590 research outputs found

    Improving Patient Safety, Patient Flow and Physician Well-Being in Emergency Departments

    Get PDF
    Over 151 million people visit US Emergency Departments (EDs) annually. The diverse nature and overwhelming volume of patient visits make the ED one of the most complicated settings in healthcare to study. ED overcrowding is a recognized worldwide public health problem, and its negative impacts include patient safety concerns, increased patient length of stay, medical errors, patients left without being seen, ambulance diversions, and increased health system expenditure. Additionally, ED crowding has been identified as a leading contributor to patient morbidity and mortality. Furthermore, this chaotic working environment affects the well-being of all ED staff through increased frustration, workload, stress, and higher rates of burnout which has a direct impact on patient safety. This research takes a step-by-step approach to address these issues by first forecasting the daily and hourly patient arrivals, including their Emergency Severity Index (ESI) levels, to an ED utilizing time series forecasting models and machine learning models. Next, we developed an agent-based discrete event simulation model where both patients and physicians are modeled as unique agents for capturing activities representative of ED. Using this model, we develop various physician shift schedules, including restriction policies and overlapping policies, to improve patient safety and patient flow in the ED. Using the number of handoffs as the patient safety metric, which represents the number of patients transferred from one physician to another, patient time in the ED, and throughput for patient flow, we compare the new policies to the current practices. Additionally, using this model, we also compare the current patient assignment algorithm used by the partner ED to a novel approach where physicians determine patient assignment considering their workload, time remaining in their shift, etc. Further, to identify the optimal physician staffing required for the ED for any given hour of the day, we develop a Mixed Integer Linear Programming (MILP) model where the objective is to minimize the combined cost of physician staffing in the ED, patient waiting time, and handoffs. To develop operations schedules, we surveyed over 70 ED physicians and incorporated their feedback into the MILP model. After developing multiple weekly schedules, these were tested in the validated simulation model to evaluate their efficacy in improving patient safety and patient flow while accounting for the ED staffing budget. Finally, in the last phase, to comprehend the stress and burnout among attending and resident physicians working in the ED for the shift, we collected over 100 hours of physiological responses from 12 ED physicians along with subjective metrics on stress and burnout during ED shifts. We compared the physiological signals and subjective metrics to comprehend the difference between attending and resident physicians. Further, we developed machine learning models to detect the early onset of stress to assist physicians in decision-making

    Sequence multi-task learning to forecast mental wellbeing from sparse self-reported data

    Get PDF
    Smartphones have started to be used as self reporting tools for mental health state as they accompany individuals during their days and can therefore gather temporally fine grained data. However, the analysis of self reported mood data offers challenges related to non-homogeneity of mood assessment among individuals due to the complexity of the feeling and the reporting scales, as well as the noise and sparseness of the reports when collected in the wild. In this paper, we propose a new end-to-end ML model inspired by video frame prediction and machine translation, that forecasts future sequences of mood from previous self-reported moods collected in the real world using mobile devices. Contrary to traditional time series forecasting algorithms, our multi-task encoder-decoder recurrent neural network learns patterns from different users, allowing and improving the prediction for users with limited number of self-reports. Unlike traditional feature-based machine learning algorithms, the encoder-decoder architecture enables to forecast a sequence of future moods rather than one single step. Meanwhile, multi-task learning exploits some unique characteristics of the data (mood is bi-dimensional), achieving better results than when training single-task networks or other classifiers. Our experiments using a real-world dataset of 33, 000 user-weeks revealed that (i) 3 weeks of sparsely reported mood is the optimal number to accurately forecast mood, (ii) multi-task learning models both dimensions of mood –valence and arousal– with higher accuracy than separate or traditional ML models, and (iii) mood variability, personality traits and day of the week play a key role in the performance of our model. We believe this work provides psychologists and developers of future mobile mental health applications with a ready-to-use and effective tool for early diagnosis of mental health issues at scale.This work was supported by the Embiricos Trust Scholarship of Jesus College Cambridge, EPSRC through Grants DTP (EP/N509620/1) and UBHAVE (EP/I032673/1), and Nokia Bell Labs through the Centre of Mobile, Wearable Systems and Augmented Intelligence

    SMART CITY MANAGEMENT USING MACHINE LEARNING TECHNIQUES

    Get PDF
    In response to the growing urban population, smart cities are designed to improve people\u27s quality of life by implementing cutting-edge technologies. The concept of a smart city refers to an effort to enhance a city\u27s residents\u27 economic and environmental well-being via implementing a centralized management system. With the use of sensors and actuators, smart cities can collect massive amounts of data, which can improve people\u27s quality of life and design cities\u27 services. Although smart cities contain vast amounts of data, only a percentage is used due to the noise and variety of the data sources. Information and communication technology (ICT) and the Internet of Things (IoT) play a far more prominent role in developing smart cities when it comes to making choices, designing policies, and executing different methods. Smart city applications have made great strides thanks to recent advances in artificial intelligence (AI), especially machine learning (ML) and deep learning (DL). The applications of ML and DL have significantly increased the accuracy aspect of decision-making in smart cities, especially in analyzing the captured data using IoT-based devices and sensors. Smart cities employ algorithms that use unlabeled and labeled data to manage resources and deliver individualized services effectively. It has instantaneous practical use in many crucial areas, including smart health, smart environment, smart transportation system, energy management, and smart water distribution system in a smart city. Hence, ML and DL have become hot research topics in AI techniques in recent years and are proving to be accurate optimization techniques in smart cities. In addition, artificial intelligence algorithms enable the processing massive datasets and identify patterns and characteristics that would otherwise go unnoticed. Despite these advantages, researchers\u27 skepticism of AI\u27s sometimes mysterious inner workings has prevented it from being widely used for smart cities. This thesis\u27s primary intent is to explore the value of employing diverse AI and ML techniques in developing smart city-centric domains and investigate the efficacy of these proposed approaches in four different aspects of the smart city such as smart energy, smart transportation system, smart water distribution system and smart environment. In addition, we use these machine learning approaches to make a data analytics and visualization unit module for the smart city testbed. Internet-of-Things-based machine learning approaches in diverse aspects have repeatedly demonstrated greater accuracy, sensitivity, cost-effectiveness, and productivity, used in the built-in Virginia Commonwealth University\u27s real-time testbed

    Predicting emotional states using behavioral markers derived from passively sensed data: Data-driven machine learning approach

    Get PDF
    Background: Mental health disorders affect multiple aspects of patients’ lives, including mood, cognition, and behavior. eHealth and mobile health (mHealth) technologies enable rich sets of information to be collected noninvasively, representing a promising opportunity to construct behavioral markers of mental health. Combining such data with self-reported information about psychological symptoms may provide a more comprehensive and contextualized view of a patient’s mental state than questionnaire data alone. However, mobile sensed data are usually noisy and incomplete, with significant amounts of missing observations. Therefore, recognizing the clinical potential of mHealth tools depends critically on developing methods to cope with such data issues. Objective: This study aims to present a machine learning–based approach for emotional state prediction that uses passively collected data from mobile phones and wearable devices and self-reported emotions. The proposed methods must cope with high-dimensional and heterogeneous time-series data with a large percentage of missing observations. Methods: Passively sensed behavior and self-reported emotional state data from a cohort of 943 individuals (outpatients recruited from community clinics) were available for analysis. All patients had at least 30 days’ worth of naturally occurring behavior observations, including information about physical activity, geolocation, sleep, and smartphone app use. These regularly sampled but frequently missing and heterogeneous time series were analyzed with the following probabilistic latent variable models for data averaging and feature extraction: mixture model (MM) and hidden Markov model (HMM). The extracted features were then combined with a classifier to predict emotional state. A variety of classical machine learning methods and recurrent neural networks were compared. Finally, a personalized Bayesian model was proposed to improve performance by considering the individual differences in the data and applying a different classifier bias term for each patient. Results: Probabilistic generative models proved to be good preprocessing and feature extractor tools for data with large percentages of missing observations. Models that took into account the posterior probabilities of the MM and HMM latent states outperformed those that did not by more than 20%, suggesting that the underlying behavioral patterns identified were meaningful for individuals’ overall emotional state. The best performing generalized models achieved a 0.81 area under the curve of the receiver operating characteristic and 0.71 area under the precision-recall curve when predicting self-reported emotional valence from behavior in held-out test data. Moreover, the proposed personalized models demonstrated that accounting for individual differences through a simple hierarchical model can substantially improve emotional state prediction performance without relying on previous days’ data. Conclusions: These findings demonstrate the feasibility of designing machine learning models for predicting emotional states from mobile sensing data capable of dealing with heterogeneous data with large numbers of missing observations. Such models may represent valuable tools for clinicians to monitor patients’ mood states.This project has received funding from the European Union's Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie grant agreement number 813533. This work was partly supported by the Spanish government (Ministerio de Ciencia e Innovación) under grants TEC2017-92552-EXP and RTI2018-099655-B-100; the Comunidad de Madrid under grants IND2017/TIC-7618, IND2018/TIC-9649, IND2020/TIC-17372, and Y2018/TCS-4705; the BBVA Foundation under the Domain Alignment and Data Wrangling with Deep Generative Models (Deep-DARWiN) project; and the European Union (European Regional Development Fund and the European Research Council) through the European Union's Horizon 2020 Research and Innovation Program under grant 714161. The authors thank Enrique Baca-Garcia for providing demographic and clinical data and assisting in interpreting and summarizing the data

    A step towards Advancing Digital Phenotyping In Mental Healthcare

    Get PDF
    Smartphones and wrist-wearable devices have infiltrated our lives in recent years. According to published statistics, nearly 84% of the world’s population owns a smartphone, and almost 10% own a wearable device today (2022). These devices continuously generate various data sources from multiple sensors and apps, creating our digital phenotypes. This opens new research opportunities, particularly in mental health care, which has previously relied almost exclusively on self-reports of mental health symptoms. Unobtrusive monitoring using patients’ devices may result in clinically valuable markers that can improve diagnostic processes, tailor treatment choices, provide continuous insights into their condition for actionable outcomes, such as early signs of relapse, and develop new intervention models. However, these data sources must be translated into meaningful, actionable features related to mental health to achieve their full potential. In the mental health field, there is a great need and much to be gained from defining a way to continuously assess the evolution of patients’ mental states, ideally in their everyday environment, to support the monitoring and treatments by health care providers. A smartphone-based approach may be valuable in gathering long-term objective data, aside from the usually used self-ratings, to predict clinical state changes and investigate causal inferences about state changes in patients (e.g., those with affective disorders). Being objective does not imply that passive data collection is also perfect. It has several challenges: some sensors generate vast volumes of data, and others cause significant battery drain. Furthermore, the analysis of raw passive data is complicated, and collecting certain types of data may interfere with the phenotype of interest. Nonetheless, machine learning is predisposed to address these matters and advance psychiatry’s era of personalised medicine. This work aimed to advance the research efforts on mobile and wearable sensors for mental health monitoring. We applied supervised and unsupervised machine learning methods to model and understand mental disease evolution based on the digital phenotype of patients and clinician assessments at the follow-up visits, which provide ground truths. We needed to cope with regularly and irregularly sampled, high-dimensional, and heterogeneous time series data susceptible to distortion and missingness. Hence, the developed methods must be robust to these limitations and handle missing data properly. Throughout the various projects presented here, we used probabilistic latent variable models for data imputation and feature extraction, namely, mixture models (MM) and hidden Markov models (HMM). These unsupervised models can learn even in the presence of missing data by marginalising the missing values in the function of the present observations. Once the generative models are trained on the data set with missing values, they can be used to generate samples for imputation. First, the most probable component/state has to be found for each sample. Then, sampling from the most probable distribution yields valid and robust parameter estimates and explicit imputed values for variables that can be analysed as outcomes or predictors. The imputation process can be repeated several times, creating multiple datasets, thereby accounting for the uncertainty in the imputed values and implicitly augmenting the data. Moreover, they are robust to moderate deviations of the observed data from the assumed underlying distribution and provide accurate estimates even when missingness is high. Depending on the properties of the data at hand, we employed feature extraction methods combined with classical machine learning algorithms or deep learning-based techniques for temporal modelling to predict various mental health outcomes - emotional state, World Health Organisation Disability Assessment Schedule (WHODAS 2.0) functionality scores and Generalised Anxiety Disorder-7 (GAD-7) scores, of psychiatric outpatients. We mainly focused on one-size-fits-all models, as the labelled sample size per patient was limited; however, in the mood prediction case, it was possible to apply personalised models. Integrating machines and algorithms into the clinical workflow require interpretability to increase acceptance. Therefore, we also analysed feature importance by computing Shapley additive explanations (SHAP) values. SHAP values provide an overview of essential features in the machine learning models by designating the weight of predictability of each feature positively or negatively to the target variable. The provided solutions, as such, are proof of concept, which require further clinical validation to be deployable in the clinical workflow. Still, the results are promising and lay some foundations for future research and collaboration among clinicians, patients, and computer scientists. They set the paths to advance future research prospects in technology-based mental healthcare.En los últimos años, los smartphones y los dispositivos y pulseras inteligentes, comúnmente conocidos como wearables, se han infiltrado en nuestras vidas. Según las estadísticas publicadas a día de hoy (2022), cerca del 84% de la población tiene un smartphone y aproximadamente un 10% también posee un wearable. Estos dispositivos generan datos de forma continua en base a distintos sensores y aplicaciones, creando así nuestro fenotipo digital. Estos datos abren nuevas vías de investigación, particularmente en el área de salud mental, dónde las fuentes de datos han sido casi exclusivamente autoevaluaciones de síntomas de salud mental. Monitorizar de forma no intrusiva a los pacientes mediante sus dispositivos puede dar lugar a marcadores valiosos en aplicación clínica. Esto permite mejorar los procesos de diagnóstico, adaptar tratamientos, e incluso proporcionar información continua sobre el estado de los pacientes, como signos tempranos de recaída, y hasta desarrollar nuevos modelos de intervención. Aun así, estos datos en crudo han de ser traducidos a datos interpretables relacionados con la salud mental para conseguir un máximo rendimiento de los mismos. En salud mental existe una gran necesidad, y además hay mucho que ganar, de definir cómo evaluar de forma continuada la evolución del estado mental de los pacientes en su entorno cotidiano para ayudar en el tratamiento y seguimiento de los mismos por parte de los profesionales sanitarios. En este ámbito, un enfoque basado en datos recopilados desde sus smartphones puede ser valioso para recoger datos objetivos a largo plazo al mismo tiempo que se acompaña de las autoevaluaciones utilizadas habitualmente. La combinación de ambos tipos de datos puede ayudar a predecir los cambios en el estado clínico de estos pacientes e investigar las relaciones causales sobre estos cambios (por ejemplo, en aquellos que padecen trastornos afectivos). Aunque la recogida de datos de forma pasiva tiene la ventaja de ser objetiva, también implica varios retos. Por un lado, ciertos sensores generan grandes volúmenes de datos, provocando un importante consumo de batería. Además, el análisis de los datos pasivos en crudo es complicado, y la recogida de ciertos tipos de datos puede interferir con el fenotipo que se quiera analizar. No obstante, el machine learning o aprendizaje automático, está predispuesto a resolver estas cuestiones y aportar avances en la medicina personalizada aplicada a psiquiatría. Esta tesis tiene como objetivo avanzar en la investigación de los datos recogidos por sensores de smartphones y wearables para la monitorización en salud mental. Para ello, aplicamos métodos de aprendizaje automático supervisado y no supervisado para modelar y comprender la evolución de las enfermedades mentales basándonos en el fenotipo digital de los pacientes. Estos resultados se comparan con las evaluaciones de los médicos en las visitas de seguimiento, que proporcionan las etiquetas reales. Para aplicar estos métodos hemos lidiado con datos provenientes de series temporales con alta dimensionalidad, muestreados de forma regular e irregular, heterogéneos y, además, susceptibles a presentar patrones de datos perdidos y/o distorsionados. Por lo tanto, los métodos desarrollados deben ser resistentes a estas limitaciones y manejar adecuadamente los datos perdidos. A lo largo de los distintos proyectos presentados en este trabajo, hemos utilizado modelos probabilísticos de variables latentes para la imputación de datos y la extracción de características, como por ejemplo, Mixture Models (MM) y hidden Markov Models (HMM). Estos modelos no supervisados pueden aprender incluso en presencia de datos perdidos, marginalizando estos valores en función de las datos que sí han sido observados. Una vez entrenados los modelos generativos en el conjunto de datos con valores perdidos, pueden utilizarse para imputar dichos valores generando muestras. En primer lugar, hay que encontrar el componente/estado más probable para cada muestra. Luego, se muestrea de la distirbución más probable resultando en estimaciones de parámetros robustos y válidos. Además, genera imputaciones explícitas que pueden ser tratadas como resultados. Este proceso de imputación puede repetirse varias veces, creando múltiples conjuntos de datos, con lo que se tiene en cuenta la incertidumbre de los valores imputados y aumentándose así, implícitamente, los datos. Además, estas imputaciones son resistentes a desviaciones que puedan existir en los datos observados con respecto a la distribución subyacente asumida y proporcionan estimaciones precisas incluso cuando la falta de datos es elevada. Dependiendo de las propiedades de los datos en cuestión, hemos usado métodos de extracción de características combinados con algoritmos clásicos de aprendizaje automático o técnicas basadas en deep learning o aprendizaje profundo para el modelado temporal. La finalidad de ambas opciones es ser capaces de predecir varios resultados de salud mental/estado emocional, como la puntuación sobre el World Health Organisation Disability Assessment Schedule (WHODAS 2.0), o las puntuaciones del generalised anxiety disorder-7 (GAD-7) de pacientes psiquiátricos ambulatorios. Nos centramos principalmente en modelos generalizados, es decir, no personalizados para cada paciente sino explicativos para la mayoría, ya que el tamaño de muestras etiquetada por paciente es limitado; sin embargo, en el caso de la predicción del estado de ánimo, puidmos aplicar modelos personalizados. Para que la integración de las máquinas y algoritmos dentro del flujo de trabajo clínico sea aceptada, se requiere que los resultados sean interpretables. Por lo tanto, en este trabajo también analizamos la importancia de las características sacadas por cada algoritmo en base a los valores de las explicaciones aditivas de Shapley (SHAP). Estos valores proporcionan una visión general de las características esenciales en los modelos de aprendizaje automático designando el peso, positivo o negativo, de cada característica en su predictibilidad sobre la variable objetivo. Las soluciones aportadas en esta tesis, como tales, son pruebas de concepto, que requieren una mayor validación clínica para poder ser desplegadas en el flujo de trabajo clínico. Aun así, los resultados son prometedores y sientan base para futuras investigaciones y colaboraciones entre clínicos, pacientes y científicos de datos. Éstas establecen las guías para avanzar en las perspectivas de investigación futuras en la atención sanitaria mental basada en la tecnología.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: David Ramírez García.- Secretario: Alfredo Nazábal Rentería.- Vocal: María Luisa Barrigón Estéve

    Beyond mobile apps: a survey of technologies for mental well-being

    Get PDF
    Mental health problems are on the rise globally and strain national health systems worldwide. Mental disorders are closely associated with fear of stigma, structural barriers such as financial burden, and lack of available services and resources which often prohibit the delivery of frequent clinical advice and monitoring. Technologies for mental well-being exhibit a range of attractive properties, which facilitate the delivery of state-of-the-art clinical monitoring. This review article provides an overview of traditional techniques followed by their technological alternatives, sensing devices, behaviour changing tools, and feedback interfaces. The challenges presented by these technologies are then discussed with data collection, privacy, and battery life being some of the key issues which need to be carefully considered for the successful deployment of mental health toolkits. Finally, the opportunities this growing research area presents are discussed including the use of portable tangible interfaces combining sensing and feedback technologies. Capitalising on the data these ubiquitous devices can record, state of the art machine learning algorithms can lead to the development of robust clinical decision support tools towards diagnosis and improvement of mental well-being delivery in real-time
    • …
    corecore