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Abstract

WCET ANALYSIS AND OPTIMIZATIONS OF THE REAL-TIME

APPLICATIONS ON MULTI-CORE PROCESSORS

By Yiqiang Ding, Ph.D.

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2012.

Director: Dr. Wei Zhang,
Associate Professor, Department of Electrical and Computer Engineering

As time predictability is critical to hard real-time systems, it is not only

necessary to accurately estimate the worst-case execution time (WCET) of the

real-time tasks but also desirable to improve either the WCET of the tasks or time

predictability of the system, because the real-time tasks with lower WCETs are

easy to schedule and more likely to meat their deadlines. As a real-time system is

an integration of software and hardware, the optimization can be achieved through

two ways: software optimization and time-predictable architectural support.

In terms of software optimization, we first propose a loop-based instruction

prefetching approach to further improve the WCET comparing with simple

prefetching techniques such as Next-N-Line prefetching which can enhance both

the average-case performance and the worst-case performance. Our prefetching

approach can exploit the program control-flow information to intelligently prefetch

instructions that are most likely needed. Second, as inter-thread interferences in
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shared caches can significantly affect the WCET of real-time tasks running on

multicore processors, we study three multicore-aware code positioning methods to

reduce the inter-core L2 cache interferences between co-running real-time threads.

One strategy focuses on decreasing the longest WCET among the co-running

threads, and two other methods aim at achieving fairness in terms of the amount

or percentage of WCET reduction among co-running threads.

In the aspect of time-predictable architectural support, we introduce the

concept of architectural time predictability (ATP) to separate timing uncertainty

concerns caused by hardware from software, which greatly facilitates the

advancement of time-predictable processor design. We also propose a metric called

Architectural Time-predictability Factor (ATF) to measure architectural time

predictability quantitatively.

Furthermore, while cache memories can generally improve average-case

performance, they are harmful to time predictability and thus are not desirable for

hard real-time and safety-critical systems. In contrast, Scratch-Pad Memories

(SPMs) are time predictable, but they may lead to inferior performance. Guided

by ATF, we propose and evaluate a variety of hybrid on-chip memory architectures

to combine both caches and SPMs intelligently to achieve good time predictability

and high performance.

Detailed implementation and experimental results discussion are presented in

this dissertation.
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INTRODUCTION

Real-time systems are widely used in our society such as automobile and

aircraft controllers. Besides performance, time predictability is also critical to

real-time systems, especially hard real-time systems. Missing deadlines in those

systems may either lead to catastrophic consequences or decrease quality of

services. The Worst-Case Execution Time (WCET) of an application must be

calculated to determine if its deadline can be always met. It is desirable not only

to accurately estimate the WCET, but also to optimize it, because the reduction

of the WCET of the real-time tasks can improve the feasibility of the scheduling of

those tasks. Also the improvement of the WCET can conserve the power

consumption of the processors, because one can determine the worst-case number

of cycles required for a task and lower the clock rate to still meet the deadline with

less slacks.

There are two main factors that determine the WCET of a program: first the

possible flows of instructions of a program, second the time needed for each

instruction in each possible flow [1]. Both factors do not only determine the

WCET of the program, but also the complexity of WCET analysis. Possible flows

of instructions depend on both the algorithm used to implement the program and

the code compilation (software). The time of the execution of each instruction

depends on the features and the configurations of the processors (hardware) on

which the instructions are executed. Therefore it is possible and necessary to
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perform WCET optimizations through either software optimization techniques or

architectural support.

Due to the prohibitive cost of worst-case timing analysis for modern

processors, especially multicore processors, the design of time-predictable

processors has become increasingly important for hard real-time and safety-critical

systems. On the other hand, designing a microprocessor with high time

predictability but low performance is likely to be useless. However, to the best of

our knowledge, currently there is no effective and widely accepted metric to

quantitatively evaluate time predictability of processors, which greatly impedes the

advancement of time-predictable processor design.

Scratch-Pad Memory (SPM) is an alternative on-chip memory to the cache,

which has been increasingly used in embedded processors due to its energy and

area efficiency. In a processor with SPM, the mapping of program and data

elements into the SPM can be performed either by the user or the compiler,

resulting in statically predictable memory access time. However, the performance

of SPMs is generally not as good as that of caches because caches can dynamically

reuse their space efficiently to benefit more instructions and data. Processors that

employ caches or SPMs alone can only benefit either the average-case performance

or the time predictability,not both. Guided by a quantitative metric of time

predictability of the microprocessor, it is possible and desirable to exploit the

hybrid on-chip memory architecture to achieve both time predictability and high

performance.
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Motivated by these challenges, the rest of this dissertation is organized as

follows.

Chapter 1 provides the background knowledge.

Chapter 2 and Chapter 3 discusses two WCET-oriented software

optimization techniques respectively. First, Chapter 2 studies a compiler-directed

instruction prefetching technique to overcome the deficiencies of the Next- N-Line

prefetching [9, 10]. Specifically, we find that since many real-time applications are

loop-intensive, the instruction cache pollution due to the Next-N-Line prefetching

can frequently occur at loop boundaries, which can adequately affect the

performance. To solve this problem, we propose to modify the Next-N-Line

prefetcher by prefetching instructions from the beginning of the loop, instead of

the subsequent instructions after the loop, when the loop branch (i.e., the

back-edge branch [20]) is being executed. We have also discussed the architectural

and compiler support for the proposed loop-directed prefetching technique. Our

experimental results indicate that the loop-directed prefetching can achieve both

better worst-case and average-case performance than the Next-N-Line prefetching.

Chapter 3 studies three approaches — a worst-case-oriented approach

(WCO) and two fairness-oriented approaches, including the

percentage-fairness-oriented (PFO) and amount-fairness-oriented (AFO) schemes,

all of which are based on the WCET analysis on a multi-core processor with a

shared L2 cache, but with different optimization goals. Our experiments show that

all three proposed techniques can effectively reduce the WCET of co-running

3



real-time threads to achieve their goals respectively.

In terms of architectural support, Chapter 4 first introduces the concept of

timing contract and architectural time predictability (ATP) to separate the timing

unpredictability concern caused by hardware design from software, thus making it

feasible to quantitatively assess and guide the time-predictable architectural

design; Then we propose to use Architectural Time-predictability Factor (ATF) as

a metric to quantitatively evaluate architectural time predictability of a processor,

as well as architectural time predictability of various architectural and

microarchitectural components of the processor. In addition, we evaluate the ATF

of a VLIW processor as well as its microarchitectural components, including

caches, parallel pipelines, branch predictor, speculative execution and the use of

SPM.

Guided by ATF to evaluate the time predictability of a processor, Chapter 5

first proposes hybrid SPM-cache architectures that can leverage SPMs to achieve

time predictability while allowing the use of caches for instructions and/or data

not stored in the SPMs t o improve the average-case performance. Second, we

have systematically explored seven different hybrid on-chip memory architectures

to understand how to make best use of both caches and SPMs to store instructions

and data for balancing performance and time predictability. Third, while most

prior works indicate performance and time predictability generally conflict with

each other, this research shows that it is possible to exploit hybrid architectures

intelligently for improving both time predictability and performance.
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Finally, Chapter 6 concludes this dissertation.
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CHAPTER 1

BACKGROUND

In this chapter, background information is provided for the topics covered in

this dissertation.

1.1 REAL-TIME SYSTEM

A real-time system is any information processing system which has to

respond to externally generated input within a finite and specified deadline. The

correctness of the real-time system depends not only on the results it produces,

but also on the time it finishes the computation. Such systems play a critical role

in modern industrial technologies and safe-critical systems, such as automobile,

aircraft, power plant and so on.

The unique characteristics of the real-time systems which are distinguished

from the common computing systems are listed as follows:

• Hard deadline: missing a deadline causes a total system failure.

• Soft deadline: missing a deadline degrades the quality of service of the

system because the degradation of the usefulness of the result.

• Not fast computing but time-predictable computing: the accurate estimation

of Worst-case Execution Time (WCET) of a real-time application is desired.

• Safe-critical applications: missing deadline may result in human lives

endanger or catastrophic outcomes
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• Embedded systems: real-time systems are usually offered through embedded

systems.

The safe and accurate estimation of WCET of the real-time applications is a

key requirement of real-time systems. The WCET is defined as the computing

upper bounds for the execution times of pieces of code for a given application,

where the execution time of a piece of code is defined as the time it takes a

processor to execute it. The WCET estimation is demonstrated in Figure 1.1.

Figure 1.1. The WCET estimation

1.2 MULTICORE PROCESSOR

Multicore processors have already become the mainstream of current server

and desktop computer markets. Because of the difficulty to increase the frequency

of processors to improve the performance, manufactures intend to integrate

multiple processors into a single integrated circuit die. Compared with the

single-core processor, the multicore processor can achieve higher performance with

lower power consumption. As the next-generation real-time systems need to

process exponentially growing volumes of time-sensitive data streams from

physical sensors and instruments, the performance boost of mutlicore processors
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can support the high performance computing required by the evolution to the

next-generation real-time systems.

However, multicore processors also bring challenges to real-time systems.

The WCET analysis of multicore processors is much harder than that of

single-core processors due to the inter-thread interferences accessing shared

resources (e.g. shared bus or cache), which are very difficult to be analyzed

statically. For example, the shared L2 cache is an important and widely used

design in multicore processors, because it can make multiple cooperative threads

to shared instructions/data and the limited on-chip memory efficiently.

1.3 ON-CHIP MEMORY

In order to boost the performance of modern processors, the on-chip memory

is used to shorten the gap between the processor speed and memory access time.

One type of on-chip memory is cache. It stores the data requested before so that

future requests to the data can be served faster. If the data requested are found in

the cache, it results in a cache hit, otherwise it refers to a cache miss. The latency

of a cache miss is much longer than that of a cache hit, so the cache performance

impacts the performance of the processor. Because the data stored in the cache

can be replaced by other data dynamically, cache misses always happen due to the

dynamic run-time behavior of the processor. Therefore, the cache has

unpredictable timing performance which is not desirable in real-time systems

Scratchpad memory (SPM) is an alternative technique of on-chip memory.

SPMs are some small physical separate memories directly mapped into the address
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space of the main memory system. SPMs can bring some advantages over caches

in both performance and energy because of its simple architecture and fast access

speed. Furthermore, compare with caches, the timing performance of SPMs is

predictable if memory objects are allocated in them statically, because there is no

replacement happening to these memory objects. There are already a variety of

commercial processors employing scratch-pad memory available in the market such

as Motorola MPC500 [2], ARMv6 [3].
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CHAPTER 2

LOOP-BASED INSTRUCTION PREFETCHING TO REDUCE THE

WORST-CASE EXECUTION TIME

2.1 CHAPTER OVERVIEW

Although one can accurately measure the actual execution time of a given

task, WCET estimate based on measurement alone is generally unsafe because it is

typically not feasible to exhaust all the possible program paths, especially for

applications with complex control flows. As a result, a static analysis technique

(i.e., WCET analysis) becomes a promising approach to obtaining the safe and

tight upper bound of the execution time for real-time applications. WCET,

however, is not only determined by the application itself, but also heavily

dependent on the timing information of the underlying hardware processor.

Unfortunately, many architectural features of modern microprocessors such as

caches, pipelines, dynamic branch prediction, and speculation, are designed for

improving the average-case performance, mostly at the cost of the worst-case

performance, making it hard to accurately estimate the worst-case execution time

[4, 5, 6]. Particularly, instruction caches are widely used in todays microprocessors

to bridge the speed discrepancy between the CPU and the memory. Nevertheless,

there is no guarantee that in the worst-case, the accesses to an instruction cache

will be hits. As a result, the computation time on a processor with an instruction

cache is less predictable. Fortunately, prior work on WCET analysis of instruction
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caches [7, 8] reveals that the worst-case performance of instruction caches can be

reasonably bounded, and actually it is beneficial to employ instruction caches for

real-time systems for achieving better performance [7, 8].

To further improve the instruction cache performance, various instruction

prefetching techniques [9, 10, 11, 12, 13, 14, 15, 16, 17, 18] can be used. However,

most of these prefetching techniques are designed for reducing the average-case

instruction cache misses, and their effectiveness on improving the worst-case

performance is largely unknown. A recent work [19] has quantitatively studied the

impact of a simple yet effective instruction prefetching techniqueNext-N-Line

prefetching [9, 10] on the worst-case execution time. While the Next-N-Line

prefetching can adequately enhance the average-case performance, it is less

effective and inefficient at improving the worst-case performance. The reason is

that the Next-N-Line prefetcher will always prefetch the next N cache lines,

regardless of the program control flow, which may lead to excessive conflicts

between the prefetched instructions and other useful instructions residing in the

cache. This cache pollution effect is especially problematic for worst-case timing

analysis, since the WCET analyzer has to conservatively estimate the worst-case

cache pollution by considering all the possible instructions that may be affected by

the prefetched instructions, due to the lack of runtime information. Therefore,

unintelligently prefetching useless or excessive instructions may result in worse

WCET or more loosely estimated WCET, both of which will add unnecessary

pressure to the real-time scheduler. Moreover, prefetching useless instructions will
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waste energy dissipation, which is often an important constraint for embedded

systems.

This chapter studies a compiler-directed instruction prefetching technique to

overcome the deficiencies of the Next- N-Line prefetching [9, 10]. Specifically, we

find that since many real-time applications are loop-intensive, the instruction

cache pollution due to the Next-N-Line prefetching can frequently occur at loop

boundaries, which can adequately affect the performance. To solve this problem,

we propose to modify the Next-N-Line prefetcher by prefetching instructions from

the beginning of the loop, instead of the subsequent instructions after the loop,

when the loop branch (i.e., the back-edge branch [20]) is being executed. We have

also discussed the architectural and compiler support for the proposed

loop-directed prefetching technique. Our experimental results indicate that the

loop-directed prefetching can achieve both better worst-case and average-case

performance than the Next-N-Line prefetching.

The rest of the chapter is organized as follows: We present the loop-directed

instruction prefetching approach in Section 2.2. The WCET analysis for the

loop-directed instruction prefetching is described in Section 3. Section 4 introduces

the evaluation methodology and Section 5 gives the experimental results. Finally,

we make concluding remarks in Section 6.
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2.2 LOOP-BASED INSTRUCTION PREFETCHING

2.2.1 Motivation

While instruction prefetching was originally proposed to improve the

average-case instruction cache performance, it may also be useful to enhance the

worst-case performance for real-time applications, provided that it can be used in

a time-predictable manner. Particularly, in a multiprogramming environment, a

WCET analyzer typically has to conservatively assume that all the instruction

cache lines are invalidated after context switches. Consequently, a real-time task

will suffer from cold misses, which can only be reduced by the instruction

prefetching techniques. Moreover, in a pipelined processor, each instruction miss

may stall the pipeline for multiple cycles, leading to poor performance. As the

processor speed continues to grow faster than the memory speed, time-predictable

instruction prefetching will become increasingly important for future real-time

systems that demand high performance.

Recent work [19] shows that the Next-N-Line instruction prefetching [9, 10]

can benefit both the average-case and the worst-case performance. However, the

degree of improvement in the worst-case performance is rather limited. Also, the

worst-case instruction cache misses may even become larger (than those without

using prefetching) when the prefetching distance is long [19]. These problems are

caused by the rigid policy of the Next-N-Line prefetching policy. Precisely, the

Next-N-Line prefetcher will always prefetch the next N cache lines, no matter these

instructions are needed or not. While this policy is useful when the program is
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executed sequentially, it becomes unhelpful or even problematic when the direction

of the prefetching is wrong due to the change of control flows at the execution time.

Figure 2.1. A motivation example to illustrate the deficiency of
the Next-N-Line prefetching.

For instance, Figure 2.1 shows the control-flow graph of a code segment,

which consists of a loop and a basic block. The last instruction of the loop Ik is a

back-edge branch, which is likely to be taken for many times as long as the loop

iterates, except for the last loop iteration. However, every time when Ik is being

executed, the Next-N-Line prefetcher will always prefetch the next N cache lines

after Ik, for instance instructions Ik+1, Ik+2, etc. These prefetched instructions,

however, may be mapped to the same cache lines as other instructions within the

loop, such as I1, I2, etc., and thus may pollute the instruction cache and degrade

the performance. Besides, those prefetched instructions outside the loop will never

be executed during the loop execution (except after the last loop iteration), which
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should be avoided for both performance and energy reasons.

Since real-time applications are typically loop-intensive, the unintelligent

prefetching by strictly following the next N lines policy may significantly reduce

the opportunity to optimally benefit performance (as well as energy dissipation).

Table 2.1 gives the percentage of execution cycles spent in loops for selected

benchmarks (details about the evaluation methodology can be found in Section

2.4). For most of the benchmarks, we find that loop instructions dominate the

execution time. On average, 83.9 percent of the total execution time is spent in

loops. Therefore, it is important to study an approach to overcoming the

deficiency of the Next-N-Line prefetching in order to improve the benefits of

instruction cache prefetching on real-time applications.

Table 2.1. The Percentage of Execution Cycles Spent in Loops

Benchmark # of Loops (%) Loop Cycles (%)

Bmm 14 96.96%

Fib mem 1 47.38%

Nested 4 90.55%

Fibcall 1 65.78%

Ludcmp 11 84.91%

Matmul 5 88.07%

Cordic 1 98.62%

Rawcaudio 3 99.27%

15



2.2.2 The Proposed Approach

To address the above mentioned problem of the Next-N-Line prefetcher

[9, 10], we propose a loop-based instruction prefetching technique by intelligently

exploiting the program control-flow information that is available at the

compilation time. The idea of this approach is that normally instructions can be

prefetched sequentially just like what the Next-N-Line prefetcher does; however,

when a loop branch is encountered, the instructions in the beginning of the loop

(not after the loop) will be prefetched. The reason is that the loop branch is most

likely taken. Therefore, by prefetching instructions from the beginning of the loop

rather than sequential instructions outside the loop, the direction of the

instruction prefetching is kept consistent with the runtime instruction flow (except

for the last loop iteration when the loop branch falls through), potentially leading

to better performance.

The loop-based instruction prefetching can leverage the existing Next-N-Line

prefetcher [9, 10], and its architectural and compiler support can be kept simple

and cost-efficient. The hardware support for the loop-directed instruction

prefetching is depicted in Figure 2.2. We extend the traditional Next-N-Line

prefetcher by adding several components, including a loop branch address register,

a control signal LoopBranchEnable, a hardware table, and a multiplexer. The

hardware table is used to store the address of each loop branch and the associated

loop header (i.e., the first instruction of each loop). Since both loop branches and

loop headers can be identified statically at the compilation time [20], we propose
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to store those addresses into the hardware table before we run the program. 1

Typically, the number of loops (or static loop instructions) in a real-time program

is relatively small. For instance, as can be seen from Table 2.1, the maximal

number of loops in the selected benchmarks is only 14, although they could

dominate the dynamic execution cycles. Therefore, the loop address hardware

table can be kept small, and hence, will not significantly increase the hardware

cost. 2 Also, a small-sized hardware table can make it very time-efficient to

perform the associative search for locating a particular entry.

We propose to use the compiler to detect and annotate the loop branches.

This can be achieved by using special opcodes for loop branches or exploiting

unused fields in the branch instructions. At runtime, when a loop branch

1It should be noted that it is possible to update the table at runtime, which however, needs to

annotate more instructions in the program and requires more hardware support.
2Note that for large applications with many loops, if the hardware table is too small to hold all

the prefetch information of the code, we propose to let the compiler place the most frequently used

loop information (through static analysis or profiling) into the limited loop table. For the rest of

loops whose starting addresses can not be stored in the hardware table, the corresponding loop

branches can be annotated to disable the next-N-line prefetcher. Therefore, upon the execution of

these annotated loop branches, no instruction will be prefetched, which will not pollute the cache.

If the loop branch is taken, the first instruction in the loop body will be executed again, which will

enable the next-N-line prefetcher to prefetch instructions in the right direction. In the last loop

iteration, the loop branch will not be taken; however, when the first instruction outside of the loop

body is executed, the next-N-line prefetcher will also be enabled to start the sequential prefetching,

which is also on the right path. Therefore, the impact on the performance is insignificant, even if

the table cannot hold the prefetching information of all loops in large applications.
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Figure 2.2. The architectural support for the loop-directed instruction prefetching.

instruction is being executed, its address will be passed to the loop branch address

register, and the LoopBranchEnable signal will be enabled to 1 (normally,

LoopBranchEnable is 0 for non-loop-branch instructions). As we can see from

Figure 2.2, the LoopBranchEnable signal will enable the associative search circuit

to find the corresponding loop header address (i.e., the target address of the loop

branch) in the hardware table. This loop header address is then passed to the

multiplexer that is controlled by the LoopBranchEnable signal. Since the

LoopBranchEnable signal is enabled, the hardware prefetcher will prefetch

instructions from the loop header instead of the next instruction (i.e., PC+4) after

the loop branch. When a non-loop-branch instruction is executed, however, the

LoopBranchEnable signal will be disabled. In that case, the loop-directed
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prefetcher will prefetch sequential instructions according to the Next-N-Line

prefetching address generator. It should be noted that for a processor that

employs branch prediction, the hardware overhead of the loop directed prefetching

can be further reduced, because the hardware table shown in Figure 2.2 actually

functions like a branch target address (BTB) table (but only for loop branches)

and thus can reuse the branch prediction hardware.

2.3 WORST-CASE TIMING ANALYSIS OF LOOP-DIRECTED

INSTRUCTION PREFETCHING

The WCET analysis of the loop-directed instruction prefetching is based on

the static cache simulation [7, 8] and a recent work in [19]. To better understand

our approach, first we give a brief overview of the static cache simulation in

Section 2.3.1. Then, we introduce our approach to categorizing instruction

accesses and calculating WCET with the loop-directed prefetching in Sections

2.3.2 and 2.3.3, respectively. Finally, an example is discussed in Section 2.3.4.

2.3.1 Background on Static Cache Simulation

To bound the worst-case performance of instruction caches, Arnold et al.

[7, 8] proposed static cache simulation to statically categorize the caching behavior

of instructions into four different categories based on their conditions. These four

categories are summarized below:

1. Always hit : A reference to an instruction is always hit if this instruction is

guaranteed to be always in the cache when it is accessed.
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2. Always miss : A reference to an instruction is always miss if this instruction

is guaranteed to be not in the cache when it is accessed.

3. First hit : A reference to an instruction in a loop is first hit if the first access

to this instruction is a hit while all remaining references to this instruction

are guaranteed to be misses.

4. First miss : A reference to an instruction in a loop is first miss if the first

access to this instruction is a miss while all remaining references to this

instruction are guaranteed to be hits.

Given a program, the static cache simulation performs control flow analysis

and calculates abstract cache states associated with each basic block and loop.

Based on the classified instruction categories, timing analysis can be conducted to

compute the worst case performance of instruction caches. It is shown in [7, 8]

that using an instruction cache can achieve much better performance than a

processor that simply disables the instruction cache. In addition, the performance

bound that can be estimated is also improved. More detailed information about

static cache simulation can be found in [7, 8].

2.3.2 Categorizing Instruction Accesses with Loop-Directed

Prefetching

The loop-directed instruction prefetching can have various impacts on the

instruction caching behavior. For instance, an always miss instruction can be

turned into always hit if it is guaranteed to be always prefetched into the
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instruction cache before it is used. On the other hand, prefetching instructions too

early or too late may pollute always hit instructions, which may change their

status to either first miss or always miss. To accurately classify the instruction

references into the aforementioned four categories with the use of the loop directed

prefetching, we design an algorithm by extending the recent work in [19]. As can

be seen in Figure 2.3a, this algorithm is composed of three phases, including

initialization, loop analysis, and branch analysis. The input of our algorithm is a

region [21], which can be a procedure, a loop, or a basic block. The Initialization

phase initializes the status and latency of each instruction based on the code

placement in the cache line as well as the prefetching distance. More specifically,

the first instruction in the cache line is initially classified as always miss, while the

rest of instructions in the same cache line are always hit due to the spatial locality.

To take into account the impact of prefetching on the latency of instruction

accesses, a variable v clk is used to record the number of clock cycle saved (i.e.,

stall cycles reduction) due to the loop-directed instruction prefetching. As can be

seen in Figure 2.3b, if the v clk associated with an instruction is larger than or

equal to the instruction cache miss penalty, this instruction will be identified as

always hit since it can be always prefetched into the cache before it is needed.

The algorithm of loop analysis is described in Figures 2.3c and d, whose task

is to update the status and latency of each instruction within the loop by

considering the repetition of instruction accesses in loops. The branch analysis is

shown in Figure 2.3e, which deals with the status and timing of branch operations
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in the program, including the loop branches. Basically, the non-fall-through target

of each branch is analyzed, and its status and latency are calculated and updated

for a given prefetching distance.

Figure 2.3. Algorithm of categorizing worst-case instruction
cache behaviors with the loop-directed instruction prefetching.
(a) Main function. (b) Initialization. (c) Loop analysis. (d)
Loop op analysis. (e) Branch analysis.

2.3.3 Calculate WCET

Based on the instruction categorization results, the WCET can be calculated

similar to the algorithm presented in [19]. More specifically, the worst-case
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performance with loop-directed instruction prefetching is computed as the sum of

computing cycles and instruction cache stall cycles, because in statically-issued

architecture, such as VLIW (which is our target processor), the whole instruction

pipeline must be stalled in case of instruction cache misses. The computing cycle

is the worst-case execution cycles by assuming a perfect instruction cache, which is

the product of scheduled time length and control frequency of each block that can

be obtained from the compiler. 3

The number of instruction cache stall cycles is determined by the cache

categorization and the weight of each instruction. Specifically, for an always miss

instruction, stalls are calculated as the product of its I-cache access latency and

the weight of that instruction. For a first hit instruction, stalls are the product of

its latency and (weight - 1) of this instruction. For an instruction categorized as

first miss, the latency of this instruction is added into stalls only once. Finally, for

always hit instructions, their stalls are simply 0.

2.3.4 An Example

To illustrate the advantage of the loop-directed prefetching, a code segment

is selected from a real-time benchmark called Fib call [22], whose source code and

assembly code (based on the HPL-PD architecture [23]) are shown in Figures 2.4a

and 2.4b, respectively. This code segment contains one loop and two basic blocks,

3In this work, we assume the maximal number of loop iterations can be analyzed by the compiler

or specified manually, which is also supported by SNU real-time benchmarks [22] that will be used

in our evaluation.
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and its control-flow graph (including each instruction) is shown in Figure 2.4c.

For illustration purpose, we assume an instruction cache with two cache

lines, and each line can store two instructions. As can be seen in Figure 2.4d, the

assumed instruction cache miss latency is 3 cycles and the prefetching distance is

4. Without any prefetching, the status (i.e., cache categorization) of each

instruction is shown in Figure 2.4d. As we can see, there are six instructions inside

the loop, among which op9 and op13 are mapped to the same cache line.

Therefore, based on our cache categorization algorithm given in Figure 2.3, both

op9 and op13 are categorized as always miss, and other loop instructions are

identified as either always hit or first miss.

Figure 2.4e shows the effects of the traditional Next-N-Line prefetching (i.e.,

non-loop-directed). Since the instruction cache miss penalty is 3, all the

instructions that can be prefetched before they are used become either always hit

(e.g., op7) or first hit (e.g., op9). Nevertheless, based on the Next-N-Line

prefetching, when op14 (i.e., the loop branch) is being executed, four more cache

lines will be prefetched, including op15-20. Unfortunately, op15 conflicts with

op11; and op17 conflicts with op7. As a result, the status of op11 is changed from

first miss (without prefetching) to first hit (with the Next-N-Line prefetching),

which will actually increase the instruction cache misses. For op9, since it is

classified as always miss without prefetching, the additional conflict between op9

and the prefetched op17 will not aggravate it.

The instruction categorization with the loop-directed prefetching is
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demonstrated in 2.4f. With the loop-directed prefetching, op15 will not be

prefetched while the loop branch op14 is encountered. Hence, the status of op11 is

converted from first hit (with the Next-N-Line prefetching) to always hit (with the

loop-directed prefetching), leading to better cache performance.

Notice that in this example, op13 changes from Always Miss (without

prefetching) to First Hit (with both forms of prefetching). This is because that

with both NLP and LP schemes, the instructions are prefetched sequentially before

encountering loop branches, and the prefetching distance (4) is larger than the

miss penalty (3); therefore, op13 is already prefetched into the cache before it is

executed. Thus, op13 can be only classified as either First Hit or possible Always

Hit. However, op13 can not be classified as Always Hit with both prefetching

schemes. With NLP, only when op9 is executed for the second time (i.e., after the

loop branch is taken), the prefetcher will begin to prefetch the next four cache

blocks, including op13. However, assuming the processor fetches one cache line

each cycle, op13 needs to be fetched two cycles later (op9-10 and op11-12) while it

is not in the cache yet because the miss penalty is 3 cycles. Thus, op13 is classified

as First Hit. With loop-based prefetching, while op9 can be prefetched while op13

is being executed, op9 is still a miss after the first time it is executed, although the

miss latency can be reduced by one cycle. Similar to NLP, op13 is only prefetched

when op9 is executed for the second time, which is too late to fill op13 into the

cache before it is executed again. Therefore, op13 is still classified as First Hit.

For this code segment, the average-case (i.e., obtained through simulation)
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Figure 2.4. An example. (a) Source code. (b) Assembly code.
(c) Control flow graph. (d) Without prefetching. (e) Next-N-
Line prefetching. (f) Loop-directed prefetching.
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and the worst-case (i.e., obtained through the analytical technique) cache

performance of different prefetching schemes are compared in Table 2.2; in which

the base scheme represents the method that does not use any prefetching, Non-

Loop-directed Prefetching (NLP) refers to the Next-N-Line prefetching [9, 10], and

LP stands for the Loop-directed Prefetching. More details of our evaluation

method can be found in Section 2.4. Note that the sources of differences between

the average-case and worst-case performance typically include conditional

branches, overestimated loop bounds and overestimated architectural timing such

as cache misses. As we can see, both the average-case and worst-case instruction

cache miss rates of the Next-N-Line prefetching are worse than those of the base

scheme, due to the adverse effects of cache pollution by the Next-N-Line

prefetching. By comparison, the loop-directed prefetching is superior to both the

base and the Next-N-Line prefetching in terms of the average case and worst-case

instruction cache misses. However, it should be noted that although the

Next-N-Line prefetching may increase the instruction cache misses compared with

the base scheme, it (as well as the loop-directed prefetching) may reduce the access

latencies of missed instructions through prefetching, which can positively impact

the overall performance.

2.4 EVALUATION METHODOLOGY

We study the worst-case and average-case performance of the loop directed

prefetching and the Next-N-Line prefetching [9, 10] on a VLIW processor based on

the HPL-PD architecture [23] by using Trimaran compiler/simulator infrastructure
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Table 2.2. The Average-Case and Worst-Case Cache Perfor-
mance of Different Schemes for the Code Given in Figure 2.4

Schemes I$ Accesses I$ Misses Miss Rate

Base (Average-Case) 194 58 29.89%

Base (Worst-Case) 194 58 28.89%

NLP (Average-Case) 194 81 41.75%

NLP (Worst-Case) 194 81 41.75%

LP (Average-Case) 194 54 27.83%

LP (Worst-Case) 194 54 27.83%

[24]. The average-case performance is obtained through simulation, and the

worst-case results are obtained through the analytical technique. We have

modified both the back-end compiler Elcor and the simulator to support the

loop-directed instruction prefetching. The WCET analysis described in Section 2.3

has been implemented as independent modules to report the worst-case

performance. The important parameters of the baseline VLIW processor are given

in Table 2.3. Note that to limit the scope of this study, we assume the data cache

is perfect, which is also assumed in [19].

For this evaluation, we randomly select six benchmarks from the SNU

real-time benchmark suite [22] and two benchmarks (i.e., cordic and rawcaudio)

from Mediabench [25]. All the benchmarks are compiled by using the Trimaran

compiler. The front-end compiler Impact uses optimization level 4 (O4), and the

back-end compiler Elcor uses basic block scheduling and region-based register

allocation. The salient characteristics of the benchmarks are shown in Table 2.4.

Note that our experiments show that on average, the overestimation of the
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Table 2.3. Configuration Parameters and Their Values in the
Base Configuration of the Simulated VLIW Processor

Configuration Parameter Value

Processor

Function Units 2 integer FUs

2 floating-point FUs

1 load/store unit

1 branch unit

Register File 16 global registers

Cache and Memory Hierarchy

L1 Instruction Cache 512 bytes, direct-mapped, 8 byte blocks

1 cycle latency

L1 Data Cache perfect

Memory 8 cycle, unlimited size

estimated WCET as compared to the observed WCET through simulation is only

9.7 percent. Thus, we believe our WCET analyzer is reasonably tight.

2.5 EXPERIMENTAL RESULTS

2.5.1 Impact On Worst-Case Performance

Figure 2.5 compares the worst-case performance between the Next-N-Line

prefetching and the loop-directed prefetching with the prefetching distance varying

from 2 to 4, 8, and 16, which is normalized with the WCET of the base scheme

that does not use any instruction prefetching. We use NLP-i (or LP-i) to represent

the Next-N-Line prefetching (or loop-directed prefetching) with a prefetching

distance i. As we can see from Figure 2.5, both the NLP and LP schemes improve

the worst-case performance in most cases, except when the prefetching distance is
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Table 2.4. The Salient Characteristics of the Selected SNU Real-
Time Benchmarks

Benchmark Description Static Instrs I$ accesses I$ misses I$ Miss Rate

Bmm Multiplies two matrices 522 101157 293 0.29%

Fib mem Computes a Fibonacci number using a linear recurrence 93 237 41 17.30%

Nested Sum up the elements in a two-dimensional array 120 2860 76 2.66%

Fibcall Fibonacci series function 43 208 25 12.02%

Ludcmp LU decomposition algorithm 265 3799 360 9.48%

Matmul Matrix multiplication 186 2838 58 2.04%

Cordic Timing sensitivity stress mark 898 4652240 1934866 41.6%

Rawcaudoio Speech compression and decompression algorithms 489 10263149 1425463 13.9%

too large (e.g., NLP-16 and LP-16 for Fibcall). In particular, both the NLP and

LP schemes are particularly successful for benchmarks that suffer from more

instruction caches misses, for instance Cordic and Fib mem, whose I-cache miss

rates are 41.6 and 17.3 percent, respectively, as given in Table 2.4.

Generally, we observe that when the prefetching distance increases from 0

(i.e, base) to 2, 4, and 8, the number of worst case execution cycles is reduced.

However, when the prefetching distance increases beyond 8, on average, both the

Next-N-Line prefetching and the loop-directed prefetching result in worse WCET,

due to the aggravated instruction cache pollution by prefetching too many

instructions. By comparing the NLP scheme with the LP scheme with the same

prefetching distance, we observe both schemes have very similar worst-case

performance for a small prefetching distance such as 2 or 4. This is because when

the prefetching distance is smaller than the cache miss penalty (i.e., 8 cycles),

prefetching alone cannot translate a cache miss into a hit. However, with larger
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prefetching distance (e.g., 8 or 16), we find the LP scheme outperforms the NLP

scheme for all the benchmarks. The reason is that the LP scheme can mitigate the

cache pollution caused by the prefetched instructions outside loops and prefetch

the right instructions for loop execution. Particularly, the best loop directed

prefetching scheme (i.e., LP-8) can reduce the base WCET by 23.5 percent on

average, which is 3.8 percent more than that of the best Next-N-Line prefetching

scheme (i.e., NLP-8).

Figure 2.5. Normalized worst-case execution cycles by increasing
the prefetching distance from 2 to 4, 8, and 16 for the Next-N-
Line prefetching and the loop directed prefetching, which are
normalized with the worst-case execution cycles of the Base
(without instruction prefetching).

Figure 2.6 compares the worst-case instruction cache miss rates for both the

Next-N-Line and loop-directed prefetching with the prefetching distance varying

from 2 to 4, 8, and 16, which are normalized with the base I-cache miss rate. As

can be seen, when the prefetching distance is less than 8, both the Next-N-Line

prefetching and the loop-directed prefetching have the same I-cache miss rate as
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the base scheme. This is because when the prefetching distance is smaller than the

instruction cache miss penalty (which is 8 cycles), instruction prefetching cannot

convert a cache miss into a cache hit, though it may reduce the penalty of that

cache miss. For both prefetching approaches, the best instruction cache miss rates

are achieved when the prefetching distance is 8, which is the same as the I-cache

miss penalty. When the prefetching distance is 16 (i.e., or generally larger than the

I-cache miss penalty), too many prefetched instructions may pollute the

instruction cache, leading to worse I-cache miss rate. For example, for the NLP

scheme, when the prefetching distance is 16, the worst-case I-cache miss rates of

Fib mem and Fibcall are increased by 24 and 55 percent, respectively. This

explains why the estimated worst-case execution time of these two benchmarks is

worse than the base WCET, as shown in Figure 2.5. Similarly, the LP-16 scheme

increases the worst case I-cache miss rate of Fibcall by 43 percent, which is why

Fibcall has bad WCET with the LP-16 scheme in Figure 2.5.

2.5.2 Impact on Average-Case Performance

In addition to the worst-case performance, we also compare the loop-directed

prefetching and the Next-N-Line prefetching in terms of the average-case

performance (i.e., simulated cycles), which are given in Figure 2.7. In general, we

observe that for both schemes, the best average-case performance is achieved when

the prefetching distance is 2 (note Fibcall and Ludump are the two exceptions,

whose best performance results are achieved when the prefetching distance is 4).

These average-case performance results are in contrast to the best WCET that can
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Figure 2.6. The normalized worst-case instruction cache miss
rates of the Next-N-Line prefetching and the loop-directed
prefetching with the prefetching distance varying from 2 to 4, 8,
and 16, which are normalized with respect to the base worst-case
instruction cache miss rate.

only be attained with a larger prefetching distance (i.e., 4 for NLP and 8 for LP),

as shown in Figure 2.5. The reason is that the cache pollution can be accurately

evaluated in a simulator, while it often has to be overestimated by the WCET

analyzer due to the lack of precise runtime information. Therefore, when the

prefetching distance is larger (but smaller than or equal to the I-cache miss

penalty, i.e., 8), the number of I-cache misses (when prefetch distance is 8) and/or

the latencies of missed instructions (when prefetching distance is 4 or 8) can be

statically estimated as decreased, thus potentially leading to better estimated

worst-case performance. By comparison, when the prefetching distance is beyond

2, our simulation indicates that the I-cache miss rate becomes to grow dramatically

for all the benchmarks except Fibcall and Ludump, as shown in Figure 2.8. This

explains why those benchmarks can achieve the best average-case performance
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when the prefetching distance is 2. As can be seen from Figure 2.8, for Fibcall and

Ludump, the I-cache miss rate is decreased (dramatically for Ludump) as the

prefetching distance increases from 2 to 4 with the Next-N-Line prefetching. This

is why for these two benchmarks, the best average-case performance with the

Next-N-Line prefetching is achieved when the prefetching distance is 4.

Figure 2.7. Normalized execution cycles by increasing the
prefetching distance from 2 to 4, 8, and 16 for both the NLP
and LP schemes, which are normalized with the base execution
cycles without instruction prefetching.

2.5.3 Sensitivity to the Cache Size

We have also made experiments to study the effects of both the Next-N-Line

prefetching and the loop-directed prefetching on instruction caches with different

sizes. Figs. 9 and 10 show the averaged execution cycles and the averaged WCET

respectively for both prefetching schemes with the I-cache size reduced from 512 to

256 and 128 bytes, which are normalized with the execution cycles and the WCET

respectively of the base scheme with a 512-bytes instruction cache. As one can
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Figure 2.8. Simulated instruction cache miss rates of NLP and
LP schemes by increasing the prefetching distance from 2 to 4,
8, and 16, which are normalized with the base execution cycles
without instruction prefetching.

expect, when the I-cache size is reduced, especially from 256 to 128 bytes, the

average-case as well as the worst-case performance generally decreases. For a

smaller instruction cache such as a 128-byte I-cache, a long prefetching distance

(e.g., 16) can significantly degrade both the average-case and worst-case execution

time, and only a small prefetching distance (i.e., 2) can benefit performance. This

is because cache pollution by prefetching many instructions becomes more severe

in smaller instruction caches.

We also find that while both the Next-N-Line prefetching and the

loop-directed prefetching with a proper prefetching distance are useful to enhance

performance, on average, both techniques are more effective for larger instruction

caches. For instance, NLP-2 and LP-2 increases the average-case performance of

the 512-byte instruction cache by 23.9 and 27.7 percent, respectively, while the

improvement on the 128-byte instruction cache is only 13.2 and 17.2 percent,
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respectively. Similarly, as we can see in Figure 2.10, the maximal WCET reduction

for a 512-byte I-cache is 19.7 (by NLP-8) and 23.5 percent (by LP-8), whereas the

best WCET reduction for a 128-byte I-cache is only 3.7 percent (by NLP-2) and 6.

The reason is that for a very small cache, even with a moderate prefetching

distance, the prefetched instructions are more likely to replace other useful

instructions. In contrast, a larger cache can accommodate more prefetched

instructions to benefit performance.

Interestingly, as can be seen in Figure 2.9, a 256-bytes I-cache can exploit

either the Next-N-Line prefetching (e.g., NLP-2, NLP-4, or NLP-8) or the

loop-directed prefetching (e.g., LP-2, LP-4, LP-8, or LP-16) to achieve

performance better than a 512-bytes I-cache (i.e., the base), which demonstrates

the effectiveness of these instruction prefetching techniques and the importance of

tuning the prefetching distance to achieve the best performance improvement. In

addition, as we can observe from both Figures 2.9 and 2.10, the loop directed

prefetching always outperforms the Next-N-Line prefetching in terms of both the

average-case and the worst-case performance, indicating that the loop-directed

prefetching is a better instruction prefetching technique for real-time applications.

2.6 CONCLUSION

In this chapter, we propose a loop-based instruction prefetching scheme to

enhance the performance for real-time applications. Compared with the

Next-N-Line prefetching [9, 10], the loop directed approach can mitigate cache

pollution by not prefetching instructions after the loop branches and can enhance
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Figure 2.9. Averaged execution cycles of the NLP and LP
schemes with different prefetching distances when the instruc-
tion cache size is reduced from 512 to 256 and 128 bytes, which
are normalized with respect to the execution cycles of the base
scheme with a 512-bytes instruction cache.

Figure 2.10. Averaged WCET of the NLP and LP schemes with
different prefetching distances when the instruction cache size is
reduced from 512 to 256 and 128 bytes, which are normalized
with respect to the WCET of the base scheme with a 512-bytes
instruction cache.
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performance by prefetching the right instructions during the loop execution. The

architectural and compiler support for the loop-directed prefetching is simple and

cost-efficient. Built upon prior work in WCET analysis [7, 8, 19], we present an

approach to modeling the loop directed prefetching and estimating the worst-case

performance for instruction caches with the loop-directed prefetching.

Our experimental and static analysis results indicate that the loop-directed

prefetching can achieve both better average-case and worst-case performance than

the Next-N-Line prefetching, and thus is preferable for real-time applications. We

also observe that the prefetching distance has large impact on the average-case as

well as the worst-case performance; however, a prefetching distance resulting in the

best average-case performance does not automatically lead to the best WCET.

Actually, our evaluation shows that the best prefetching distance for the

worst-case performance is slightly longer (but not too long as compared to the

instruction cache miss penalty) than the best prefetching distance for the

average-case performance. The reason is that the cache pollution caused by the

prefetched instructions can be accurately evaluated in a simulator, while it often

has to be overestimated by the WCET analyzer due to the lack of precise runtime

information. On the other hand, the WCET analyzer can statically estimate the

benefits of prefetching with a longer distance, for instance, the reduced number of

I-cache misses (in case the prefetching distance is longer than or equal to the

I-cache miss latency) as well as the decreased penalty for missed instructions.

Consequently, for real-time applications, the best prefetching distance must be
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selected based on the worst-case timing analysis, not simply based on the

average-case results through simulation.
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CHAPTER 3

MULTICORE-AWARE CODE POSITIONING TO IMPROVE

WORST-CASE PERFORMANCE

3.1 CHAPTER OVERVIEW

With the rapid development of computing technology and the diminishing

return of completed uniprocessors, multi-core chips processors have been

increasingly adopted. Presently, multi-core processors have been widely utilized in

all types of computer systems, such as high performance general-purpose servers,

specialized embedded systems and so on. In particular, with the growing demand

of high performance by high-end real-time applications such as HDTV and

real-time multimedia processing applications, multi-core processors are expected to

be increasingly used in the real-time systems. Actually, researchers have

envisioned that the real-time systems will be possibly deployed on large-scale

multi-core processors which are composed of tens or even hundreds of cores on a

single chip in the near future [50].

For real-time systems, it is critical to accurately obtain the worst-case

execution time for each task, which provides the basis of task scheduling. Besides,

optimizing real-time code to reduce WCET can bring many benefits to real-time

systems. For instance, better WCET of a task gives the real-time scheduler more

flexibility to schedule this task for meeting its deadline. Also, reducing WCET of a

computing task can help conserve power used by the system [44]. The basic idea is
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that with WCET information available, if a task still have slacks, the clock rate

can be lowered to reduce power dissipation while still meeting the deadlines.

To reduce the WCET of real-time tasks (i.e., to obtain “better” WCET),

code positioning approaches have been proposed [31, 32]. However, current

WCET-oriented code positioning approaches center on enhancing the WCET of

single-threaded application on the uniprocessors, which cannot be effectively

applied to multi-core processors with shared caches. This is because these code

positioning algorithms [31, 32] only reduce the intra-thread cache conflicts, but can

not detect the inter-thread cache conflicts or avoid them. Furthermore, these

approaches may reduce the intra-thread L1 cache misses at the cost of more

inter-thread shared L2 cache misses, whose penalty is usually much more than that

of an L1 cache miss and thus may hurt the overall performance. Therefore, it is

crucial to develop multicore-aware code positioning techniques for real-time

applications running on multicore platforms.

In this chapter, we assume two real-time threads are running concurrently on

a dual-core processor with a shared L2 cache and our goal is to reduce the WCET

of these threads 1. We have studied three approaches — a worst-case-oriented

approach (WCO) and two fairness-oriented approaches, including the

1In some applications with mixed real-time and non-real-time tasks, a real-time thread may

run concurrently with a non-real-time thread. However, it should be noted that code position for

this scenario is actually less challenging, as the performance of the non-real-time thread can be

sacrificed for enhancing the WCET of the real-time thread [52]. While in this chapter, the WCETs

of both real-time threads need to be considered.
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percentage-fairness-oriented (PFO) and amount-fairness-oriented (AFO)

schemes,all of which are built upon multicore cache WCET analysis, but with

different optimization goals. Our experiments show that all these three proposed

techniques can effectively reduce the WCET for co-running real-time threads to

achieve their respective optimization goals.

The rest of this chapter is organized as follows. Section 3.2 reviews related

work. Section 3.3 describes the proposed multicore-aware code positioning

approaches. The evaluation methodology is explained in Section 3.4 and the

experimental results are presented in Section 3.5. Finally, the conclusions are

made in Section 3.6.

3.2 RELATED WORK

Traditional code positioning algorithms mostly aim at enhancing the

average-case execution time (ACET) by reordering the basic blocks to make the

most frequently traversed edges contiguous in memory [38, 39, 40, 41, 42].

However, as the most frequently traversed edges may not be a part of the

worst-case paths, the WCET can not be guaranteed to be reduced by these

approaches. Even if the WCET path is taken into account by the code positioning

algorithm, a change in the positioning may result in a different path becoming the

WCET path.

To improve the worst-case performance in a processor with instruction

caches, a code positioning approach is proposed to focus on positioning the basic

blocks on the worst-case path in the program to reduce the pipeline delay caused

42



by the transfer of controls [31]. The main idea of this basic block positioning

algorithm is to select edges between basic blocks on the worst-case path to be

contiguous, which will minimize the WCET. Recently, another WCET-oriented

approach is proposed to reduce the number of cache conflict misses by means of

placing procedures which contributes to the WCET, so that they are mapped

contiguously in memory layout and the placement avoids overlapping of cache lines

belonging to a caller and a callee procedure [32]. Both these two approaches,

however, have not considered the inter-thread cache conflicts in multi-core

computing platforms.

Cache partitioning is another useful method to isolate tasks in a multitasking

real-time system. It allows individual analysis of cache behavior and thus enhances

the time predictability of each task. There are mainly two types of cache

partitioning approaches, i.e. hardware-based [53, 54] and software-based [55, 56].

In hardware-based cache partitioning, address mapping hardware is inserted into

the processor with a cache to restrict cache accesses to a single contiguous cache

segment at any one time; therefore, each task has the right to access a private

cache segment for one or more partitions. In contrast, the software-based approach

creates a private cache partitioning for each task by assigning it a separate address

space in the cache with the use of the compiler and the linker. Our

multicore-aware code positioning techniques are complementary to cache

partitioning approaches. Multicore-aware code positioning enables different tasks

to still share caches for achieving benefits such as efficient cache space usage,
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low-cost cache coherency and easy sharing [57], while minimizing the inter-core

cache conflicts. Moreover, as a pure software-based technique, multicore-aware

code positioning does not need to modify the hardware while achieving “better”

WCET for real-time tasks running on multi-core processors.

3.3 OUR APPROACHES

3.3.1 Overview

In a multi-core processor, each core typically has private L1 instruction and

data caches. The L2(and/ or L3) caches can be either shared or separated. While

private L2 caches are more time-predictable in the sense that there are no

inter-core L2 cache conflicts, they suffer from other deficiencies. First, each core

with a private L2 cache can only exploit separated and limited cache space. Due to

the great impact of the L2 cache hit rate on the performance of multi-core

processors, private L2 caches may have worse performance than a shared L2 cache

with the same total size, because each core with shared L2 cache may make use of

the aggregate L2 cache space more effectively. Besides, separated L2 caches

increase the cache synchronization and coherency cost [57]. Moreover, a shared L2

cache architecture makes it easier for multiple cooperative threads to share

instructions and data, which becomes more expensive in separated L2 caches [57].

Therefore, we will study the WCET analysis of multi-core processors with shared

L2 caches in this chapter.

For simplicity, we assume that two real-time threads run concurrently on

different cores of a dual-core processor with private L1 caches and a shared L2
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cache, although our techniques can be applied or adapted for multiple threads

running on multi-core chips with multi-level memory hierarchies. We have

proposed three strategies to optimize the WCET of both threads for making

different tradeoffs. These strategies include a Worst-Case-Oriented strategy, and

two Fairness-Oriented strategies, including both AFO and PFO. The WCO aims

at improving the performance of the real-time thread with the longest WCET, as

this type of thread mostly impacts the performance of the whole system. AFO and

PFO attempt to treat all the real-time threads fairly, that is to optimize the

WCET of each real-time thread by approximately an equal amount or percentage

respectively.

Figure 3.1 depicts the main working flow of the WCET-oriented

co-optimization architecture, which mainly consists of two sub-flows. The

sub-flows of both threads are initialized with code analysis including control flow

analysis and static cache analysis. The inter-thread cache conflict analysis

algorithm calculates the worst-case inter-thread L2 cache conflict set. Then the

codes of both threads are positioned following a specific strategy to reduce the

inter-thread L2 cache conflicts. The WCET analysis is conducted to calculate the

new WCETs for both threads after positioning, which are compared with their

original WCETs for guiding the co-optimization further. It is worthy to note that

the sub-flow of both threads from code analysis to code positioning may be

repeated for several times to achieve the optimal results.
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Control Flow

Data Flow

Inter−thread Conflict Set

Inter−thread Conflict Analysis

Thread I Code Analysis Thread II Code Analysis

Thread I WCET Analysis Thread II WCET Analysis

Sub−flow for Thread I Sub−flow for Thread II

Co−optimization Code Positioning

Figure 3.1. Flow diagram of WCET-oriented co-optimization architecture.

3.3.2 Worst-Case-Oriented Code Positioning

The objective of WCO is to minimize the longest WCET of both real-time

threads (i.e. reducing the worst-case WCET of co-running threads), whose

algorithm is described in Algorithm 1. The inputs of the algorithm are the two

programs to be optimized. In line 2, the termination variable of the algorithm is

initialized. In the next three lines, fundamental data needed by the algorithm are

calculated, including the original WCETs of both programs and the L2 cache

conflict instruction list. After the original WCETs of both programs are compared,

the program with smaller original WCET will be positioned to optimize the

WCET of the other program as much as possible. As shown from line 7 to line 15,

in case that the original WCET of P1 is larger than that of P2, P2 will be

positioned at line 8, in which the conflict instructions from P2 that lead to the

largest inter-thread cache conflicts will be allocated at new memory addresses

mapping to L2 cache blocks with the minimal conflicts with the corresponding
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instructions from P1. The WCETs of both programs will be calculated again when

the positioning of P2 finishes from lines 9 to line 10. If the WCET of P1 is still

larger than that of P2, the termination variable will be assigned as true; otherwise,

the function of WC Oriented Code Positioning will be executed recursively to

reduce the WCET of P2, which now becomes the thread with the longest WCET.

In the other case (line 16 to 25), the positioned program turns to be P1 as the

original WCET of P2 is larger than that of P1, and other steps are almost the

same as the first case. Finally, the algorithm will not be terminated until the value

of termination variable equals true.

3.3.3 Fairness-Oriented Code Positioning

While WCO focuses on optimizing a single thread that has the worst WCET

among co-running threads, FO code positioning aims at optimizing all the

co-running threads to ensure fairness. Since the WCETs of both threads may vary

significantly, the “fairness” has different meanings and implications, depending on

the optimizing objectives. In this work, the FO strategies are divided into two

different schemes according to the “fairness” goals, including 1) reducing

approximately the same amount of WCET, and 2) reducing approximately the

same percentage of WCET. Accordingly, two schemes are named

Amount-Fairness-Oriented (AFO) code positioning and

Percentage-Fairness-Oriented (PFO) code positioning respectively.
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Algorithm 1 WC Oriented Code Positioning
1: begin

2: boolean terminate = false;

3: P1 wcet = WCETAnalysis(P1);

4: P2 wcet = WCETAnalysis(P2);

5: Conflict Op List = Bulid Conflict Op List(P1, P2);

6: repeat

7: if P1 wcet > P2 wcet then

8: Positioning(P2, Conflict Op List);

9: P1 wcet = WCETAnalysis(P1);

10: P2 wcet = WCETAnalysis(P2);

11: if P1 wcet > P2 wcet then

12: terminate = true;

13: else

14: WC Oriented Code Positioning(P1, P2);

15: end if

16: else

17: Positioning(P1, Conflict Op List);

18: P1 wcet = WCETAnalysis(P1);

19: P2 wcet = WCETAnalysis(P2);

20: if P1 wcet < P2 wcet then

21: terminate = true;

22: else

23: WC Oriented Code Positioning(P1, P2);

24: end if

25: end if

26: until terminate == true;

27: end
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Amount-Fairness-Oriented Scheme

Amount-Fairness-Oriented (AFO) code positioning algorithm aims at

reducing the WCETs of both co-running threads by approximately equal amount.

When the WCO code positioning approach is applied, only the instructions of the

thread with shorter (i.e. “better”) WCET are positioned to reduce the WCET of

the other thread as much as possible. In this case, the amount of WCET reduced

by avoiding the inter-thread L2 cache conflicts is the same to both threads;

however, the difference of the amount of WCET reduction can be caused by

different intra-thread L1 and L2 cache misses due to the WCO code positioning.

Therefore, AFO can leverage WCO to decrease the inter-thread cache misses,

while it tries to recover some of the positioned instructions in WCO by a

procedure named De− positioning to ensure that the intra-thread cache miss

penalties of both threads are reduced by approximately the same amount.

The algorithm of AFO is demonstrated in Algorithm 2. The inputs and the

initialization phase are the same as WCO. In line 6, the WCO algorithm is invoked

to reduce the inter-thread L2 cache misses. In this algorithm, P2 is assumed to be

the thread with a larger WCET; therefore, only the instructions from P1 are

positioned by WCO. Furthermore, some positioned instructions of P1 are

recovered to their original positions by the procedure De− positioning at line 8,

and the corresponding instructions from P2 are positioned instead to avoid the

inter-thread L2 cache conflicts at line 9. After positioning,the resulting WCETs of

both programs are computed at line 10 and 11. Then the difference of WCET
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reduction of both programs (i.e. ∆W ) is calculated at line 12. If this difference is

larger than the difference of last iteration (i.e. ∆Original W ), then the

termination variable is assigned as true; otherwise, the smaller difference is

assigned to ∆Original W to further minimize the difference in terms of the

amount of WCET reduction for both threads. This algorithm is repeated till the

value of termination variable becomes true.

Algorithm 2 AF Oriented Code Positioning
1: begin

2: boolean terminate = false;

3: Original P1 wcet = WCETAnalysis(P1);

4: Original P2 wcet = WCETAnalysis(P2);

5: Conflict Op List = Bulid Conflict Op List(P1, P2);

6: WC Oriented Code Positioning(P1, P2);

7: repeat

8: De− positioning(P1, Conflict Op List);

9: Positioning(P2, Conflict Op List);

10: P1 wcet = WCETAnalysis(P1);

11: P2 wcet = WCETAnalysis(P2);

12: ∆W = Calculate Amount V ariation();

13: if ∆W >= ∆Original W then

14: terminate = true;

15: else

16: ∆Original W = ∆W ;

17: end if

18: until terminate == true;

19: end
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Percentage-Fairness-Oriented Scheme

While AFO targets approximately the same amount of WCET reduction,

PFO aims at about the same percentage of WCET reduction. The principle of

Percentage-Fairness-Oriented code positioning is described as the following. In the

multi-core processor with a shared L2 cache, the WCET of a thread can be broken

into the computation time by assuming perfect caches, the L1 cache miss penalty

and the L2 cache miss penalty. The L2 cache miss penalty consists of two parts:

the intra-thread L2 cache miss penalty and the inter-thread L2 cache miss penalty.

The WCET of a thread can be calculated by Equation 1, where E stands for the

computation time without considering cache misses, L1 is L1 cache miss penalty,

and In L2 and Out L2 represent the intra-thread and inter-thread L2 cache miss

penalty respectively.

WCET = E + L1 + (In L2 +Out L2) (3.1)

After code positioning, the inter-thread cache conflicts will be decreased;

however, the intra-thread cache conflicts both on L1 and L2 caches may increase.

Since the computation time E is the same before or after code positioning, the

improvement of the WCET after code positioning can be illustrated as Equation 2.

∆WCET = ∆Out L2 +∆L1 +∆In L2 (3.2)

As the goal of PFO is to reduce the WCET of each real-time thread by

approximately equal percentage, assuming that there are two threads, i.e., Thread
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A and Thread B, Equation 3 can be used to characterize this scheme. In this

equation, WCETA and WCETB are the original WCETs of Thread A and Thread

B, respectively, and ∆WCETA and ∆WCETB are derived from Equation 2

denoting the change of the WCET for each thread.

∆WCETA

WCETA

≈ ∆WCETB

WCETB

(3.3)

Because the execution time E may vary substantially for different real-time

threads, it becomes very hard, if not impossible, to guarantee the same percentage

of WCET reduction if E is considered. Also, since the execution time E is

insensitive to cache-based optimizations, the PFO scheme focuses on reducing the

same percentage of L1 and L2 cache miss penalties for both threads through

cooperative code positioning. We also find that while the reduction of inter-thread

cache conflict is mutual, the L1 cache misses and L2 intra-thread misses of a

thread are heavily dependent on how many instructions are positioned to that

thread. Specifically, the more instructions are positioned for a thread, the more

possible intra-thread L1 and L2 cache conflicts may occur in that thread.

Therefore, in order to reduce the WCETs of both threads by approximately equal

percentage, the number of instructions to be positioned for each thread should be

inversely proportional to its original WCET as depicted in Equation 4.

Instr NumB

WCETA

≈ Instr NumA

WCETB

(3.4)

Algorithm 3 illustrates the algorithm of Percentage-Fairness-Oriented code
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positioning approach. The inputs of the algorithm are the two programs to be

optimized. In line 2, the termination variable is initialized. In the next three lines,

the original WCETs of both programs are calculated, and the L2 cache conflict

instruction list is determined as well. First, the instructions needed to be

positioned for both programs are identified according to the designing principle of

PFO at line 7 and line 8. Then both programs are positioned at line 9 and line 10.

From line 11 to line 12, the WCETs of both programs are calculated after

positioning. Based on the original WCETs and new WCETs of both programs, the

WCET percentage variance between these two programs is calculated to determine

whether or not the WCET percentage variance after positioning is smaller than

the original WCET percentage variance at line 13 and 14. If true, the original

WCET percentage variance ∆Original P is assigned to be the most recently

calculated WCET percentage variance ∆P at line 17; otherwise, the termination

variable is assigned to be true at line 15. This algorithm is repeated till the value

of termination variable becomes true.

3.3.4 Inter-thread L2 Cache Conflict Analysis

In the co-optimization architecture depicted in Figure 3.1, inter-thread L2

cache conflict analysis is an important step to identify the worst-case inter-core L2

cache conflicts and the associated instructions from different cores. We propose to

leverage Yan et al’s recent work in [37] to analyze the worst-case inter-thread L2

cache conflicts. The main steps of this algorithm are described in Algorithm 4.

The inputs of this algorithm are the programs of both the co-running
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Algorithm 3 PF Oriented Code Positioning
1: begin

2: boolean terminate = false;

3: Original P1 wcet = WCETAnalysis(P1);

4: Original P2 wcet = WCETAnalysis(P2);

5: Conflict Op List = Bulid Conflict Op List(P1, P2);

6: repeat

7: Pos Op List P1 = Build Pos Op List(ConflictOpList);

8: Pos Op List P2 = Build Pos Op List(ConflictOpList);

9: Positioning(P1, Pos Op List P1);

10: Positioning(P2, Pos Op List P2);

11: P1 wcet = WCETAnalysis(P1);

12: P2 wcet = WCETAnalysis(P2);

13: ∆P = Calculate Percentage V ariation();

14: if ∆P >= ∆Original P then

15: terminate = true;

16: else

17: ∆Original P = ∆P ;

18: end if

19: until terminate == true;

20: end
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threads. Initially, the L2 cache status sets for each thread (i.e., without considering

inter-thread conflicts) are calculated for both threads respectively, which identify

groups of instructions within the same thread sharing same cache lines. In order to

find the worst-case inter-thread instruction interferences from two different threads,

we distinguish instructions in loops from those not in loops. Each instruction from

each thread is examined, whose L1 cache access behavior can be easily obtained by

using static analysis techniques for instruction caches [37] (line 5-6).

If there exists an L1 miss, it is checked where this miss happens (line 7), i.e.,

in or out of loops. If this miss occurs in a loop, it is necessary to determine

whether or not the cache line used by this instruction would be occupied by the

instructions from the other thread, and whether or not those instructions are also

in a loop. The cache line used by this instruction from Thread I can be found by

function Find Cache Line at line 7, and function Find Conflict Op at line 8

helps to check if there is any instruction from Thread II using the same L2 cache

line. If there is an instruction from Thread II that also uses the same L2 cache

line, this instruction will be named as conflict op, and then be checked in a loop

or not at line 10. If the conflicting instruction happens to be in a loop as well,

then the worst-case number of conflicts of these conflicting instructions is equal to

the smaller one of the worst-case number of access times from these two threads

(line 11), which can be obtained from control flow analysis.

The inter-thread L2 cache conflict set is constructed in the format of a

matrix, where a row index represents the number of instructions from Thread I,
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and a column index denotes the number of instructions from Thread II. The

element of this matrix is a cache conflict reference object, which contains the L2

cache line number and the frequency of conflicts. After obtaining the worst-case

conflict frequency, a cache conflict reference object is generated and added to the

matrix at the place determined by the index number of the conflicting instructions

(line 12). If the conflicting instruction from Thread II is not in a loop, the

inter-thread L2 cache conflict can happen only once in the worst case. Therefore

the frequency attribute of the cache conflict reference object is 1, which is added

into the inter-thread L2 cache conflict set by function Add Conflict Matrix at

line 14. Also, if the instruction from Thread I is outside a loop, then the

worst-case conflict frequency is only 1 as well (line 18-22). More details about this

inter-thread L2 cache instruction interference analysis can be found at [37].

3.3.5 WCET Calculation

The WCET of a real-time task is computed by using the implicit path

enumeration technique (IPET) proposed by Li and Malik [58, 59]. In IPET, the

WCET of each task is calculated by maximizing the objective function in Equation

3.5, in which ci is the execution cost of the basic block i, including cache miss

penalty, and bi represents the number of time the basic block i is executed. To

legally maximize the objective function, program structural constraints should be

taken into account, which are derived from the program’s control flow information

for each basic block i, as described in Equation 3.6. In this equation, in edgei is

the sum of the edges entering the basic block i, and out edgei is the sum of the
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Algorithm 4 Inter Conflict Analysis
1: begin

2: T1 Cache Pos = Initialize Cache Pos(T1);

3: T2 Cache Pos = Initialize Cache Pos(T2);

4: for op in T1 do

5: if Is L1 Miss(op) then

6: if Is In Loop(op) then

7: cache line = Find Cache Line(op, T1 Cache Pos);

8: conflict op = Find Conflict Op(T2 Cache Pos);

9: if conflict op! = null then

10: if Is In Loop(conflict op) then

11: weight = Min Weight(op, conflict op);

12: Add Conflict Matrix(op, conflict op, weight);

13: else

14: Add Conflict Matrix(op, conflict op, 1);

15: end if

16: end if

17: else

18: cache line = Find Cache Line(op, T1 Cache Pos);

19: conflict op = Find Conflict Op(T2 Cache Pos);

20: if conflict op! = null then

21: Add Conflict Matrix(op, conflict op, 1);

22: end if

23: end if

24: end if

25: end for

26: end
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edges exiting the basic block, which should be equal to each other.

Total execution time =
n∑

i=1

ci × bi (3.5)

∑
in edgei =

∑
out edgei = bi (3.6)

When an instruction runs in a multi-core processor with a hierarchical cache

memory, its execution time depends on whether the instruction access results in a

cache hit or a cache miss. Therefore, the total execution time of a program is

heavily influenced by the number of cache misses and the penalty of cache misses.

The state of L1 instruction cache accesses for each thread running on a multi-core

processor with a shared L2 cache can be derived by static cache analysis. In

addition, the state of L2 instruction cache accesses for each basic block, including

the potential inter-thread L2 cache conflicts, can be computed by the inter-thread

L2 cache conflict analysis algorithm depicted in Section 3.3.4. Therefore, the total

number of cache misses can be calculated in Equation 3.7. where bi denotes the

number of times basic block i is executed; m1i is the number of L1 cache misses of

the basic block i; and m2i and m2
′
i account for the number of intra-thread L2

cache misses and inter-thread L2 cache misses of basic block i, respectively.

Cache misses =
n∑

i=1

m1i × bi + (m2i +m2
′

i)× bi (3.7)

Equation 3.8 integrates the penalty of cache misses into the objective

function to accurately compute the WCET of the whole program. In this equation,
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ei represents the basic execution latency of basic block i by assuming a perfect

cache; l1penalty stands for the L1 cache miss penalty; and l2penalty denotes the L2

cache miss penalty.

ci = ei +m1i × l1penalty + (m2i +m2
′

i)× l2penalty (3.8)

As a result, the WCET of the real-time thread can be calculated by using an

ILP (Integer Linear Programming) solver to maximize the objective function 3.5.

3.4 EVALUATION METHODOLOGY

We evaluate the proposed multicore-aware code positioning schemes on a

heterogeneous dual-core processor with a shared L2 cache. To achieve better

performance, energy efficiency and low cost, embedded applications have

increasingly used heterogeneous systems including multiple programmable

processor cores, specialized memories, and other components on a single chip [60].

For instance, most hand-held devices now adopt a heterogeneous dual-core

architecture that is composed of a DSP (Digital Signal Processing) core and an

ARM core. In this chapter, we focus on evaluating the multicore-aware code

positioning on a heterogeneous dual-core processor consisting of a VLIW-based

DSP core and a general-purpose core. The VLIW core is based on the HPL-PD 1.1

architecture [43], and the general-purpose core is similar to the Alpha 21264

processor [45]. More specifically, the simulation tools of Trimaran [24] and

Chronos [46] (including SimpleScalar [47]) are extended to simulate this

framework. The front end of Chronos compiles the other thread benchmark into
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COFF format binary code by gcc compiler, which is targeted to SimpleScalar. By

disassembling the binary code, the global CFG and related information of

instructions are acquired by Chronos front end, hence helping static cache

analysis. And a commercial ILP solver-CPLEX [48] is used to solve the ILP

problem to obtain the estimated WCET.

Without losing generality, we assume a dual-core processor with two-levels

cache memories. Each core has its own L1 instruction cache and L1 data cache,

and both cores share the same L2 cache to utilize the aggregate L2 cache space.

Note that multi-core processors can also use separated L2 caches to achieve better

time predictability; however, a shared L2 cache has some important advantages

such as fast data sharing, reduced cache-coherency complexity and false sharing

and possibly superior cache performance [57]. To limit the scope of this study and

to focus on instruction cache analysis, the L1 data cache of each core is assumed to

be perfect. To compare the worst case performance with average case performance

in the heterogeneous dual-core processor, the memory hierarchy of SimpleScalar

simulator is integrated into Trimaran’s memory hierarchy, and the core of

SimpleScalar is linked to Trimaran’s simulator by means of multi-thread

programming. Therefore, an environment where two threads can run at the same

time on different cores with a shared L2 cache has been simulated. The basic

configuration of simulated hybrid dual-core processor is shown in Table 3.1.

In our experiments, we choose sixteen benchmarks from Mälardalen WCET

benchmark suite [49], based on which we form eight benchmark pairs by selecting
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Parameter Dual-core Value

Core VLIW Core General-Purpose Core

Datapath 4IFUs, 2FPUs, 2Ld/Sts, 1BrU 64 Registers 4 Issue, 64 Registers, 80-RUU, 40-LSQ

L1 I-cache 128 bytes, direct-map, 8 bytes block, 1 cycle latency 128 bytes, direct-map, 8 bytes block, 1 cycle latency

L1 D-cache perfect

L2 cache 2048 bytes, direct-map, 16 bytes block, 4 cycle latency

Memory unlimited, 100 cycle latency

Table 3.1. Basic configuration of simulated heterogeneous dual-core processor.

Thread I Thread II

Estimated Estimated L2 Simulated Simulated L2 Estimated Estimated L2 Simulated Simulated L2

WCET Miss Rate WCET Miss Rate WCET Miss Rate WCET Miss Rate

Bs 3040 58.70% 2401 55.18% Fft1 10677 30.69% 8988 26.97%

Cover 29987 18.97% 24918 16.30% Ndes 367695 2.61% 332330 2.36%

Expint 10488 61.64% 8570 51.52% Qsort 26793 18.81% 20208 16.35%

Fdct 16496 8.56% 13982 7.24% Startup 11710 34.91% 9246 30.14%

Insertsort 5627 60.29% 4116 55.18% Fibcall 3426 59.18% 2214 46.51%

Qurt 10375 31.06% 8127 25.23% Crc 105904 3.50% 85327 3.22%

Sqrt 9042 60.64% 7030 54.39% Minver 20798 30.46% 16843 27.64%

Ud 24175 18.75% 19615 16.71% Biquad 7943 47.79% 6128 46.06%

Table 3.2. Estimated and simulated worst-case performance re-
sults of the baseline scheme.

a thread from each group as shown in Table 2. The performance results of WCO

scheme, PFO scheme, and AFO scheme are compared with the baseline

performance results in which no code positioning approach is applied.

3.5 EXPERIMENTAL RESULTS

3.5.1 Performance Results of WCO

Figure 3.2 (a) shows the WCETs of eight benchmark pairs of the WCO

scheme, which are normalized with respect to the results of the Baseline scheme.

We can see that the WCO scheme can decrease the WCET for all the threads,

because reducing the inter-thread L2 cache misses benefits both threads. The
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percentages of WCET reduction for those eight benchmark pairs range from 1.14%

to 15.85%, which depend on how much percentage the inter-thread L2 cache miss

penalty takes in the WCET of each thread.

The variation of L2 cache miss rate of these benchmarks can be seen in

Figure 3.2 (b). For the WCO scheme, it is likely that the thread with the longest

WCET is not positioned, as the WCET of this thread is much larger than that of

the other thread. In this case, the L2 cache miss rate of this thread with the

longest WCET can be reduced more by the WCO scheme than both the PFO or

AFO schemes, because no additional intra-thread L1 cache misses and intra-thread

L2 cache misses will occur in this thread with the WCO scheme. For instance, in

benchmark pair 3 both the WCET and L2 cache miss rate of benchmark Qsort in

the WCO scheme are lower than those of the PFO and AFO schemes. In contrast,

its counterpart benchmark Expint has higher L2 cache miss rate and larger WCET

in the WCO scheme than those of the AFO scheme (which has better results than

PFO). We also notice that for the benchmark pair 5, L2 miss rates and WCETs of

both threads are adequately reduced by all three schemes, this is because the

difference between the original WCETs of both benchmark pairs is relatively small

and the L2 cache miss penalty takes a large fraction of their respective WCET.

3.5.2 Performance Results of PFO

The performance results of the PFO scheme are demonstrated in Figure 3.2

as well, which indicate that the PFO approach can reduce the WCETs of both

threads within a benchmark pair by approximately equal percentages. For
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(a) WCET

(b) L2 Cache Miss Rate

Figure 3.2. WCET and L2 cache miss rate of the WCO scheme,
the AFO scheme and the PFO scheme which are normalized
with respect to the Baseline scheme.

example, the difference of WCET reduction percentage for benchmark pair 2

consisting of Cover and Ndes is only 0.03%. Even for the worst case, the difference

between WCET optimization percentage for benchmarks Insertsort and Fibcall

is just 0.64%. On average, the variation of WCET optimization percentage for

these eight benchmark pairs is only 0.29%.

However, we also find that the percentage of WCET reduction by PFO varies

much across different benchmark pairs. For example, the WCET of the first
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benchmark pair is reduced by more than 5%, while the percentages of WCET

reduction for benchmark pair 2 and 6 are just about 1%. This is because the effect

of the PFO approach on WCET reduction is mainly determined by two factors.

First, to ensure fairness of WCET optimization, a wide discrepancy between the

original WCETs of both threads limits the degree of WCET improvement for both

benchmarks, for instance the benchmarks in pair 2 and pair 6. Second, the

percentage of inter-thread L2 cache miss penalty in the original WCET is another

important factor to determine the WCET enhancement through code positioning.

The higher this percentage, the more space for potential WCET enhancement.

The first factor also leads to another conclusion that the PFO approach is

generally worse than other two approaches in terms of reducing the worst-case

execution time (i.e., achieving “better” WCET), which can be observed in Figure

3.2 in case of both WCET and L2 cache miss rate. In other words, while the PFO

approach can achieve fairness in terms of the percentage of WCET optimization

for co-running threads, it indeed compromises the efficiency of WCET

optimization as compared to WCO and AFO.

3.5.3 Performance Results of AFO

Figure 3.2 also illustrates normalized WCET and L2 cache miss rate in case

of the AFO Scheme with respect to the Baseline Scheme. The AFO scheme can

not only reduce the WCET and L2 cache miss rate for both threads in each

benchmark pair, but also achieve the fairness in terms of the amount of WCET

reduction. Specifically, the differences of reduced WCETs between both
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benchmarks only range from 4 cycles to 120 cycles across all pairs. On average, the

difference of WCET reduction is only about 80 cycles, which is less than the

latency incurred from one L2 cache miss, indicating that the fairness in terms of

the amount of WCET reduction between co-running threads is achieved.

Interestingly, when we compare AFO with WCO (note that PFO in general

is inferior to both AFO and WCO as aforementioned), we find that for all

benchmark pairs, while WCO can decrease the WCET for one thread more than

AFO, AFO can often reduce the WCET of the other thread (in the same pair)

more than WCO. The reason is that the AFO approach de-positions instructions

of one thread positioned by WCO and then positions the corresponding

instructions of the other thread for reducing the inter-core L2 cache misses, which

often leads to the increase of intra-core L2 cache miss on one thread, as well as the

decrease of it on the other thread. As an example, in the first benchmark pair, the

benchmark Fft1 gets 2.14% improvement on WCET in the WCO scheme than in

the AFO scheme; however, the WCET of Bs in the AFO scheme is about 3.29%

better than that in the WCO scheme. Therefore, we believe AFO is comparable to

WCO in terms of WCET optimization, while achieving fairness in terms of the

amount of WCET reduction by considering both co-running threads.

3.5.4 Compare Code Positioning Schemes with Separated L2 Caches

In order to compare the performance of the proposed code positioning

schemes with the technique of cache partitioning, in our experiments, the 2048

bytes L2 cache is separated in half and one thread can only access one of them to
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(a) WCET

(b) L2 Cache Miss Rate

Figure 3.3. WCET and L2 cache miss rate of the WCO scheme,
the AFO scheme (which is better than PFO) and the SC scheme,
which are normalized with respect to the Baseline Scheme.
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simulate a simple hardware-based cache partitioning (i.e. a separated L2 cache

architecture), which is also called the SC scheme in this chapter. As shown in

Figure 3.3 (a), for all benchmark pairs the WCETs of both or at least one of the

WCO and AFO schemes are better than that of the SC Scheme. Even in some

benchmarks, the performance of the SC Scheme is worse than that of the Baseline

scheme, for instance Cover and Qsort. This is because although cache partitioning

helps to reduce cache interferences between different threads, it may bring much

more intra-thread cache conflicts as the actual cache mapping space is reduced by

half. This is especially problematic if the code size of the working set exceeds the

cache size, which is very likely in embedded processors due to the resource

constraints. Therefore, for the benchmarks evaluated in this chapter, we believe

that the code positioning approaches studied in this chapter are more effective

than simply separating the L2 cache by half in improving the worst-case execution

time for real-time tasks.

3.6 CONCLUSION

This chapter proposes novel code positioning approaches on multi-core

platforms to co-optimize the worst-case performance for real-time threads running

concurrently on a multi-core processor with a shared L2 cache. We have studied

three different multicore-aware code positioning schemes to either maximally

reduce the longest WCET or to ensure fairness of WCET enhancement among all

co-running threads. Our experiments indicate that the WCO scheme can efficiently

reduce the worst-case execution time for a single thread with the worst WCET,
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and the AFO and PFO schemes can reduce the WCETs of co-running threads by

approximately the same amount or percentage respectively. Also, the evaluation

shows that the multicore-aware code positioning approaches are generally more

effective than simply separating the L2 cache by half to reduce the WCET.
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CHAPTER 4

ARCHITECTURAL TIME-PREDICTABILITY FACTOR (ATF): A

NEW METRIC TO EVALUATE TIME PREDICTABILITY OF

MICROPROCESSORS

4.1 CHAPTER OVERVIEW

As well known, accurately estimating the worst-case execution time (WCET)

is crucial for hard real-time and safety-critical systems. However many traditional

microprocessor architectural designs such as caches and branch prediction are

aimed at improving the average-case performance, which unfortunately are

harmful to time predictability [70, 71]. As a result, WCET analysis for modern

processors has become very complex, if not impossible. The recent development of

multithreaded and multicore architectures aggravates this problem. The resource

contention in those architectures can adversely affect the execution time and

further complicate WCET analysis. On the other hand, designing a microprocessor

with high time predictability but low performance is likely to be useless. Therefore

researchers have been studying time-predictable microprocessor design to reconcile

time predictability and performance [70], with the goal to achieve better time

predictability (or WCET analyzeability) while minimizing the impact on

average-case performance.

Some designs of time-predictable processors have been proposed. Delvai et

al. designed SPEAR (Scalable Processor for Embedded Applications in Real-Time

69



Environments), which employed a simple 3-stage pipeline and no cache memories

[62]. Paolieri et al. [68] examined a time-predictable multicore architecture to

support WCET analyzeability. Colnaric et al. [70] proposed a simple asymmetrical

multiprocessor architecture for hard real-time applications, in which no dynamic

architectural feature such as pipelines and caches was used. Yamasaki et al. [72]

studied prioritized multithreaded processor through IPC control and prioritization.

Edwards and Lee [63] proposed the precision timed (PRET) machine. Schoeberl

[69] proposed a time-predictable Java processor. However, in all these studies, time

predictability was not quantitatively evaluated, probably due to the lack of an

effective and widely accepted metric when these studies were conducted.

Compared to the quantitative study of microprocessor design for improving

the average-case performance, the time-predictable processor design so far has

been a qualitative study and ad-hoc somehow. Because there is no well-defined

metric to evaluate time predictability of processors, most prior work on

time-predictable processor design either simply reported the worst-case

performance through measurement or analysis, or qualitatively explained their

designs were time-predictable by removing undesirable architectural features. The

lack of a metric of time predictability thus not only prevents designers from

understanding and comparing different time-predictable designs quantitatively, but

also makes it difficult to make intelligent trade-offs between time predictability

and average-case performance, which often conflict with each other. To make an

analogy, it would be hard to imagine how much progress the computer architecture
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community would have made without having a metric to quantitatively evaluate

average-case performance!

Lately, defining a metric of time predictability has received considerable

attention by the real-time and embedded computing community. To the best of

our knowledge, Thiele et al. [70] defined time-predictability as the pessimism of

WCET analysis and BCET analysis. Grund [73] defined time-predictability as the

relation between BCET and WCET and argued that time predictability should be

an inherent system property. Grund et al. [74] then proposed a template for

predictability definitions and refined the definition into state-induced time

predictability and input-induced time predictability. Kirner and Puschner [75]

formalized a universal definition of time predictability by combining WCET

analyzeability and the stability of the system. However, in all the above work

except Grund et al. [73, 74], the calculation of time predictability is still

dependent on the computation of WCET. Since the WCET estimation is usually

pessimistic and there is no standard way to compute WCET (though different

methods to derive WCET such as abstract interpretation and static cache

simulation etc. do exist), any time predictability metric relying on WCET analysis

is likely to be inaccurate and hard to be standardized in practice.

Moreover, in all the above works except Grund et al. [73, 74], the definition

of time predictability does not separate the time variation caused by software and

hardware, making it overly complicated to derive a time predictability metric that

can effectively guide the architectural design for time predictability. While Grund
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et al. [73, 74] proposed state-induced timing predictability (SIP) to separate

timing uncertainty between hardware and software, the metric they proposed to

evaluate SIP needs to exhaustively find out the maximum and minimum execution

time of all different states, which may not be computationally feasible. In contrast,

this chapter proposes a metric to efficiently assess architectural time predictability,

and its effectiveness has been validated on a Very Long Instruction Word (VLIW)

processor.

In this chapter, we make the following contributions to the time-predictable

design of processors:

1. We introduce the concept of timing contract and architectural time

predictability (ATP) to separate the timing unpredictability concern caused

by hardware design from software, thus making it feasible to quantitatively

assess and guide time-predictable architectural design.

2. We propose to use Architectural Time-predictability Factor (ATF) as a

metric to quantitatively evaluate architectural time predictability of a

processor, as well as architectural time predictability of various architectural

and microarchitectural components of the processor.

3. We have evaluated the ATF of a VLIW processor as well as its

microarchitectural components, including caches, parallel pipelines, branch

predictor, speculative execution and the use of SPM. To the best of our

knowledge, we are the first to use a quantitative metric to systematically

evaluate the time predictability of a high-performance processor.
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The remaining of this chapter is organized as follows. Section 4.2 introduces

the concept of architectural time predictability. Section 4.3 defines the metric of

architectural time-predictability factor. Section 4.4 qualitatively analyzes

architectural time predictability of a VLIW processor. The evaluation

methodology and the experimental results are presented in Section 4.5 and Section

4.6 respectively. Finally, the conclusions are made in Section 4.7.

4.2 ARCHITECTURAL TIME PREDICTABILITY

While static timing analysis aims at estimating the WCET safely and as

close as possible to the actual WCET of a given processor, whether it is

time-predictable or not; the goal of time-predictable architectural design is to

design processor architectures so that their timing behavior can be precisely and

efficiently predicted. To predict the timing behavior of a processor, we must have a

desirable baseline timing behavior to compare with. This baseline time behavior is

called the timing contract in this chapter, as it functions like a contract to guide

the timing behavior of the actual execution. For example, the timing contract may

specify how many cycles each instruction takes, in which order instructions can

overlap their execution in the pipelines etc. If a processor is designed and

implemented to fully enforce the timing contract, then it will be fully

architecturally time-predictable. Therefore, we can then define architectural time

predictability as the following.
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Definition 1. Architectural Time Predictability: Given an architectural

design of a processor, architectural time predictability indicates how close the

actual timing behavior is to the baseline timing behavior specified in the timing

contract of the processor.

Since not all the architectural designs are fully time-predictable, how do we

specify the timing contract for an architectural component that is inherently not

time-predictable? In that case, the timing contract should specify the desired

timing behavior while also ensuring high performance. In other words, optimistic,

not pessimistic assumption is preferred to establish an “ideal” baseline processor.

For example, if a processor employs a cache memory, the desired timing behavior

should be all cache hits, i.e. a perfect cache. While assuming all cache misses is

still time-predictable, the performance will be too bad and hence is not desirable.

On the other hand, when the timing behavior of an architectural component is

totally time-predictable, no assumption, whether optimistic or not, should be

made to objectively model the actual timing behavior. For example, if a processor

employs a scratch-pad memory, then the latency of every load instruction is fixed

and known (i.e. the data are either from the SPM or from the memory).

Therefore, the timing contract of this processor should specify the latencies of all

the loads without making further assumption.

It should be noted that ATP is independent of the timing uncertainty caused

by software. If the input changes, a different path is exercised and the execution

time can vary, but this processor can be still fully time-predictable if the execution
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time exactly follows the timing contract (i.e. the timing variation caused by

different inputs is the same for both the “ideal” processor specified in timing

contract and the real processor). In other words, the goal of time-predictable

processor design should not be to ensure the execution time is not varied or can be

bounded with different inputs. Bounding the worst-case execution time with

various inputs should be the business of WCET analysis, not the hardware design.

However, a time-predictable processor can make WCET analysis in general and

the low-level analysis in particular significantly easier as the impact of

microarchitectural components (e.g. caching, branch prediction) on the execution

time can be predicted or controlled.

4.3 ARCHITECTURAL TIME-PREDICTABILITY FACTOR

Built upon the definition of ATP, we propose to use Architectural

Time-predictability Factor to quantitatively evaluate architectural time

predictability. Given a processor P , an arbitrary real-time trace T , the actual

dynamic execution time D(P, T ), and the statically predicted execution time based

on the timing contract S(P, T ), ATF is defined as the following.

ATF (P, T ) =
D(P, T )

S(P, T )
(4.1)

It should be noted that here we evaluate ATP based on an arbitrary trace.

Given different inputs, a real-time program may generate different traces, thus

ATF for this program can be computed based on the ATFs of different traces, for

example as an average or standard deviation of the ATFs for all the traces
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evaluated. This is very similar to performance evaluation, in which we can get the

execution time of each trace, and derive an average performance result across

different traces to indicate the overall performance. Note that the execution time

variation due to different inputs or traces are caused by software unpredictability.

Techniques to analyze the worst-case program paths have been extensively studied

in the literature of WCET analysis [71], which is complementary to the

architectural time predictability studied in this chapter. To simplify discussion, we

focus on studying ATF for an arbitrary trace in the rest of the chapter.

Given a trace T , D(P, T ) can be measured at runtime. Thus the remaining

question is how we calculate S(P, T ). While S(P, T ) can be computed statically, it

is quite different from static timing analysis, as we cannot require the processor to

always produce the worst-case performance to make itself time-predictable. The

S(P, T ) is statically computed according to the timing specification defined in the

timing contract. Since the timing contract specifies the timing behavior of an

architecture that is fully time-predictable, S(P, T ) should be independent of the

machine states. For example, varied cache latencies are not allowed in a timing

contract, as cache hits/misses depend on the history of cache accesses. In this

chapter, we start the timing contract with a high-performance single-core

processor with parallel pipelines, perfect caches, and no speculative execution so

that the latency of each type of instructions, including loads and stores, can be

statically specified.

The timing contract can be then exposed to the compiler to schedule
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instructions, based on which S(P, T ) can be directly computed. Actually, modern

optimizing compilers have already exploited the hardware timing information

including latencies of various instructions to schedule instructions intelligently for

maximizing resource utilization and attaining the best performance. Thus after

compilation, not only the number of instructions but also the scheduling (i.e. static

clock cycles) of each instruction can be known. Given a processor P and a trace T ,

the scheduling time of each instruction in T is usually assigned by the compiler

based on a certain scope, e.g. a basic block or a superblock, based on which the

statically predicted execution time of a trace can be easily calculated, which is

simply called static scheduling time in this chapter. The details of computing

static scheduling time for the processor we evaluate can be seen in Section 4.5.1.

Given a trace T , although the instructions of the trace are executed in a

processor following the scheduling, their actual execution time may vary at runtime

due to the performance-enhancing but non-time-predictable architectural features

such as branch mis-predictions and cache misses. This is because the actual

processor we implement may not have perfect pipelines, perfect branch prediction,

and perfect caches etc. As a result, the actual execution time of a trace T on the

given processor P is simply called dynamic execution time in this chapter,

which can be directly measured on a real processor or a cycle-accurate simulator.

Thus given any processor P and any trace T , by applying Equation 4.1, ATF

can be simply calculated in Equation 4.2. Typically, ATF should be no less than

11. If architectural time-predictability factor is 1, it means the architecture is 100%

1ATF may be smaller than 1 in case that we are using a superscalar processor with out-of-order
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time-predictable. Otherwise, the closer the ATF is to 1, the more time-predictable

the architecture is.

ATF =
dynamic exec time

static sched time
(4.2)

Why is ATF useful? Researchers in WCET analysis and computer

architectures have already figured out certain hardware components such as

caches, and branch prediction are not time predictable, so why do we need to use

ATF? This is equivalent to say since caches are faster than main memory, a

processor with a cache will definitely have better performance than a processor

without a cache, thus there is no need to evaluate the actual performance of the

processors with or without the cache. When designing a processor, a computer

architect usually has multiple design objectives and constraints, including but not

limited to average-case performance, energy dissipation, cost, compatibility, and

time predictability for real-time systems, etc. It should be noted that while time

predictability is surely an important design objective for real-time systems,

computer architects are unlikely to only focus on achieving time predictability

without considering other important design objectives such as average-case

performance. Prior studies on time-predictable design are mostly qualitative in

nature, which cannot tell quantitatively how good or how bad the time

predictability is, or how much better the time predictability can be improved by

execution so that the dynamic execution sequence leads to less execution time than the static

scheduling time predicted by the compiler. In this case, the ATF is less than 1, and the smaller

the ATF, the more unpredictable the processor is.
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applying a new design. With the availability of ATF, it becomes possible to

quantitatively study the impact of architectural and microarchitectural design on

time predictability, which can be used to make intelligent tradeoffs between time

predictability and other design objectives. For example, cache locking is widely

known to provide better time predictability for cache accesses. However, once a

piece of data is locked into a particular cache block, that cache block cannot be

dynamically reused to hold other data. As a result, the cache performance may

degrade. For a processor that needs to balance time predictability and

performance, designers might want to only lock a fraction of data or optimally

reserve a fraction of cache space for locking while leaving the remaining cache lines

for regular caching to achieving higher performance, which can be guided by ATF

(for time predictability) and the execution time (for performance).

Is ATF larger than 1 useful? An ATF of 1 indicates perfect time

predictability, which is an important design goal of hard real-time and

safety-critical systems. However, there could be multiple architectural and

microarchitectural designs that can achieve an ATF of 1, but with different impact

on performance or energy. Thus, being able to evaluate the ATF of different

architectural and microarchitectural design is crucial in this process. By

comparison, without the ATF, it would be hard to validate the perfect time

predictability, especially for complex processors. Moreover, today soft real-time

systems, such as iphones or other handheld devices are widely and increasingly

used in our society, for which the quality of service (QoS) is important.
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Unfortunately, conventional architectural design such as multiprocessor present

severe challenges when trying to provide even soft real-time guarantees. Thus,

achieving an ATF close to 1, but not necessarily exact 1, could be beneficial for a

wide variety of soft real-time systems, for which reducing the time variation, jitters

and providing QoS are important.

Note that several prior studies [70, 75] used estimated WCET to compute

time predictability. In this chapter, we use static scheduling time instead of

WCET. The estimated WCETs often have different amount of overestimation,

which can hardly make the time predictability evaluation accurate. In other words,

the inaccuracy of WCET analysis should not be a reason to prevent us from

deterministically evaluating time predictability. In contrast, static scheduling time

is based on the compiler-generated schedule and the timing behavior specified in

the timing contract, both of which are deterministic for a given trace. Also, since

every program needs to be compiled before execution (the discussion on

interpretation and dynamic compilation is out of the scope of this chapter), the

methodology to estimate static scheduling time can be generally applied to

different programs and various processors to provide a solid foundation for

evaluating architectural time predictability.

4.4 QUALITATIVE ANALYSIS OF ATP ON A VLIW

ARCHITECTURE

In this chapter, we validate the effectiveness of ATF on a VLIW architecture

based on HPL-PD [23], which is a parametric processor architecture aiming at
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improving instruction level parallelism (ILP) by adopting advanced compiler and

architectural techniques. In a VLIW architecture, the compiler, not the hardware,

is responsible for orchestrating the ILP of programs. To facilitate compiler

scheduling, the VLIW architecture exposes as much hardware and timing

information as possible to the compiler, such as the latency of each instruction, the

number of functional units etc. Therefore, a VLIW processor is relatively more

time-predictable than a superscalar processor, which dynamically schedules

instructions by hardware. However, the HPL-PD based VLIW processor still has

some architectural features that can compromise architectural time predictability

as the following:

Branch architecture of HPL-PD not only replaces conventional branch

instructions with a set of instructions to initiate a prefetch of the branch target

early to minimize delays, but also uses a combination of bimodal branch predictor

and global history with index sharing to predict the branch target dynamically

[67]. In case of a branch mis-prediction of conditional branches, some stall time is

added into the execution time at run-time.

Speculative execution in HPL-PD consists of control speculation and data

speculation. Control speculation represents code motion across conditional

branches. Data speculation is designed to increase the range of code motion for

memory instructions. Speculative execution is generally safe but may lead to

exceptions. If an exception is raised during the execution of a necessary speculated

instruction, the recovery of the exception requires the re-execution of some
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instructions, resulting in additional execution time. Also as exceptions can only be

detected at run-time, speculative execution can possibly degrade architectural time

predictability of the processor with the handling and recovery of any exception.

Cache memories of HPL-PD consist of first-level instruction and data

caches and a second-level unified cache. Since the latency to access the memory

hierarchy for an instruction depends on the result of accessing the caches (i.e. a hit

or a miss), which can only be precisely known at run-time, the compiler always

optimistically assumes a hit in the first-level cache for each memory access. Thus

cache memories can lead to time unpredictability.

4.5 EVALUATION METHODOLOGY

We evaluate the ATP of the VLIW architecture based on Trimaran [24],

which is an integrated compilation and performance monitoring infrastructure of

VLIW architectures. We select 6 real-time benchmarks from Mälardalen WCET

benchmark suit [64] and 4 benchmarks from MediaBench [66] for the experiments.

The general information of these benchmarks is shown in Table 4.1.

The simulated processor is configured with 2 integer ALUs, 2 float ALUs, 1

branch unit, 1 load/store unit and 2-level caches. The 2-level caches consist of a

level-1 instruction cache, a level-1 data cache and a level-2 unified cache. The

parameters of the level-1 instruction cache are: size 512 bytes, block size 16 bytes,

direct-mapped, miss penalty 7 cycles, LRU replacement policy; the parameters of

the level-1 data cache include: size 1024 bytes, block size 32 bytes, direct-mapped,

miss penalty 10 cycles and LRU replacement policy; and the parameters of the
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benchmark category description code size (bytes) data size (bytes)

crc real-time cyclic redundancy check computation on 40 bytes of data 664 458

edn real-time finite impulse response (FIR) filter calculations 13504 3104

lms real-time lms adaptive signal enhancement 2136 1296

matmult real-time matrix multiplication of two 20 × 20 matrices 480 4828

ndes real-time complex embedded code 3580 986

statemate real-time automatically generated code 2476 498

cjpeg mediabench jpeg image compression 71468 135565

djpeg mediabench jpeg image decompression 70516 26508

mesamipmap mediabench OpenGL graphics clone: using mipmap quadrilateral 124892 39397

mesatexgen mediabench OpenGL graphics clone: texture mapping 180228 45074

Table 4.1. General information of all benchmarks

level-2 unified cache are: size 2048 bytes, block size 64 bytes, direct-mapped, miss

penalty 100 cycles and LRU replacement policy. Note that due to the small sizes

of the benchmarks, especially the real-time benchmarks, we use small cache

configurations in our evaluation.

In a statically-scheduled VLIW processor, whenever there is a cache miss,

the whole instruction pipeline will be stalled to wait until the data is returned.

Therefore, the dynamic execution time of a trace running on the VLIW processor

can be computed based on Equation 4.3, where compute time is the execution

cycle through the pipeline, cache stall time is the stall cycle caused by cache

accesses, and branch stall time is the stall cycle caused by branch mis-predictions.

dynamic exec time = compute time+ cache stall time

+branch stall time

(4.3)

In order to study not only the architectural time predictability of the

processor but also that of each architectural component, we define the following
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three component-level ATFs to indicate the ATP of speculative execution, caches,

and branch prediction respectively. It should be noted that the component-level

ATF just studies the effect of an unpredictable microarchitectural component on

ATP, thus its value could be less than 1, and 0 indicates that this component does

not have negative impact on architectural time predictability.

speculative ATF =
(compute time− static sched time)

static sched time
(4.4)

cache ATF =
cache stall time

static sched time
(4.5)

branch predictor ATF =
branch stall time

static sched time
(4.6)

4.5.1 Static Scheduling Time Analysis

To quantitatively evaluate architectural time predictability of an

architecture, static scheduling time of a trace must be analyzed accurately. In

contrast, dynamic execution time can be easily obtained through simulation or

measurement. In the HPL-PD architecture, the main idea of the static scheduling

time analysis of a trace is to accumulate the static scheduling time of all basic

blocks (BB)s according to the control flow and the scheduling time determined by

intermediate representation(IR) of the program and the given input, which is

described in Algorithm 5.

The algorithm begins with determining the weights (i.e. the execution
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Algorithm 5 Static Scheduling T ime Analysis
1: input: intermediate representation of the program and an input

2: output: static scheduling time of the trace

3: begin

4: Control Flow Profiling(IR, input)

5: Pipeline Scheduling(IR)

6: for all BB do

7: for each exit edge of BB do

8: if src inst of current exit edge is a real inst then

9: BB time+=(src inst.sched time+1) × exit edge.weight

10: else if src inst of current exit edge is a pseudo inst then

11: BB time+=src inst.sched time × exit edge.weight

12: end if

13: end for

14: if no exit edge in BB then

15: if last inst of BB is a real inst then

16: BB time=(last inst.sched time+1) × BB.weight

17: else if last inst of BB is a pseudo inst then

18: BB time=last inst.sched time × BB.weight

19: end if

20: end if

21: static sched time+=BB time

22: end for

23: return static sched time

24: end
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frequencies) of all BBs and its edges in the trace by control flow profiling based on

the given input. Then the scheduling time of each instruction in the trace is

calculated in the scope of the BB according to pipeline scheduling. Lines 7 to 13

calculate the static scheduling time of BBs with exit edges. If the source

instruction of an exit edge is a real instruction, the static scheduling time of one

execution of the BB related to this exit edge equals to the scheduling time of this

instruction plus 1; otherwise, it only equals to the scheduling time of this

instruction. The static scheduling time of the executions of the BB from an exit

edge equals to the static scheduling time of one execution multiplied by the weight

of this exit edge. Then the static scheduling time of the BB is the sum of the static

scheduling time of the executions from all exit edges. In case of a BB without any

exit edge as shown from Lines 14 to 20, the static scheduling time of one execution

of the BB is calculated with the scheduling time of its last instruction. Then the

static scheduling time of the BB equals to the static scheduling time of one

execution multiplied by the weight of the BB. The algorithm is terminated when

the static scheduling time of all BBs are accumulated, and its timing complexity is

linear to the total number of the exit edges of the trace.

4.6 EXPERIMENTAL RESULTS

4.6.1 An Ideal VLIW Processor

First, we perform experiments on an ideal VLIW processor, which disables

speculative execution and has a perfect cache and a perfect branch predictor. As

shown in Table 4.2, architectural time-predictability factors of all benchmarks are
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benchmark static sched time dynamic exec time ATF

crc 20774 20774 1

edn 37655 37655 1

lms 260940 260940 1

matmult 81395 81395 1

ndes 46005 46005 1

statemate 1154 1154 1

cjpeg 12390627 12390627 1

djpeg 3839632 3839632 1

mesamipmap 25787205 25787205 1

mesatexgen 76954216 76954216 1

Table 4.2. ATF of all benchmarks in an ideal VLIW processor.

exactly 1. These data reveal that architectural time predictability of an ideal

VLIW processor is perfect as one would expect.

4.6.2 A Realistic VLIW Processor

Figure 4.1 demonstrates ATFs of all benchmarks for a realistic VLIW

processor. The bar of each benchmark in this figure consists of four components,

including the normalized static scheduling time, speculative ATF, cache ATF and

branch predictor ATF. The ATFs range from 1.26 to 11.18, and are 4.67 on

average, indicating the realistic VLIW architecture is not fully time-predictable,

which is consistent with our qualitative analysis in Section 4.4. We notice that the

benchmark statemate has the worst ATF value. This is because it is a small

benchmark that only takes 1154 computation cycles, so the memory stall time due

to cache misses (mostly cold misses) becomes significantly larger than the static
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benchmark static sched time compute time cache stall time BR stall time speculative ATF cache ATF BR predictor ATF

crc 20774 20774 1619 3812 0 0.0779 0.1835

edn 37655 37655 54973 600 0 1.4599 0.0159

lms 260940 260940 336656 4956 0 1.2902 0.019

matmult 81395 81395 111573 1912 0 1.3708 0.0235

ndes 46005 46005 61850 3724 0 1.3444 0.0809

statemate 1154 1154 11694 52 0 10.1334 0.0451

cjpeg 12390627 12390627 38510460 551320 0 3.108 0.0445

djpeg 3839632 3839632 25169447 55784 0 6.5552 0.0145

mesamipmap 25787205 25787375 79860330 201828 0.00000659 3.0969 0.0078

mesatexgen 76954216 76954331 602816266 1072312 0.00000149 7.8334 0.0139

Table 4.3. Speculative ATFs, cache ATFs and branch predictor
ATFs of a realistic VLIW processor.

scheduling time, leading to a very high ATF value.

Figure 4.1. ATFs of all benchmarks in a realistic VLIW processor.

Table 4.3 gives the speculative ATFs, cache ATFs and branch predictor

ATFs of the realistic VLIW processor. We observe that speculative ATFs are 0 for

all benchmarks except mesamipmap and mesatexgen. This is due to the fact that

only these two benchmarks have both instructions executed speculatively and the

exceptions caught as shown in Table 4.4. On average, the speculative ATFs are

still near 0, implying that while speculative execution can affect ATP, its impact is
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benchmark speculated inst exceptions

crc 0 0

edn 0 0

lms 0 0

matmult 0 0

ndes 0 0

statemate 8 0

cjpeg 9462 0

djpeg 7588 0

mesamipmap 599172 10

mesatexgen 824499 10

Table 4.4. The number of speculated instructions and exceptions.

actually negligible for the VLIW processor we studied.

Table 4.3 also shows that branch predictor ATFs of all benchmarks range

from 0.0078 to 0.1835, and are 0.0449 on average. The time variation between

static scheduling time and dynamic execution time is due to the time of flushing

the pipelines in case that the instructions on the mis-predicted paths are executed

before the branch targets are known. Although the combined branch predictor is

used in the VLIW processor, branch mis-predictions still occur and lead to the

stall time. As shown in Table 4.5, branch stall time of each benchmark is

proportional to the number of mis-predictions, which means ATP of the branch

predictor can be improved by increasing the accuracy of the branch prediction.

However, branch prediction only degrades the ATP of the processor by a

comparatively small degree, because branch stall time is a relatively insignificant

portion of the total dynamic execution time.
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benchmark branch inst branch stall time mis-prediction

crc 5553 3812 953

edn 4121 600 150

lms 28537 4956 1239

matmult 9707 1912 478

ndes 6209 3724 931

statemate 59 52 13

cjpeg 2160542 551320 137830

djpeg 197424 55784 13946

mesamipmap 3563318 201828 50457

mesatexgen 6787772 1072312 268078

Table 4.5. The number of branch instructions and the branch
mis-predictions of all benchmarks

Additionally, cache ATFs of all benchmarks range from 0.0779 to 10.1334,

and are 3.627 on average as shown in Table 4.3, which means time variation from

memory hierarchy is not predictable. Because cache ATF is about 77% of ATF for

all benchmarks on average, architectural time predictability of the VLIW

architecture in study is mostly affected by time predictability of memory hierarchy.

4.6.3 Impact of The Number of Integer ALUs

The number of ALUs in a processor is another important factor that can

affect ILP and the average-case performance. However, its impact on time

predictability is not clear. Since the arithmetic instructions of the benchmarks in

our experiments are mainly integer instructions, we perform some sensitive

experiments on the number of integer ALUs (IALUs), which ranges from 1, 2 to 4.

As expected, increasing the number of IALUs reduces the dynamic execution
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cycles of each benchmark as shown in Table 4.6. However, it does not imply that

the time predictability will also become better. Actually as shown in Figure 4.2,

ATF of each benchmark is increased with more integer ALUs, indicating worse

time predictability. This is because with a larger number of IALUs, the compiler

can also schedule more operations per cycle, leading to less static scheduling time.

Interestingly, we found the reduction of static scheduling time is more than the

dynamic execution time. The reason is that in a realistic HPL-PD processor, cache

misses or branch misprediction can have greater impact on performance with more

operations scheduled per cycle. However, this does not mean that changing the

number of IALUs is inherently not time-predictable.

To verify our hypothesis mentioned above, we also conduct experiments with

1, 2 and 4 IALUs on the ideal VLIW processor. We find that the ATF is always 1

regardless of the number of IALUs and the dynamic execution time is reduced with

the increase of IALUs. Therefore, changing the number of IALUs (or generally the

functional units) itself should not affect the time predictability; however, due to its

interaction with other time-unpredictable architectural components such as caches

and branch predictors, the architectural time predictability of the processor could

be affected.

4.6.4 Scratchpad Memory

Scratchpad memories (SPMs) [61] are used in embedded processors to

improve time predictability and power efficiency. In a scratchpad memory system,

the mapping of program and data elements is performed either by the user or by
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benchmark 1 I-ALU 2 I-ALU 4 I-ALU

crc 33480 26205 26000

edn 101131 93228 89507

lms 605272 602552 591197

matmult 197997 194880 185282

ndes 125812 111579 108881

statemate 13076 12900 12512

cjpeg 53068587 51452407 50467769

djpeg 33063023 29064863 28794668

mesamipmap 113238593 105849533 103897385

mesatexgen 685328738 680842909 676586630

Table 4.6. The dynamic execution time with the number of
integer ALUs varying from 1, 2 to 4.

Figure 4.2. The ATF with the number of integer ALUs ranging from 1, 2 to 4.
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the compiler using a suitable algorithm, resulting in predictable memory access

time. In order to evaluate the effect of SPMs on ATP, we replace the 2-level caches

in the processor with corresponding 2-level SPMs [65] including: a level-1

instruction SPM, a level-1 data SPM and a level-2 unified SPM. The size and the

latency of each SPM are the same as the corresponding cache described in Section

4.5.

In our SPM allocation method, both instructions and data of a trace are

assigned to SPMs by the compiler in the descending order of the number of

accesses until all SPMs are filled. The assignment starts from the level-1 SPMs.

For the level-2 unified SPM, a fair assignment policy is adopted for simplicity, that

is a half of the level-2 unified SPM is assigned to instructions and data

respectively. The same policy based on the number of accesses is used for the

level-2 SPM allocation as well.

As shown in Figure 4.3, ATFs of the processor with SPMs are much less than

those of the processor with caches, indicating using SPMs can significantly enhance

architectural time predictability. On average ATF of the processor with SPMs is

1.02 and it is 3.65 times less than that of the processor with caches. Because the

memory stall time of a trace depends on the assignment of instructions and data

on SPMs, it can be calculated precisely after the compilation and included in the

static scheduling time for the processor with SPMs. However, the ATF of the

processor with SPMs is still not 1, which is mainly caused by timing variation due

to branch mis-prediction and mis-speculative execution with exceptions.
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However, dynamic execution times of all benchmarks except crc and

statemate are increased by using SPMs instead of caches, as shown in Table 4.7.

This is because the assignment of instructions and data in SPMs is fixed and no

space in SPMs can be used by multiple instructions/data, leading to longer

memory stall time in case the total size of instructions and data is larger than the

size of SPMs or caches. In contrast, the caches can dynamically reuse the limited

space to get better memory performance. For crc and statemate however, due to

their small code and data footprints, all their instructions and data can be totally

assigned into SPMs, hence leading to better performance. In summary, compared

to caches, SPMs can significantly improve ATP; however, they can possibly

degrade the average-case performance of the processor if the SPM space is not

used efficiently2.

Figure 4.3. ATFs of a processor with SPMs compared with
ATFs of a processor with caches.

2Please note this is just based on the SPM implemented in our experiments, which is not an

optimal SPM allocation method. Also, dynamic SPM allocation may improve performance by

reusing the SPM space more efficiently; however, this is out of the scope of this chapter.
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benchmark cache spm spm/cache ratio

crc 26205 24600 93.88%

edn 93228 795655 853.45%

lms 602552 611683 101.52%

matmult 194880 1050607 539.10%

ndes 111579 313057 280.57%

statemate 12900 9618 74.56%

cjpeg 51452407 510420442 992.02%

djpeg 29064863 225820936 776.96%

mesamipmap 105849533 680353365 642.76%

mesatexgen 680842909 7072252472 1038.75%

Table 4.7. Dynamic execution times of all benchmarks in a
processor with SPMs compared with those in a processor with
caches.

4.6.5 Sensitive Experiments of Cache Size

We have also performed sensitivity analysis to examine the impact of

different cache sizes on cache ATF. In sensitive experiments of the L1 instruction

cache, the size of the L1 instruction cache ranges from 128 bytes, 256 bytes, to 512

bytes; while the size of the L1 data cache is fixed to be 1024 bytes, and the size of

the L2 unified cache is fixed to be 2048 bytes (other parameters are the same as

those described in Section 4.5). As shown in Figure 4.4(a), cache ATF of each

benchmark except statemate is decreased with the increase of the L1 instruction

cache size, because cache stall time is reduced with the decrease of the L1

instruction cache miss rates as depicted in Figure 4.4(b). For statemate, it is a

very small benchmark whose instruction accesses suffer mostly from cold misses,

thus increasing the instruction cache size does not lead to noticeable reduction on
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the instruction cache misses and dynamic execution time. Consequently, the

impact on ATF is insignificant.

We also observe that both crc and matmult have small code size. Thus when

the instruction cache size increases to 512 bytes and 256 bytes respectively, their

instruction cache miss rates drop to very small values (i.e. 0.12% and 0.3%). The

cache ATF of crc decreases to 7.8% when the instruction cache size is 512 bytes,

because crc also has small data footprint and the cache stall cycles are dominated

by instruction cache misses. By comparison, matmult has larger data footprint,

thus its cache ATF decreases when the instruction cache size is increased to 256

bytes but stays almost the same when the instruction cache size is increased to 512

bytes.

In sensitive experiments of the L1 data cache, the size of L1 data cache

ranges from 256 bytes, 512 bytes, to 1024 bytes; the size of L1 instruction cache is

always 512 bytes; and the size of L2 unified cache is always 4096 bytes (other

parameters are the same as those described in Section 4.5). As demonstrated in

Figure 4.5(a), cache ATF of each benchmark is decreased with the increase of the

L1 data cache size, because cache stall time is reduced with the decrease of the L1

data cache miss rate as shown in Figure 4.5(b). We notice that while crc is a

small benchmark with small data footprint, most of its data accesses are cold

misses, thus increasing the L1 data cache size does not significantly reduce its data

cache miss rate. Since the cache stall cycles are only a small fraction of the total

execution cycles for crc, its ATF is very small as compared to other benchmarks.
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(a) cache ATF

(b) L1 instruction cache miss rate

Figure 4.4. Cache ATF and L1 instruction cache miss rate sen-
sitive to the size of L1 instruction cache.

97



(a) cache ATF

(b) L1 data cache miss rate

Figure 4.5. Cache ATF and L1 data cache miss rate sensitive to
the size of L1 data cache.

Specifically, the ATF is 9.3%, 7.5%, and 6.5% when the L1 data cache size is 256

bytes, 512 bytes, and 1024 bytes respectively.

In sensitive experiments of the L2 unified cache, the size of L2 unified cache

ranges from 2048 bytes, 4096 bytes, to 8192 bytes; the size of both L1 instruction

and data caches are fixed to be 512 bytes (other parameters are the same as those

described in Section 4.5). As shown in Figure 4.6(a), cache ATF of each

benchmark is decreased with larger L2 unified cache sizes, because cache stall time
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(a) cache ATF

(b) L2 unified cache miss rate

Figure 4.6. Cache ATF and L2 unified cache miss rate sensitive
to the size of L2 unified cache.

is reduced with the decrease of the L2 unified cache miss rate as depicted in Figure

4.6(b). Overall we find increasing the L2 cache size is most effective at improving

ATF due to its effectiveness on reducing the cache stall time. However, increasing

the cache size also adds hardware cost and may increase the cache access latency,

therefore there is a trade-off designers should make.
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4.7 CONCLUSION

In order to guide the time-predictable architectural design for enhancing

time predictability, we present the concept of architectural time predictability to

separate the timing uncertainty concern of hardware design from software. Then

we propose a new metric named architectural time-predictability factor to

quantitatively evaluate architectural time predictability. The availability of such a

metric allows computer architects to quantitatively evaluate the impact of different

architectural/microarchitectural techniques on time predictability of processors, in

addition to other important design objectives such as performance and energy

dissipation, thus enabling them to make intelligent tradeoffs among time

predictability, performance and energy consumption, which often conflict with

each other. Without a metric like this, making quantitative tradeoffs will be

impossible, and design for time predictability is at most an art, not science.

Our evaluation on a VLIW processor demonstrates that the proposed metric

can effectively assess architectural time predictability of the processor, as well as

architectural time predictability of various architectural and microarchitectural

components. More specifically, our evaluation indicates that while speculative

execution, branch prediction and cache memories can all affect architectural time

predictability, caches have the most significant impact on ATP of the VLIW

processor we studied. Moreover, our experiments quantitatively show that using

large caches can improve both performance and time predictability; increasing the

number of functional units can improve performance but degrade time
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predictability (though not inherently); and using SPMs instead of caches can

increase time predictability but may degrade performance.
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CHAPTER 5

HYBRID ON-CHIP MEMORY ARCHITECTURE

5.1 CHAPTER OVERVIEW

Traditionally, computer architectural design has mainly focused on improving

the average-case performance (or simply called performance in this paper) or

energy efficiency recently. As a result, some performance-enhancing architectural

techniques such as caches and branch prediction are harmful to time predictability

[70, 71], which is crucial for hard real-time and safety-critical systems. With the

recent trend on multi-threaded and multicore architectures, the worst-case

execution time (WCET) analysis [71] for those architectures becomes much more

complicated, making it extremely hard if not impossible to accurately derive the

WCET. Moreover, today soft real-time systems, such as iphones or other handheld

devices have been widely and rapidly used in our society, for which the quality of

service (QoS) is important. Unfortunately, conventional architectural design such

as multiprocessor present severe challenges when trying to provide even soft

real-time guarantees [76]. Therefore, it becomes increasingly important to improve

time predictability of computing while keeping high performance.

Cache memories have been widely used in modern processors to effectively

bridge the speed gap between the fast processor and the slow memory to achieve

good average-case performance. However, the cache performance is heavily

dependent on the history of memory accesses and the cache placement and
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replacement algorithms, making it hard to accurately predict the worst-case

execution time. Scratch-Pad Memory (SPM) [61] is an alternative on-chip memory

to the cache, which has been increasingly used in embedded processors such as

ARMv6 and Motorola MCORE due to its energy and area efficiency. In a

processor with SPM, the mapping of program and data elements into the SPM can

be performed either by the user or the compiler, resulting in statically predictable

memory access time. However, the performance of SPMs is generally not as good

as that of caches because caches can dynamically reuse their space efficiently to

benefit more instructions and data, especially for applications with large

instruction and data footprints. To summarize, processors that employ caches or

SPMs alone can only benefit either the average-case performance or the time

predictability, not both.

This chapter proposes seven hybrid on-chip memory architectures (also

simply called hybrid architectures in this paper) to combine caches and SPMs to

reconcile performance and time predictability. Specifically, instead of using a single

cache (or SPM) with size N, we propose to use a SPM with size M(M¡=N) and a

cache with size N-Min parallel. Such a hybrid SPM-cache architecture can be used

to store either instructions or data, which is called Instruction Hybrid (IH)

architecture or Data Hybrid (DH) architecture respectively. We use the compiler

to allocate a fraction of instructions or data to the SPM until it is full, while the

rest of instructions or data are stored in main memory, which can exploit the cache

for enhancing performance.
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We three main contributions. First, we propose hybrid SPM-cache

architectures that can leverage SPMs to achieve time predictability while allowing

the use of caches for instructions and/or data not stored in the SPMs to improve

the average-case performance. Second, we have systematically explored seven

different hybrid on-chip memory architectures to understand how to make best use

of both caches and SPMs to store instructions and data for balancing performance

and time predictability. Third, while most prior works indicate performance and

time predictability generally conflict with each other, this research shows that it is

possible to exploit hybrid architectures intelligently for improving both time

predictability and performance.

We have implemented and evaluated all the proposed seven hybrid

architectures on a cycle-accurate simulator. The assessment of time predictability

is based on the proposed metric of Architectural Time-predictability Factor (ATF)

in Chapter 4. Our evaluation indicates that the hybrid architectures can generally

make better tradeoffs between performance and time predictability than either

caches only or SPMs only, which are actually two extremes of the spectrum of

hybrid on-chip memory architectures. Among all the hybrid architectures, we find

that using the hybrid SPM-cache for both instructions and data can optimally

benefit both real-time programs with superior time predictability and

non-real-time programs with higher performance.

The remaining of the paper is organized as the follows. Section 5.2 discusses

the motivation for this work. Section 5.3 introduces a variety of hybrid on-chip
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memory architectures by combining caches and SPMs. Section 5.4 describes our

evaluation methodology, and Section 5.5 gives the experimental results. The

related work is discussed in Section 5.6. Finally, we make conclusions in Section

5.7.

5.2 MOTIVATION

To quantitatively study performance in terms of the total number of

execution cycles and time predictability in terms of ATF, we first evaluate two

baseline architectures, including a pure cache, and a pure SPM based

architectures, which are shown in Figure 5.1. The first baseline architecture

employs only an instruction cache (IC) and a data cache (DC), and thus is referred

as the IC-DC architecture in this paper. The other baseline architecture contains

only an instruction SPM (IS) and a data SPM(DS), and is called the IS-DS

architecture accordingly. The experiments are conducted by following the

evaluation methodology and configurations presented in Section 5.

Figure 5.1. Two baseline architectures of the on-chip memories studied.

Figure 5.2 compares the ATFs of all the benchmarks between the IC-DC

architecture and the IS-DS architecture. The ATF of each benchmark on the

IS-DS architecture equals to 1, while the ATF of each benchmark on the IC-DC
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(a) the ATF of real-time benchmarks (b) the ATF of media benchmarks

Figure 5.2. The comparison of the ATF of all benchmarks be-
tween IC-DC and IS-DS architectures.

architecture is much less than 1. On average, the ATF of the real-time benchmarks

[64] on the IC-DC architecture is only 0.188, and the ATF of mediabenchs [66] on

the IC-DC architecture is only 0.029. These very low ATF values quantitatively

confirm our hypothesis that the IC-DC architecture has very bad time

predictability, and thus is not desirable for real-time computing.

Figure 5.3 gives the performance (i.e. the total number of execution cycles)

of the IC-DC and the IS-DS architectures, which is normalized to the performance

of the IS-DS architecture. Except for mesamipmap, whose data footprint is small

and can mostly fit in the 16K data SPM, the IC-DC architecture leads to much

less execution cycles (i.e. better performance) than the IS-DS architecture for all

other benchmarks. On average, the number of execution cycles of the real-time

benchmarks on the IC-DC architecture is only 42% of that of the IS-DS

architecture, and the number of execution cycles of the mediabenchs on the IC-DC

architecture is about 20% less than that of the IS-DS architecture, indicating that

the IS-DS architecture generally has inferior performance.

106



(a) the performance of real-time benchmarks (b) the performance of media benchmarks

Figure 5.3. The comparison of the performance of all bench-
marks between IC-DC and IS-DS architectures.

In summary, neither the IC-DC nor the IS-DS architecture can achieve both

good time predictability and high performance. Therefore, it is desirable to

explore new on-chip memory architectures to make better tradeoffs between time

predictability and performance.

5.3 HYBRID ON-CHIP MEMORY ARCHITECTURES

5.3.1 Hybrid SPM-cache Architectures

Since both caches and SPMs have their own advantages and disadvantages, it

would be desirable to combine their advantages while avoiding their respective

disadvantages. To achieve this goal, we propose a hybrid SPM-cache architecture

by tightly coupling caches and SPMs cooperatively to achieve both high

performance and time predictability, which can potentially benefit a wide variety

of applications, including both real-time and non-real-time (or general-purpose)

programs. Figure 5.4 shows three such hybrid SPM-cache architectures. The first

architecture has a hybrid SPM-cache for storing instructions and a regular data
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cache, which is named as the IH-DC architecture; the second one has a regular

instruction cache and a hybrid SPM-cache for data, which is called the IC-DH

architecture; and the third one employs hybrid SPM-caches for both instruction

and data, which is referred as the IH-DH architecture.

Figure 5.4. Three hybrid architectures of the on-chip memories proposed.

In the proposed hybrid SPM-cache architectures, the SPMs are used to

achieve time predictability, while the cache is used to boost average-case

performance by adapting to runtime behavior of instructions and data that are not

stored into the SPMs. The WCET analysis of hybrid SPM-cache architectures

consists of two parts: the analysis of the SPM and the analysis of the cache. The

former is very simple and straightforward; whereas the latter can become very

complicated or overestimated for traditional caches but can become simpler or

even optional for the hybrid SPM-cache. First, while traditional timing analysis

techniques for caches [71] can still be applied to the cache in the hybrid

SPM-cache, they do not have to be applied if the complexity of analysis becomes

prohibitive. The reason is that in the hybrid SPM-cache, the most frequently used

instructions and data are already saved in the SPMs to guarantee a decent

worst-case execution time. Second, due to the same reason, even if traditional
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timing analysis methods for caches are applied to get tighter WCET, the

overestimation is expected to be much smaller than that of a pure cache based

architecture. In addition, since the cache in the hybrid SPM-cache is usually much

smaller than a regular cache, the number of states needed to model and the

complexity of analysis are expected to be reduced significantly even if the

traditional timing analysis method needs to be used.

In the hybrid architecture, the SPM is mapped into an address space disjoint

from the off-chip main memory, but is connected to the same address and data

buses as the cache. The instructions and/or data are assigned to the SPMs by

software. Thus after SPM allocation, an instruction or data can be stored either in

the SPM or in the off-chip memory. In the latter case, the instruction or data are

accessed by the processor through the small instruction or data cache within the

hybrid SPM-cache architecture, which can exploit the temporal and spatial

locality dynamically for improving the average-case performance.

There have been many studies on efficient SPM allocation algorithms to

improve either the average-case performance [78, 79, 80] or WCET [81, 82, 83]. In

this chapter, we develop a simple static SPM allocation algorithm for both

instructions and data by exploiting profiling information. More advanced SPM

allocation algorithms can be used to exploit the SPM space more efficiently, which,

however, is not the focus of this paper. In our SPM allocation method, the

instructions are assigned into the instruction SPM in the unit of a basic block. All

the basic blocks are sorted in the descending order based on their weights (i.e. the
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number of times each basic block is accessed). If a basic block has a larger weight

and the total size of the instructions in it is less or equal to the remaining size of

the instruction SPM, its instructions will be assigned into the instruction SPM

earlier. Similarly the data objects are assigned into the data SPM by the compiler

in the descending order of the number of accesses, subject to the capacity of the

data SPM. The SPM allocation ends until the instruction/data SPM is filled fully.

Algorithm 6 describes our SPM allocation method in detail, where the

memory object is a basic block in case of the instruction SPM and is a data object

in case of the data SPM. The algorithm ends when all the memory objects are

checked or there is no available space left in the SPM. The computational

complexity is linear to the number of the memory objects to be checked.

Algorithm 6 SPM Allocation
1: input: the list of the memory objects MOList and the empty SPM

2: output: the SPM with the memory objects assigned

3: begin

4: Sort By Frequency Descending Order(MOList)

5: MO = MOList.head

6: while MO is not null do

7: if SPM .avail size ¿ 0 then

8: if MO.size ¡= SPM .avail size then

9: assign MO into SPM

10: SPM .avail size = SPM .avail size - MO.size

11: end if

12: MO = MO.next

13: else

14: break

15: end if

16: end while

17: end
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It is worthy to note that the hardware cost of the proposed hybrid

SPM-cache is expected to be low. Since a SPM is usually more energy and area

efficient than a cache with the same size [61], the hardware cost of a hybrid

SPM-cache is unlikely to be more than that of a regular cache with equivalent

capacity, which is especially important for embedded systems. However, since

SPM is used in the hybrid SPM-cache, programs need to be compiled or

recompiled for SPM allocation. This may be a disadvantage for legacy code.

However, as multicore has become the mainstream, and many programs need to be

recompiled anyway for achieving higher thread-level parallelism, we believe this

trend provides excellent opportunities to explore new on-chip memory

architectures such as the hybrid SPM-caches proposed in this chapter.

5.3.2 Design Space Exploration

In addition to the proposed hybrid SPM-caches, there are also other types of

hybrid on-chip memory architectures, for example using a cache for instructions

and a SPM for data. Generally, depending on the use of a cache, a SPM, or a

hybrid SPM-cache for storing either instructions or data, there are totally 9

different combinations as shown in Table 5.1. Among these 9 different

architectures, two are homogeneous: IC-DC is the traditional cache only

architecture, and IS-DS is the traditional SPM only architecture, both of which

can serve as the baselines for comparing performance and time predictability

respectively. Figure 5.4 has illustrated three hybrid SPM-cache architectures, and

the other four hybrid architectures include Instruction Cache and Data SPM
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D-Cache D-Hybrid D-SPM

I-Cache IC-DC IC-DH IC-DS

I-Hybrid IH-DC IH-DH IH-DS

I-SPM IS-DC IS-DH IS-DS

Table 5.1. All the hybrid on-chip memories studied.

(IC-DS), Instruction SPM and Data Cache (IS-DC), Instruction Hybrid and Data

SPM (IH-DS), and Instruction SPM and Data Hybrid (IS-DH). The first two use a

cache or a SPM to store either instructions or data but not both. The latter two

involve the hybrid SPM-cache, in addition to a regular SPM, to store either

instructions or data. The performance and time predictability in terms of ATF of

all these nine architectures will be comparatively evaluated in Section 6.

5.4 EVALUATION METHODOLOGY

5.4.1 Simulation and Benchmarks

We use Trimaran compiler/simulator framework [24] to evaluate the hybrid

on-chip memory architectures on a VLIW processor. The baseline processor has 2

integer ALUs, 2 float ALUs, 1 branch predictor, 1 load/store unit, and 1-level

on-chip memory. To focus on studying the impact of on-chip memories on ATP

and performance, we assume perfect branch prediction and no speculative

execution.

We randomly select 6 real-time benchmarks from Mlardalen WCET

benchmark suit [64] and 7 media benchmarks from MediaBench benchmark suit

[66] (also referred as media benchmarks in this chapter) for the experiments. The
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benchmark category description code size (bytes) data size (bytes)

crc real-time cyclic redundancy check computation on 40 bytes of data 520 158

edn real-time finite impulse response (FIR) filter calculations 13504 3104

lms real-time lms adaptive signal enhancement 2072 1296

matmult real-time matrix multiplication of two 20 × 20 matrices 480 4828

ndes real-time complex embedded code 3452 986

statemate real-time automatically generated code 4112 498

cjpeg mediabench jpeg image compression 50960 135565

djpeg mediabench jpeg image decompression 46060 26508

epic mediabench an image compression program 19608 329611

mesamipmap mediabench OpenGL graphics clone: using mipmap quadrilateral 71240 39397

mesatexgen mediabench OpenGL graphics clone: texture mapping 98792 45074

mpeg2dec mediabench MPEG digital compressed format decoding 30252 389669

rasta mediabench A program for speech recognition 55384 132369

Table 5.2. General information of all benchmarks

instruction cache data cache

size(bytes) 128 64 32 128 64 32

#A #M #A #M #A #M #A #M #A #M #A #M

crc 30415 4142 6861 1386 6097 1720 685 95 101 60 57 40

edn 70525 3671 41758 8402 39962 10743 11352 1813 7863 1609 6767 1884

lms 252778 21369 184438 42065 152963 43970 38176 14368 24665 15473 19841 12254

matmult 123608 909 14288 2642 6928 2678 24009 12823 23689 14423 23529 18018

ndes 66988 14553 60336 16236 56240 16129 10262 4083 5516 3816 4828 4040

statemate 1560 396 1528 388 1516 386 391 238 227 148 188 132

Table 5.3. The number of accesses (#A) and the number of
misses (#M) in both instruction caches and data caches of dif-
ferent sizes for the real-time benchmarks.

latter are used to represent non-real-time applications. The salient characteristics

of all benchmarks are shown in Table 5.2. In addition, Table 5.3, Table 5.4 and

Table 5.5 give the number of accesses and misses in both instruction caches and

data caches of different sizes for the real-time benchmarks and the media

benchmarks respectively.

Since the real-time benchmarks have much smaller memory footprints, we
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instruction cache

size(bytes) 16K 8K 4K

#A #M #A #M #A #M

cjpeg 17475531 2589 284792 3850 106668 4122

djpeg 5709754 1607 54825 1488 19020 1349

epic 131296282 625 4638 379 1830 244

mesamipmap 36812743 1190 30327 1352 24184 1338

mesatexgen 106062777 1160922 20699173 618371 12184154 1106090

mpeg2dec 162191325 60543 1488492 25108 368499 6294

rasta 13384811 46455 483925 37754 280168 20449

Table 5.4. The number of accesses (#A) and the number of
misses (#M) in instruction caches of different sizes for the media
benchmarks.

data cache

size(bytes) 16K 8K 4K

#A #M #A #M #A #M

cjpeg 2291367 30422 542829 17501 383155 35985

djpeg 1093027 4106 69261 742 28722 854

epic 5991299 108704 378564 10200 282307 56149

mesamipmap 5621187 29037 53424 485 13680 157

mesatexgen 15993504 78973 398005 4682 36129 506

mpeg2dec 22324579 78859 1944936 40806 1900438 51975

rasta 1868454 90678 399831 28756 224512 15853

Table 5.5. The number of accesses (#A) and the number of
misses (#M) in data caches of different sizes for the media
benchmarks.

114



choose to use two different on-chip memory configurations. In the experiments of

the real-time benchmarks, the sizes of the on-chip memories are 128 bytes for both

instructions and data respectively. The parameters of the caches include: 16B

block size, direct-mapped, and LRU replacement policy. A cache hit takes 1 cycle

and a memory access takes 20 cycles. In the experiments of the media

benchmarks, the size of the on-chip memories are 16K bytes for both instructions

and data respectively. The parameters of the cache include: 32B block size, 4-way

set-associative and LRU replacement policy.

In all the experiments on hybrid SPM-caches, we try two different partitions

of the cache and the SPM, while keeping the total hybrid SPM-cache size fixed.

For an N-byte hybrid SPM-cache i with the partition of a M-byte cache and an

(NM)- byte SPM, we refer it as the i-M scheme. For example, for a 16K IH-DC

architecture with a 4KB instruction cache and a 12K instruction SPM, it is

denoted as IH-DC-4K in this chapter.

5.4.2 Static Execution Time Analysis

The main idea of computing the static scheduling time of a program is to

accumulate the static scheduling times of all basic blocks generated by the

instruction scheduler of the compiler. The computation of the static scheduling

time is described in Algorithm 5 in Chapter 4.

After the SPM allocation is performed by the compiler, the instructions and

the data which are in the SPMs become known, so the number of accesses to the

instructions and data not in the SPMs can be computed, which is denoted as A.
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As the timing contract assumes that all the accesses to the instruction and the

data not in the SPMs take memory access latency L, the static execution time can

be computed by Equation 5.1

static exec time = static sched time

+A× L

(5.1)

5.5 EXPERIMENTAL RESULTS

5.5.1 IH-DC Architecture

Our first experiment studies the time predictability of the IH-DC

architecture, and the results are shown in Figure 5.5. For all the benchmarks, the

ATFs of the IH-DC architecture with different cache/SPM partitions are better

than those of the IC-DC architecture, but are less than those of the IS-DS

architecture. This indicates that the IH-DC architecture can improve time

predictability over the IC-DC architecture. Also we observe that for IH-DC with a

fixed size, increasing the portion of SPM size leads to higher ATF. For example,

IH-DC-32 has better ATFs than IH-DC-64 for real-time benchmarks, and

IH-DC-4K has higher ATFs than IH-DC-8k for media benchmarks, implying that

the ATP can be improved by increasing allocation of on-chip memory size to the

SPM. However, the IH-DC architecture still has less ATF than the IS-DS

architecture, because the IH-DC architecture still contains a small instruction

cache and a regular data cache, both of which have varied access latencies that can

harm time predictability.

116



(a) the ATF of IH-DC for real-time benchmarks

(b) the ATF of IH-DC for media benchmarks

Figure 5.5. The comparison of the ATF of all benchmarks be-
tween IH-DC, IC-DC and IS-DS architectures.
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Figure 5.6 compares the performance of the IH-DC architecture with the

IS-DS and IC-DC architectures, which is normalized to the performance of the

IS-DS architecture. For most benchmarks, we observe that the IH-DC architecture

has much better performance than the IS-DS architecture, and has performance

comparable to the IC-DC architecture for most benchmarks. Interestingly, we find

for several benchmarks such as crc and statemate from the real-time benchmarks

and mesatexgen and rasta from the mediabench, the IH-DC architecture actually

leads to better performance than the IC-DC architecture. For crc, mesatexgen, and

rasta the instruction cache misses in IC-DC architecture are mainly conflict misses

caused by the instructions in the basic blocks with the highest frequencies, which

are assigned into the SPM first. Consequently, the number of cache misses can be

significantly reduced by using the IH-DC architecture, as shown in Tables 3 and 4

respectively. For statemate however, it only contains a few loops; so the number of

accesses to each instruction is small, and the cache misses are dominated by cold

misses. By directly accessing some instructions from the SPM, the IH-DC

architecture can reduce the cost of cold misses, leading to better performance.

5.5.2 IC-DH Architecture

Our second set of experiments evaluate the time predictability and

performance of the IC-DH architecture. Figure 5.7 compares the ATFs among the

IC-DH architecture with two different partitions, the IS-DS, and the IC-DC

architectures. We observe that the IC-DH architecture can achieve better ATFs

than the IC-DC architecture for all the benchmarks except statemate; however, it
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(a) the performance of IH-DC for real-time benchmarks

(b) the performance of IH-DC for media benchmarks

Figure 5.6. The comparison of the performance of all bench-
marks between IH-DC, IC-DC and IS-DS architectures.
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has much less ATF than the IS-DS architecture. This indicates that while IC-DH

can improve time predictability over the pure cache based architecture, the

improvement is very limited. The reason is mainly because in the IC-DH

architecture, a regular instruction cache is still used, which can have larger adverse

impact on time predictability than a regular data cache, as instructions are

accessed in every clock cycle. For statemate, we find the percentage of the static

execution time reduced by accessing a fraction of data from the data SPM is less

than the percentage of the dynamic execution time reduced by having less data

cache misses, resulting in a lower ATF.

Figure 5.8 presents the performance of the IC-DH architecture, and the

IS-DS and IC-DC architectures, which is normalized to the performance of the

IS-DS architecture. As we can see, the IC-DH architecture has better performance

than the IS-DS architecture for all the benchmarks. For real-time benchmarks, the

performance of 4 out of 6 benchmarks in IC-DH architecture is comparable to that

of the IC-DC architecture, including crc, edn, lms, and ndes. One special case is

statemate, whose execution time is reduced by 5% and 6% in IC-DH-64 and

IC-DH-32 respectively, compared to the performance of the IC-DC architecture.

This is because the number of data cache misses is reduced from 238, 148, to 132

with the decrease of the data cache size from 128, 64, to 32, as more data can be

stored in the data SPM. However, for matmult, the performance of IC-DH-64 and

IC-DH-32 are about 5% and 16% worse than that of the IC-DC architecture

respectively. The reason is that the number of data accesses to the data cache is
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(a) the ATF of IC-DH for real-time benchmarks

(b) the ATF of IC-DH for media benchmarks

Figure 5.7. The Comparison of the ATF of All Benchmarks
Between IC-DH, IC-DC and IS-DS Architectures.
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only slightly reduced by increasing the size of the data SPM as shown in Table 5.3,

while the number of data cache misses is significantly increased with the decrease

of the data cache size.

For media benchmarks, we observe the IC-DH architecture leads to better

performance than the IC-DC architecture for all the benchmarks except cjpeg.

Even for cjpeg, the performance in IC-DH-8K is about 1.2% better than that of

the IC-DC architecture. This indicates that with proper allocation of space

between the data cache and the data SPM, IC-DH architecture can achieve

performance superior to the IC-DC architecture for media benchmarks.

5.5.3 IH-DH Architecture

Figure 5.9 compares the ATFs of the IH-DH architecture with the IS-DS,

IC-DC, IH-DC, and IC-DH architectures. For all the benchmarks except the

real-time benchmark statemate, the ATFs of the IH-DH architecture are larger

than those of the IC-DC, IH-DC, and IC-DH architectures but are less than those

of the IS-DS architecture. This is because in IH-DH, both instructions and data

can exploit the hybrid SPM-caches to enhance time predictability. Actually for

some media benchmarks such as mesamipmap, the ATF of the IH-DH architecture

is very close to that of the baseline architecture IS-DS. Also, we observe that for

the IH-DH architecture, the ATF of each benchmark in the partition with a larger

SPM is higher than that of the partition with a smaller SPM, because the SPM

access latency is deterministic while the cache access latency can be varied.

Figure 5.10 compares the performance of the IH-DH architecture with the
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(a) the performance of IC-DH for real-time benchmarks

(b) the performance of IC-DH for media benchmarks

Figure 5.8. The comparison of the performance of all bench-
marks between IC-DH, IC-DC and IS-DS architectures.
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(a) the ATF of IH-DH for real-time benchmarks

(b) the ATF of IH-DH for media benchmarks

Figure 5.9. The comparison of ATFs among IH-DH and IS-DS,
IC-DC, IH-DC, and IC-DH architectures.
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IS-DS, IC-DC, IH-DC, and IC-DH architectures, which is normalized to the

performance of the IS-DS architecture. We find that the IH-DH architecture

outperforms the IS-DS architecture for all the benchmarks, and has performance

comparable or better than both the IH-DC and IC-DH architectures for most

benchmarks. For 4 out of 7 real-time benchmarks, including edn, lms, matmult

and ndes, the performance of the IH-DH architecture is worse than that of IC-DC

architecture. This is because the instruction accesses of these benchmarks are very

sensitive to the size of the instruction cache, thus decreasing the size of the

instruction cache leads to significantly more cache misses than the number of cache

misses reduced by increasing the size of the SPM, as can be seen from Table 3.

However, we also find that the IH-DH architecture can result in higher

performance than the IC-DC architecture for many other benchmarks, including

crc, statemate from real-time benchmarks and epic, mesamipmap, mesatexgen,

and rasta from mediabench. On average, the performance of IH-DH is 1.9% better

than that of the IC-DC architecture for real-time benchmarks, and is 4% better for

media benchmarks, indicating that IH-DH can enhance both time predictability

and performance on average.

5.5.4 Comparing All 9 Architectures

In addition to the three hybrid on-chip memory architectures we have

studied, we have also evaluated four other hybrid architectures involving a pure

SPM, including IC-DS, IH-DS, IS-DC, and IS-DH. Figure 5.11 compares the ATFs

of these 7 hybrid on-chip memory architectures with the two baseline architectures
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(a) the performance of IH-DH for real-time benchmarks

(b) the performance of IH-DH for media benchmarks

Figure 5.10. The comparison of performance among IH-DH and
IS-DS, IC-DC, IH-DC, and IC-DH architectures, which is nor-
malized to the performance of IS-DS architecture.
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IS-DS and IC-DC. For each hybrid SPM-cache architecture with two different

partitions between the cache and the SPM, we present the best ATF results of

different partitions. In general, the ATFs of all proposed hybrid on-chip memory

architectures are larger than that of the IC-DC architecture, indicating that all the

hybrid on-chip memory architectures can achieve better time predictability than

the pure cache based architecture. Particularly, we find IS-DH achieves the highest

ATF among all the hybrid on-chip memory architectures, because instruction

access latency can significantly affect the architectural time predictability.

Also we observe that the ATF in IH-DH architecture for each benchmark is

larger than those in the hybrid on-chip memory architectures without using any

pure SPM. In some cases, the IH-DH architecture can achieve time predictability

close to those hybrid on-chip memory architectures with the pure SPM. For

example, the ATF of epic with the IH-DH architecture is 0.888, while it is 0.889

for the IS-DH architecture.

Figure 5.12 compares the performance of these 9 architectures, which is

normalized to the performance of the IS-DS architecture. Similarly, for each

hybrid SPM-cache architecture with two different partitions between the cache and

the SPM, we present the best performance results of different partitions. In

general, the performance of all proposed hybrid on-chip memory architectures are

better than that of the IS-DS architecture. The performance of the hybrid on-chip

memory architectures without any pure SPM is close to the performance of the

IC-DC architecture. Actually, some of them, such as IH-DH can even achieve

127



(a) the ATF for real-time benchmarks

(b) the ATF for media benchmarks

Figure 5.11. The comparison of the ATFs among all 9 architectures.
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better performance than the IC-DC architecture as aforementioned.

(a) the performance for real-time benchmarks

(b) the performance for media benchmarks

Figure 5.12. The comparison of performance among all 9 archi-
tectures, which is normalized with the performance of the IS-DS
architecture.

Between IH-DC and IC-DH, we find the IH-DC architecture always leads to

higher ATF for all the benchmarks, while the IC-DH architecture can attain better

performance for some benchmarks. Compared to IC-DH, on average, the ATF of

the IH-DC architecture is 12.7% higher for real-time benchmarks and 15.7% higher

for media benchmarks. In terms of the averaged performance, IH-DC is 1.6%

better than IC-DH for real-time benchmarks; but IC-DH is 1.7% better than
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IH-DC for media benchmarks. Due to the large improvement of ATF and

comparable performance, it seems IH-DC is superior to IC-DH. This again

indicates the importance of putting instructions into a more deterministic on-chip

memory to enhance the overall time predictability.

Between IC-DS and IS-DC, we find that IS-DC has much better ATF,

comparable or better performance for media benchmarks, though worse

performance for most real-time benchmarks. Overall it seems combining a pure

instruction (data) cache with a pure data (instruction) SPM is not a very good

idea. This is because IS-DH can achieve better ATF than IS-DC, and IH-DS can

achieve better performance than IC-DS.

Overall, we find that IH-DH can achieve higher ATF than other hybrid

on-chip memory architectures without any pure SPM, and its performance is close

to or even better than that of the baseline IC-DC architecture. Therefore, we

believe that among the 7 proposed hybrid on-chip memory architectures, the

IH-DH architecture is the best design option to balance performance and time

predictability.

5.6 RELATED WORK

Most prior work studied caches and SPMs separately. To improve time

predictability of caches, researchers have proposed cache partitioning [84, 85, 86]

or locking [87, 88, 89] to reduce cache interferences between tasks. However, both

cache partitioning and locking may prevent dynamic reuse of cache space, which

can degrade performance. In contrast, some of the hybrid SPM-cache architectures

130



such as the IH-DH can boost performance while improving time predictability.

Previous studies on SPM mainly treated it as an alternative to the cache

memory for achieving time predictability, or energy efficiency. A number of SPM

allocation algorithms have been proposed to improve either the average-case

performance [78, 79, 80] or WCET [81, 82, 83]. However, since SPM is controlled

by the software, a pure SPM generally is less adaptable to runtime program

behavior and often leads to lower performance for general-purpose programs.

Several researchers have also explored hybrid models consisting of both cache

memory and SPM, but not for time predictability. Panda et al. [78] investigated

partitioning scalar and array variables into SPM and data cache to minimize the

execution time for embedded applications. Verma et al. [90] studied an instruction

cache behavior based SPM allocation technique to reduce the energy consumption.

Recently, Cong et al. [91] proposed an adaptive hybrid cache by reconfiguring a

part of the cache as software-managed SPM to improve both performance and

energy efficiency. Kang et al. [92] introduced a synergetic memory allocation

method to exploit SPM to reduce data cache pollution.

Comparing to all these studies that basically use a SPM to boost the

performance and/or energy efficiency of an instruction or data cache, the hybrid

SPM-cache architectures proposed in this paper treat both SPM and cache

equally, though for different functions. More specifically, the hybrid architecture

relies on the SPM to ensure a basic level of time predictability, while using caches

to improve the average-case performance by exploiting the access locality for
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instructions and data that cannot be stored into the SPM. Also, in this work, we

have systematically and comparatively evaluated all the seven different hybrid

on-chip memory architectures that can provide different tradeoffs between time

predictability and performance. In addition, we believe some of the prior SPM

allocation algorithms [78, 90, 91, 92] to assist the instruction or data cache are

complementary to this work in terms of performance enhancement, which may be

used or adapted to further improve the performance of the hybrid SPM-cache

architectures provided they do not compromise the time predictability.

5.7 CONCLUSION

While cache memories are usually effective at improving the average-case

performance, they are harmful to time predictability. In contrast, SPMs are

time-predictable, but generally have inferior performance. To balance performance

and time predictability, this chapter proposes 7 hybrid on-chip memory

architectures by combining caches and SPMs to store instructions and/or data.

These 7 hybrid on-chip memory architectures can provide a variety of performance

and time predictability for a wide range of benchmarks. Specifically, we find that

IS-DH is an attractive architecture to achieve very high time predictability while

attaining performance much better than the IS-DS architecture that is purely

based on SPMs. Overall, we believe IH-DH is the best hybrid on-chip memory

architecture that can achieve both good time predictability and high performance.

Actually, we observe that IH-DH can outperform the pure cache based architecture

IC-DC for most benchmarks, revealing that improving time predictability and
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performance does not have to always conflict with each other.
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CHAPTER 6

CONCLUSION REMARKS

This dissertation proposes several techniques that are motivated by the

unique challenges of WCET optimizations of the real-time applications:

• How can instruction prefetching on caches further improve the WCET of the

real-time applications?

• How can we reduce the inter-core interferences on the shared caches in

multicore processors to improve the WCET of the real-time applications?

• How can we design a time-predictable processor by a quantitative metric to

reduce the complexity of the WCET analysis?

• How can we design the on-chip memories of processors to achieve both high

performance and good time predictability?

Chapter 2 proposes a loop-based instruction prefetching scheme to enhance

the performance for real-time applications. it can mitigate cache pollution by not

prefetching instructions after the loop branches and can enhance performance by

prefetching the right instructions during the loop execution. Our experimental

results indicate that the loop-directed prefetching can achieve both better

average-case and worst-case performance than the Next-N-Line prefetching, and

thus is preferable for real-time applications.
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Chapter 3 proposes three different multicore-aware code positioning

approaches to either maximally reduce the longest WCET or to ensure fairness of

WCET enhancement among all co-running applications by reducing the inter-core

interferences on shared L2 cache. Our evaluation indicates that the WCO scheme

can efficiently reduce the worst-case execution time for a single thread with the

worst WCET, and the AFO and PFO schemes can reduce the WCETs of

co-running threads by approximately the same amount or percentage respectively.

Also, the evaluation shows that the multicore-aware code positioning approaches

are generally more effective than simply separating the L2 cache by half to reduce

the WCET.

Chapter 4 first presents the concept of architectural time predictability to

separate the timing uncertainty concern of hardware design from software. Then

we propose a new metric named architectural time-predictability factor to

quantitatively evaluate architectural time predictability. The availability of such a

metric allows computer architects to quantitatively evaluate the impact of different

architectural/microarchitectural techniques on time predictability of processors, in

addition to other important design objectives such as performance and energy

dissipation, thus enabling them to make intelligent tradeoffs among time

predictability, performance and energy consumption, which often conflict with

each other. Our evaluation on a VLIW processor demonstrates that the proposed

metric can effectively assess architectural time predictability of the processor, as

well as architectural time predictability of various architectural and
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microarchitectural components.

To balance performance and time predictability, Chapter 5 proposes 7 hybrid

on-chip memory architectures by combining caches and SPMs to store instructions

and/or data. Our experimental results demonstrate that IH-DH is the best hybrid

on-chip memory architecture that can achieve both good time predictability and

high performance. Furthermore, IH-DH can outperform the pure cache based

architecture IC-DC for most benchmarks, revealing that it is possible to improve

both time predictability and performance all together.

6.1 FUTURE WORK

Our future work of WCET optimizations lies in two aspects: In terms of

software optimizations, we would like to investigate the interactions between

inter-thread code positioning and intra-thread code positioning to further improve

the worst-case performance and to possibly combine them for achieving the

optimal results; In terms of architectural support, we would like to explore

different SPM allocation algorithms for various hybrid SPM-cache architectures.

Additionally, we plan to investigate the use of hybrid on-chip memory

architectures in a multicore platform to balance time predictability and

performance for multi-threaded and multi-programmed workloads.

136



REFERENCES

[1] P. Puschner and A. Burns. “Guest Editorial: A Review of Worst-Case

Execution-Time Analysis,” Real-Time Systems, 18(2/3):115127, May 2000.

[2] MPC500 32-bit MCU Family. Motorola/Freescale, Revised July 2002.

http://- www.freescale.com/files/microcontrollers/doc/fact

sheet/MPC500FACT.pdf.

[3] David Brash. The ARM architecture Version 6 (ARMv6). ARM Ltd.,

January 2002. White Paper.

[4] C. Berg, J. Engblom, and R. Wilhelm, Requirements for and Design of a

Processor with Predictable Timing, Proc. Dagstuhl Perspectives Workshop

Design of Systems with Predictable Behavior, 2004.

[5] C. Rochange and P. Sainrat, Difficulties in Computing the WCET for

Processors with Speculative Execution, In Proceedings of International

Workshop Worst-Case Execution Time Analysis (WCET), 2002.

[6] J. Reineke, D. Grund, C. Berg, and R. Wilhelm, Timing Predictability of

Cache Replacement Policies, Real Time Systems, vol. 37, no. 2, pp. 99-122,

2007.

[7] R. Arnold, F. Muller, D. Whalley, and M. Harmon, Bounding Worst-Case

Instruction Cache Performance, In Proceedings of 15th IEEE Real-Time

Systems Symposium, 1994.

[8] C.A. Healy, D.B. Whalley, and M.G. Harmon, Integrating the Timing

137



Analysis of Pipelining and Instruction Caching, In Proceedings of 16th IEEE

Real-Time Systems Symposium, 1995.

[9] A.J. Smith, Sequential Program Prefetching in Memory Hierarchies,

Computer, vol. 11, no. 12, pp. 7-21, Dec. 1978.

[10] A. Smith, Cache Memories, ACM Computing Surveys, vol. 14, no. 3, pp.

473-530, Sept. 1982.

[11] J. Smith and W.C. Hsu, Prefetching in Supercomputer Instruction Caches,

In Proceedings of Supercomputing, 1992.

[12] J. Pierce and T. Mudge, Wrong-Path Instruction Prefetching, In Proceedings

of 29th International Symposium of Microarchitecture (MICRO), Dec. 1996.

[13] D. Joseph and D. Grunwald, Prefetching Using Markov Predictors, In

Proceedings of 24th International Symposium of Computer Architecture

(ISCA), June 1997.

[14] C. Luk and T.C. Mowry, Cooperative Prefetching: Compiler and Hardware

Support for Effective Instruction Prefetching in Modern Processors, In

Proceedings of 31st International Symposium of Microarchitecture

(MICRO), 1998.

[15] C. Xia and J. Torrellas, Instruction Prefetching of Systems Codes with

Layout Optimized for Reduced Cache Misses, In Proceedings of 23rd

International Symposium of Computer Architecture (ISCA), 1996.

[16] G. Reinman, B. Calder, and T. Austin, Fetch Directed Instruction

Prefetching, In Proceedings of 32nd International Symposium of

138



Microarchitecture (MICRO), Nov. 1999.

[17] V. Srinivasan, E.S. Davidson, G.S. Tyson, M.J. Charney, and T.R. Puzak,

Branch History Guided Instruction Prefetching, In Proceedings of 7th

International Conference of High Performance Computer Architecture

(HPCA), Jan. 2001.

[18] P. Chow, P. Hammarlund, T. Aamodt, P. Marcuello, and H. Wang,

Hardware Support for Prescient Instruction Prefetch, In Proceedings of 10th

International Conference of High Performance Computer Architecture

(HPCA), 2004.

[19] J. Yan and W. Zhang, WCET Analysis of Instruction Caches with

Prefetching, In Proceedings of ACM SIGPLAN/SIGBED Conference on

Languages, Compilers, and Tools for Embedded Systems (LCTES), 2007.

[20] S.S. Muchnick, Advanced Compiler Design and Implementation, Morgan

Kaufmann Publishers, 1997.

[21] H. Kim, Region-Based Register Allocation for EPIC Architecture, PhD

thesis, New York Univ., 2001.

[22] http://archi.snu.ac.kr/realtime/benchmark/, 2010.

[23] V. Kathail, M. Schlansker, and B.R. Rau, HPL-PD Architecture

Specification: Version 1.1, HPL technical report, 2000.

[24] Trimaran homepage, http://www.trimaran.org, 2010.

[25] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, MediaBench: A Tool for

Evaluating and Synthesizing Multimedia and Communication Systems, In

139



Proceedings of 30th International Symposium of Microarchitecture

(MICRO), 1997.

[26] R. Wilhelm et al., “The Worst-case execution time problem - overview of

methods and survey of tools,” ACM Transactions on Embedded Computing

Systems, January 2007.

[27] C. Ferdinand et al., “Precise WCET determination for a real-life processor,”

In Proceedings of the 1st International Workshop on Embedded Software

(EMSODT 2001), Oct 2001.

[28] C. A. Healy, R. D. Arnold, F. Mueller, D. Whalley and M. G. Harmon,

“Bounding pipeline and instruction cache performance,” IEEE Transactions

on Computers, 48(1), January, 1999.

[29] R. White, F. Muller, C. Healy, D. Whalley, and M. Harmon, “Timing

analysis for data caches and set-associative caches,” In Proceedings of 3rd

IEEE Real-time and Embedded Technology and Applications Symposium

(RTAS), 1997.

[30] I. Wenzel, B. Rieder, R. Kirner and P. Puschner, “Automatic timing model

generation by CFG partitioning and model checking,” In Proceddings of

Design Automation and Test in Europe(DATE), March 2005.

[31] W. Zhao, D. Whalley, C. Healy and F. Mueller, “WCET code positioning,”

In Proceedings of 25th IEEE International Real-Time Systems Symposium

(RTSS), 2004.

[32] P. Lokuciejewski, H. Falk and P. Marwedel, “WCET-driven cache-based

140



procedure positioning optimizations,” In Proceedings of 20th Euromicro

Conference on Real-Time Systems (ECRTS), 2008.

[33] C. Ferdinand and R. Wilhelm, “Fast and effiient cache behavior prediction

for real-time systems,” Real-Time Systems, Issue 17, 1999.

[34] J. Calandrino, D. Baumberger, T. Li, S. Hahn and J. Anderson, “Soft

real-time scheduling on performance asymmetric multi-core platforms,” In

Proceedings of 13th IEEE Real-time and Embedded Technology and

Applications Symposium (RTAS), 2007.

[35] J. H. Anderson, J. M. Calandrino, and U. Devi, “Real-time scheduling on

multi-core platforms,” In Proceedings of 12th IEEE Real-time and

Embedded Technology and Applications Symposium (RTAS), 2006.

[36] T. Lundqvist and P. Stenstrom, “Timing anomalies in dynamically scheduled

microprocessors,” In Proceedings of 20th IEEE International Real-Time

Systems Symposium (RTSS), 2004.

[37] J. Yan and W. Zhang, “WCET analysis for multi-core processors with

shared L2 instruction cache,” In Proceedings of 14th IEEE Real-time and

Embedded Technology and Applications Symposium (RTAS), 2008.

[38] S. McFarling, “Program optimization for instruction caches,” In Proceedings

of 3rd International Conference on Architectural Support for Programming

Languages and Operating Systems, April, 1989.

[39] W. W. Hwu and P. P. Chang, “Achieving high instruction cache

performance with an optimizing compiler,” In Proceedings of International

141



Symposium on Computer Architecture, 1989.

[40] K. Pettis and R. Hansen, “Profile guided code positioning,” In Proceedings

of SIGPLAN ’90 Conference on Programming Language Design and

Implementation, June, 1990.

[41] B. Calder and D. Grunwald, “Reducing branch costs via branch alignment,”

In Proceedings of 6th International Conference on Architectural Support for

Programming Languages and Operating Systems, October, 1994.

[42] C. Young, D. S. Johnson, D. R. Karger, and M. D. Smith, “Near-optimal

intraprocedural branch alignment,” In Proceedings of the SIGPLAN ’97

Conference on Programming Language Design and Implementation, June,

1997.

[43] V. Kathail, M. S. Schlansker and B. R. Rau, “HPL-PD architecture

specification: version 1.1,” in HPL Technical Report, 2000.

[44] S. Mohan et al., “ParaScale: exploiting parametric timing analysis for

real-time schedulers and dynamic voltage scaling,” In Proceedings of 21st

IEEE International Real-Time Systems Symposium (RTSS), 2005.

[45] L. Gwennap, “Digital 21264 sets new standard,” in Microprocessor Report,

October, 1996.

[46] Homepage of Chronos, http://www.comp.nus.edu.sg/~rpembed/chronos/.

[47] Homepage of SimpleScalar, http://www.simplescalar.com.

[48] Homepage of CPLEX, http://www.ilog.com/products/cplex/.

[49] Mälardalen WCET research group, “Mälardalen wcet benchmark suite,”

142



http://www.mrtc.mdh.se/projects/wcet.

[50] J. Calandrino, J. Anderson, and D. Baumberger, “A hybrid real-time

scheduling approach for large-scale multi-core platforms,” In Proceedings of

19th Euromicro Conference on Real-Time Systems (ECRTS), July, 2007.

[51] D. B. Kirk, “Process dependent static cache partitioning for real-time

systems,” In Proceedings of 4th IEEE International Real-Time Systems

Symposium (RTSS), 1988.

[52] Anonymous.

[53] D. B. Kirk, “SMART (strategic memory allocation for real-time) cache

design. In Proceedings of 5th IEEE International Real-Time Systems

Symposium (RTSS), 1989.

[54] D. B. Kirk, ”SMART (strategic memory allocation for real-time) cache

design using the MIPS R3000,“ In Proceedings of 6th IEEE International

Real-Time Systems Symposium (RTSS), 1990.

[55] A. Wolfe, ”Software-based cache partitioning for real-time applications,“ In

Proceedings of 3rd International Workshop on Responsive Computer

Systems, 1993.

[56] F. Mueller, ”Compiler support for software-based cache partitioning,“ In

Proceedings of ACM SIGPLAN Workshop on Language, Compilers and

Tools for Real-Time Systems, 1995.

[57] T. Tian and C. Shih, ”Software techniques for shared-cache multi-core

systems,“ Intel Software Network, 2007.

143



[58] Y. S. Li and S. Malik, ”Performance analysis of embedded software using

implicit path enumeration,“ In Proceedings of 32nd ACM/IEEE Design

Automation Conference, June 1995.

[59] Y. S. Li and S. Malik, ”Cache modeling and path analysis for real-time

software,“ In Proceedings of 12th IEEE International Real-Time Systems

Symposium (RTSS), 1996.

[60] K. Kim, D. Kim and C. Park, ”Real-time scheduling in heterogeneous

dual-core architecture,“ In Proceedings of 12th International Conference on

Parallel and Distributed Systems, 2006.

[61] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,

Scratchpad memory: design alternative for cache on-chip memory in

embedded systems, In Proceedings of the tenth international symposium on

Hardware/software codesign, ser. CODES 02, 2002.

[62] M. Delvai, W. Huber, P. Puschner, and A. Steininger, Processor support for

temporal predictability - the spear design example, In Proceeding of 15th

Euromicro Conference on Real-Time Systems, July 2003.

[63] S. A. Edwards and E. A. Lee, The case for the precision timed (pret)

machine, In Proceedings of 44th Design Automation Conference, DAC 07. ,

2007.

[64] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, The Malardalen

WCET benchmarks past, present and future, B. Lisper, Ed. Brussels,

Belgium: OCG, July 2010.

144



[65] M. Kandemir and A. Choudhary, Compiler-directed scratch pad memory

hierarchy design and management, In Proceedings of 39th Design

Automation Conference, 2002.

[66] C. Lee, M. Potkonjak, and W. Mangione-Smith, Mediabench: a tool for

evaluating and synthesizing multimedia and communications systems, In

Proceedings of 30th International Symposium of Microarchitecture

(MICRO), 1997.

[67] S. McFarling, Combining branch predictors, Western Research Laboratory,

Tech. Rep., 1993.

[68] M. Paolieri, E. Quinones, F. J. Cazorla, G. Bernat, and M. Valero, Hardware

support for wcet analysis of hard real-time multicore systems, In Proceedings

of 36th International Symposium of Computer Architecture (ISCA), 2009.

[69] M. Schoeberl, Time-predictable computer architecture, EURASIP Journal of

Embedded System, vol. 2009, pp. 2:12:17, January 2009

[70] L. Thiele and R. Wilhelm, Design for time-predictability, in Perspectives

Workshop: Design of Systems with Predictable Behaviour, ser. Dagstuhl

Seminar Proceedings, L. Thiele and R. Wilhelm, Eds., no. 03471. Dagstuhl,

Germany: Internationales Begegnungs- und Forschungszentrum fur

Informatik (IBFI), Schloss Dagstuhl, Germany, 2004.

[71] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G.

Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P.

Puschner, J. Staschulat, and P. Stenstrom, The worst-case execution-time

145



problem - overview of methods and survey of tools, ACM Transaction on

Embedded Computing System, vol. 7, pp. 36:136:53, May 2008.

[72] N. Yamasaki, I. Magaki, and T. Itou, Prioritized smt architecture with ipc

control method for real-time processing, In Proceedings of 13rd IEEE

Real-time and Embedded Technology and Applications Symposium (RTAS),

2007.

[73] D. Grund, Towards a formal definition of timing predictability, in Workshop

on Reconciling Performance with Predictability, Grenoble, France, 2009.

[74] J. R. Daniel Grund and R. Wilhelm, A template for predictability definitions

with supporting evidence, in Bringing Theory to Practice: Predictability and

Performance in Embedded Systems, 2011.

[75] R. Kirner and P. Puschner, Time-predictable computing, in 8th IFIP WG

10.2 International Workshop on Software Technologies for Embedded and

Ubiquitous Systems, Waidhofen, Austria, 2010.

[76] J. Lee et al. ”Meterg: Measurement-based end-to-end performance

estimation technique in qos-capable multiprocessors,“ In Proceedings of 12th

IEEE Real-time and Embedded Technology and Applications Symposium

(RTAS), 2006.

[77] Y. Ding et al. ”Architectural Time-predictability Factor (ATF): A Metric to

Evaluate Time Predictability of Processors,“ Technical Report, Department

of Electrical and Computer Engineering, Virginia Commonwealth University,

April 2012.

146



[78] P. Panda, N. Dutt and A. Nicolau. ”Efficient utilization of scratch-pad

memory in embedded processor applications,“ In Proceedings of Europe

Design and Test Conference, March 1997.

[79] S. Steinke et al. ”Assigning program and data objects to scratchpad for

energy reduction,“ In Proceedings of Europe Design and Test Conference,

2002.

[80] M. Kandemir, I. Kadayif, A. Choudhary and J. Ramanujam.

”Compiler-directed scratch pad memory optimization for embedded

multiprocessors,“ IEEE Transactions on VLSI Systems, Vol. 12, No. 3,

March 2004.

[81] J. F. Deverge and I. Puaut. ”WCET-directed dynamic scratchpad memory

allocation of data,“ In Proceedings of 19th Euromicro Conference on

Real-Time Systems (ECRTS), July, 2007.

[82] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. ”WCET centric

data allocation to scratchpad memory,“ In Proceedings of 21th IEEE

International Real-Time Systems Symposium (RTSS), 2005.

[83] J. Whitham and N. Audsley. ”Studying the applicability of the scratchpad

memory management unit,“ In Proceedings of 16th IEEE Real-time and

Embedded Technology and Applications Symposium (RTAS), 2010.

[84] D. Kirk. ”SMART (strategic memory allocation for realtime) cache design,“

In Proceedings of 5th IEEE International Real-Time Systems Symposium

(RTSS), 1989.

147



[85] D. Kirk and J. Strosnider. ”SMART (strategic memory allocation for

real-time) cache design using the mips r3000,“ In Proceedings of 6th IEEE

International Real-Time Systems Symposium (RTSS), 1990..

[86] F.Mueller. Compiler support for software-based cache partitioning.

SIGPLAN Notice, Vol. 30, Nov. 1995.

[87] I. Puaut and D. Decotigny. ”Low-complexity algorithms for static cache

locking in multitasking hard real-time systems,“ In Proceedings of 18th

IEEE International Real-Time Systems Symposium (RTSS), 2002.

[88] X. Vera, B. Lisper and J. Xue. ”Data cache locking for higher program

predictability,“ ACM SIGMETRICS, 2003.

[89] V. Suhendra and T. Mitra. ”Exploring locking & partitioning for predictable

shared caches on multi-cores. In Proceedings of 45th Design Automatic

Conference, 2008.

[90] M. Verma, L. Wehmeyer, and P. Marwedel. ”Cache-aware scratchpad

allocation algorithm,“ In Proceedings of Deesign, Automation and Test in

Europe Conference, 2004.

[91] J. Cong, K. Gururaj, H. Huang, C. Liu, G. Reinman, and Y. Zou. ”An

Energy-efficient adaptive hybrid cache,“ In Proceedings of International

Symposium on Low Power Electronics and Design, 2011.

[92] S. Kang and A. Dean. ”Leveraging both data cache and scratchpad memory

through synergetic data allocation,“ In Proceedings of 18th IEEE Real-time

and Embedded Technology and Applications Symposium (RTAS), 2012.

148



[93] Y. S. Li and S. Malik. ”Performance analysis of embedded software using

implicit path enumeration,“ IEEE Transactions on COMPUTER-AIDED

DESIGN of Integrated Circuits and Systems, Vol. 16, Issue 12, 1997.

149



VITA

Graduate School
Virginia Commonwealth University

Yiqiang Ding Date of Birth: August 11, 1980

2656 Three Willows Ct, Henrico 23294

dingy4@vcu.edu

Master of Science, Department of Computer Science and Technology, Beijing
University of Posts and Telecommunications, China ,April 2005
Bachelor of Science, Department of Computer Science and Technology, Beijing
University of Posts and Telecommunications, China ,July 2002

Dissertation Title:
WCET Optimizations and Architectural Support for Hard Real-Time Systems

Major Professor: Dr. Wei Zhang

Publications:

JOURNAL PUBLICATIONS:

• Yiqiang Ding, Wei Zhang: Architectural Time-predictability Factor (ATF):
A Metric to Evaluate Time Predictability of Processors, Accepted by ACM
SIGBED Review, 2012

• Yiqiang Ding, Wei Zhang: Multicore-Aware Code Co-Positioning to Reduce
WCET on Dual-Core Processors with Shared Instruction Caches, Journal of
Computing Science and Engineering, Vol. 6, No. 1, pp.12-25, March, 2012

• Yiqiang Ding, Wei Zhang: Loop-Based Instruction Prefetching to Reduce the
Worst-Case Execution Time, IEEE Transactions on Computers, Vol. 59, No.
6, June 2010

• Yiqiang Ding, Wei Zhang: Optimizing Instruction Prefetching to Improve
Worst-Case Performance for Real-time Applications, Journal of Computing
Science and Engineering, Vol. 3, No. 1, March 2009

CONFERENCE PUBLICATIONS:

150



• Yiqiang Ding, Wei Zhang: Static Analysis of Worst-Case Inter-Core
Communication Latency in CMPs with 2D-Mesh NoC, WiP Session of
LCTES 2012

• Yiqiang Ding, Wei Zhang: Multicore-Aware Code Positioning to Improve
Worst-Case Performance, ISROC 2011

• Yiqiang Ding, Wei Zhang: WCET-Oriented Hybrid Code Positioning On
Multi-Core Processors, ACM INTERACT-14 Workshop, 2010

• Yiqiang Ding, Wei Zhang: Improving the Static Real-time Scheduling on
Multicore Processors by Reducing Worst-case Inter-thread Cache
Interferences, ACM Southeast Regional Conference 2010

• Lan Wu, Yiqiang Ding and Wei Zhang: Comparatively Evaluation of
Separated and Partitioned Cache Architectures for Real-time Multicore
Computing, WiP Session of RTAS 2010

• Yiqiang Ding and Wei Zhang: WCET-Oriented Code Co-Positioning on
Multicore Processors with Shared Instruction Caches, WiP Session of RTAS
2010

151


	WCET Optimizations and Architectural Support for Hard Real-Time Systems
	Downloaded from

	tmp.1404570246.pdf.HfqJe

