaches, but can be computed
at least 1000 times faster, being suitable for driving embedded code
optimizations that employ iterative improvement.

2.1 MAIN METHODS FOR ESTIMATION

The identification of worst and best-case execution scenarios re-
quires loop analysis (to determine the maximal and minimal number of
iterations), path analysis (to find the most and the least critical execu-
tion paths), and abstract interpretation (to set upper and lower bounds
on program outcome).

Loop analysis techniques are well-known and can be found in
classic compiler textbooks (MUCHNICK, 1997). An efficient and prag-
matic way of performing path analysis is to rely on the so-called Implicit
Path Enumeration Technique (IPET) (LI; MALIK; WOLFE, 1995).
IPET represents paths as constraints of an integer linear programming
(ILP) problem where either WCET or BCET can be adopted as cost
function.

Abstract Interpretation (AI) (COUSOT; COUSOT, 1977) is a
theory that relies on an abstract semantics for static program analy-
sis. AI efficiently computes properties of a program without actually
executing it. The abstract semantics precludes, for instance, the iter-
ative execution of loop bodies, which largely contributes to speeding
up program analysis. The AI theory can be applied to determine up-
per and lower bounds for cache behavior. An accurate and efficient AI

36 Chapter 2. Fast energy estimation

semantics, known as must-may analysis (THEILING; FERDINAND;
WILHELM, 2000), was proposed for reasoning about cache behavior.

For fast decision making, conventional compilers often rely on
simple metrics (like instruction count) (MUCHNICK, 1997) to track
performance, but are energy unaware. Many compiling techniques
tailored to optimizing embedded software (VERMA; MARWEDEL,
2007; UDAYAKUMARAN; DOMINGUEZ; BARUA, 2006; CHEN et
al., 2006) rely on trace-based estimation of ACET and ACEC. Albeit
accurate, such estimation is rather inefficient: it needs program profil-
ing to select a trace that approximates the average case and requires
actual program execution to induce the selected trace’s memory access
pattern, which is the very key to estimation.

A couple of embedded compiling techniques (FALK, 2009; FALK;
KLEINSORGE, 2009) proposed WCET as a suitable metric to guide
code optimization for applications under real-time constraints, but they
did not investigate the correlation between WCET and ACET nor ad-
dressed energy optimization.

The lack of fast ACET and ACEC estimation techniques is likely
to hamper optimizing compilers in face of growing energy efficiency re-
quirements. This motivated us to investigate time and energy correla-
tions between the average-case and (best) worst-case execution scenar-
ios and led us to extend AI and IPET to cope with energy, as shown
in the next section.

2.2 THE PROPOSED ENERGY-AWARE WORKFLOW

Figure 7 shows how we extended a conventional workflow to
build an energy-aware compiler. From the specified hardware parame-
ters (a configuration c and a target technology t), a physical memory
model supplies the time and the energy spent by each memory access.
The compiler front-end translates the source code of a program p into
an intermediate representation (IR) of the program, which is largely
independent from language and target instruction set. The compiler
back-end translates the IR into executable machine code.

2.2. Energy-aware workflow 37

p (source code)
c, t

(HW description)

physical mem-
ory model

IPET+AI

τb, τw, εb, εw

frontend

IR

optimizations

backend

p (executable) address extraction

Figure 7 – Energy-aware workflow based on AI and IPET

Our time and energy analyzer, which runs in-between optimiza-
tion passes at IR level, is build upon IPET (LI; MALIK; WOLFE, 1995)
and AI (THEILING; FERDINAND; WILHELM, 2000). These tech-
niques (originally proposed for execution time analysis), were extended
to handle energy consumption.

At IR level, an access to memory is represented by a symbolic
reference. However, memory behavior depends on effective addresses
(which are defined at linking time). That is why an extractor gets the
address corresponding to a memory reference from the executable file’s
symbol table.

Since it is performed at IR level, our estimation technique is inde-
pendent from the target instruction set, except for address extraction.
However, as our extractor was designed to handle fixed instruction-
length architectures, it is compatible with most energy-efficient proces-
sors (e.g. ARM, MIPS, PowerPC).

Notice that, as a result of the analyzer’s dependence on effective
addresses, a program must be compiled twice to benefit from time and
energy analysis. For the first run, the analyzer is turned off, but it is

38 Chapter 2. Fast energy estimation

activated for the second.
We implemented the IPET+AI module as a regular pass in-

side GCC (STALLMAN, 2010). To solve the ILP problem resulting
from IPET, a popular ILP solver (BERKELAAR; EIKLAND; NOTE-
BAERT, 2004) was invoked. Our physical memory model relied on
CACTI v6.5 (MURALIMANOHAR; BALASUBRAMONIAN; JOUPPI,
2007). All the other modules were reused from GCC’s infrastructure
(version 4.6.1).

Before presenting the experiments performed with the described
workflow, the next section formulates the mathematical background for
proper interpretation of experimental results.

2.3 EXPERIMENTAL EVIDENCE OF SUITABILITY FOR ITERA-
TIVE IMPROVEMENT

2.3.1 A formulation to evaluate accuracy

We want to analyze the properties of a set P of programs running
on a set C of distinct memory configurations which admit different im-
plementations depending on a set T of target technologies. Let (p,c, t)
represent a program p ∈ P running on a memory configuration c ∈ C
that is implemented with technology t ∈ T . Let a, b, and w denote av-
erage, best, and worst-case execution time scenarios, respectively. Let
τi(p,c, t) denote the time estimate under a given execution time sce-
nario i, with i ∈ {a,b,w}, and let εi(p,c, t) denote the estimate for the
energy consumed when the program runs under execution time scenario
i. From now on, we will informally refer to time and energy estimates
for average, best, and worst-case scenarios. However, the reader should
be aware that a scenario will always be defined by its execution time,
even when we measure its energy consumption.

2.3.2 Normalization

To evaluate the accuracy of employing worst and best-case es-
timates as substitutes for average-case estimates, we track the ratio

2.3. Experimental evidence of suitability for iterative improvement 39

between their values, as follows. Let νi(p,c, t) be the execution time
when running a program p in scenario i normalized to the average-case
execution time, i.e. νi(p,c, t) = τi(p,c,t)

τa(p,c,t) . Similarly, let ηi(p,c, t) be the
energy consumption when running a program p in scenario i normalized
to the average-case energy consumption, i.e. ηi(p,c, t) = εi(p,c,t)

εa(p,c,t) .
To obtain time and energy summaries for each program p run-

ning in execution scenario i, we take the geometric mean of n = |C×T |
values, as follows:

νi(p) = n
√

∏∀c,t νi(p,c, t) and ηi(p) = n
√

∏∀c,t ηi(p,c, t).
As a result, we can say that the WCET is νw times higher than

the ACET and that the BCET is νb times smaller than the ACET.
Similar interpretations hold for energy consumption.

2.3.3 Correlation

Let us define the set of time and energy estimates in an execution
scenario i ∈ {a,b,w}, for a given program p:

Ti(p) = {∀(c, t) ∈C×T : τi(p,c, t)},
Ei(p) = {∀(c, t) ∈C×T : εi(p,c, t)}.
We can also define sets of time and energy estimates for a given

memory configuration c, as follows:
Ti(c) = {∀(p, t) ∈ P×T : τi(p,c, t)},
Ei(c) = {∀(p, t) ∈ P×T : εi(p,c, t)}.
To track the correlation between two sets of data, say X and Y,

we adopted Pearson’s coefficient ρ(X ,Y), i.e. the ratio between their
covariance and the product of their standard deviations. We define two
correlations per estimate, as follows.

The upper and the lower time and energy correlations of a given
program p are, respectively:

τ+(p) = ρ(Ta(p),Tw(p)), τ−(p) = ρ(Ta(p),Tb(p)),
ε+(p) = ρ(Ea(p),Ew(p)), ε−(p) = ρ(Ea(p),Eb(p)).
It is straightforward to define similar correlations for a given

configuration c, i.e. τ+(c), τ−(c), ε+(c), and ε−(c).
For a given configuration, since we monitor the magnitude varia-

40 Chapter 2. Fast energy estimation

tion when correlating sets of estimates (X and Y) from distinct program
and technology choices, their full correlation (ρ(X ,Y) = 1) means that
their estimates have exactly the same derivatives with respect to pro-
gram choice (for a given target technology); if uncorrelated (ρ(X ,Y) =
0), one estimate is not a good substitute for the other. The same holds
for a given program w.r.t. configuration change. That is why, we mon-
itor correlations τ+(p), τ−(p), τ+(c), τ−(c), ε+(p), ε−(p), ε+(c), and
ε−(c) in the next section. As average values are obtained by highly ac-
curate trace-based estimation, the correlations whose values are close
to one will indicate that the correlating worst-case or best-case esti-
mate has the same derivative accuracy as the average-case estimate. In
short, the former can be used as a (faster) substitute for the latter.

2.3.4 Experimental results

Programs were selected from the Mibench benchmark (GUT-
HAUS, 2001), were all compiled at GCC’s O3 optimization level, and
were targeted to ARM’s Cortex instruction set. For simplicity, we lim-
ited the experiments to the estimation of execution time and energy
consumption induced by instruction caches due to their higher con-
sumption as compared to data caches (DALLY et al., 2008). We em-
ployed 21 distinct cache configurations with same line size (32 bytes).
A configuration c is a pair c= (n,s), where n is the associativity and s is
the cache size expressed in KB. Configurations were selected such that
n ∈ {1,2,4} and s ∈ {2,4,8,16,32,64,128}. We targeted two CMOS
technologies: 65nm and 40nm.

We reused GCC’s automatic loop analysis. Since the accuracy
of the estimates depends on the compiler’s ability of determining loop
bounds, we selected programs whose analysis succeeded for at least 40%
of their loops (whenever it failed, we assigned loop bounds manually).
For each selected program, Table 1 shows the total number of loops
(NL) and the loop yield (LY), i.e. the fraction of all loops whose bounds
were automatically determined.

To obtain highly accurate ACET and ACEC estimates, we first

2.3. Experimental evidence of suitability for iterative improvement 41

Table 1 – Program characterization

Program p NL LY Size [kB]

basicmath_large 1 32 0.5 822

basicmath_small 2 32 0.5 822

bitcnts 3 2 0.5 608

qsort_large 4 4 0.5 615

qsort_small 5 4 0.5 596

rijndael 6 15 0.4 637

sha 7 26 0.84 600

generated a trace for each program p from typical stimuli supplied
within the benchmark suite and we run each program for the generated
trace for every memory specification (c, t). The monitored values were
employed as time and energy estimates (τa(p,c, t) and εa(p,c, t)).

2.3.5 Magnitude accuracy

Figure 8 depicts the energy estimates for worst and best-case
scenarios normalized to the average case (ηw and ηb). A figure almost
exactly resembling Figure 8 can be drawn for normalized time estimates
(νw and νb), but is omitted for simplicity. On the one hand, the ratios
between best and average cases (νb and ηb) exhibit a huge variance
from program to program (2 orders of magnitude in most cases), which
is largely due to the fact that loops are assumed to execute only once in
the best-case execution scenario. This makes τb and εb unsuitable for
estimating ACET and ACEC. On the other hand, the ratios between
worst and average cases (νw and ηw) show a much smaller variance.
Therefore, we might consider τw and εw as estimates for ACET and
ACEC, provided that an inaccuracy of 1 order of magnitude is accept-

42 Chapter 2. Fast energy estimation

1e-07
1e-06
1e-05

0.0001
0.001
0.01

0.1
1

10
100

1 2 3 4 5 6 7

ηw

+ + + +
+ +

+

+
ηb

×
×

× ×
×

×
××

Figure 8 – Normalized energy consumption for each program

-0.2
0

0.2
0.4
0.6
0.8

1
1.2

1 3 5 7 9 11 13 15 17 19 21

ε+
+++++++++++++++++++++

+
ε−

×××××××××××××××××××××

×

Figure 9 – Correlation between energy estimates for each configuration

able. Although not tolerable at all for hardware allocation, it may be
acceptable for compilers, since many optimization heuristics are based
on iterative improvement.

2.3.6 Derivative’s accuracy

Figure 9 depicts energy correlations for each configuration. Note
that the energy consumed by a given program in the worst-case scenario
is tightly correlated with ACEC. The energy consumed at the best-case
scenario is uncorrelated with ACEC. A figure almost exactly resembling
Figure 9 can be drawn for time correlations (τ−, τ+), but is omitted
for simplicity. Therefore, we can expect worst-case estimates to be
proper substitutes for average-case estimates regardless of program and
technology, but best-case estimates must be ruled out, since they are
inaccurate in magnitude and derivative.

2.3. Experimental evidence of suitability for iterative improvement 43

2.3.7 Estimation efficiency

To compare our estimation to the trace-based estimation em-
ployed by some energy-aware embedded compilers (VERMA; MAR-
WEDEL, 2007; UDAYAKUMARAN; DOMINGUEZ; BARUA, 2006;
CHEN et al., 2006), Figure 10 shows the average speed-up for each
program. Our estimation is at least 1000 times faster than those based
on profiling. To compare its efficiency to a conventional compiler’s
(STALLMAN, 2010), we measured the relative contribution of our es-
timation to compile time, as shown Figure 11. Our estimation con-
tributes with less than 50% of a program’s compile time. Note that,
although this overhead may seem large for conventional compilers, it is
acceptable for embedded compilers, especially those involving real-time
analysis.

100

1000

10000

100000

1 2 3 4 5 6 7

+

+
+

+

+

+

+

Figure 10 – Estimation speed-up for each program

0 %
10 %
20 %
30 %
40 %
50 %

1 2 3 4 5 6 7

Figure 11 – Estimation overhead on compilation time for each program

45

3 RELATED WORK

This chapter reviews the main techniques used in instruction
cache optimization that are suitable to real-time applications (and
hopefully to energy efficiency too). We do not review optimizations
based on improving the capture of temporal locality (e.g. procedure
sorting (MCFARLING, 1989; HWU; CHANG, 1989)) or on improving
spatial locality (e.g. basic block placement, procedure splitting, in-
traprocedural code positioning (MUCHNICK, 1997)). Since they are
based on fixed heuristics targeting average execution time, they are
hardly suitable to real-time applications.

3.1 PREFETCHING

Sequential prefetching (SMITH, 1978) assumes that the line con-
tiguous to the one containing the current instruction is likely to be
referenced and deserves to be loaded to the cache in advance depend-
ing on some criterion (next-line always, next-line on miss, or next-line
tagged). It can be extended to multiple lines (next-N-line prefetch-
ing). However, it does not handle branches efficiently, since a target
instruction typically does not always lie in a line contiguous to the
one containing the branch instruction. This led to more sophisticated
techniques. Target prefetching (SMITH; HSU, 1992) keeps a reference
prediction table (RPT). When a branch is taken, its target address is
stored in some RPT entry, which is tagged with the instruction’s own
address. When a branch is executed anew, the matching of a tag at
some RPT entry induces the prefetch of the block corresponding to the
entry’s target address. Note that this implicitly assumes the branch
as always taken. To exploit prefetching when the branch is not taken,
wrong-path prefetching (PIERCE; MUDGE, 1996) stores two addresses
(target and fall-through) for each branch in the RPT. Although it can
be profitable regardless of the taken path, the number of ineffective
prefetches may be increased.

As opposed to the techniques discussed above, whose mecha-

46 Chapter 3. Related work

nisms are hardwired, software prefetching relies on a special instruction
to load a memory block into a cache line. It allows the preclusion of
unnecessary prefetches, which pollute the cache and reduce its effec-
tive capacity. The use of dominance trees in control flow graphs was
proposed as a way of exploiting static program analysis for prefetch
placement (LUK; MOWRY, 2001). By moving prefetch instructions
earlier enough in the control flow, their latency is hidden and their
potential of migrating out of loop bodies is raised.

Hardware mechanisms often guess the required prefetches, but
they do not issue them early enough so as to produce the desired effect.
To reduce cache pollution (GUPTA; CHI, 1990), cooperative prefetch-
ing (LUK; MOWRY, 2001) was proposed. Hardware control is limited
to sequential prefetching while non-sequential flows are handled by soft-
ware prefetching.

3.1.1 Prefetching for energy efficiency

Instead of wasting energy in hardware-controlled prefetch, the
performance gain obtained by software prefetching can be directly trans-
lated into an increase of energy efficiency when software prefetching is
combined with dynamic voltage scaling (AGARWAL et al., 2004). A
recent work (TANG et al., 2011) confirms the energy inefficiency of
hardware prefetching for old technologies, but indicates a distinct sce-
nario for newer ones. Since hardware prefetching contributes to short-
ening the average execution time, the resulting static energy profit can
be larger than the energy cost of hardware prefetching. Therefore,
to completely rule out the need for hardware prefetching, a software
prefetching technique should not increase the ACET.

3.1.2 Prefetching under real-time constraints

There are two conflicting views on how to handle caches un-
der real-time constraints. Those who prescribe cache locking (DING;
LIANG; MITRA, 2012; PLAZAR et al., 2012) (to trade-off perfor-
mance for predictability) argue that cache-awareWCET analysis (FER-

3.2. Cache locking 47

DINAND et al., 1999; THEILING; FERDINAND; WILHELM, 2000)
often neglects the interference between tasks (PUAUT, 2002). They
prescribe a combination of instruction prefetching and cache locking
(PUAUT, 2006) (APARICIO et al., 2010). Such works, however, tar-
get the minimization of WCET as a single objective and do not report
the impact on energy efficiency. On the other hand, those who pre-
scribe the accurate prediction (FERDINAND et al., 1999; THEILING;
FERDINAND; WILHELM, 2000) of cache behavior (during WCET
analysis) argue that cache locking may unnecessarily give up perfor-
mance (APARICIO et al., 2010). Under such assumption, the origi-
nal cache abstract semantics proposed in (FERDINAND et al., 1999)
was extended in (YAN; ZHANG, 2007) to incorporate the effect of
next-N-line prefetching. Based on such extension, a later work (DING;
YAN; ZHANG, 2009) exploited software prefetching for minimizing the
WCET. Unfortunately, since it inserts a prefetch at the beginning of
the basic block where the prefetched instruction belongs, the distance
between them might be insufficient to hide the latency of the former.

In contrast with most real-time optimization techniques, which
target the minimization of the WCET as a single objective, we propose
a novel code optimization technique (relying on software prefetching)
for reconciling real-time guarantees and energy efficiency. It reduces the
number of misses in unlocked caches and, provenly, does not increase
the WCET. The technique, which is described in Chapter 5, relies on
preliminary WCET analysis to identify the most profitable prefetches
and to determine their prefetching points in the execution flow. In
Chapter 6, the impact of the optimization is evaluated as compared to
on-demand fetching and cache locking.

3.2 CACHE LOCKING

Full cache locking (FCL) (FALK; PLAZAR; THEILING, 2007),
was the first technique to use abstract interpretation to determine
which memory blocks should be locked to improve WCET. It builds
a list of functions to be successively locked into cache until all cache

48 Chapter 3. Related work

blocks are exhausted. The list is sorted according to two criteria.
First, functions belonging to the worst-case execution path (WCEP)
are sorted by their contribution to the WCET and inserted in the list.
Then the remaining functions are inserted, sorted according to their
potential impact on the WCEP. Due to limitations of the implementa-
tion infrastructure, WCET analysis had to be performed three times in
(FALK; PLAZAR; THEILING, 2007) to determine the WCEP. How-
ever, the authors claim that it could be performed in a single pass.

An extension of FCL (LIU; LI; XUE, 2009) proposed the use of
an Integer Linear Programming (ILP) formulation to obtain an optimal
solution to the problem of deciding which functions should be locked.
FCL was further improved by refining its granularity (PLAZAR et al.,
2012) so that basic blocks are locked instead of whole functions.

Partial cache locking (PCL) (DING; LIANG; MITRA, 2012) also
relies on ILP to determine which blocks must be locked. PCL was
shown to improve the schedulability of multitasking real-time systems
(DING; LIANG; MITRA, 2013).

Like the previous techniques, PCL performs the locking once, in
the beginning of the task. To further reduce WCET, dynamic cache
locking (DCL) (DING; LIANG; MITRA, 2014) changes which memory
blocks are locked into the cache on entry to some loops.

49

4 MODELING AND PROBLEM FORMULATION

This chapter formalizes the main notions required for modeling
cache behaviour, conditional execution, and determination of WCET,
which support the technique proposed in the next chapter. Based on
such notions, the target optimization problem is defined at the end of
this chapter.

4.1 CACHE BEHAVIOR

For self-containment, we review the main concepts from (FER-
DINAND et al., 1999; THEILING; FERDINAND; WILHELM, 2000).
The main storage and the cache are divided in blocks of equal capacity.
A program item (instruction or data) always resides in a memory block
and may also lie in a cache block. A memory block may contain one
or more items. A group of a cache blocks is organized as a cache line
(or set), where a is the cache’s associativity. A cache is represented by
a set of lines L = {l1, · · · , ln} and the main storage by a set of blocks
S = {s1, · · · ,sm}∪{I}, where I represents an invalid block. A concrete
cache state is a function c : L → S. The expression c(li) = s j means
that block s j is in cache line li. Cc denotes the set of all concrete cache
states.

Definition 1 An update function U : Cc ×S → Cc defines the new cache
state from the state immediately before a reference to a memory block.

To represent the distinct concrete cache states leading to the
WCET scenario, the notion of abstract state is used:

Definition 2 An abstract cache state is defined by ĉ : L → 2S. Ĉ is the set
of all possible abstract cache states. A state where all blocks are invalid
is denoted as ĉI .

An abstract update function Û : Ĉ × S → Ĉ handles abstract
states. The abstract update functions used in this work are described
in (FERDINAND et al., 1999).

50 Chapter 4. Modeling and problem formulation

During the concrete execution of a program, when a path branches
off, only one of the divergent paths is executed. In abstract interpre-
tation, however, all paths are taken into account. That is why, a join
function has to be defined to merge the abstract cache states prior to
the convergence point into a single abstract state after it. The join
functions used in this work for WCET analysis are described in (FER-
DINAND et al., 1999). Although not formally described here (for sim-
plicity), such must-may analysis was already introduced informally in
the examples of Chapter 1.

Although we rely on such classical functions for preliminary
WCET analysis, we propose novel update and join functions to drive
code optimization in Section 5.5.

4.2 CONDITIONAL EXECUTION

We assume a conventional representation as starting point:

Definition 3 Given a program, its control flow graph is a directed graph
CFG = (B,F) where bbi ∈ B represents a basic block and (bbi,bb j) ∈ F
represents the precedence between bbi and bb j in a concrete execution of
that program.

The Implicit Path Enumeration Technique (IPET) (LI; MALIK,
1995) casts the properties of execution paths into an integer linear pro-
gramming (ILP) formulation, providing efficient static analysis (THEIL-
ING; FERDINAND; WILHELM, 2000) and accurate WCET bounds
(FERDINAND et al., 1999). It encodes the conservation of execution
flow on entry to and on exit from every basic block, instead of explic-
itly encoding execution paths. For instance, assume that a basic block
bb1 reaches two mutually exclusive basic blocks bb2 and bb3 and let
nbb be the number of executions of a basic block. The corresponding
ILP constraint is nbb1 = nbb2 + nbb3 . This implicitly encodes the fact
that bb2 and bb3 cannot be executed simultaneously, i.e. if the WCET
scenario corresponds to the execution through (bb1,bb2), then nbb3 = 0
in such scenario.

4.3. Determination of the WCET scenario 51

4.3 DETERMINATION OF THE WCET SCENARIO

Given a program p and a referenced memory item r, let t p
w(r)

denote the time spent, in the WCET scenario, when accessing that
item. Given a basic block bb, let t p

w(bb) = ∑r t p
w(r) be the time spent,

in the WCET scenario, when accessing all the memory items referenced
in one execution of that basic block. The overall contribution to the
WCET induced by all memory items referenced by bb is t p

w(bb)×nbb.
The objective function for the ILP problem is:

maximize : ∑
bb∈B

t p
w(bb)×nbb, (4.1)

whose solution leads to the number of executions of each basic
block bb in the WCET scenario, written nw

bb. Note that nw
bb = 0 for

every bb not belonging to the WCET path. The overall contribution
of an item r to the WCET is:

τ p
w(r) = t p

w(r)×nw
B(r), (4.2)

where B(r) represents the basic block to which r belongs.
Given a program p, the overall contribution of the memory sys-

tem to the WCET is:

τ p
w = ∑

bb∈B
t p
w(bb)×nw

bb (4.3)

4.4 PROBLEM FORMULATION

Definition 4 The latency of a prefetch instruction, written Λ, is the time
it takes to place a block in cache.

Definition 5 Programs p and p′ are prefetch-equivalent, written p ≡ p′,
iff they are indistinguishable, except for their prefetch instructions.

52 Chapter 4. Modeling and problem formulation

Problem 1 Given a program p, find a prefetch-equivalent program p′

such that τ p′
w ≤ τ p

w and it minimizes the energy consumption, for a given
prefetch latency Λ, a given cache configuration, and a given process tech-
nology.

The use of a cost function that fully captures energy consump-
tion may unnecessarily increase runtime. Since the results in Chapter
2 recommend the use of iterative improvement to exploit fast energy
estimation, the technique described in the next chapter solves an in-
stance of Problem 1 where the miss rate is used as a cost function,
because it is proportional to the dynamic consumption in main mem-
ory and proportional to the static consumption in the whole memory
subsystem.

53

5 THE PROPOSED TECHNIQUE

To solve Problem 1, we deliberately adopted iterative improve-
ment so as to increase the chances that program p′ leads to higher
energy efficiency than program p. A joint improvement criterion was
designed to evaluate the impact of each prefetch on both miss rate and
WCET. From the original program, prefetch-equivalent programs are
iteratively generated one after another as far as the joint improvement
criterion is satisfied.

5.1 ABSTRACT PROGRAM REPRESENTATION

As we target the memory subsystem, our program representation
abstracts the references to memory items from the concrete instructions
of the actual program. It assumes that loops were virtually unrolled be-
forehand, by applying the transformation proposed in (FERDINAND
et al., 1999), leading to an implicit loop representation where back
edges are broken:

Definition 6 Given a program, its abstract control flow graph is a polar,
directed acyclic graph ACFG = (R,E) where each vertex ri ∈ R is a ref-
erence to a memory item and each edge (ri,r j) ∈ E represents the order
of precedence between the references ri and r j in a concrete execution of
that program. The poles are the source (∙) and the sink (⊙).

To denote that ri reaches r j through a path in the ACFG, we
write ri ; r j. Each edge defines a program point between successive
references. Given two references belonging to convergent execution
paths, to stress the precedence between each of them and a third post-
dominating reference, we include special join vertices.

Definition 7 Given an ACFG = (R,E), its reverse abstract control flow
graph is a directed acyclic graph ACFG* = (R,E*) such that there exists
an edge (r j,ri) ∈ E* for every edge (ri,r j) ∈ E and vice-versa.

54 Chapter 5. The proposed technique

We define the predecessors and the successors of a given vertex r
in ACFG* as PRED*(r) = {r′ ∈ R | (r′,r) ∈ E*} and SUCC*(r) = {r′ ∈
R | (r,r′) ∈ E*}, respectively. A given predecessor of r is denoted as
pred*(r).

Definition 8 Given an item ri, we write S (ri) to denote the memory block
where ri is stored. Conversely, given a memory block s, we write R(s) to
denote the reference to the item in s with the smallest address (i.e. the first
item).

Let us now link the proposed representation with the classical
model of cache behavior reviewed in Section 4.1.

Definition 9 The set of blocks in cache at a given state ĉ, written B(ĉ),
is

⋃|L|
i=1{ĉ(li)}.

Let ĉ(ri,r j) be the cache state at program point (ri,r j). Let
B(ri,r j) be a shorthand notation for B(ĉ(ri,r j)). Given three succes-
sive references ri−1, ri, and ri+1, the following properties hold:

Property 1 When B(ri,ri+1)−B(ri−1,ri) = /0, the access to item ri re-
sulted in a hit.

Property 2 When B(ri,ri+1)−B(ri−1,ri) = {s}, the access to item ri

resulted in a miss and ri is stored in memory block s.

Property 3 When B(ri−1,ri)−B(ri,ri+1) = {s′}, the access to item ri

replaced the memory block s′.

5.2 ILLUSTRATIVE EXAMPLES

We show how our technique works by means of examples. For
simplicity, we assume that all the references map to the same line of a
2-way LRU cache with 2 items per block.

In Figure 12, our technique is applied to a simple straight-line
program. From the ACFG of the original program (12a), it shows the

5.2. Illustrative examples 55

ACFG*s representing the intermediate optimization steps for each vis-
ited vertex (12b) until the ACFG of the optimized program is obtained
(12c). Each memory block is represented as a dotted box. The cache
states at each program point are displayed at the right-hand side. They
help track either the number of misses in program order (12a, 12c) or
the replaced blocks in reverse order (12b). The blocks of a cache line
are denoted as [MRU,LRU], to indicate the most and the least recently
used blocks.

Figure 12a shows the states at each edge of the ACFG. By ap-
plying Properties 1 and 2 to every successive pair of edges, we obtain
whether the outcome was a hit or a miss.

Figure 12b presents our reverse analysis step-by-step from sink
to source. Initially, the edge (⊙,r5) is assigned a state where all blocks
are invalid. By applying Property 3 to each successive pair of edges,
a replaced block can be identified. When r5, r4, r3, and r2 are visited,
since no cache item is replaced, no action is taken but visiting the
next vertex. However, when r1 is visited, the technique detects that
the cached item s3 is replaced. Therefore, a prefetch for the replaced
item, denoted as πs3 , is inserted at the program point (r2,r1). This is
done by removing the edge (r2,r1) and adding the edges (r2,πs3) and
(πs3 ,r1). When πs3 is visited, the effect of the prefetch to the cache
is merely recalculated (despite the detection of s3 as a replaced block,
which was already treated by πs3 itself). Then the vertex r1, which is
the successor of the inserted prefetch, is revisited. The analysis ends
when the node ∙ is reached.

As shown in Figure 12c, the optimized program is obtained by
simply reversing the edges of the resulting ACFG*. Note that, although
the references to r1 and r2 induce cache misses, the accesses to r3, r4,
and r5 do not.

A second example handles conditional constructs with the help
of join functions. When a reference r is reached from distinct paths, the
state at its leaving edge depends on the taken path. To derive a single
output state from multiple input states, join vertices are added to the
ACFG (ACFG*) and their behaviors are modeled by join functions, as

56 Chapter 5. The proposed technique

a) Original program

∙ r0 r1 r2 r3 r4 r5 ⊙

s1 s2 s3

edge state outcome
(∙,r1) [I, I]
(r1,r2) [s1, I] miss
(r2,r3) [s2,s1] miss
(r3,r4) [s2,s1] hit
(r4,r5) [s3,s2] miss
(r5,⊙) [s3,s2] hit

b) Optimization steps
edge state replaced
(⊙,r5) [I, I]

r4 r5 ⊙

s3

(r5,r4) [s3, I] none

r0 r3 r4 r5 ⊙

s2 s3

(r4,r3) [s3, I] none

r2 r3 r4 r5 ⊙

s2 s3

(r3,r2) [s2,s3] none

r0 r1 r2 r3 r4 r5 ⊙

s1 s2 s3

(r2,r1) [s2,s3] none

∙ r0 r1

πs3

r2 r3 r4 r5 ⊙

s1 s2 s3

(r1,∙) [s1,s2] s3

(r2,πs3) [s2,s3]

∙ r1 πs3 r2 r3 r4 r5 ⊙

s1 s2 s3

(πs3 ,r1) [s1,s2] s3

∙ r1 πs3 r2 r3 r4 r5 ⊙

s1 s2 s3

(r1,∙) [s1,s2] none

c) Optimized program

∙ r1 πs3 r2 r3 r4 r5 ⊙

s1 s2 s3

edge state outcome
(∙,r1) [I, I]
(r1,πs3) [s1, I] miss
(πs3 ,r2) [s3,s1] hit
(r2,r3) [s2,s3] miss
(r3,r4) [s2,s3] hit
(r4,r5) [s3,s2] hit
(r5,⊙) [s3,s2] hit

Figure 12 – The technique applied to a straight-line program

5.3. How loops are handled 57

a) The unoptimized ACFG
∙ r0 r1

r2 r3 r4

J

r5 ⊙s1

s2 s3

edge state
(r1,J) [s1, I]
(r4,J) [s3,s2]
(J ,r5) [I, I]

b) The ACFG* before optimization

∙ r0 r1 Jπ

r2 r3 r4 r5 ⊙s1

s2 s3

edge state
(r5,Jπ) [s3, I]
(r2,Jπ) [s2,s3]
(Jπ ,r1) [s2,s3]

c) The resulting ACFG*

∙ r1 πs3 Jπ

r2 r3 r4 r5 ⊙s1

s2 s3

edge state
(r5,Jπ) [s3, I]
(r2,Jπ) [s2,s3]
(Jπ ,πs3) [s2,s3]

d) The optimized ACFG
∙ r1 πs3

r2 r3 r4

J

r5 ⊙s1

s2 s3

edge state
(πs3 ,J) [s1, I]
(r4,J) [s3,s2]
(J ,r5) [I, I]

Figure 13 – How conditional control flows are handled

illustrated in Figure 13. Figure 13a shows that a vertex J performing
a conventional join function determines the state at its leaving edge as
the intersection of the states of its entering edges (FERDINAND et al.,
1999). Figure 13b shows that a vertex Jπ performing a join function
tailored to prefetching simply propagates to its leaving edge the state
of the entering edge that belongs to the WCET path. Figures 13c and
13d directly show the resulting ACFG* and ACFG.

5.3 HOW LOOPS ARE HANDLED

This supplemental example illustrates that, to handle loops, our
technique relies on the VIVU transformation (FERDINAND et al.,
1999) (which is often employed by conventional WCET analysis) to
derive an acyclic ACFG from a cyclic CFG. Figure 14a shows a CFG

58 Chapter 5. The proposed technique

prior to the VIVU transformation, where a back edge closes a loop.
Figure 14b shows the transformation’s effect: the back edge is broken
and the loop body is instantiated twice, leading to an ACFG where the
effect of loop iteration is implicitly encoded in the conditional control
flow. In that figure, r f

2 denotes the reference to an item r2 in the first
loop iteration and ro

2 denotes the reference to the same item in other
loop iterations. From the ACFG in Figure 14b, our technique obtains
the ACFG* in Figure 14c, according to the mechanisms already illus-
trated in the previous examples. Figure 14d shows the resulting CFG
for the optimized program.

a) CFG with a loop
∙ r0 r1 r2 r3 r4 r5 ⊙

s1 s2 s3

b) ACFG with the loop unrolled
∙ r0 r1 r f

2

ro
2

J r3 r4 r5 ⊙
s1

s2

s3

c) ACFG* with the loop unrolled
∙ r0 r1 r f

2
J r3

ro
2

r4 r5 ⊙
s1

s2

s3

d) ACFG* with the loop unrolled and prefetch added
∙ r1 πs3 r f

2
J r3

ro
2

r4 r5 ⊙
s1

s2

s3

e) Optimized program
∙ r1 πs3 r2 r3 r4 r5 ⊙

s1 s2 s3

Figure 14 – How the technique handles loops

5.4. The joint improvement criterion 59

5.4 THE JOINT IMPROVEMENT CRITERION

Let us denote the contribution to the WCET of all items refer-
enced on a path starting at ri and ending at r j as:

τ p
w(ri,r j) = ∑

r∈{x|x∈R∧ri;x;r j}
t p
w(r)×nw

B(r) (5.1)

Let pn−1 and pn denote programs containing n− 1 and n pre-
fetches, respectively, such that pn−1 ≡ pn. Let r j be a reference to an
item stored in some memory block s′. We denote an instruction that
prefetches the block s′ into cache as πs′ . Finally, let (ri,ri+1) denote
some program point such that ri ; r j. To check if the insertion of πs′

at program point (ri,ri+1) precludes the miss on access to r j without
increasing the WCET, five notions are required.

The first notion tracks prefetch effectiveness, i.e. the guarantee
that the prefetched block is in cache before it is referenced, despite the
prefetch latency (Definition 4). Given a program pn−1, the time spent,
in the WCET scenario, to perform all memory access in between ri and
r j is:

t pn−1
w (ri+1,r j−1) = ∑

r∈{x|x∈R∧ri+1;x;r j−1}
t pn−1
w (r) (5.2)

Definition 10 A prefetch instruction inserted at some program point
(ri,ri+1) is effective iff Λ ≤ t pn−1

w (ri+1,r j−1).

The second notion tracks the contribution to the WCET of a
reference r j to an item missing in cache at a given point, say (r j−1,r j),
of a program pn−1:

mcost(r j) = τ pn−1
w (r j) (5.3)

The third notion tracks the contribution to the WCET of a ref-
erence r j to an item hitting in cache as a result of an effective prefetch

60 Chapter 5. The proposed technique

instruction πs′ inserted at point (ri,ri+1) in program pn−1, leading to a
new program pn:

pcost(ri) = τ pn
w (πs′)+ τ pn

w (r j) (5.4)

The fourth notion tracks the contribution to the WCET resulting
from the relocation of all references preceding ri in the address space,
as a result of the insertion of a prefetch instruction πs′ at point (ri,ri+1)

in program pn−1, turning it into a new program pn:

rcost(ri) = ∑
r∈{x|x∈R∧x;ri}

τ pn
w (r)− ∑

r∈{x|x∈R∧x;ri}
τ pn−1

w (r) (5.5)

The fifth notion combines all the previous concepts to define
the profitability of a prefetch. Given two references ri and r j such
that ri ; r j in the ACFG, the profit of inserting an instruction, at the
program point (ri,ri+1), to prefetch the memory block storing the item
r j is:

pro f it(ri,r j) =

0 if r j is a prefetch

0 Λ > t pn−1
w (ri+1,r j−1)

0 rcost(ri)> 0

mcost(r j)− pcost(ri) otherwise

(5.6)

A prefetch is profitable if and only if it is effective, the induced
relocation does not increase the WCET, and the gain of suppressing a
miss (induced by program pn−1) is higher than the cost of inserting a
prefetch to suppress that miss (in a program pn).

5.5 THE NOVEL OPTIMIZATION ALGORITHM

As a precondition, our algorithm assumes that traditional WCET
analysis (to determine t p

w(r) for each r ∈ R and nw
bb for every bb ∈ B)

and classical VIVU analysis (to transform a cyclic CFG into an acyclic
ACFG) (FERDINAND et al., 1999) were performed beforehand.

5.5. The novel optimization algorithm 61

The proposed optimization algorithm relies on the novel update
function informally described in Figure 12 and the novel join function
illustrated in Figure 13. Their formal descriptions are available in Al-
gorithms 1 and 2, which are explained next.

We propose the prefetching update function Ûπ : Ĉ×R → Ĉ de-
fined in Algorithm 1. It detects the need for a prefetch (line 2) and
checks if it is profitable (line 4). If so, it inserts the prefetch in the
ACFG* (lines 5-7) and relocates all memory items affected by such
insertion (new block boundaries up to the source vertex). Then it is
applied recursively to the inserted prefetch (line 9). If it detects no
need for prefetching or an unprofitable prefetch, the conventional up-
date function is applied and the resulting state is returned (line 10).

We also propose the prefetching join function Jπ : Ĉ × Ĉ → Ĉ
defined in Algorithm 2. Essentially, it propagates, to the edge leaving
a join, the cache state from the entering edge that belongs to the WCET
path.

Algorithm 1 The proposed update function Ûπ(ĉ,ri)

1 s = S (ri)

2 if ∃s′ ∈ S | B(ĉ)−B(Û (ĉ,s)) = {s′} ̸= {I}:
3 r j = R(s′)
4 if pro f it(ri,r j) > 0:
5 R := R∪{πs′}
6 E* := E*∪{(pred*(ri),πs′),(πs′ ,ri)}
7 E* := E*−{(pred*(ri),ri)}
8 relocate_upwards(ri)

9 return Ûπ(ĉ,πs′)

10 return Û (ĉ,s)

Our technique, which is formally described in Algorithm 3, runs
a non-conventional static analysis in reverse execution order to find the
profitable prefetches that do not increase the WCET.

Algorithm 3 builds the ACFG* (line 1) and finds a topological
ordering ≺T of its vertices (line 2). Then it visits vertices in that order

62 Chapter 5. The proposed technique

Algorithm 2 The proposed join function Jπ(ĉ1, ĉ2)

1 let (rx,J) ∈ E* | ĉ(rx,J) = ĉ1
2 let (ry,J) ∈ E* | ĉ(ry,J) = ĉ2
3 if mcost(rx)< mcost(ry)
4 return ĉ(ry,J)
5 else
6 return ĉ(rx,J)

Algorithm 3 The proposed prefetching optimization

1 build ACFG* = (R,E*) from program p
2 ≺T = {(u,v) ∈ R×R | (u,v) ∈ E*∨ (v,u) /∈ E*}
3 let succ≺T (r) be the successor of r in ≺T
4 c(⊙,succ*(⊙)) := ĉI
5 r := ⊙
6 while (succ≺T (r) != ∙)
7 {rz} := SUCC*(r)
8 if r is a join vertex:
9 {rx,ry} := PRED*(r)

10 ĉ(rz,r) := Jπ(ĉ(rx,r), ĉ(ry,r))
11 else
12 {rx} := PRED*(r)
13 ĉ(rz,r) := Ûπ(ĉ(rx,r),r)
14 r := succ≺T (r)
15 build ACFG = (R,E) for program p′

from sink (line 5) to source (line 6). If it visits a join, the proposed join
function is invoked (line 10); otherwise, the proposed update function is
called (line 13). Finally, the optimized ACFG is built from the ACFG*

that was modified by the proposed update and join functions (line 15).
Let us now evaluate the worst-case complexity of the proposed

algorithm. Lines 1, 3, and 5–7 of Algorithm 1 take O(1). Lines 2 and
10 also take O(1) when cache states are precomputed during the pre-
liminary WCET analysis and stored in a hash table. At line 4, the
evaluation of Equations 5.3 and 5.4 takes O(1). Although the second
summation of Equation 5.5 can benefit from precalculated values (and,

5.5. The novel optimization algorithm 63

therefore, takes O(1)), the first summation takes O(|R|). The reloca-
tion at line 8 also takes O(|R|). Therefore, Algorithm 1 takes O(|R|).
Algorithm 1 is called at most |R| times from the line 13 of Algorithm
3 and, recursively, at line 9, as many times as the number of inserted
prefetches, which is at most |R|. Therefore, the line 13 of Algorithm
3 contributes O(|R|2) to the overall complexity. All lines of Algorithm
2 take O(1) due to the hash table and it is invoked at most |R| times.
As a result, lines 6–14 of Algorithm 3 contribute O(|R|2) to the over-
all complexity, whereas lines 1, 2 and 15 take O(|R|+ |E|). Thus, the
overall worst case complexity of Algorithm 3 is O(|R|2).

Besides, when generating the ACFG = (R,E) from the CFG =

(B,F), we bound the set R by virtually unrolling each loop at most
once when applying the VIVU transformation (FERDINAND et al.,
1999).

When the program order is preserved for the memory opera-
tions at execution time, our optimization algorithm provenly does not
increase the contribution of the memory system to the WCET (see
Theorem 1 in Appendix A).

65

6 EXPERIMENTAL EVALUATION

This chapter directly compares the technique proposed in the
previous chapter with partial cache locking (DING; LIANG; MITRA,
2012) when using the fast estimation technique proposed in Chapter 2.

6.1 EXPERIMENTAL SETUP

We ran both techniques on all 37 programs of the Mälardalen
WCET benchmark (GUSTAFSSON et al., 2010), which are shown in
Table 2, along with the sizes of the respective binaries.

Table 2 – The adopted benchmark suite

Size (kB) Program Size (kB) Program
595 duff 600 edn
599 sqrt 594 insertsort
592 crc 597 fdct
598 compress 593 select
597 cnt 595 ludcmp
600 qurt 608 statemate
591 bs 601 fir
592 expint 597 qsort-exam
597 bsort100 602 adpcm
600 ns 591 fibcall
596 ndes 594 jfdctint
595 whet 591 recursion
591 lcdnum 598 cover
599 lms 623 nsichneu
591 fac 618 st
595 ud 601 fft1
596 minver 592 matmult
594 janne_complex 595 prime
603 des

66 Chapter 6. Experimental evaluation

Each program was run under 36 cache configurations and two
technologies (45nm and 32nm), leading to 2664 use cases. The cache
configurations employed in our experiments are denoted as k = (a,b,c)
in Table 3, where a is the associativity, b is the block size (in bytes),
and c is the cache capacity (in bytes).

Table 3 – Cache configurations

(a, b, c) ID (a, b, c) ID (a, b, c) ID
(1, 16, 256) k1 (2, 16, 256) k2 (4, 16, 256) k3
(1, 32, 256) k4 (2, 32, 256) k5 (4, 32, 256) k6
(1, 16, 512) k7 (2, 16, 512) k8 (4, 16, 512) k9
(1, 32, 512) k10 (2, 32, 512) k11 (4, 32, 512) k12
(1, 16, 1024) k13 (2, 16, 1024) k14 (4, 16, 1024) k15
(1, 32, 1024) k16 (2, 32, 1024) k17 (4, 32, 1024) k18
(1, 16, 2048) k19 (2, 16, 2048) k20 (4, 16, 2048) k21
(1, 32, 2048) k22 (2, 32, 2048) k23 (4, 32, 2048) k24
(1, 16, 4096) k25 (2, 16, 4096) k26 (4, 16, 4096) k27
(1, 32, 4096) k28 (2, 32, 4096) k29 (4, 32, 4096) k30
(1, 16, 8192) k31 (2, 16, 8192) k32 (4, 16, 8192) k33
(1, 32, 8192) k34 (2, 32, 8192) k35 (4, 32, 8192) k36

We assume that each program fully owns the instruction cache.
This choice captures our understanding that real-time schedulers should
incorporate some mechanism to minimize the interference between tasks
over the cache. For instance, proper procedure placement on the ad-
dress space may be used to reduce conflicts or locking may be used to
prevent that the blocks brought to cache by a preempted task could be
overwritten by the preempting task. Note that, in the latter scenario,
our technique would be applied to the unlocked blocks of the cache,
which would represent the effective cache capacity seen by a given task
(in this case, cache locking would not be used to optimize the task but
only to avoid cache interference between tasks).

We selected cache capacities so that the average miss rate lies
in a large span from 1% to 10% before any of the techniques under

6.1. Experimental setup 67

comparison is applied. The resulting cache capacities (in the interval
between 256B and 8kB) may seem small in face of real-life cache sizes.
However, they just reflect the fact that the chosen benchmark suite
consists of small programs whose working set would be fully contained
in cache if capacities larger that 8kB were employed. This apparent
small caches are the price to pay for the benefit of using a well-known
WCET benchmark that was not developed to mimic real-life applica-
tions requiring larger memories. A 128MB DRAM was employed as
level-two memory.

Since the adopted benchmark was originally designed for WCET
evaluation, each program comes with a single set of stimuli, which is
embedded in the source code. As we want to compare the techniques
also in terms of ACET and energy consumption, it was necessary to
modify the source code of each program to accept stimuli from an
input file. This allowed us to generate distinct input files with different
stimuli. In general, 100 sets of stimuli were randomly generated for each
program, except for a few programs whose specificities precluded such
an approach. Among the exceptions, there are a couple of programs
whose average case behavior depends on the entropy of the input files.
For instance, the programs compress and adpcm tend to reach the
worst-case behavior when the stimuli exhibit high entropy. In such
cases, we arbitrarily selected 95 sets of binary files containing non-
random data. The remaining 5 sets were obtained by generating input
files with random content. The major constraint on the generation
of multiple sets of stimuli was imposed by the program bs. Since it
performs binary search within a predefined array with 15 entries, we
employed only 20 stimuli (in 15 of them, the elements under search
were stored in the array; in 5 of them, they were not).

Both the prefetching technique described in Chapter 5 and PCL
(DING; LIANG; MITRA, 2012) were integrated into the GNU com-
piler (version 4.9.1). We used the ’-O2’ optimization level and targeted
ARMv7. We implemented our own WCET analyzer based on (FER-
DINAND et al., 1999; THEILING; FERDINAND; WILHELM, 2000)
and integrated its components into the tool prototypes of the tech-

68 Chapter 6. Experimental evaluation

niques under comparison. WCET analysis is performed in two steps.
The first step occurs within the GNU compiler and determines loop it-
eration bounds. The second is a post-compiling step that performs the
implicit path enumeration technique (LI; MALIK, 1995) and must-may
analysis (THEILING; FERDINAND; WILHELM, 2000).

For ACET and energy estimation, we relied on a traditional
trace-based approach. For trace generation, we employed an instruction-
set simulator available within the GEM5 (BINKERT et al., 2011) sim-
ulation environment.

We employed the CACTI 6.5 power/energy model (WILTON;
JOUPPI, 1996) to obtain energy and access times for the primary cache
and the level-two memory. Since we did not model the processor’s
micro-architecture, we did not estimate the impact of the instruction
overhead (resulting from the insertion of prefetch instructions) on the
processor’s energy consumption and execution time. However, as will
be shown, the measured increase in the number of executed instructions
is negligible. Therefore, its impact is likely to be marginal.

6.2 EXPERIMENTAL RESULTS

Figure 15 shows average improvements for the prefetching tech-
nique as a function of cache size. The overall average improvement was
10.8% for both ACET and energy consumption. Indeed, energy sav-
ings were obtained for all use cases without increasing the memory’s
contribution to the ACET. To achieve such energy efficiency, the max-
imal increase in the number of executed instructions was 1.32%. The
non-increasing ACET has two consequences: the memory’s static en-
ergy and the average number of cycles per instruction are not increased
(as far as time anomalies are considered second-order effects). As the
amount of inserted instructions is negligible, the optimization of the
memory subsystem may only marginally increase the static consump-
tion of the rest of the system.

Figure 15 also plots the average improvement in the WCET. It
should be noted that, to preserve real-time guarantees, the prefetching

6.2. Experimental results 69

256B 512B 1KB 2KB 4KB 8KB

0 %

2 %

4 %

6 %

8 %

10 %

12 %

14 %
Im

pr
ov

em
en

t
energy ACET WCET

Figure 15 – Impact of prefetching

256B 512B 1KB 2KB 4KB 8KB

−40 %

−20 %

0 %

20 %

40 %

60 %

80 %

Im
pr

ov
em

en
t

energy ACET WCET

Figure 16 – Impact of cache locking

technique described in Chapter 5 employs the WCET as a constraint
and therefore does not try to optimize it. However, an average improve-
ment of 14.6% was observed. This shows that, by simply constraining
the prefetches that would impair the WCET, it is possible to reduce it

70 Chapter 6. Experimental evaluation

256B 512B 1KB 2KB 4KB 8KB
0 %
2 %
4 %
6 %
8 %

10 %
12 %
14 %
16 %
18 %
20 %
22 %

M
is

s
ra

te

on-demand-fetching
prefetching

cache-locking

Figure 17 – Impact on miss rate

256B 512B 1KB 2KB 4KB 8KB

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

L
oc

ke
d

bl
oc

ks
(%

)

Figure 18 – Percentage of locked blocks

while also reducing energy consumption.
Figure 16 shows the average improvements obtained with cache

locking. The overall improvement for the WCET was 67.6% but at
expense of a worsening of 7.9% in ACET and energy consumption.

Observe that the improvement on ACET is very close to the
improvement on energy, because the static energy is proportional to

6.2. Experimental results 71

256B
512B

512B
1KB

1KB
2KB

2KB
4KB

4KB
8KB

256B
1KB

512B
2KB

1KB
4KB

2KB
8KB

0.9

1

1.1

R
at

io
(o

pt
im

iz
ed

/o
ri

gi
na

l)
energy ACET WCET

1:2 1:4

Figure 19 – Prefetching: higher energy efficiency with smaller caches

256B
512B

512B
1KB

1KB
2KB

2KB
4KB

4KB
8KB

256B
1KB

512B
2KB

1KB
4KB

2KB
8KB

0.5

1

1.5

2

R
at

io
(o

pt
im

iz
ed

/o
ri

gi
na

l)

energy ACET WCET

1:2 1:4

Figure 20 – Cache locking: smaller energy efficiency with smaller caches

72 Chapter 6. Experimental evaluation

the ACET and the dynamic energy, like the ACET, is a function of
the miss rate. That is why the respective curves seem to coincide in
Figures 15 and 16, depending on the scale.

Note that the improvement on WCET with cache locking is four
times larger than the one obtained by prefetching. This is not surprising
for two main reasons. First, minimizing the WCET is a single objective
for the former and a constraint for the latter. Second, as illustrated
in the examples of Section 1.3, locking a block in cache degenerates
the associativity of a set, which allows for tighter estimations of the
WCET, but tends to increase ACET and energy consumption.

Notice also that, for cache locking, the improvement on WCET
is essentially the same regardless of cache size (except for the smallest
cache). This seems to be a consequence of its single objective formula-
tion. On the other hand, although the prefetching technique employs
iterative improvement for energy and ACET, it does not try to opti-
mize the WCET. However, since the potential for block replacement is
reduced as cache size increases, the predictability tends to be higher
for larger caches, leading to larger improvements on the WCET.

Let us analyze the energy improvements of each technique for
different cache sizes. Note that prefetching is more energy efficient for
all cache sizes. Notice that cache locking is especially energy inefficient
for small caches. It can only save energy when cache sizes are large
enough to store most of a program’s working set. To reach a maximum
improvement of 5.6%, cache locking required 8KB caches. For many of
the benchmark programs, such capacity is large enough to keep almost
their whole working sets. For exactly the same reason, prefetching leads
to smaller improvements for large caches, since there is less margin for
miss rate optimization. In spite of that, it exhibits twice the energy
improvement for 8KB caches as compared to cache locking.

Figure 17 shows the impact on miss rate. The overall average
miss rate reduction using prefetching is 11%. As the arrow shows, the
programs optimized with prefetching require less cache capacity than
the unoptimized ones to sustain the same miss rate. On the other hand,
the overall average miss rate was increased by 25%, with respect to on-

6.2. Experimental results 73

demand fetching, when using cache locking. This is another evidence
of why the improvement in WCET comes at the expense of higher
ACET and energy consumption. Note that, as compared to on-demand
fetching, cache locking was only able to reduce the miss rate for the
two largest cache sizes. To expose the reason for that behavior, Figure
18 plots the percentage of cache blocks that were locked. Note that
77% of the cache blocks were locked for the smallest cache but only
1.4% for the largest one (to achieve an almost constant improvement
in WCET as depicted in Figure 16). This is a clear evidence that it
is not the locking mechanism that produces the miss rate reduction for
large sizes, but the fact that most of the working set is stored in cache.

As prefetching enables the use of smaller caches, it can exploit
the resulting reduction in static and dynamic consumption for further
improving the energy efficiency, as follows. Figure 19 plots average
reductions, but the cache size used to run the optimized programs was
set to 1/4 and 1/2 of the cache size used to run the original programs.

Note that, within the shaded area at the lefthand side, the pro-
grams optimized with prefetching sustained ACETs less or equal to the
unoptimized ones even using only half of the original cache size. Al-
though this can not be sustained for a quarter of the original cache
size, note that a small improvement in energy was still observable at
the expense of around 1% increase in ACET (for the configuration at
2KB/8KB). Although proven WCET guarantees are provided by the
prefetching technique (WUERGES; OLIVEIRA; SANTOS, 2013) when
the original and the optimized program run on the same cache config-
uration, such theoretical guarantees cannot be kept when comparing
their behaviors on configurations with arbitrarily selected sizes. How-
ever, as Figure 19 indicates, the WCET did not grow for any use case
when cache sizes were reduced. This is an evidence that the prefetch-
ing technique, by enabling the use of smaller caches, can lead to energy
reductions up to 8% while sustaining the same or superior performance
and preserving real-time guarantees.

A similar experiment was performed for cache locking, as shown
in Figure 20. Note that, as opposed to prefetching, there is a single

74 Chapter 6. Experimental evaluation

configuration for which a slight improvement in energy efficiency was
observed.

Therefore, the shaded areas in Figures 19 and 20 indicate that, as
opposed to cache locking, prefetching may still be suitable for energy-
efficient real-time systems even when cache sizes are over-constrained
by design requirements.

For the program that took the longest (adpcm), the prototype
tool for prefetching took on average 0.43 seconds to run each WCET
analysis and 8 minutes to perform the proposed optimization on a work-
station based on an Intel i7-2600K processor, with 8GB RAM, run-
ning at 3.4 GHz. For the same program, cache locking took 21 minutes.
When averaged in the whole set of programs, performing cache locking
took 2.4 times longer than performing the prefetching optimization.

Figure 21 plots the average ratio between the number of executed
instructions of the optimized program as compared to the original one.
It shows a maximal increase of 1.32%.

256B 512B 1KB 2KB 4KB 8KB
1.2

1.22
1.24
1.26
1.28
1.3

1.32

In
cr

ea
se

in
in

st
ru

ct
io

n
co

un
t(

%
)

Figure 21 – The negligible overhead of the technique

75

7 CONCLUSION

7.1 CONCLUDING REMARKS

We showed that, since conventional WCET analysis should be
run anyway to provide for real-time guarantees, a polynomial algorithm
can exploit the analysis’ outcome to increase the energy efficiency of a
program for a given cache configuration and process technology, while
preserving the WCET.

Since every executed instruction is eventually accessed in cache
and its energy per access is fixed for a given configuration, neither
prefetching nor cache locking can decrease the dynamic energy spent
in cache. Indeed, prefetching does increase cache dynamic consumption
proportionally to the number of prefetch instructions that are executed.
However, as the proposed technique was designed to insert prefetches
only when the WCET is provenly not increased, very few are actually
inserted (representing less than 1.3% of the instruction count). Besides,
not all of them are executed. As a result, the increase in cache dynamic
consumption becomes negligible. Therefore, the issue of saving energy
in the memory system narrows down to reducing dynamic consumption
in the main memory and static consumption in both cache and main
memory. In both cases, the key is a reduction in miss rate, since it
decreases both the number of accesses to main memory and the ACET.

Unfortunately, as compared to software prefetching, cache lock-
ing has inherently less opportunities to prevent misses when referenc-
ing unlocked blocks (for a given cache capacity). Cache locking can-
not avoid compulsory misses (except, of course, for the locked blocks).
Since locking decreases the effective capacity of a set and reduces its
placement alternatives, both capacity and conflict misses may be in-
creased. On the contrary, prefetching may reduce all of them (compul-
sory, capacity, and conflict misses), because its handling of misses is
not limited by construction but merely constrained by the WCET. In
cache locking, however, the handling of misses is limited by the choice
of a single objective: to reduce the WCET as much as possible.

76 Chapter 7. Conclusion

The experiments provided quantitative evidence that, although
cache locking is far superior for real-time systems where energy effi-
ciency is not a major concern, software prefetching of unlocked caches
becomes a suitable alternative when energy efficiency requirements can-
not be neglected in real-time systems. The results have also shown that
software prefetching may sustain both average performance and WCET
even when small caches are required (e.g. when the application domain
asks for higher clock rates but low energy consumption).

Being independent from locality, prefetching can reduce the re-
quired cache size to reach the same performance level as obtained
through on-demand fetching on larger caches. This diminishes static
consumption at level-1 caches. Besides, prefetching seems to harmo-
nize with future hierarchies, where the sensitivity of power consumption
to associativity is likely to be reduced (RODRÍGUEZ; JACOB, 2006)
to the point of enabling level-2 caches with higher associativities than
the current ones. This allows for smaller level-1 caches and raises the
potential of prefetching for energy efficiency.

7.2 LIMITATIONS AND EXTENSIONS

∙ Two-level memory hierarchy:

Since our technique optimizes the code of a real-time task that
will be handled by an RTOS, we assume a memory hierarchy
without virtual memory (no transaction look-aside buffer). Since
current processors used in real-time applications have a single
cache level, we evaluated our technique for a two-level memory
hierarchy. However, the proposed optimization technique is able
to handle extra cache levels (if required in the future), since ab-
stract cache semantics does not change by adding more levels of
cache. In such scenario, only the modeling of the memory hier-
archy must be extended, not the optimization algorithm.

∙ Partial energy modeling of the system:

7.2. Limitations and extensions 77

Since we targeted memory optimization, we built (from scracth)
an infrastructure able to provide safe bounds for the contribution
of the memory subsystem to the WCET and to provide accurate
estimates for the contribution of the memory subsystem to en-
ergy consumption. Although the current infrastructure provides
a functional model of the rest of the system (ISA simulator), it
does not provide the fine-grain models (processor microarchitec-
ture and interconnect fabric) required for accurate energy esti-
mation. However, we provide a few guarantees that such current
limitation of the implementation infrastructure does not jeopar-
dize the evaluation of the proposed optimization technique. Since
our technique improved the ACET in all evaluated use cases, if
the number of executed instructions were not increased as a result
of the proposed optimization, this would mean that the average
number of cycles per instruction would not be increased by the
memory subsystem, being an evidence that no extra static energy
would be drained in the rest of the system due to extra runtime.
Since the number of inserted prefetch instructions is not zero but
negligible and assuming that time anomalies can be ruled out,
we can claim that not only their contribution to the static con-
sumption in the rest of the system is negligible, but also their
contribution to the dynamic energy consumption in the proces-
sor and in the interconnect.

∙ No modeling of cache coherence:

Since in a multi-tasking environment, the use of shared variables
among real-time tasks is unlikely or at least limited, we did not
model the impact of cache coherence protocols in abstract cache
semantics in our prototype tool. Although this may not sub-
stantially change our conclusions about its effectiveness, if the
proposed technique is to be used in an environment where tasks
do share variables, abstract semantics have to be extended to in-
corporate the effects of coherence in order to ensure safe WCET
bounds.

78 Chapter 7. Conclusion

∙ No modeling of impact of preemption in WCET analysis:

The proposed optimization technique was applied to the whole
scope of the code of a given real-time task, assuming implicitly
that the optimized task is not preempted by another. If a preemp-
tive scheduler is used, however, the impact of preemption would
not be captured. To overcome this limitation in a pragmatic
and safe way, the impact of preemption should be constrained by
the insertion of preemption points in the program (BERTOGNA
et al., 2010). The key idea is to break the program into non-
preemptible segments and perform the scheduling algorithm on
the task set together with WCET analysis. Since the accuracy
of WCET analysis heavily relies on the initial cache state, the
algorithm proposed in (BERTOGNA et al., 2010) runs in two
steps. First, the unscheduled task of highest priority is scheduled.
Then preemption points are placed in all other unscheduled tasks
(based on the WCET analysis of the non-preemptible segments
of the scheduled tasks of higher priority). The algorithm repeats
such two steps until all tasks are scheduled. In such scenario,
the scope of optimization of the proposed technique is a non-
preemptible segment of a task and not the whole program. This
extension is recommended as future work.

∙ No modeling of hardware prefetching:

The prototype tool implementing the proposed code optimization
currently assumes that the processor does not perform hardware
prefetching at all. Although every pipelined processor naturally
performs instruction prefetch, sequential prefetching does not af-
fect predictability and the required extension in the abstract se-
mantics is straightforward. Unfortunately, many embedded pro-
cessors rely on less deterministic architectures that employ hard-
ware prefetching based on branch prediction. For instance, the
ARM Cortex-R and Cortex-M processors come with a prefetch-
ing unit (PFU), which relies on a branch predictor to prefetch
instructions either from fall-through or target addresses. In such

7.3. Perspectives 79

scenario, the application of the proposed technique would require
disabling either the FPU or, at least, the dynamic branch predic-
tion mechanism.

When it is neither possible to disable hardware prefetching nor
branch prediction, the effects of hardware prefetching must be in-
corporated into theWCET analysis (BURGUIERE; ROCHANGE,
2005) before the proposed technique can be safely applied. In
such scenario, the main challenge would be the accurate model-
ing of the dynamic components of the hardware so as to make
sure that every possible state of the cache can be captured by
the abstract cache states. Therefore, although extensions in the
WCET analysis may be needed, no changes are required in the
proposed prefetching algorithm.

7.3 PERSPECTIVES

∙ Generalization for data caches:

Since this work has shown that instruction prefetching is able
to effectively reduce energy consumption under real-time con-
straints and since data caches are the second major energy con-
sumer among the storage components of an embedded processor
(DALLY et al., 2008), this thesis paves the way to the generaliza-
tion of the proposed optimization algorithm for handling unlocked
data caches. However, there are a few challenges to be faced. Al-
though the software prefetching of instructions benefits from the
fact that the addresses of most instructions are known at com-
pile time (and can therefore be represented within an immediate
field of a prefetch instruction), the main difficulty with software
data prefetching comes from the fact that the addresses of most
variables are only available at runtime and they can change for
different iterations of a same loop or distinct invocations of a
given function. Besides, the calculation of addresses for data pre-
fetching requires extra register usage. The competition between

80 Chapter 7. Conclusion

registers required to support data prefetching and those needed
for the original computation, has the potential to disrupt regis-
ter allocation (SMITH, 1978). Finally, not all addresses can be
calculated. The address of an array element can be calculated
if the base, the index, and the stride are known. This allows
data prefetching for subsequent iteration of a loop scanning an
array. However, more complex data structures (such as trees and
linked lists) are a concern (LUK; MOWRY, 1996) since the use
of pointers lead to distinct aliases to the same address.

∙ Evaluation of impact for real-life applications:

Although this thesis have evaluated the proposed technique for a
large set of use cases, its impact heavily depends on the memory
parameters of a given architecture, which are dictated by the tar-
get application. Therefore, case studies with application-specific
real-life requirements are let as future work.

81

APPENDIX A – FORMAL GUARANTEES

This appendix presents the formal proofs that the proposed tech-
nique does not increase the WCET as far as all memory operations are
kept in program order. Such proofs were elaborated by the author’s
supervisor, Prof. Luiz C. V. dos Santos, as a theoretical contribution to
the cooperative work described in (WUERGES; OLIVEIRA; SANTOS,
2013). They are presented here for completeness.

To improve readability, this section adopts ∑r;ri τ pn
w (r) as a

shorthand notation for ∑r∈{x|x∈R∧x;ri} τ pn
w (r).

Lemma 1 Given the ACFG representing a program pn−1 and a path
(ri+1, · · · ,r j), if Algorithm 1 inserts, at program point (ri,ri+1), a prefetch
πs′ for a block s′ = S (r j), thereby generating a program pn, the overall
contribution to the WCET of all memory items referenced on the new path
(πs′ ,ri+1, · · · ,r j) is smaller than on path (ri+1, · · · ,r j), i.e. τ pn

w (πs′ ,r j) <

τ pn−1
w (ri+1,r j).

Proof 1 Line 4 of Algorithm 1 guarantees, via Equation 5.6, that a prefetch
πs′ is inserted only if pcost(ri) < mcost(r j), which from Equations 5.3
and 5.4 leads to τ pn

w (πs′)+τ pn
w (r j)< τ pn−1

w (r j) (I). Since πs′ is inserted im-
mediately before ri+1 and every vertex r such that ri+1 ; r ; r j−1 is un-
touched by Algorithm 1, we can write τ pn

w (ri+1,r j−1) = τ pn−1
w (ri+1,r j−1)

(II). Thus, from (I) and (II) we conclude that τ pn
w (πs′)+ τ pn

w (ri+1,r j−1)+

τ pn
w (r j) < τ pn−1

w (ri+1,r j−1) + τ pn−1
w (r j). Therefore, from Equations 4.2

and 5.1, we can write τ pn
w (πs′ ,r j)< τ pn−1

w (ri+1,r j).

Lemma 2 Given the ACFG representing a program pn−1 and a path
(ri+1, · · · ,r j), if Algorithm 1 inserts, at program point (ri,ri+1), a prefetch
πs′ for a block s′ = S (r j), thereby generating a program pn, the overall
contribution to the WCET of all memory items reaching ri is not increased,
i.e. ∑r;ri τ pn

w (r)≤ ∑r;ri τ pn−1
w (r).

Proof 2 Line 4 of Algorithm 1 guarantees, via Equation 5.6, that a prefetch
πs′ is inserted only if rcost ≤ 0, which from Equation 5.5 leads to
∑r;ri τ pn

w (r)−∑r;ri τ pn−1
w (r)≤ 0, i.e. ∑r;ri τ pn

w (r)≤ ∑r;ri τ pn−1
w (r).

82 Appendix A. Formal Guarantees

Theorem 1 Given a program p, Algorithm 3 produces a program p′ such
that p′ ≡ p and τ p′

w ≤ τ p
w if all memory operations are kept in program

order at execution time.

Proof 3 Let pn−1 denote the program generated by Algorithm 3 after in-
serting n−1 prefetches prior to some invocation of Algorithm 1 in which
the condition in line 4 holds. This means that a prefetch πs′ for a block
s′ =S (r j) will be inserted at point ri,ri+1 of program pn−1, thereby gen-
erating a program pn with n prefetches. From Equations 4.2 and 4.3, we
can write:

τ pn−1
w = ∑

bb∈B
t pn−1
w (bb)×nw

bb = ∑
r∈R

τ pn−1
w (r),

τ pn
w = ∑

bb∈B
t pn
w (bb)×nw

bb = ∑
r∈R

τ pn
w (r),

which can be rewritten, with the help of Equation 5.1, as follows:

τ pn−1
w = ∑

r;ri

τ pn−1
w (r)+ τ pn−1

w (ri+1,r j)+ ∑
r j+1;r

τ pn−1
w (r)

τ pn
w = ∑

r;ri

τ pn
w (r)+ τ pn

w (πs′ ,r j)+ ∑
r j+1;r

τ pn
w (r)

When pn−1 is turned into pn, all paths starting at r j+1 are untouched by
Algorithm 1 and Lemma 2 holds. Therefore, we can write:

∑
r;ri

τ pn
w (r)+ ∑

r j+1;r
τ pn

w (r)≤ ∑
r;ri

τ pn−1
w (r)+ ∑

r j+1;r
τ pn−1

w (r)

Therefore, we conclude that:

τ pn
w − τ pn

w (πs′ ,r j)≤ τ pn−1
w − τ pn−1

w (ri+1,r j)⇔ τ pn
w ≤ τ pn−1

w −K,

where K = τ pn−1
w (ri+1,r j)− τ pn

w (πs′ ,r j).

Since pn and pn−1 are indistinguishable except for πs′ and we know
from Lemma 1 that K > 0, we conclude that pn ≡ pn−1 and τ pn

w ≤ τ pn−1
w

hold for any integer n > 1, i.e. p′ ≡ p and τ p′
w ≤ τ p

w hold for any program

83

p′ ̸= p produced by Algorithm 3. If, however, Algorithm 3 does not insert
any prefetches (n = 0), i.e. p′ = p = p0, we obviously have p ≡ p′ and
τ p′

w = τ p
w. Thus, p′ ≡ p and τ p′

w ≤ τ p
w hold for any program p′ produced by

Algorithm 3 from p.

85

BIBLIOGRAPHY

AGARWAL, D. et al. Transferring performance gain from software
prefetching to energy reduction. In: IEEE. Proc. of Int. Symp. on Circuits
and Systems. [S.l.], 2004. v. 2, p. 241–244.

APARICIO, L. C. et al. Combining prefetch with instruction cache locking
in multitasking real-time systems. In: IEEE. Proc. of IEEE Int. Conf.
Embedded and Real-Time Computing Systems and Applications. [S.l.], 2010.
p. 319–328.

BERKELAAR, M.; EIKLAND, K.; NOTEBAERT, P. lp_solve 5.5, Open
Source (Mixed-Integer) Linear Programming System. 2004. Software.

BERTOGNA, M. et al. Preemption points placement for sporadic task sets.
In: Proc. of Euromicro Conference on Real-Time Systems. [S.l.: s.n.], 2010.
p. 251–260. ISSN 1068-3070.

BINKERT, N. et al. The gem5 simulator. SIGARCH Comput. Archit. News,
ACM, New York, NY, USA, v. 39, n. 2, p. 1–7, ago. 2011. ISSN 0163-5964.
Disponível em: <http://doi.acm.org/10.1145/2024716.2024718>.

BURGUIERE, C.; ROCHANGE, C. A contribution to branch prediction
modeling in WCET analysis. In: Proceedings of the Conference on Design,
Automation and Test in Europe - Volume 1. Washington, DC, USA: IEEE
Computer Society, 2005. (DATE ’05), p. 612–617. ISBN 0-7695-2288-2.
Disponível em: <http://dx.doi.org/10.1109/DATE.2005.7>.

CHEN, G. et al. Dynamic Scratch-pad Memory Management for Irregular
Array Access Patterns. Proc. of Conf. on Design, Automation and Test
in Europe, European Design and Automation Association, 3001 Leuven,
Belgium, Belgium, p. 931–936, 2006.

COUSOT, P.; COUSOT, R. Abstract Interpretation: a Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of
Fixpoints. Proc. of ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, p. 238–252, 1977.

DALLY, W. J. et al. Efficient embedded computing. IEEE Computer
Magazine, v. 41, n. 7, p. 27–32, July 2008. ISSN 0018-9162.

DING, H.; LIANG, Y.; MITRA, T. WCET-centric partial instruction cache
locking. In: Proc. of IEEE/ACM Design Automation Conference. New York,
NY, USA: ACM, 2012. (DAC ’12), p. 412–420. ISBN 978-1-4503-1199-1.
Disponível em: <http://doi.acm.org/10.1145/2228360.2228434>.

86 Bibliography

DING, H.; LIANG, Y.; MITRA, T. Integrated instruction cache analysis
and locking in multitasking real-time systems. In: Proceedings of the 50th
Annual Design Automation Conference. New York, NY, USA: ACM, 2013.
(DAC ’13), p. 147:1–147:10. ISBN 978-1-4503-2071-9. Disponível em:
<http://doi.acm.org/10.1145/2463209.2488916>.

DING, H.; LIANG, Y.; MITRA, T. WCET-centric dynamic instruction cache
locking. In: Proceedings of the Conference on Design, Automation & Test in
Europe. 3001 Leuven, Belgium, Belgium: European Design and Automation
Association, 2014. (DATE ’14), p. 27:1–27:6. ISBN 978-3-9815370-2-4.
Disponível em: <http://dl.acm.org/citation.cfm?id=2616606.2616639>.

DING, Y.; YAN, J.; ZHANG, W. Optimizing instruction prefetching to
improve worst-case performance for real-time applications. Journal of
Computing Science and Engineering, v. 3, n. 1, p. 59–71, 2009.

FALK, H. WCET-aware register allocation based on graph coloring. In:
Proc. of IEEE/ACM Design Automation Conference. [S.l.: s.n.], 2009. p.
726–731.

FALK, H.; KLEINSORGE, J. C. Optimal static WCET-aware scratchpad
allocation of program code. In: Proc. of IEEE/ACM Design Automation
Conference. [S.l.: s.n.], 2009. p. 732–737.

FALK, H.; PLAZAR, S.; THEILING, H. Compile-time decided
instruction cache locking using worst-case execution paths. In:
Proc. of IEEE/ACM International Conference on Hardware/Software
Codesign and System Synthesis. New York, NY, USA: ACM, 2007.
(CODES+ISSS ’07), p. 143–148. ISBN 978-1-59593-824-4. Disponível em:
<http://doi.acm.org/10.1145/1289816.1289853>.

FERDINAND, C. et al. Cache behavior prediction by abstract interpretation.
Science of Computer Programming, v. 35, n. 2-3, p. 163–189, 1999.

GUPTA, R.; CHI, C.-H. Improving instruction cache behavior by reducing
cache pollution. In: IEEE COMPUTER SOCIETY PRESS. Proc. of
ACM/IEEE Conference on Supercomputing. [S.l.], 1990. p. 82–91.

GUSTAFSSON, J. et al. The mälardalen WCET benchmarks–past, present
and future. In: Proc. of Int. Workshop on Worst-Case Execution Time
Analysis. [S.l.: s.n.], 2010. p. 137–147.

GUTHAUS, M. e. a. MiBench: A free, commercially representative
embedded benchmark suite. Proc. of International Workshop on Workload,
v. 131, p. 3–14, 2001.

Bibliography 87

HWU, W. W.; CHANG, P. P. Achieving high instruction cache performance
with an optimizing compiler. SIGARCH Comput. Archit. News, ACM,
New York, NY, USA, v. 17, n. 3, p. 242–251, abr. 1989. ISSN 0163-5964.
Disponível em: <http://doi.acm.org/10.1145/74926.74953>.

LI, Y.-T. S.; MALIK, S. Performance analysis of embedded software using
implicit path enumeration. In: Proc. of IEEE/ACM Design Automation
Conference. [S.l.: s.n.], 1995. p. 456–461.

LI, Y.-T. S.; MALIK, S.; WOLFE, A. Efficient microarchitecture modeling
and path analysis for real-time software. In: Proc. of IEEE Real-Time
Systems Symposium. [S.l.: s.n.], 1995. p. 298–307.

LIU, T.; LI, M.; XUE, C. J. Minimizing WCET for real-time embedded
systems via static instruction cache locking. In: Proceedings of the
2009 15th IEEE Symposium on Real-Time and Embedded Technology
and Applications. Washington, DC, USA: IEEE Computer Society,
2009. (RTAS ’09), p. 35–44. ISBN 978-0-7695-3636-1. Disponível em:
<http://dx.doi.org/10.1109/RTAS.2009.11>.

LUK, C.-K.; MOWRY, T. C. Compiler-based prefetching for recursive
data structures. SIGOPS Oper. Syst. Rev., ACM, New York, NY, USA,
v. 30, n. 5, p. 222–233, set. 1996. ISSN 0163-5980. Disponível em:
<http://doi.acm.org/10.1145/248208.237190>.

LUK, C.-K.; MOWRY, T. C. Architectural and compiler support for effective
instruction prefetching: a cooperative approach. ACM Transactions on
Computer Systems, v. 19, n. 1, p. 71–109, 2001. ISSN 0734-2071.

MCFARLING, S. Program optimization for instruction caches.
SIGARCH Comput. Archit. News, ACM, New York, NY, USA,
v. 17, n. 2, p. 183–191, abr. 1989. ISSN 0163-5964. Disponível em:
<http://doi.acm.org/10.1145/68182.68200>.

MUCHNICK, S. S. Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers, 1997. ISBN 9781558603202. Disponível em:
<http://books.google.com.br/books?id=Pq7pHwG1_OkC>.

MURALIMANOHAR, N.; BALASUBRAMONIAN, R.; JOUPPI, N.
CACTI 6.0: A Tool to Understand Large Caches. HP Research Report,
Citeseer, 2007.

PIERCE, J.; MUDGE, T. Wrong-path instruction prefetching. In:
PUBLISHED BY THE IEEE COMPUTER SOCIETY. Proc. of ACM/IEEE
Int. Symposium on Microarchitecture. [S.l.], 1996. p. 165–175.

88 Bibliography

PLAZAR, S. et al. WCET-aware static locking of instruction caches. In:
Proc. of ACM Int. Symposium on Code Generation and Optimization. New
York, NY, USA: ACM, 2012. (CGO ’12), p. 44–52. ISBN 978-1-4503-1206-
6. Disponível em: <http://doi.acm.org/10.1145/2259016.2259023>.

PUAUT, I. Cache analysis vs static cache locking for schedulability analysis
in multitasking real-time systems. In: Proc. of Int. Workshop on Worst-Case
Execution Time Analysis. [S.l.]: Citeseer, 2002.

PUAUT, I. WCET-centric software-controlled instruction caches for hard
real-time systems. In: IEEE. Proceedings of the 18th Euromicro Conference
on Real-Time Systems. Washington, DC, USA: IEEE Computer Society,
2006. (ECRTS ’06), p. 217–226. ISBN 0-7695-2619-5. Disponível em:
<http://dx.doi.org/10.1109/ECRTS.2006.32>.

PUAUT, I.; ARNAUD, A. Dynamic instruction cache locking in hard
real-time systems. Proc. of the 14th Int. Conference on Real-Time and
Network Systems, 2006.

RODRÍGUEZ, S.; JACOB, B. L. Energy/power breakdown of pipelined
nanometer caches. In: ACM. Proc. of ACM Int. Symp. on Low Power
Electronics and Design. [S.l.], 2006. p. 25–30.

SMITH, A. J. Sequential program prefetching in memory hierarchies. IEEE
Computer Magazine, IEEE, v. 11, n. 12, p. 7–21, 1978. ISSN 0018-9162.

SMITH, J.; HSU, W. Prefetching in supercomputer instruction caches. In:
IEEE COMPUTER SOCIETY PRESS. Proc. of ACM/IEEE Conference on
Supercomputing. [S.l.], 1992. p. 588–597.

STALLMAN, R. Gnu compiler collection internals. Free Software
Foundation, 2010. Disponível em: <http://gcc.gnu.org/onlinedocs/gccint/>.

TANG, J. et al. Prefetching in embedded mobile systems can be
energy-efficient. IEEE Computer Architecture Letters, IEEE, v. 10, n. 1, p.
8–11, 2011. ISSN 1556-6056.

THEILING, H.; FERDINAND, C.; WILHELM, R. Fast and precise WCET
prediction by separated cache and path analyses. Real-Time Systems,
Springer, v. 18, n. 2/3, p. 157–179, 2000. ISSN 0922-6443.

UDAYAKUMARAN, S.; DOMINGUEZ, A.; BARUA, R. Dynamic
Allocation for Scratch-pad Memory Using Compile-time Decisions. ACM
Transactions on Embedded Comp. Systems, New York, NY, USA, v. 5, n. 2,
p. 472–511, 2006. ISSN 1539-9087.

Bibliography 89

VERMA, M.; MARWEDEL, P. Advanced Memory Optimization Techniques
for Low-Power Embedded Processors. [S.l.]: Springer Verlag, 2007. ISBN
978-1-4020-5896-7.

WILHELM, R. et al. The worst-case execution-time problem - overview of
methods and survey of tools. ACM Trans. Embed. Comput. Syst., ACM, New
York, NY, USA, v. 7, n. 3, p. 1–53, maio 2008. ISSN 1539-9087. Disponível
em: <http://doi.acm.org/10.1145/1347375.1347389>.

WILTON, S.; JOUPPI, N. CACTI: an enhanced cache access and cycle time
model. Solid-State Circuits, IEEE Journal of, v. 31, n. 5, p. 677–688, May
1996. ISSN 0018-9200.

WUERGES, E.; OLIVEIRA, R.; SANTOS, L. Fast estimation of memory
consumption for energy-efficient compilers. In: IEEE International
Conference on Electronics, Circuits and Systems. [S.l.: s.n.], 2011. p.
719–722.

WUERGES, E.; OLIVEIRA, R. S. de; SANTOS, L. C. V. dos.
Reconciling real-time guarantees and energy efficiency through
unlocked-cache prefetching. In: Proceedings of the 50th Annual
Design Automation Conference. New York, NY, USA: ACM, 2013.
(DAC ’13), p. 146:1–146:9. ISBN 978-1-4503-2071-9. Disponível em:
<http://doi.acm.org/10.1145/2463209.2488915>.

YAN, J.; ZHANG, W. WCET analysis of instruction caches with prefetching.
In: ACM. Proc. of ACM SIGPLAN/SIGBED Conf. on Languages, Compilers,
and Tools for Embedded Systems. [S.l.], 2007. p. 175–184.

