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Abstract 

Over 151 million people visit US Emergency Departments (EDs) annually. The diverse 

nature and overwhelming volume of patient visits make the ED one of the most complicated 

settings in healthcare to study. ED overcrowding is a recognized worldwide public health problem, 

and its negative impacts include patient safety concerns, increased patient length of stay, medical 

errors, patients left without being seen, ambulance diversions, and increased health system 

expenditure. Additionally, ED crowding has been identified as a leading contributor to patient 

morbidity and mortality. Furthermore, this chaotic working environment affects the well-being of 

all ED staff through increased frustration, workload, stress, and higher rates of burnout which has 

a direct impact on patient safety.  

This research takes a step-by-step approach to address these issues by first forecasting the 

daily and hourly patient arrivals, including their Emergency Severity Index (ESI) levels, to an ED 

utilizing time series forecasting models and machine learning models. Next, we developed an 

agent-based discrete event simulation model where both patients and physicians are modeled as 

unique agents for capturing activities representative of ED. Using this model, we develop various 

physician shift schedules, including restriction policies and overlapping policies, to improve 

patient safety and patient flow in the ED. Using the number of handoffs as the patient safety metric, 

which represents the number of patients transferred from one physician to another, patient time in 

the ED, and throughput for patient flow, we compare the new policies to the current practices. 

Additionally, using this model, we also compare the current patient assignment algorithm used by 

the partner ED to a novel approach where physicians determine patient assignment considering 

their workload, time remaining in their shift, etc.  
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Further, to identify the optimal physician staffing required for the ED for any given hour 

of the day, we develop a Mixed Integer Linear Programming (MILP) model where the objective 

is to minimize the combined cost of physician staffing in the ED, patient waiting time, and 

handoffs. To develop operations schedules, we surveyed over 70 ED physicians and incorporated 

their feedback into the MILP model. After developing multiple weekly schedules, these were 

tested in the validated simulation model to evaluate their efficacy in improving patient safety and 

patient flow while accounting for the ED staffing budget.  

Finally, in the last phase, to comprehend the stress and burnout among attending and 

resident physicians working in the ED for the shift, we collected over 100 hours of physiological 

responses from 12 ED physicians along with subjective metrics on stress and burnout during ED 

shifts. We compared the physiological signals and subjective metrics to comprehend the difference 

between attending and resident physicians. Further, we developed machine learning models to 

detect the early onset of stress to assist physicians in decision-making.  
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1. Chapter One 

1.1 Introduction 

The Emergency Department (ED) is a critical segment in the US health system as it acts as 

an essential patient entry point that contributes to approximately 70% of hospital admissions 1. As 

society's health care safety net, patients with no other options for medical care access the ED 

because the federal government mandates an ED to provide screening and stabilizing care to all 

patients regardless of their ability to pay 2. The total number of patients visiting EDs is increasing 

annually, and according to the latest report, over 151 million people visit US EDs annually 3. The 

sheer volume and diverse nature of patient visits make the ED predisposed to crowding. The 

American College of Emergency Physicians defines crowding as a situation in which the identified 

need for emergency services exceeds available resources for patient care in the emergency 

department, hospital, or both 4. ED crowding is a patient safety issue as well as a public health 

problem. Crowding is a result of multiple factors, including high patient volumes, inadequate 

staffing, and bed shortages resulting in a longer patient length of stay and slower discharge rates 

5–7. Additionally, the reduced availability of ED beds due to admitted patients awaiting transfer 

into an in-hospital bed restricts an ED's capacity to accept new patients, resulting in higher patient 

boarding time and delays in providing patient care 8. Thus, crowding disrupts the ED patient care 

processes and negatively impacts patient safety, ED staff wellbeing, and health system costs 5,9–11.  

The impact of ED crowding and patient flow has been studied for decades, and the 

researchers have used a variety of operations research approaches and other methodologies to 

address the issue; however, the ED overcrowding crisis is still prevalent 5,10. Hence, it is essential 

to conduct a detailed literature review to identify less explored research areas and well-researched 
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topics to apply new methodologies and techniques. To include these areas of interest that could 

potentially impact this proposed study, we divide our brief literature review and organize the 

chapters based on three broad topics. First, we start with 1) Forecasting Patient Arrivals to the ED, 

followed by 2) Patient-Physician Assignment and Patient Flow in the ED, and finally, 3) Physician 

Stress and Well-being in the ED. 

Day-to-day ED operations involve numerous medical and nonmedical decisions, starting 

from patient arrivals to the ED until final disposition from the ED. Forecasting the patient arrivals 

to an ED is critical as there is an apparent daily, weekly, and monthly pattern of patient arrivals to 

the ED that affects various operational decisions. Specifically, having these forecasts can assist 

ED administrators in making informed decisions for daily operations. Apart from the daily 

decision-making, to ensure efficient functioning of the ED, administrators make a lot of decisions 

as early as three months in advance, including decisions on the number of beds required, pod’s 

functioning, physicians required, and shift schedule. Hence it is critical to have a model that 

predicts patient arrivals to schedule and maintain an adequate number of physicians and beds.  

Often, the ED administrators have to make real-time adjustments and add surge capacity 

beds when the ED is overcrowded and close pods in case of a low number of patients. Both have 

consequences, but overcrowding and lack of beds could lead to patient mortality, increased wait 

times, and higher chances of medical error. Given the significance of the topic, researchers have 

used various time series forecasting models and a few machine learning models to forecast patient 

arrivals to an ED. However, most studies have focused on long-term predictions such as weekly 

or daily arrival volumes, with very few studies focusing on hourly arrival predictions. Moreover, 

to our knowledge, none of the studies have focused on predicting the hourly patient arrivals with 
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their ESI levels. Adding the Emergency Severity Index (ESI) level information to the forecasting 

models could further help larger EDs with multiple pods in bed planning and staff scheduling. 

Following the patient's arrival, the next patient activity in the ED is triaging, where a patient 

is assigned with the standardized Emergency Severity Index (ESI), which defines the patient's 

severity level 12. Once a patient is assigned an ESI level, they are assigned to a pod in the ED based 

on the severity, where ESI 1 represents an urgent patient who needs immediate care, whereas ESI 

5 represents a non-urgent case that can wait in the absence of bed. Pods in ED represent a section 

with specific bed capacity, physician availability, and equipment availability. Therefore, some 

pods are limited to providing care for only low acuity patients (ESI 3, 4, and 5) because of the lack 

of expert physicians and equipment in the pod. Hence patient assignment to the pod is crucial to 

maintain the smooth operation of the ED and avoid overcrowding. After the patient assignment to 

a pod, the physician provides care for the patient on their bed multiple times based on the patient's 

ESI levels and orders various ancillary tests (Labs, radiology, consults, etc.) as necessary. Finally, 

when ready, the physician makes a disposition decision to either admit or discharge the patient. 

Thus, it is crucial to study each interaction from patient arrival to the ED until disposition as these 

have a significant impact on patient flow, patient safety, patient satisfaction, and the time each 

patient spends in the ED. Although a variety of approaches have been adopted to improve ED 

patient throughput and efficiencies (e.g., using hallways as additional bed resources, scheduling 

additional physicians, vertical care in triage, calling off-shift nurses, etc.), these fixes appear to be 

only short-term solutions for this crisis. Hence further research in this direction is warranted to 

improve ED performance. Finally, from a physician’s perspective, frequent exposure to 

overcrowded ED results in increased workload and stress and could eventually lead to physician 
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burnout. Prior studies have identified ED physicians as one of the top specialties among physicians 

who experience burnout. 

A variety of mathematical modeling and simulation modeling approaches have been used 

by researchers to address the topics of patient triaging, patient assignment, bed planning, and 

staffing and scheduling to improve the patient flow within the ED 13–20. However, very few studies 

have combined these individual topics, and to our knowledge, none of the studies utilizing 

modeling techniques have focused on incorporating the idea of patient flow, patient safety, and 

physician workload management. Similarly, researchers have used various techniques, including 

physiological measures, to understand physician stress; however, none of these have focused on 

detecting the early onset of physician stress in the ED for decision making. Although taking a 

microscopic view and focusing on one of these topics provides a sound estimate for specific 

performance measures within the ED, it fails to capture all the effects and interactions of the ED, 

leading to a limited application of the model for decision making. To address this issue and provide 

our partner ED with the right tools to assist in decision-making, we propose a step-by-step 

approach utilizing novel modeling techniques that captures all these crucial components of ED. 

The first chapter focuses on forecasting patient arrivals to the ED using time series 

forecasting models and machine learning models. We developed six different models to generate 

long-term (90 days ahead) daily and short-term (one week ahead) hourly forecasts to predict the 

total patient census to the ED and their ESI levels. In the second chapter, we develop and validate 

an agent-based hybrid discrete event simulation model representative of PRISMA Health 

Greenville Memorial Hospital ED for testing various physician shift scheduling policies to 

improve patient safety and patient flow. Along with testing various overlapping policies and 

restriction policies for physician staffing, we also investigate policies where patient-to-physician 
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assignments are based on physician workload and time remaining on their shift. Next, in the third 

chapter, we develop a Mixed Integer Linear Program (MILP) model to identify optimal physician 

staffing levels to reduce the combined cost of staffing the physicians, patient wait time, and 

handoff costs. To develop practical policies and incorporate physician preferences, we surveyed 

over 70 physicians in the partner ED. Five different staffing schedules were developed and tested 

in the validated simulation model to understand the efficacy of each physician staffing schedule in 

improving patient safety and patient flow while accounting for the ED staffing budget. Finally, in 

the fourth chapter, we investigate physician stress and well-being in the ED as they are critical 

factors leading to burnout. Since our partner is an academic ED, we collected 100+ hours of 

objective physiological data and subjective feedback from attending and resident physicians 

working an entire 8-hour ED shift and compared the stress and burnout levels among the two 

populations. Further, we develop a recurrent neural network-based machine learning model using 

the long-short term memory (LSTM) approach for early detection of physician stress using 

physiological measures to reduce the likelihood of burnout. 
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2. Chapter Two 

2.1 Forecasting Patient Arrivals to Emergency Departments 

2.1.1 Introduction  

Emergency Department is one of the primary patient entry points into a hospital and acts 

as the frontline for delivering emergency services. Patient arrivals to EDs in the US have increased 

from 96.5 million annual visits in 1995 to 115.3 million in 2005 and 151 million in 2019  3,21. At 

the same time, the number of EDs in the US has decreased by over 15% in the last decade 22. The 

ever-increasing patient volume and the decreasing number of EDs lead to mismatch predisposing 

EDs to crowding 8,23,24. The American College of Emergency Physicians (ACEP) defines ED 

crowding as the situation that “occurs when the identified need for emergency services exceeds 

available resources for patient care in the ED, hospital, or both” 4. Crowding in ED is a global 

concern, and studies have often linked this as a factor leading to suboptimal patient care, delays in 

care, and higher chances of medical errors 23,25. A few leading causes of ED ovecrowding include 

high patient census (patient arrivals), inadequate resources (beds, medical devices, etc.), 

inadequate planning,  and poor ED design 10,26. Some of the most commonly adopted solutions to 

avoid ED crowding include expanding ED capacity, stopping boarding admitted patients in ED, 

hallway beds, on-call providers, and adding temporary resources 27. A recent study investigating 

ED crowding identified that access to future patient demands (arrivals to ED) during the time of 

shift scheduling and resource allocation can improve ED planning and potentially avoid the 

chances of ED crowding 24. Although patient arrivals to the ED are affected by factors beyond the 

ED clinicians' and administrators' control, prior studies have found consistent hour-of-the-day and 
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day-of-the-week patterns in patient arrivals, allowing for developing robust time series forecasting 

models 28. 

Time series forecasting focuses on developing mathematical models to predict future 

values based on previously observed data 29. Specifically, it focuses on understanding the patterns 

associated with a series of data points of the variable of interest over time to make predictions. The 

ability of the time series model to forecast future values has led to its adoption in various research 

areas, including healthcare, finance, banking, weather, traffic flow, energy, and manufacturing 30–

34. In healthcare, researchers have implemented various time series forecasting techniques to 

forecast surgical case volume, disease progression, stress detection, risk of disease over time, 

identify early onset of diseases, mortality, disease management, inpatient admissions, patient 

arrivals (census) to the ED, etc. 35–39. In terms of the methodology used in developing forecasting 

models for healthcare applications, studies have used various models, from the simple persistence 

model to complex deep-learning models 35–39. In most studies, persistence models are used as the 

baseline model as they can account for only the autoregressive term of the time series. Compared 

to persistence models, Autoregressive integrated moving average (ARIMA) is a slightly advanced 

model which can account for both autoregressive and moving average components. Additionally, 

seasonal autoregressive integrated moving average (SARIMA), an advanced version of ARIMA, 

is used to handle time-series data with seasonality. Although these models are effective and widely 

used, one of the primary limitations of these models when applying to healthcare datasets is the 

underlying linearity assumption which makes these models undesirable as most healthcare data 

sets are non-linear time series data 40.  

Over the last several years, various non-linear forecasting methods, artificial neural 

networks (ANN), support vector regression (SVR), and fuzzy models have been implemented for 
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forecasting time series data 41–45. Since these models do not assume linearity for the time series 

data, they perform well in forecasting both linear and non-linear time series data. More recently, 

researchers have explored using memory-based recurrent neural networks (RNNs) and 

convolutional neural networks (CNNs) for various healthcare applications 36,46,47. The capability 

of memory-based RNNs to account for the temporal nature of the data, work around the vanishing 

gradient problem and store important information in their memory cell allows these models to 

generate a long-term forecast with high accuracy. Additionally, a few studies have used the 

ensembling approach, where predictions from various modeling approaches are combined by 

assigning weights to generate forecast 48,49. Although the standard approach of ensembling is to 

assign equal weights to each forecasting model, researchers have developed advanced approaches, 

including least-square regression (LSR) average of in-sample weights (AIW)  that aims to generate 

optimal weights by minimizing the errors. Although ANNs, SVRs, and ensembling approaches 

usually tend to perform better than the traditional time series forecasting models, researchers 

should be cautious while using these advanced methods to avoid overfitting 50.  

2.1.2 Background and Literature 

Forecasting patient arrivals to the ED has been an active area of research across the world 

over the last two decades, given the public health and patient safety issue of ED crowding. 

Researchers have used a variety of forecasting methods to predict patient arrivals to the ED for 

different horizons 51–63. Additionally, a few studies have focused on forecasting specific types of 

patient arrivals to the ED (primarily patients with respiratory diseases) 64,65. In terms of the 

methodology used for forecasting patient arrivals to ED, ARMA, VARMA, Holt-Winters, linear 

regression, multiple linear regression (MLR), ARIMA, SARIMAX, ANNs, and RNNs have been 

used extensively. All the above-cited studies investigating patient arrivals to the ED except two 
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have used at least two different forecasting methods to evaluate the predictions generated and 

choose the best performing model. In terms of forecasting horizon, researchers have forecasted 

hourly, daily, and monthly patient arrivals. Surprisingly, none of the studies in the US have aimed 

to include ESI levels of the patients while generating the forecasts. Table 2.1 below provides a 

snapshot of prior studies with the forecasting horizon, forecasting methods, and inclusion of 

ESI/similar severity index in forecasts. 

A majority of prior studies have focused on forecasting the daily patient arrivals to the ED 

for various time horizons varying from 1-month forecast to 6 months. Among these studies, most 

have reported ARIMA or SARIMA models as the best performing models except for two recent 

studies, which reported neural networks (ANN and LSTMs) as the best performing models 53,58. 

However, it should be noted that one study among these two has not compared the machine 

learning models to the traditional time-series forecasting models, including ARIMA and SARIMA, 

and the other one used additional input variables beyond the time of patient arrival to the ED, 

which could have led to a non-linear relationship. Irrespective of the specific underlying reason, 

advanced machine learning models usually tend to outperform the traditional time series models 

when using multiple input variables 66,67. Although using multiple input variables can improve 

patient forecasts, some of these inputs are difficult to identify without proper feature selection 

approaches and require expert manipulation, making them difficult for use by ED administrators 

and stakeholders. Hence our primary focus was to use only two features a) patient arrival time and 

b) patient ESI levels. These two factors were selected because a) they can be readily extracted 

from Electronic Health Record (EHR) database and b) resource requirements vary by ESI, thus 

allowing for better planning.  
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Table 2.1: List of prior studies forecasting patient arrivals to the ED. 

Study 
Forecasting 

Horizon 

Forecasting 

Methods 

Inclusion of 

Severity 

Index 

Best Model 

Sarfo et al., 
Monthly for 24 

months 

VARMA, ARMA, 

Holt-Winters 

Australian 

Triage Scale 
VARMA 

Khaldi 
Weekly for 2 

Months 
ANN, ARIMA -- ANN 

Silva et al., 
Weekly, Daily for 

1 month 

ARIMA,  

Holt-Winters 
-- ARIMA 

Whitt Daily for 3 months 
SARIMA, 

SARIMAX, MLP 
-- SARIMAX 

Batal et al., Daily 3 months Regression -- 

Single 

Approach 

 

Jones et al., Daily for 1 month 

Regression, 

SARIMA, 

Exponential 

Smoothing, ANN 

-- 

Regression 

with calendar 

variables 

Sun et al., Daily for 6 months 
Regression, 

ARIMA 
P1,P2, P3 ARIMA 

Xu et al., Daily for 1 month 
ANN, MLR, 

Regression 
Only 3 & 4 ANN 

Kadri et al., Daily for 1 Month ARMA, ARIMA -- 
ARIMA 

 

Zhang et al., 
Daily, Hourly for 3 

Months 

ARIMA, KNN, 

SVR, Ridge, 

XGBoost, Random 

Forest, AdaBoost, 

LSTM 

-- 

 

LSTM 

 

Choudhury et 

al., 

Daily Hourly for 1 

month 

ARIMA, Holt-

Winters, NN, 

Regression 

-- ARIMA 

Hertzum 
Hourly for 1 

Month 

Regression, 

ARIMA 
-- ARIMA 

Cote et al., 

Hourly, Daily, 

Monthly, Yearly 

for Yearly 

Regression -- 

Single 

Approach 

 

 

Among four studies that focused on forecasting hourly patient arrivals to the ED, two 

studies identified ARIMA models to be the best performing model, while another reported LSTMs 

(a type of RNN) to be better than ARIMA, and the final study utilized only a single approach 
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(regression model). For the study using a single approach, the adjusted R-square for the models 

for hourly and daily predictions were 46.8 and 32.8, and forecasted values varied significantly 

from the actual values 57. This can be attributed to the lack of capability of simple linear regression 

models to account for the seasonality of patient arrivals to the ED, as reported by other studies 

60,61. For the study that reported LSTMs to outperform ARIMA, the potential reason that LSTMs 

outperform ARIMA could be because of two key reasons a) the use of multiple input variables and 

b) the capability of LSTMs to store important temporal behavior in the memory cell. Multiple prior 

studies have identified LSTMs to perform well for short-horizon forecasts where data varies 

quickly between the time frames 68–70.  

For the two studies that identified ARIMA as the best performing model for the hourly 

forecast, one reported ARIMA outperformed regression models, whereas the other study reported 

ARIMA outperformed Neural Nets, Regression, and Holt-Winters forecasting models. In the first 

study, although the ARIMA model outperformed the regression model, the hourly prediction 

varied significantly where the reported mean percentage error varied between 49-58% for the 

ARIMA model. Although it is expected that mean percent errors for smaller forecast horizons 

would be higher, the reported results limit the ability of the forecasting model to inform sound 

decision-making. The second study was able to develop a robust ARIMA model where the reported 

mean error (ME) and a root mean square error (RMSE) were 1.01 and 1.55. Although these 

observations are promising, the model was generating forecasts daily. This could be useful for 

immediate fixes such as adding hallway beds etc., in real-time but most EDs generate staffing 

schedules and resource allocation plans in advance (2-3 months ahead), thus failing to inform long-

term planning. Moreover, as briefly mentioned earlier, none of these studies that forecasted hourly 
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patient arrivals have considered patient severity (ESI) in their forecasts which is critical for 

resource allocation as each severity index requires different types of resources 12.  

To address these gaps, our research proposes a two-step modeling approach that utilizes 

patient arrival times and their severity index to forecast daily long-term (3 months ahead) and 

hourly short-term (weekly) forecasts. Three months duration for the long-term was decided based 

on the feedback from our partner ED which generates their shift schedules and resource allocation 

plans for 3 months ahead. Both the forecasts will provide the total expected patient arrivals along 

with their ESI levels to assist in resource allocations, including staffing schedules. To achieve this 

goal using the data from our partner hospital, we developed various traditional time series models 

along with machine learning models.  

2.1.3 Methods 

2.1.3.1 Data 

Input data for the model, including the number of patient arrivals to the ED and their ESI 

levels, were gathered from the PRISMA Health Greenville Memorial Hospital (GMH), Greenville, 

SC. PRISMA Health is the largest healthcare provider in South Carolina and serves as a tertiary 

referral center for the entire Upstate region, and the flagship GMH academic Department of 

Emergency Medicine is an Adult Level 1 Trauma Center. Patient arrival data from January 2017 

- December 2020, totaling 309,430 visits, were retrospectively accessed from the hospital’s EHR 

database. 

 We first introduce Figure 2.1 below, which represents the hourly average patient arrivals 

per day to the GMH ED over the four years. The first thing to notice here is the consistent hourly 

pattern across the four years. It can be observed that the patient arrivals are low during the early 

hours (12:00-7:00 am) and slowly start picking up from 7:00 am until 11:00 am -12:00 pm when 
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they reach the maximum and stay high until 6:00 pm. This patient arrival trend is consistent with 

a lot of other EDs, and prior studies have reported the same 28,71. Specifically, in this dataset, it can 

be observed that approximately 60% of the patient arrivals occur during the 8-hour time window 

between 9:00 am - 5:00 pm. Although the physicians and ED administrators are aware of this 

general trend of patient arrivals to the ED, it's crucial to have a robust prediction model to maintain 

adequate staffing, beds, and other resources at a given point in time to ensure the smooth function 

of the ED. This is where forecasting patient severity (ESI) adds value, as patient arrivals and ESI 

patterns are not the same throughout the day.  Forecasting of ESI thus provides more insights to 

providers and administrators regarding what resources (physicians vs. physician assistants, 

hallway bed vs. high acuity bed, etc.).  should be allocated to which pod, etc.  
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Figure 2.1: Hourly patient arrival per day to GMH ED. 
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Next, we introduce Table 2.2 below, which represents the percentage contribution of each 

ESI level on the patient arrivals for the four years. Similar to the hourly pattern, the first thing to 

notice here is the constant ESI pattern over the four years. It can be observed that about 50% of 

patient arrivals to the ED are ESI-3 patients, followed by ESI 2 and ESI 4, which contributed 25% 

and 18% of the patient arrivals. Finally, ESI 1 and 5 each contributed only 2-3% of the total 

arrivals. ESI 1 refers to severely unstable patients who need immediate intervention, and ESI 5 

patients are the most stable patients and may be treated non-urgently and mostly require the least 

resources. Although patient arrivals varied over the four years where the least arrivals were 

observed during 2020 because of the COVID-19 pandemic, as mentioned earlier, the percentage 

of each ESI level contributing to the total patient arrivals has stayed the same over the years. It 

should be noted that for each year, at most 2% of patient arrivals were recorded without an ESI 

level in the EHR, and we interpolated these values using the rest of the data as ESI levels were 

important for our forecasting models. 

Table 2.2: Percentage contribution of each ESI level on the patient arrivals to the ED. 

 

 

  

 

Next, we introduce Table 2.3 and Figure 2.2 to provide insights into the seasonality 

associated with the day of the week. Table 2.3 represents the average patient arrivals for each day 

of the week for each year, and Figure 2.2 represents the average patient arrivals for each day of 

the week over the four years. It can be observed that the patient arrivals are the highest on Mondays 

and least on the weekends. For weekdays other than Monday, the average patient arrival to the ED 

doesn’t vary drastically and stays within a specific range. Most EDs across the world have reported 

a similar weekly pattern 72.  

Year ESI 1 ESI 2 ESI 3 ESI 4 ESI 5 

2017 3% 25% 51% 18% 2% 

2018 3% 26% 51% 18% 2% 

2019 4% 25% 50% 18% 2% 

2020 4% 24% 53% 17% 3% 
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Table 2.3: Average patient arrivals for each day of the week. 

 

Finally, we introduce Figure 2.3, which represents the total monthly patient arrivals to the 

GMH ED for each year. The most important thing to notice here is the significant drop in patient 

arrivals in April and May 2020 because of the COVID-19 pandemic. Although these are outlier 

months, we did not exclude or extrapolate the data to capture the natural variability and be 

representative of the ED. Apart from these months, the arrival pattern did not vary significantly 

(p-value > 0.09).    

Year Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

2017 204 233 222 223 216 219 204 

2018 198 226 218 212 206 212 195 

2019 209 237 228 221 218 220 204 

2020 196 233 221 218 215 215 203 
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Figure 2.2: Average daily patient arrival rate to GMH ED (2017-2020). 
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For training the models and testing the potential of various models to forecast patient 

arrivals, we split the data into training and test set. We used the last 90 days of 2020 as the test set, 

and the rest of the data was used for training. For daily data, each row in the data set corresponds 

to a specific date, and the dataset had six columns ESI 1, ESI 2, ESI 3, ESI 4, ESI 5, and the Total. 

For the hourly data, each row represented a specific hour of the day and had the same six columns. 

Figure 2.4 below represents the first five rows of hourly (left) and daily (right) datasets.  

  
Figure 2.4: Sample hourly and daily file inputted into the model. 
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Figure 2.3: Monthly patient arrivals to GMH ED. 
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2.1.3.2 Model Development and Evaluation 

From the data discussed above, it is evident that naïve forecasting models will not be useful 

in forecasting the patient arrivals to the ED in this case, given the seasonality. However, we used 

the moving average model as our benchmark model to compare the forecasts from other models. 

Multiple studies have reported ARIMA and SARIMA models to be effective in forecasting time 

series data, especially SARIMA when the data is considered to have seasonality 56,59–63. Based on 

these observations, as well as our high-level data analysis, we decided to develop both ARIMA 

and SARIMA models in this study.  

2.1.3.2.1 ARIMA and SARIMA Forecasting Model 

The ARIMA model has three parameters (p, d, q) which should be tuned according to the 

characteristics of input data to develop a robust ARIMA model. Here p represents the order of the 

autoregressive components, which are the lags or the previous values that should be considered to 

predict the next value, d represents the number of differentiation required to make the data 

stationary if the initial data is non-stationary, and q represents the order of moving average 

component which is the number of past error terms that should be used for prediction. There are 

various validated methods to estimate the best p, d, q values, and in this research, we followed the 

approach suggested by Box and Jenkins 73. First, to check if the data can be considered to be 

stationary, we performed a Dickey-Fuller test 74. For the Dickey-Fuller test, if the p-value was less 

than the alpha level (0.05), we reject the null hypothesis (H0 = This time series has a unit root and 

is not stationary).  If non-stationary, the data was differentiated until stationarity was achieved, 

and the number of differentiations will be used for d. To determine the AR and MA components, 

p and q, the auto-correlation function and partial auto-correlation function were plotted. Based on 

if the partial correlation function and autocorrelation function vanish (stay within the confidence 
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interval), we choose the p and q. If these functions do not vanish (go beyond the confidence 

interval), we used those patterns to set the upper bound and lower bound of p and q. After selecting 

the parameters, the best combinations were selected based on the Akaike information criterion 

(AIC) values. After which the goodness of fit of the model was evaluated using the Jarque-Bera 

test. Additionally, we plotted standardized residuals over time and Q-Q plot to evaluate the 

residuals were normal. After evaluating all these criteria, the model was used to forecast the patient 

arrivals for the forecast horizon.  

Next, to account for the various seasonality components involved in the ED patient arrival 

data, we developed the Seasonal ARIMA (SARIMA) model for predicting patient arrivals. The 

SARIMA model is an extension of the ARIMA model that adds new parameters to account for the 

seasonal element in data. Similar to ARIMA, the SARIMA model can be represented using its 

parameters: (p,d,q)(P, D, Q)m, where p and P represent the order of autocorrelation at the 

nonseasonal and seasonal levels, respectively, d and D represent the degree of 

nonseasonal/seasonal differencing, and q and Q represent the order of the moving average process 

at the non-seasonal, and seasonal levels and the m represents the seasonality of the data. For 

developing and evaluating the SARIMA model, we followed the same approach as for ARIMA, 

and the m was set as 7 because our data was for daily prediction. In the case of hourly prediction, 

m was set as 24.  

In this section, we will discuss how we set the parameters for our ARIMA and SARIMA 

models used for long-term daily prediction. As mentioned above, the first step was to check if the 

data was stationary, and for this, we performed the Dickey-Fuller test and observed that the p-

value < 0.001. Hence, we rejected the null hypothesis and determined that the data was stationary. 

Hence our value for d=0. Next, to determine p and q, we plot the partial autocorrelation function 
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and auto-correlation function. Figure 2.5 and Figure 2.6 below represent the autocorrelation and 

partial autocorrelation plot, and we see that both the partial correlation function and the 

autocorrelation function do not vanish, so we try to model it as an ARMA sequence. Here we select 

both p and m to vary from 1 to 6, and these numbers were based on the seasonality of the data. 

Based on the AIC values, ARIMA (3,0,1) is the best model, whose AIC was 11221.67.  

 

 

 

 

 

 

 

Figure 2.6: Partial autocorrelation plot for daily data. 

Figure 2.5: Autocorrelation plot for daily data. 



20 

 

From the Jarque-Bera test results, we verified that the model was not skewed or had excess 

kurtosis. Although these are performed to verify normality, we also plotted standardized residuals 

over time and a Q-Q plot to evaluate whether the residuals were normal. Figure 2.7 represents the 

standardized residuals over time, and Q-Q plot, it is evident that the residuals are normal.  

 

Our next step was to develop the SARIMA model, and the exact same steps were followed. 

Based on the AIC values, SARIMA (3,0,1) (1,0,1)7 is the best model, whose AIC was 10959.25. 

From the Jarque-Bera test results, we verified that the model was not skewed or had excess 

kurtosis. We also plotted standardized residuals over time and a Q-Q plot to evaluate whether the 

residuals were normal. Figure 2.8 represents the standardized residuals over time and Q-Q plot, 

and it can be observed that the residuals are normal 

Figure 2.7: Standardized residuals over time and Q-Q plot (ARIMA). 
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Next, for developing the short-term hourly forecasting models, we repeated the same 

testing as discussed above and first observed that the data was stationary (p-value < 0.001). Next, 

we plotted the auto-correlation function and partial auto-correlation function to determine p and q. 

Figure 2.9 and Figure 2.10 represent the autocorrelation and partial autocorrelation plot, and we 

see that neither the partial correlation function nor autocorrelation function vanishes, so we model 

it as an ARMA sequence. Here we select p to vary from 1 to 12 and q to vary from 1 to 12, and 

these numbers were based on the seasonality of the data. Based on the AIC values, ARIMA (2,0,3) 

is the best model, whose AIC was 4595.95. Similarly, for SARIMA based on the AIC values, 

SARIMA (3,0,1) (5,1,0)24 was the best model, whose AIC was 4204.09. From the Jarque-Bera test 

results, we verified that the model was not skewed or had excess kurtosis. Additionally, we also 

Figure 2.8: Standardized residuals over time and Q-Q plot (SARIMA). 
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plotted standardized residuals over time and a Q-Q plot and observed that the residuals were 

normal. 

Figure 2.10: Partial autocorrelation plot for hourly data. 

Figure 2.9: Autocorrelation plot for hourly data. 
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2.1.3.2.2 Holt-Winters Forecasting Model 

For our next model, we developed a Holt-Winters forecasting model as this approach can 

account for the level, trend, and seasonality component in the time-series data. A Holt-Winters or 

triple exponential smoothing model has three parameters: Alpha, Beta, and Gamma, where Alpha 

specifies the coefficient for the level smoothing, Beta specifies the coefficient for the trend 

smoothing, and Gamma specifies the coefficient for the seasonal smoothing 75,76. Additionally, a 

parameter representing the type of seasonality “m” is also included in model 77. To develop this 

model, we used the open-source statsmodel package as this allowed us to run multiple models in 

parallel with different parameters and identify the best model fits based on AIC values. For the 

trend and seasonality and we have two options of smoothing, either additive or multiplicative. 

Since our data did not show an exponential increase over time, we used additive smoothing for 

both. However, to account for the decrease in patient arrivals because of the COVID-19 pandemic, 

we used a dampening method on the trend smoothing. Figure 2.11 below represents the best Holt-

Winters model parameters based on AIC (8299.37) for generating the daily long-term forecast. A 

model with different parameters and seasonality was used to develop the hourly forecasting model.  

Figure 2.11: Holt-Winters model parameters for daily long-term forecasting. 
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2.1.3.2.3 Machine Learning Models  

Finally, we also developed two machine learning models: Extreme Gradient Boosting 

(XGBoost) and Random Forest Regression model. Both are decision tree machine learning 

algorithms and require a supervised learning approach where each input requires an output pair 

within the training model for the model to learn and later predict. However, the foundation of each 

algorithm is different where Random Forest Regression uses a bagging technique, whereas the 

XGBoost uses a boosting technique for learning. The Random Forest algorithm generates multiple 

decision trees in the beginning with equal weight and runs in parallel, whereas the XGBoost 

follows an iterative approach where each tree starts with a single leaf and then expands to multiple 

trees based on the information gain (learning). For the XGBoost algorithm, although there are 

numerous parameters, there are six major/primary hyperparameters, which are a) Number of sub-

trees, b) maximum tree depth, c) learning rate, d) L1 (reg_alpha) and L2 (reg_ lambda) (e) the 

complexity control (gamma=γ) and, (6) minimum child weight. Here, the number of sub-trees 

informs the algorithm when to stop learning, and the maximum depth represents how many splits 

should be generated from each tree. For identifying the number of sub trees, we used the treelimit 

function within the XGBoost opensource library, and for depth, we restricted the value to 3 to 

protect from overfitting by increasing the number. The learning rate represents the constant that is 

multiplied by the weight in each tree to continue learning. We tested a few values and used 0.01 

as the learning rate as this allowed for the best performance on our dataset. The consensus is that 

a lower learning rate generates a better model fit at a higher computational cost. L1 and L2 are 

regularization parameters used to avoid overfitting models by lowering variance while increasing 

some bias. However, since we had a single feature, we used the default values. gamma=γ was 

initially set at 0, and based on the training and testing speed, we varied this value to control for the 
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complexity from loss. Finally, to avoid overfitting, we utilized a minimum child weight of 1 as 

this is considered a “safe” practice 78,79.  

The Random Forest Regression model also has six core hyperparameters, similar to 

XGBoost. Starting with the first one, n_estimators, which represents the number of decision trees 

that will be used in the model. We identified this number by running multiple scenarios and 

choosing the one that returned the leaset mean absolute error (MAE). The next hyper parameter 

was criterion which represents the performance metric such as MAE, root mean square error 

(RMSE), etc., to calculate the loss function. We developed the model using each and observed the 

one using MAE outperformed the RMSE. The third criterion is are max_depth, which is the same 

as the one mentioned for XGBoost. The fourth one is max_ features and represents the maximum 

number of features the model should consider when determining a split, and in our case, we had 

only a single feature. The last two are bootstrap and max_samples. Bootstrapping process 

randomly takes a set of samples from the data, learns and makes predictions out of it, and replaces 

the sample back in the dataset. The idea of this method is to infer population results from the small 

subsets of the data. These predicted results are then averaged to potentially obtain better results. 

The max_samples hyperparameter represents the maximum number of samples from the training 

dataset that will be given for any individual tree for bootstrapping. In our models, we used 

bootstrapping to improve the efficacy of the forecast and used max_samples of 90 or 168 based on 

long-term or short-term forecasts. 

For each model discussed above, the models were trained using the total arrivals, and the 

ESI levels were not used. However, for the forecasts, the model developed using the total arrivals 

was used to forecast each ESI level. Although this is not the ideal scenario, this provides an 
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opportunity for physicians and administrators to get some sense of the ESI levels of arriving 

patients.   

2.1.3.2.4 Prediction Evaluation Metrics 

To evaluate the performance of each model, we utilized three performance metrics: Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percent Error 

(MAPE).  

Root Mean Square Error (RMSE): 
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Mean Absolute Percentage Error (MAPE):  
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Here 𝑦𝑡  represents the actual value and �̂�𝑡 represents the forecasted value in time t, and n 

is the number of time units. Since each metric has its own advantages and limitations, we decided 

to report all three metrics to capture the whole picture. Both RMSE and MAE are not independent 

scale metric and does not allow for direct comparison over various time series. RMSE is built 

around the mean and penalizes the outlier heavily, whereas MAE is built around the median and 

protects against penalizing the outliers heavily. However, as mentioned earlier, MAE does not 

allow comparison across different scales and has a higher chance of bias. To allow for comparison 
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across multiple time series, we report MAPE. Thus, reporting these different metrics allowed for 

presenting the advantages and drawbacks of each forecasting model.   

2.1.4 Results 

Upon developing the model and tuning the parameters to achieve the best performance 

metric on the training data, the next step was to use these models to forecast the future patient 

arrivals to the ED. We first discuss the findings from the long-term forecasting model, which 

forecasts the patient arrivals to the ED for the next 90 days. The predicted model output was 

compared against the actual data to calculate each performance metric. Table 4 below represents 

the performance metrics score for each model for the long-term forecasts.  

Table 2.4: Model performance for the 90-day forecast. 

 

 

 

 

From Table 2.4 above, it is evident that both machine learning models outperformed the 

naïve model and other traditional time series models. However, it is interesting to notice that the 

Holt-Winters approach outperformed the ARIMA model, and this can be primarily attributed to 

the fact that the Holt-Winters model can account for seasonality. However, comparing the 

SARIMA model to the Holt-Winters model, SARIMA was slightly better. 

The most significant improvements were observed with the machine learning models, 

where the MAPE value was reduced by half compared to the traditional time series forecasting 

model. Among the two machine learning models, XGBoost outperformed the Random Forest 

model for all the performance metrics. One of the key observations here is the high RMSE values 

Model RMSE MAE MAPE 

MA 30.1 23.6 14.2% 

ARIMA 27.2 21.6 10.6% 

SARIMA 25.6 19.2 9.9% 

Holt Winters 26.8 19.8 10.0% 

XGBoost 16.6 14.1 5.9% 

Random Forest 17.4 14.6 6.4% 
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irrespective of the forecasting approach, which could be potential because of the extreme values 

(outliers). To investigate this, we plotted the forecasts from the best-performing model against the 

actual values. Figure 2.12 below presents the daily forecasted values against the actual values for 

the 90-day period. It is clear from the data that there are few outliers, and the pattern is not as 

seasonal as compared to the prior data. This is primarily because of two reasons: a) the last 3 

months of 2020 observed a significant variation in ED patient demands, and b) these months led 

to increased patient demands due to COVID-19 patients. On a positive note, even with a significant 

change in patient demands and arrivals, the machine learning models forecast were robust (based 

on RMSE, MAE, and MAPE) as models with a MAPE value of 5.0% are considered excellent 80. 

However, to avoid bias and over-relying on one value, we look at RMSE (16.6), which is 

comparatively low given the daily arrivals vary from 150 patients a day to as high as 270 patients.  

Figure 2.12: Daily XGBoost forecast against actual values. 
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After identifying the best-performing model, the next step was to look at the ESI 

predictions for the 90-day forecast. Table 2.5 below represents the performance metrics score for 

each ESI level from the XGBoost forecast.  

Table 2.5: XGBoost ESI level forecast for 90 days. 

 

 

 

 

The first thing to notice from Table 2.5 above is the varying RMSE, MAE, and MAPE 

values across the ESI levels. Specifically, it can be noticed that MAPE values are high for ESI 1 

and 5 and minimum for ESI 3, whereas the RMSE and MAE behave vice versa. This represents 

the bias associated with each metric where MAPE penalizes heavily when the forecasted values 

are smaller as it is a percentage value. For example, if the residual is 1 and the actual value is 5 

then the percent error here is 20%, but if actual values are larger, the percent error value will shrink. 

Since ESI 1 and 5 together contributes only towards 5% of daily arrivals, a small variation in 

prediction is penalized heavily by MAPE values. However, by using a combination of three 

performance metrics, we can identify that the ESI-level forecasts from the model are still robust.  

Next, we forecast our short-term prediction, which is an hourly prediction a week ahead. 

Table 2.6 below represents the performance metrics score for each model and it is evident that 

both machine learning models outperformed the naïve model and other traditional time series 

models. Similar to the long-term predictions, the Holt-Winters approach outperformed the ARIMA 

model because of the seasonality component in the Holt-Winters approach. However, among the 

traditional time-series models, SARIMA was still the best performing model. The most significant 

improvements were again observed with the machine learning models, where the RMSE, MAE, 

ESI RMSE MAE MAPE 

ESI 1 3.1 2.8 38.0% 

ESI 2 8.9 7.0 12.5% 

ESI 3 13.4 10.1 8.4% 

ESI 4 6.0 5.1 15.5% 

ESI 5 1.9 1.4 46.1% 
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and MAPE values reduced significantly compared to the traditional time series forecasting model. 

Among the two machine learning models, XGBoost slightly outperformed the Random Forest 

model for all the performance metrics. 

Table 2.6: Model performance metric for the hourly forecast. 

 

 

 

Similar to the observations we had while predicting daily ESIs that contributed very less 

to the patient arrivals, the MAPE values are really high. As a benchmark, we compared these 

numbers to a prior study forecasting hourly patient arrivals to the ED and observed the same 

pattern, and MAPE values from our best performing model were lower than their best performing 

model’s MAPE 53. To further investigate and ensure that our forecasts were not significantly 

different from the actual observations, we plotted the hourly prediction generated for a week 

against the actual values. Figure 2.13 on the next page presents the hourly forecasted values against 

the actual values for one week.  

It is evident from the figure that there are some hours of the day where the forecasted values 

and actual values show a mismatch. However, in general, the forecasts track the actual patient 

arrivals for most of the week. Although some prior studies have used the approach of adjusting 

extreme values/outliers, we did not follow that approach to maintain the data integrity and be 

representative of the variability observed in the ED. Next, using the XGBoost model, we forecasted 

the ESI-level hourly forecast for the same time frame.  

 

Model RMSE MAE MAPE 

MA 4.2 3.5 49.3% 

ARIMA 3.4 2.6 44.1% 

SARIMA 3.3 2.5 39.8% 

Holt Winters 3.4 2.5 42.4% 

XGBoost 2.2 1.4 32.4% 

Random Forest 2.3 1.5 34.2% 
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Figure 2.13: Hourly XGBoost forecast against actual values. 

 

Table 2.7 below represents the performance metrics score for each ESI level from the 

hourly XGBoost forecast. We removed the MAPE from the table for hourly ESI level calculations 

as those values were significantly high because the range of values (arrivals) for some ESI was as 

low as 0.  It can be observed that both MAPE and RMSE values are low, given the hourly patient 

arrival range was as low as 1 to as high as 16 for certain ESI levels.  

Table 2.7: XGBoost ESI level hourly forecast for one week. 

 

 

 

 

ESI RMSE MAE 

ESI 1 0.5 0.44 

ESI 2 1.2 0.93 

ESI 3 1.8 1.40 

ESI 4 1.2 0.99 

ESI 5 0.5 0.30 
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2.1.5 Discussions and Conclusions 

Protecting the ED from crowding is one of the highest public health priorities, and each 

ED across the US uses both long and short-term planning to mitigate the consequences of ED 

crowding. The solutions could vary from short-term fixes such as adding temporary beds to long-

term planning of a complete overhaul of shift designs. Beyond the short and long-term planning, 

sometimes it requires ad-hoc actions such as adding hallway beds, etc. Although sometimes ad-

hoc actions are required because of unexpected issues such as evacuations and natural disasters, 

most of the time, these are required because of inadequate short and long-term planning.  One of 

the most important inputs required for robust planning is the future patient census (arrivals) to the 

ED. Over the last decades, several studies have applied numerous approaches for forecasting 

patient arrivals to the ED and have generated acceptable results 51–63. However, most of these 

studies have focused on predicting daily patient arrivals to the ED except for two recent studies 

that have explored hourly patient arrival forecasting 53,60. Moreover, among these two, only one 

study has investigated both long-and short-term forecasting 53. Surprisingly, neither of these 

studies have included ESI levels of forecasted patient arrivals, and the latter study only explored 

machine learning algorithms.  

Our research developed traditional time-series models and machine learning models to 

forecast long-term (daily forecast – 90 days ahead) and short-term (hourly forecast – one week 

ahead) patient arrivals to the partner ED with the patient’s ESI levels. This study used two simple 

input variables: patient arrival time and ESI levels, exportable from any hospital EHR database, 

and forecasted the daily and hourly arrivals using traditional time-series approaches including 

ARIMA, SARIMA, Holt-Winters and two machine learning algorithms XGBoost and Random 

Forest regression. Machine learning algorithms outperformed the traditional time-series, 
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forecasting models. XGBoost generated the best long-term and short-term forecasts with MAPE 

values of 5.9% and 32.4% outperforming prior studies. Moreover, we forecast ESI levels of these 

arrivals for the long-term and short-term with maximum RMSE values of 13.4 and 1.4. These 

findings are promising especially given the simple input variables and the realistic time horizon of 

the forecasts to inform both long- and short-term planning.  

Future research will focus on incorporating other simple parameters that can be exported 

from EHR to investigate if the model predictions can be improved. Additionally, a hierarchical 

forecasting approach with an optimization function could potentially improve ESI-level 

forecasting. Lastly, these forecasts are only practically useful if there exist scheduling tools to 

input the forecast output and estimate the necessary changes in resource allocation. In the next two 

chapters, we discuss two such tools that can be used for estimating resource allocation 

requirements by using the patient arrival census as input.  
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3. Chapter Three 

3.1 Overlapping Shifts to Improving Patient Safety and Patient 

Flow in ED 

3.1.1 Introduction  

According to the 2017 Centers for Disease Control and Prevention (CDC) reports, 

approximately 151 million visits are made to Emergency Departments (EDs) in the US annually 

3. These numbers are expected to increase based on the current trends where ED patient arrivals 

have seen a 24.7% increase over the last ten years 81. Although studies have reported the lack of 

primary care access, substance use disorders, and psychotic issues as a significant cause of 

increased patient arrivals to EDs, the key reason driving the increasing patient arrivals are 

underserved patients 82. While the Affordable Care Act has helped reduce ED visits by uninsured 

patients, ED access by the underserved population has increased significantly 83. Moreover, the 

federal mandate, Emergency Medical Treatment and Active Labor Act (EMTLA), which requires 

an ED physician to provide stabilizing care to a patient irrespective of their ability to pay, makes 

ED the healthcare safety net 2. According to the latest reports, about 70% of inpatient hospital 

admission occurs through the ED, and an additional 3% are transferred to a different hospital for 

inpatient admission 84. 

The diverse nature of patients seeking medical care and the overwhelming volumes of 

arrivals make ED one of the most complex healthcare environments predisposed to crowding. The 

American College of Emergency Physicians defines crowding as a situation in which the identified 

need for emergency services exceeds available resources for patient care in the emergency 

department, hospital, or both 4. ED crowding is a patient safety issue as well as a public health 
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problem. Crowding results from multiple factors, including high patient volumes, inadequate 

staffing, bed shortages, etc., and negatively impacts patient flow, patient safety, and health system 

expenditure 5–7,9–11. Additionally, the reduced availability of ED beds due to admitted patients 

awaiting transfer into an in-hospital bed restricts an ED's capacity to accept new patients, resulting 

in higher patient boarding time and delays in providing patient care 8. It is imperative that ED 

resource allocation, which includes staffing and availability of providers, number of beds, and 

ancillary units, including labs, radiology, etc., are well planned to improve the patient flow and 

patient safety within the health system and avoid ED crowding. Although the most intuitive 

solution to address crowding is adding extra resources, including beds, staff, and ancillary units, 

adding new hospital resources could be very expensive. Moreover, researchers have observed that 

rather than adding physical resources (e.g., bed, equipment, machines, etc.), temporarily adding or 

changing staff schedules are comparatively cheaper options. However, the schedules should be 

generated carefully such that they can improve patient flow and patient safety in the ED without 

overstaffing.  

Patient safety is an integral aspect of the ED as continuous patient flow and interactions 

with multiple departments and providers make it prone to errors. Recent studies have observed ED 

as one of the hospital departments with high error rates. Some of the common sources of ED errors 

are interruptions, miscommunications, and loss of information. Handoffs, transfer of a patient's 

care and responsibility from one physician to another, are fraught with miscommunications, 

omissions, errors, and information loss 85,86. However, handoffs are unavoidable in EDs as they 

operate throughout the day, and a physician ending their shift is required to transfer their current 

patients to the newly arriving physician. Although unavoidable, handoffs should be minimized, as 

it is a significant patient safety concern. 
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A recent study where thirty-six ED physicians were shadowed for over 100 hours observed 

that a physician's likelihood of making an error while prescribing was significantly higher when 

interrupted 87. Similarly, studies have observed that approximately 80% of serious medical errors 

involve miscommunication during the patient handoff 88. Additionally, poor handoffs, which 

involve miscommunication, can lead to conflicting expectations for information and contribute to 

delayed patient onboarding and conditions that can pose safety threats 89. Further, studies that 

specifically investigated ED shift-change handoffs observed that for approximately 75% of the 

patients, the vital signs were not communicated, and errors were observed in about 60% of cases 

90. Finally, insurance claims involving missed ED diagnoses that harmed patients reported that 

24% of the cases involved inadequate handoffs 91. 

From the literature, it is evident that ED patient handoffs have a negative impact on patient 

safety. Hence, while developing ED physician staffing schedules, it is crucial to consider handoffs 

as a performance metric along with other patient flow metrics. To our knowledge, most of the prior 

studies that used simulation modeling or mathematical modeling approaches have focused only on 

the patient flow in the ED, and none have considered patient safety metrics as a performance 

indicator of the ED. This research developed a novel hybrid simulation model for identifying shift 

policies that can improve patient safety and patient flow in the ED while not negatively affecting 

other Centers for Medicare & Medicaid Services (CMS) core metrics. 

3.1.2 Background and Literature 

The contribution of operations research models and methodologies has had a significant 

impact on improving EDs throughout the world. A variety of approaches, including mathematical 

and optimization models, queuing theory, simulation modeling, and probabilistic models, have 

been used to address a variety of ED issues, including resource allocation, patient streaming, fast 
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track ED, staffing, and scheduling, etc. Although various tools have been used to improve ED 

operations, researchers have endorsed simulation models as one of the best tools to model different 

phases of patient flow (arrival to departure) in the ED because of the complexity and nature of ED 

92,93. Specifically, researchers have identified discrete event simulation (DES) to be efficacious in 

representing and simulating ED activities 94,95. Additionally, the ability of simulation tools to 

model different ED processes, phases of patient flow, and test "what-if" scenarios make it an 

essential tool to investigate staffing and scheduling, resource allocation, and overall process 

improvement before implementing changes 96.  

One of the earliest studies that utilized DES for bed allocation was half a century ago 17. It 

investigated various scenarios that compared the impact of the grouping of patients and its impact 

on bed utilization. Additionally, simulation models' capability to delve into the micro details of 

processes has helped in understanding the bottleneck leading to an increased length of stay and, 

thus, assisting in resource allocation 97,98. Further, studies have used simulation models to test each 

variable's impact, including different resources in the ED, to identify their impact. Specifically, 

one study identified that adding a single doctor and nurse during ED peak hours was found to 

impact patient waiting times the most 99. Similarly, a recent study used the DES modeling approach 

to identify the number of different resources it would require, including beds, staff, equipment etc., 

to meet specific key performance metrics such that the desired patient flow is achieved 100. 

Moreover, researchers have used the DES modeling approach to compare a pod versus unit-based 

ED and observed that pod-based ED improves the quality of care metrics by slightly increasing 

resource utilization 13. Finally, studies have combined simulation modeling with optimization to 

identify the optimal amount of ED staff and other resources required to improve the patient flow 

101–103. One particular study has observed that without any new addition of resources, a simulation 
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optimization model was able to reduce the patient wait time by 40% and increase the throughput 

by 28% 101. Similarly, studies have used linear optimization models to identify a resource's 

contribution to ED workflow and test a variety of shift schedules. One study investigated the 

impact of a staggering shift schedule and observed that it reduced the LOS and the number of staff 

required 104. 

All these studies aimed to improve the patient flow in the ED using different approaches 

but mainly focusing on resource allocation. Hence, most studies considered physicians as 

resources, thus failing to capture different physician activities in the ED. Similarly, a majority of 

the prior studies modeled the physician-patient encounter as a single visit with a time delay that 

fails to capture the multiple physician-patient interactions, physician placing patient orders, the 

possibility of handoffs, etc., as observed in the ED. We observed one specific study that modeled 

physicians as agents for the physician-patient assignment, but the study was limited to 

investigating patient onboarding time and did not consider the other performance metrics 105. 

Although numerous studies have used simulation models to test different staffing 

schedules, staffing levels, and resource planning in the ED to improve patient flow in the ED, none 

of the studies has considered combining patient safety and patient flow metrics to evaluate the ED. 

Similarly, from the medical literature, studies that investigated the negative impact of handoffs 

have focused on improving the quality of handoffs by standardizing handoffs using templates, 

using dedicated space for handoffs, bedside handoffs, etc., rather than reducing the number of 

handoffs 106–109. One of the earliest recommendations on interventions to reduce the number of 

handoffs was a decade ago when a group of ED physicians recommended that overlapping shifts 

could potentially reduce the number of handoffs 110. However, no observation or intervention was 

performed to investigate the recommendation.  
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We identified a recent study that implemented and investigated the impact of overlapping 

shifts on handoffs 111. The study was conducted in a pediatric academic ED with an annual volume 

of 46,000 patients, and ED physician shifts with three-hour overlap were implemented. Compared 

to the non-overlapping policy, the new overlapping policy that restricts physicians from taking 

new patients during the end of their shift was able to reduce the percentage of handoffs by 25%, 

with a non-significant increase in the patient time in the ED. However, translating such policies to 

larger Level 1 trauma centers like our partner ED, which sees over 106,000 patients over multiple 

pods, is expensive and requires validation before implementation. Moreover, implementing ED 

physician shifts with a three-hour overlap in multiple pods can also lead to a higher cost burden 

for larger systems. Hence, a risk-cost-benefit analysis of the same is warranted before 

implementing such policies.  

As the first step in this direction to investigate if such policies can be translated to other 

larger EDs, we developed a proof-of-concept model using a publicly available dataset and tested 

a few policies 15. In this proof-of-concept model, we did not model individual pods and other 

details pertinent to our partner ED but considered the whole system as a single unit with bed 

capacities and staffing representing our partner ED. Further, we tested only the impact of 

restricting the leaving physician from taking high-severity patients during the last hour of the shift 

and did not consider overlapping shifts. 

3.2 Phase One 

3.2.1 Methods 

3.2.1.1 Data 

Data used in this study (average door to physician time, wait time in the ED, treatment 

time, and total time in the system) was obtained from the publicly available National Hospital 
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Ambulatory Medical Care Survey (NHAMCS) 2011 and 2015. NHAMCS is a Centers for Disease 

Control and Prevention (CDC) initiative to collect data on the utilization and provision of 

ambulatory care services in hospital emergency and outpatient departments and ambulatory 

surgery locations. Findings are based on a national sample of visits to these departments. The data 

regarding the shift schedule, the capacity of the ED, the number of physicians available for a shift, 

etc., were obtained from the ED of the partner hospital, Greenville Memorial Hospital (GMH) in 

South Carolina. The research team included an ED physician working in the GMH, SC, for 

guidance and developing policies, which are discussed later in the paper. 

We first introduce Figure 3.1, which represents the total time spent by a patient in the 

system based on the data from the NHAMCS mentioned above. From Figure 3.1, we split the data 

into evaluation time and additional care time, as shown in Table 3.1. Evaluation is the time spent 

by a physician observing the patient (direct contact with the patient), whereas additional care is 

the time spent by a nurse (running tests, providing meds, etc.) or time spent with a consulting 

physician if requested. 

 

Figure 3.1: Patient time spent in the ED for different triage levels. 



41 

 

As seen in the table, the total evaluation time for a patient is comparatively lower than the 

total time spent providing additional care, which is consistent with prior studies (Hollingsworth et 

al. 1998; Hill et al. 2013) and observations from the GMH ED. The evaluation time and time for 

additional care were split based on the severity of the patient. In the case of level one patients 

where the condition is critical, physicians spend more time during the first evaluation trying to 

stabilize the patient. Whereas in cases two and three, the physician initially runs a few tests to 

comprehend the ailment; hence the initial evaluation is lesser than the second evaluation. For cases 

four and five, which are less severe, the physician spends almost the same time for the first and 

second evaluations. In general, the total evaluation time contributed to 30-50% of the total time.  

Table 3.1: Time spent by a patient in the ED. 

Patient arrivals are represented in Figure 3.2 based on the data from a previous study 28. 

Note that activity is low in the early morning hours, but there is a steady increase from 7:30 am 

until 12:00 pm, at which point patient arrivals remain consistent until 5:00 pm. 

 

 

 Severity 

Activity 1 2 3 4 5 

Evaluation 1 TRIA(33,35,37) TRIA(13,15,17) TRIA(8,10,12) TRIA(12,14,16) TRIA(8,10,12) 

Additional Care 1 TRIA(28,30,32) TRIA(28,30,32) TRIA(23,25,27) TRIA(23,25,27) TRIA(20,22,24) 

Evaluation 2 TRIA(23,25,27) TRIA(23,25,27) TRIA(20,22,24) TRIA(6,8,10) TRIA(6,8,10) 

Additional Care 2 TRIA(28,30,32) TRIA(38,40,42) TRIA(18,20,22) TRIA(21,23,25) TRIA(8,10,12) 

Evaluation 3 TRIA(20,22,24) TRIA(11,13,15) TRIA(8,10,12) N/A N/A 

Additional Care 3 TRIA(21,23,25) TRIA(20,22,24) TRIA(18,20,22) N/A N/A 

Evaluation 4 N/A TRIA(8,10,12) TRIA(8,10,12) N/A N/A 

Additional Care 4 N/A TRIA(18,20,22) TRIA(18,20,22) N/A N/A 



42 

 

 

3.2.1.2 Initial Simulation Model 

The proof-of-concept model that aimed to minimize the number of handoffs was built in 

Arena using a discrete event modeling approach. However, unlike the traditional modeling 

approach adopted in most previous research, which considered the physicians as a resource and 

the patient as an entity receiving treatment, this simulation model considers the physician and the 

patient as agents that flow in the ED. Under this modeling method, physicians and patients carry 

unique attributes and can contribute to their own actions and the actions of others. This modeling 

approach provides the flexibility of replicating physician activities in the ED, such as searching 

and accepting a patient, interacting with patients based on their severity, performing patient 

handoffs, and charting, which would be difficult to accommodate if physicians were modeled as a 

resource. 
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Figure 3.2: Patient arrival rate to the Emergency Department. 
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The model is initialized by creating patients and physicians. Upon patient arrival, the 

severity of a patient is assessed on a level of 1-5 by a triage nurse, where 1 demands immediate 

attention and five is considered the least urgent. The patient is next registered into the hospital 

electronic health record and waits in the waiting room, where they are prioritized based on the 

initial triage-severity level assigned. The ED nurse collects the patients from the waiting room 

based on their severity level, availability of a physician, and ED rooms. In the case of patients with 

a severity level of 1, they are taken to the trauma bay rather than to the normal ED room. The ED 

rooms and trauma bays are modeled as resources where the capacities of these resources are the 

same as their capacities in the GMH ED. 

Upon a physician's arrival on shift, the physician who will be leaving the ED must transfer 

his patients to the arriving physician.  As mentioned earlier, this process of transferring the care of 

a patient is defined as a handoff. Post handoff, the physician decides on taking a new patient 

depending on the current number of cases handled. In current practice, it is not common for the 

oncoming physician to check how many patients the other physicians are currently handling. Thus, 

the physician only considers whether or not he can accommodate another patient instead of trying 

to balance the workload among physicians. 

If the physician accepts a new patient, the physician meets the patient in the ED room for 

the first evaluation, after which the physician returns to the station to document in the medical 

record, order tests, medicines, consult, etc. The nurse then completes their required documentation, 

physician-ordered tasks, medication administration, and runs bedside tests or ordered 

interventions. Patient care often includes diagnostic imaging that may require the patient to be 

moved out of the ED to the radiology suite. Following the drug administration, imaging, and 

diagnostic testing, the physician returns to the patient for the subsequent evaluation, and the 
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physician remains focused on that patient until clinically stabilized. After the evaluation, the 

patient is either discharged or admitted as an inpatient to the hospital, and the physician may take 

on a new patient. Although the patient time of day arrival is relatively predictable, the variability 

of patient acuity is not. Thus, the ED physician’s workload and the need to take on a new patient 

is influenced by triage severity level regardless of the number of patients currently under the 

physician's care. 

As mentioned earlier, our primary goal in this research was to reduce the number of 

handoffs, and hence our focus was to replicate the physician's behavior in the ED successfully. 

The modeling approach adopted was able to satisfy this goal successfully. Although we do not 

consider the triage nurses, nurses, consults, and in-hospital bed placement as specific entities or 

resources in the simulation model, the delays associated with each process were incorporated as 

probability distributions. This approach was adopted as it does not affect the efficacy of the model 

to replicate the physician behavior in the ED. 

3.2.1.3 Simulation Policies 

To comprehend the best policy to reduce the number of handoffs in the ED, the current 

GMH physician-patient assignment policy was considered as the baseline policy. To make sure 

that ED performance was not influenced by new policies, three performance measures were used 

based on the prior studies which used the same to measure the performance of an ED 112,113.  

Table 3.2 below represents the three performance metrics and their definition.  

Performance measures Definition 

Number of handoffs Number of patients transferred b/w 

physicians 

Throughput Total number of patients discharged 

Treatment time The time between first physician 

contact and patient disposition 

discharge or admission to hospital 

Performance measures Definition 

Number of handoffs Number of patients transferred b/w 

physicians 

Throughput Total number of patients discharged 

Treatment time The time between first physician 

contact and patient disposition 

discharge or admission to hospital 
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Table 3.2: Performance measures. 

 

 

3.2.1.3.1 Policy 1 (Baseline policy) 

This policy depicts the current policy adopted by the physicians working in GMH for 

patient management in the ED.  The arriving ED physician has a minimum of a two-hour overlap 

with physicians working on the prior shift. Hence, upon a physician's arrival, they wait for the 

physician who is leaving in the physician's station for the patient handoffs.  In this model, a 

physician, after their arrival, waited for 5 minutes on average in the physician station for the 

departing physician to arrive and start the handoff. Post handoff, depending on the number of 

patients managed, the physician decides on taking a new patient or evaluating an existing patient. 

In this policy, a physician handles no more than six patients at a time, and new patients can be 

accepted only after discharging an existing patient. In the present scenario, after receiving a new 

patient, the physician evaluates the patient in the ED room and returns to the physician station to 

document the medical record, order tests and medicines, and consult depending on the situation. 

For the subsequent visits to a patient, the physician may not necessarily return to the physician 

station after each evaluation. However, the physicians working also make sure that they return to 

the station and take new patients so that the ED rooms are not left vacant. Although this policy 

maintains a restriction regarding the maximum number of patients that a physician could manage 

at a time, it does not restrict the physicians from receiving the patients irrespective of the time 

remaining in their shift. 
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3.2.1.3.2 Policy 2 

In this policy, we restrict the physicians from signing up a new patient during the last 15 

minutes of the shift.  Additionally, to reduce the possibility of handoffs, we restrict the physician 

from accepting high acuity cases (level 1, 2 & 3) that needs longer treatment time and reduce the 

maximum number of patients that can be managed by a physician to four for the last 120 minutes. 

Moreover, another reason for restricting physicians from accepting high acuity patients is based 

on prior studies, which have proved that physician's productivity decreases as the shift progress 

and increases the chances of errors (Jeanmonod et al. 2008; Silverman 2011). 

3.2.1.3.3 Policy 3 

In this policy, we reduce the maximum number of patients that can be handled by a 

physician to five, and we restrict the physicians from signing up a new patient during the last 15 

minutes of the shift.  However, no specific measures were adopted to restrict physicians from 

accepting high-severity patients during the end of their shift. 

3.2.1.3.4 Policy 4 

In this policy, we reduce the maximum number of patients that can be handled by a 

physician to five, and we restrict the physicians from signing up a new patient during the last 15 

minutes of the shift. Additionally, we restrict the physician from accepting high acuity cases (level 

1, 2 & 3) that needs longer treatment time and reduce the maximum number of patients that can 

be managed by a physician to four for the last 120 minutes. 

3.2.2 Results 

The four policies were tested and compared using a simulation model. The model 

performance under each policy was tested using the performance measures detailed in Table 3.2. 

As explained earlier, the changes in the policies included the maximum number of patients a 



47 

 

physician could handle and restrictions regarding accepting a new patient. For testing purposes, 

the simulation was run for a week and over 600 replications such that a half-width of 5 minutes on 

treatment time was achieved (as seen in Table 3.3). Note that handoffs were reduced considerably 

under each of the alternative policies compared to the first policy. All other performance measures 

also improved or stayed the same under the new policies. 

Table 3.3: Initial results. 

Policy #Handoffs 

per day 

Throughput 

per physician 

Treatment 

time (mins) 

1 47.8 (1.8) 6.3 (1.6) 246.5 (1.1) 

2 41.1 (1.5) 6.2 (1.6) 262.0 (0.8) 

3 42.3 (1.5) 6.4 (1.7) 212.7 (1.1) 

4 37.4 (1.3) 6.3 (1.6) 226.5 (0.9) 

From Figure 3.3, the handoff decreased by 21.8% in policy 4 compared to policy 1. Even 

though we introduced various restrictions into the policy, the throughput per physician showed 

slight improvement under the third and fourth policies, where we reduced the maximum number 

of patients handled by a physician. This restriction on accepting new patients requires the 

physicians to evaluate and discharge the existing patients, thereby increasing the throughput. 

Moreover, in the second policy, where we restrict a physician from handling high acuity cases in 
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the last 120 minutes, a reduction in the number of handoffs is observed. However, policy 4 shows 

the most reduction in handoffs where we restrict the maximum number of patients a physician can 

manage to 5 and further restrict it to four during the last 120 minutes where the physician handles 

only level 4 and level 5 patients.  

These observations are also consistent with the performance measures in Figure 3.4, which 

display a decreasing treatment time. The treatment time under policy 4 decreased by 8.1% 

compared to the current policy. This is because the maximum number of patients a physician can 

manage is higher in the first two policies.  

The simulation modeling framework enabled the testing of multiple policies on patient care 

management, and findings from testing various restriction policies identified the potential for 

reducing handoffs in the ED by over 22% compared to the current practices 15. This motivated us 

to the next step to build a simulation model representative of PRISMA Health GMH ED, including 
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49 

 

pods, patient arrivals, etc. Further, we also tested the impact of combining overlapping shifts and 

restriction policies on patient safety and patient flow. 

3.3 Phase Two 

3.3.1 Methods 

3.3.1.1 Data 

Input data for the model, including the number of beds, physician shifts, patient arrivals, 

ESI level of the patients, patient time in the ED, and the number of interactions between physicians 

and patients, were gathered from the partner ED. Additionally, observations were conducted in the 

ED, and the research team included ED physicians working in the partner ED for guidance, 

developing policies, and addressing any other physician-dependent activities in the ED to be 

included in the model. Our partner ED is the largest healthcare provider in the state and serves as 

a tertiary referral center for the entire Upstate region. The flagship academic Department of 

Emergency Medicine is an Adult Level 1 and Pediatric Level 2 Trauma Center, Stroke and ST-

Elevation Myocardial Infarction (STEMI) Comprehensive Center seeing over 106,000 patients 

annually over four different pods.  

We first introduce Figure 3.5, which represents the patient arrivals to the partner ED based 

on the day of the week. As seen in the image, the patient arrivals are low during the early hours 

and slowly start picking up from 7:00 am until 12:00 pm, when they reach the maximum and stay 

the same until 7:00 pm. This patient arrival trend is universal, and prior studies have reported the 

same 28,71. Moreover, it can be noted from Figure 3.5 that weekdays have higher patient arrivals 

compared to the weekends, and Mondays have the highest patient arrivals. Although it would be 

ideal to develop a simulation model with an entire year of data, the variability among the patient 

arrivals for each month impacts the average time a patient spends in the ED, making it challenging 
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for model validation. Hence, we created clusters of 3 months and used the cluster with the highest 

patient arrivals for this research (July '19 – September 19). Additionally, based on expert opinions 

from the ED physicians, we wanted to use the pre-COVID-19 data in our model, as these numbers 

were more representative of the ED patient arrivals. For the modeling patient arrivals, we consider 

24-time slots for a day, each corresponding to an hour of the day. Based on the three months of 

data, the hourly patient arrival rate for each day of the week was modeled using a Poisson arrival. 

Next, we introduce Figure 3.6, which represents the time a patient spends in the ED based 

on their ESI levels. We define time in the ED as the time a patient completes the registration and 

gets a bed in the ED until they leave the ED. As seen below, we split the data into two parts: "Bed 

to Disposition" and "Disposition to ED Departure." Bed to disposition represents the time for 

which a patient occupies an ED bed and is provided care by physicians and other medical 

providers, including performing tests, providing medicines, blood draws, etc. Although for some 
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time, patients will be waiting in their beds during this period without receiving direct care while 

waiting for test results, etc. However, all these delays are related to patients’ medical care. In 

general, this represents the period a patient first occupies a bed in the ED until the physicians make 

a disposition decision (admit, discharge or transfer). The second part, "Disposition to Departure," 

is the period during which a patient occupies the ED bed from the time the physician makes a 

disposition decision until they are physically moved from the ED (discharged, admitted, or 

transferred). Hence, these are logistical delays where a patient can be either waiting until a bed is 

available in the hospital (admission) or waiting for transportation (discharged or transfer). As seen 

in the figure, the disposition to discharge time for ESI-1 patients, which represents the most urgent 

patients, is the highest and higher than their bed to disposition time because most ESI-1 patients 

are admitted to the hospital. Hence, they have to wait in the ED until a bed is available. However, 

as the severity reduces, the disposition to departure time also reduces as most of the low-severity 

patients are discharged, and the delay we observe here is usually a result of patients waiting for 

transportation from ED. Finally, after a patient vacates an ED bed, a bed turnover time was 

included in the simulation model as the bed needs to be prepared and will not be immediately 

available for the next patient. This bed turnover time does not add to the patient time as the patient 
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leaves the ED, and as observed in the ED, this delay is only on beds being unavailable for the next 

patient to occupy. 

As mentioned earlier, the entire bed to disposition time of a patient is not spent with a 

physician as it includes other activities. Based on literature and discussions with ED physicians, 

we used between 15-30% of bed to disposition time as the care time where a patient would be 

cared for by a physician 114. The percentages were assigned based on severity, such that the total 

time spent with an ESI-1 patient was the highest and that with an ESI 4 or 5 patient was the lowest, 

as seen in Table 3.4. This approach was used mainly for two reasons: lack of detailed visit-by-visit 

data available to support detailed modeling and to reduce the complexity of modeling individual 

delays and processes, which are beyond the control of ED administrators and the scope of this 

research. Here, TRIA represents the triangular distribution, a type of continuous probability 

distribution where TRIA (a,b,c) represents a distribution with a lower limit a, upper limit b, and 

mode c, where a < b and a ≤ c ≤ b.  Further details on model development and validation are 

discussed in the later sections.   

Severity Bed to 

Dispo 

mins 

% time with 

a physician 

and mins 

Visit 1 Visit 2 Visit 3 Visit 4 

ESI 1 115 31%, 36 mins TRIA(13,14,15) TRIA(8,9,10) TRIA(8,9,10) TRIA(2,3,4) 

ESI 2 186 16%, 29 mins TRIA(7,8,9) TRIA(13,14,15) TRIA(6,7,8) -- 

ESI 3 175 17%, 29 mins TRIA(7,8,9) TRIA(13,14,15) TRIA(6,7,8) -- 

ESI 4 90 15%, 14 mins TRIA(8,9,10) TRIA(4,5,6) -- -- 

ESI 5 107 15%, 16 mins TRIA(9,10,11) TRIA(5,6,7) -- -- 

115

186 175

90 107

121

86

54

24
15

0

50

100

150

200

250

300

ESI 1 ESI 2 ESI 3 ESI 4 ESI 5

Ti
m

e 
(m

in
s)

Bed to Disposition Disposition to ED Departure

Figure 3.6: Patient time in the ED. 



53 

 

Table 3.4: Percent time a patient spends with a physician based on their assigned severity. 

 

To build a model representative of ED operations where a physician visits patients multiple 

times based on their severity (ESI- level), we split the care time into multiple smaller windows. 

Based on our past observational studies and discussion with ED faculties and physicians, on 

average, an ES1-1 patient was visited four times by a physician, ESI-2 and 3 were visited three 

times, and ES1-4 and 5 were visited two times 115. As represented in Table 5, the time spent with 

a patient for each visit based on their severity was provided to the model as unique distributions. 

Additionally, it can be noticed from Table 1 that for ESI-1, 4, and 5, the first visit is the longest. 

This is based on expert opinion and observation, as most of the time, the medical condition of these 

patients is recognizable during their first visit, and the physician can start providing care. However, 

in ESI 2 and 3 patients where medical conditions are not easily recognizable, the physician most 

likely orders a test and hence a lower time for the first visit. However, their second visit time is 

higher because the physician will start providing care and spend more time with the patients. 

3.3.1.2 Model Development and Validation 

As discussed in the background, prior studies have observed DES as one of the best 

methods to simulate an ED where various daily ED activities are modeled as a discrete sequence 

of events in time. In a traditional DES modeling approach used to model an ED, patients are 

considered agents that flow in the ED, each with unique attributes cared for by health care 

providers modeled as a resource. This traditional DES approach would suffice to address the issues 

at a high level, including bed planning and staffing requirements. However, to meet the aim of this 

research, which focuses on improving patient safety by minimizing the number of handoffs and 

identifying the impact of overlapping shifts on the patient flow, this approach would not 

incorporate the impact of the physician's decision-making capabilities based on current conditions 
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in the ED. Hence, in this study, we used a novel approach where physicians are modeled as agents 

with unique parameters and abilities, allowing them to make informed decisions based on rules 

and policies practiced in the Greenville Memorial Hospital (GMH) ED. 

Using this approach allowed replicating a physician's activity as realistic as observed in the 

ED, unlike the traditional DES approach where a patient would seize a physician resource just 

once for a particular amount of time and release them to move on to the following process. To 

provide further insight into the modeling approach adopted for this study, we introduce Figure 3.7 

below, which captures the essence and capabilities of various ED physician activities that the 

model can simulate. In the figure below, dashed lines represent patients, and the solid lines 

represent the physicians moving in the ED. A patient arriving at the ED undergoes various 

onboarding processes (discussed in the next paragraph) before being assigned an ED room. Each 

room in the ED has a single bed that a patient will occupy from room assignment until the physician 

makes a disposition decision. Each arriving physician has an arrival time, shift end time, and pod 

assignment in the ED to provide medical care during their shift. Upon arrival to their specific pod, 

a physician goes to the physician station, and if another physician is leaving the same pod, the 

patients from the leaving physician are transferred to the new physician – that is, patient handoffs 
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occur. If no physician leaves the same pod, the arriving physician starts assigning themselves new 

patients who are waiting in the ED without a room assignment.  

The physician will also spend time in the station reviewing the patient's medical record 

before visiting each patient. When ready, the physician visits the patient in their room, with the 

time required depending on the patient's ESI level. Following the patient visit, the physician returns 

to their station to order tests, labs, and imaging as necessary while the patient waits in the bed for 

the requested tests. Secondary care, including labs, medicines, imaging, etc., are either performed 

while patients are on the bed, or in a few instances, patients might be rolled out of the ED, but the 

bed/room will not be assigned to another patient (based on observations in the ED). After the first 

visit with a patient, our approach links a physician and the specific patient based on their unique 

IDs. This ensures that the same physician will provide the subsequent care for the patient unless 

they are ending their shift and the patients are handed off to another physician. From a modeling 

standpoint, we have an array where each physician ID can handle multiple patient IDs, but each 

patient ID can link only to one physician at a time, thus replicating how an actual ED functions. 

Figure 3.7: An agent-based approach for physician-patient interaction. 
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The number of subsequent visits and time spent with the patient during each visit again depends 

on the ESI level of the patient. Using the agent-based modeling approach for both patients and 

physicians overcomes the limitations of traditional DES, where physicians are modeled as 

resources and cannot make intelligent decisions. By modeling physicians as a resource, the 

decision-making capabilities are limited to patients where patients seize the physicians for a certain 

amount of time and release them, making the resource (physicians) available for the next patient. 

Further, a physician stays idle and doesn't flow in the ED and cannot make intelligent decisions 

limiting their ability to pick and choose patients based on their workload, time remaining in the 

shift, and pod limitations. However, modeling both patients and physicians as agents, as discussed 

in the research, allows both agents to make intelligent decisions based on rules replicating the 

actual ED activities, including charting, adding orders, handoffs, etc. Finally, our current modeling 

approach allows for the flexibility of continuous model development, especially when modeling 

secondary resources as they would act as independent activities. 

Before beginning the model development, the first step was to create a process map of 

GMH ED to capture the day-to-day activities. Through observations and meetings with ED 

physicians, the research team developed a detailed process map using Microsoft Visio. Figure 3.8 

below provides an overview of the ED activities for a single pod where patients arriving at ED are 

either triaged or sent directly to the trauma bay based on their medical condition. A majority of the 

patients are triaged, where they are assessed by a triage nurse and assigned an ESI level based on 

their medical condition. However, a few severe cases (e.g., car crashes, ST-Elevation Myocardial 

Infarction, etc.) might not be triaged and are provided care in the trauma bay. The triaged patients 

are then registered into the hospital's electronic health record and then directed to the waiting room, 

where they are prioritized based on their assigned severity level. When a bed is available in one of 
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the ED pods, an ED nurse takes the patients from the waiting room based on their severity level 

and the capability of the ED pod. This is because certain pods in the ED do not have medical 

equipment and other capabilities to handle high-severity patients. In the figure, apart from the 

patient arrival activities (represented in the box) rest of the activities are specific for each pod, and 

each pod was modeled separately. The ED rooms and trauma bays are modeled as resources and 

divided into four pods where the capacities and capabilities of these resources are the same as in 

the GMH ED. 

As seen in Figure 3.8, upon a physician's arrival for a shift in a specific pod, the physician 

who will be leaving the ED will transfer their patients to the arriving physician. As mentioned 

earlier, this process of transferring the care of a patient is defined as a handoff. In the absence of a 

physician in the station, the new physician will take a new patient and later meet the leaving 

physician for handoffs. These are usually rare because physicians leaving the ED do not tend to 

provide care during the last 15 minutes of the shift, as they would be focused on completing the 

patient charts. For the handoff process, we use a delay using a distribution based on the data 

collected from observations. In case no physician is leaving an ED pod, then there would be no 

handoffs, and the arriving physician would start taking new patients. Finally, in the case when a 

physician leaves the ED and a new physician is not arriving at the ED, which happens during night 

shifts, the leaving physician will handoff their remaining patients to the existing physician in the 

ED. Post handoff, the physician decides on taking a new patient depending on the current number 

of cases handled. The model ensures that the physicians working in the same pod simultaneously 

share the patient load equally. It should be noted that a physician's workload is considered balanced 

based on the number of patients they are providing care to and not necessarily based on the ESI 

level of the patient, as that is the practice followed in the ED.  
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As briefly discussed above, after accepting a new patient, the physician would then meet 

the patient in the ED room for the first evaluation and then returns to the physician station to 

document in the medical record, order test, labs, consults, and medicines as necessary. As the 

physician places the order, the nurse then completes the required documentation, the ordered tasks, 

medication administration, and runs bedside tests or ordered interventions. Additionally, patient 

care often includes diagnostic imaging that may require the patient to be moved out of the ED to 

the radiology suite or samples sent to the lab. These ancillary tasks are represented as a "black 

box" because these data are not inputted into the model. Following the drug administration, 

imaging, and diagnostic testing, the physician returns to the patient for the subsequent evaluation, 

and the physician provides care until the patient is clinically stabilized. After a subsequent patient 

visit, the physician might not necessarily return to the physician's station immediately. Hence, 

based on expert opinion, we used a 40% probability that the physician might visit another patient 

before returning to his or her station. After the final evaluation, the patient is either discharged or 

admitted as an inpatient to the hospital, and the physician may take on a new patient. During all 
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the scenarios in the model, whenever a level 1 patient is presented in the ED, irrespective of all the 

policies and rules, the immediately available physician serves the patient.  

Figure 3.8: Partner ED patient flow process map. 
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While we did not consider nurses, consults, and ancillary resources as specific entities in 

the simulation model, because of interdependencies of different departments, the simulated time a 

patient spends in the system was validated against the actual time, which is discussed in detail 

later. Moreover, this approach allowed us to replicate physician activities and daily operations 

from an ED standpoint and investigate our primary aim of understanding the impact of overlapping 

shifts on the number of handoffs and patient flow without any restrictions. 

After developing the model, the next step was to validate the model to ensure that the 

developed model replicates the partner ED. As mentioned in the prior sections, all the available 

data, including patient arrivals, ESI- level probability, physician shift schedule, patient visits based 

on severity, and the number of beds, were inputted into the model. However, for the "black box," 

which represents the ancillary activities (radiology, labs, etc.) and for the time between subsequent 

patient visits, the research team did not have detailed data and used a probability as discussed in 

the data section. Based on the expert opinion, which suggested a physician would spend between 

15-30% of the bed to disposition with a patient and more time with high severity patients, the 

research team used different probabilities to calibrate it with actual data. Although the approach 

might not be intuitive, it helped in accounting for different delays in the ED without modeling all 

the different external processes. After calibrating the model, a physician's time with a patient for 

each visit was discussed with the ED physicians to ensure that these values were realistic. Based 

on the feedback, adjustments were made, and the model was recalibrated until the difference 

between the simulated time and actual time was less than 8%, as seen in  
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Table 3.5. Further, to make sure that the simulated time and actual group did not vary 

significantly, we performed a parametric and non-parametric statistical test. First, we conducted a 

t-test, and on comparing the simulated time to the actual time, we observed a p-value = 0.94, and 

on conducting the Mann-Whitney U-test, we observed a p-value = 0.92., suggesting that the 

simulated and actual time in the ED did not vary significantly. Further, the time a patient spends 

in the ED was also validated for each hour of the day, and we observed that the simulated time and 

actual time did not vary significantly (p-value = 0.87). Further, the simulated throughput and actual 

throughput values were also compared, and on performing a t-test, these values did not vary 

significantly (p-value - 0.90). 

Table 3.5: Comparing actual time and simulated time. 

 

3.3.1.3 Scenario Descriptions 

Upon developing and validating the model, the next step was to test various physician shift 

scenarios to reduce the number of handoffs, improve patient safety and patient flow in the ED. 

However, to ensure that these new policies did not negatively affect other ED performance metrics, 

we utilized the following three metrics to evaluate the impact of each policy: number of handoffs, 

throughput, and patient time in ED. Here, the number of handoffs represents the total number of 

patients transferred between the physicians, throughput represents the number of patients leaving 

the ED, and time in the ED represents the time between first physician contact until patient 

discharge or admission to the hospital. A few of these measures were selected based on prior 

Severity Actual Time in ED 

(mins) 

Simulated Time in ED 

(mins) 

Percentage 

Difference 

ESI 1 236 218 -7.6% 

ESI 2 272 281 3.3% 

ESI 3 229 216 -5.7% 

ESI 4 114 121 6.1% 

ESI 5 122 122 0% 

Severity Actual Time in ED 

(mins) 

Simulated Time in ED 

(mins) 

Percentage 

Difference 

ESI 1 236 218 -7.6% 

ESI 2 272 281 3.3% 

ESI 3 229 216 -5.7% 

ESI 4 114 121 6.1% 

ESI 5 122 122 0% 
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studies that used the same metrics to evaluate an ED's performance 112,113. Next, we discuss two 

policies: non-overlapping and overlapping shifts, where four scenarios are tested under each 

policy, including the current policy used by the partner ED.  

3.3.1.4 Non-Overlapping Shifts 

3.3.1.4.1 Scenario 1 (Baseline) 

This scenario represents the current physician staffing policy adopted by the partner ED 

for patient management. Table 3.6 and Figure 3.9. below represent the different shift slots currently 

used at the partner ED. It can be noted from the table that shifts are designed such that the end time 

of a shift is the same as the start time of the next shift. For example, a physician starting the shift 

at 7:00 am works for eight hours until 3:00 pm, and a new physician arrives at 3:00 pm. However, 

based on certain pods, there may be multiple physicians working at the same time. For example, 

while a physician starts their shift at 7:00 am, another physician can start their shift at 9:00 am.  

Under this scenario, a physician will not take any new patients during the last 15 minutes of their 

shift until it is an ESI-1 patient. 

3.3.1.4.2 Scenario 2 

 This scenario is very similar to the first scenario but with an additional restriction. Here 

pods where multiple physicians are available, the physicians are restricted from signing up a new 

patient during the last 30 minutes of the shift. Additionally, if there is only a single physician 

working in the pod, then a new patient is not picked up by the physician during the last 15 minutes 

unless an ESI-1 patient. This approach was to investigate the impact of the restriction on handoffs. 

3.3.1.4.3 Scenario 3 

 The difference between this scenario and the last scenario is that here pods where multiple 

physicians are available, the physicians are allowed to pick up only low severity patients (ESI-4,5) 
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during the last 60 minutes of the shift. This specific restriction was placed as high acuity patients 

(ESI-1, 2 & 3) usually spend more time in the ED. Further, this restriction was placed as prior 

studies have proved that physicians' productivity decreases as the shift progress and increase the 

chances of errors 116,117.  

3.3.1.4.4 Scenario 4 

This scenario can be considered as a conservative version of scenario 2 where pods with 

multiple physicians are available; the physicians are restricted from signing up a new patient 

during the last 60 minutes of the shift. Here, a physician leaving the ED would focus on providing 

care to their existing patient and complete charting during the last hour. 

Shift No Non-overlapping shifts (8-hour) Overlapping shifts (9-hour) 

1 (baseline) 7:00 am – 3:00 pm 7:00 am – 4:00 pm 

2 8:00 am – 4:00 pm 8:00 am – 5:00 pm 

3 9:00 am – 5:00 pm 9:00 am – 6:00 pm 

4 12:00 pm – 8:00 pm 12:00 pm – 9:00 pm 

5 3:00 pm – 11:00 pm 3:00 pm – 12:00 pm 

6 4:00 pm – 12:00 am 4:00 pm – 1:00 am 

7 5:00 pm – 1:00 am 5:00 pm – 2:00 am 

8 11:00 pm – 7:00 pm 11:00 pm – 8:00 pm 
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Table 3.6: Different physician shifts currently used in the partner ED. 

 

3.3.1.5 Overlapping Shifts 

Table 3.6 above represents the different shift slots available for an overlapping shift. It can 

be noted that the shift start times are the same as the non-overlapping shifts. However, the end 

time of the shift is increased by an hour, making this a 9-hour shift with a one-hour overlap. We 

utilized one-hour overlapping shifts after discussing with ED physicians and faculties as 

scheduling shifts with longer overlaps leads to a higher financial burden as a result of more 

physician hours. For example, a physician starting the shift at 7:00 am works for nine hours until 

4:00 pm, and a new physician arrives at 3:00 pm, creating an hour of overlap. 

Figure 3.9: (a) One-hour overlapping shift schedules and (b) non-overlapping shift schedules. 
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3.3.1.5.1 Scenario 5 

This scenario is the same as the current PRISMA health policy except for the fact that the 

shift length is increased to 9 hours with an hour of overlap. Here a physician will sign up a new 

patient until the last 15 minutes of their shift. 

3.3.1.5.2 Scenario 6 

Under this scenario, for pods where multiple physicians are available, the newly arriving 

physician assumes the primary role, and the leaving physician provides care for only ESI-4, 5 

patients for the last one hour. 

3.3.1.5.3 Scenario 7 

This scenario is very similar to the prior scenario; however, irrespective of the number of 

physicians working in the pod, the newly arriving physician assumes the primary role, and the 

leaving physician provides care for only ESI-4, 5 patients for the last one hour. 

3.3.1.5.4 Scenario 8 

Under this scenario, for pods where multiple physicians are available, the newly arriving 

physician assumes the primary role, and the leaving physician is completely restricted from taking 

any new patients. Here the leaving physician will use the last hour of their shift to provide care for 

their existing patients and complete their charts. 

3.3.2 Results 

Each scenario discussed above was simulated over a three-week schedule with additional 

two days of warm-up period for ED to achieve an equilibrium. Further, the model was replicated 

60 times to account for natural, random behavior such that the margin of error on time in the ED 

metric was ± 10 minutes (at α = 0.05). 
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Table 3.7: Performance metrics for different scenarios. 

* = indicates significantly different from baseline  

** = indicates significantly different from baseline and other non-overlapping scenarios. 

 

3.3.2.1 Comparisons of restriction policies against baseline policy 

The eight scenarios for physician scheduling were tested using the developed model, and 

the observed value for the performance metrics are recorded in Table 3.7 above. We first compare 

the scenarios under policy 1 (non-overlapping shifts), where scenario 1 (baseline) represents the 

current partner ED policy, and the other three represent new scenarios (2,3,4) that could be 

implemented in the ED. It can be noticed from the table that the throughput did not vary 

significantly between the three scenarios and the baseline scenario, and this was further verified 

by conducting a t-test (p-value > 0.05) where each scenario was compared against the baseline 

scenario. The throughput does not vary significantly for the different scenarios because we are 

modeling hourly patient arrival to the ED as a stationary Poisson process, so even if the patient 

flow improves, we have a limitation on the patient demand. Further, for these scenarios on 

comparing the time in ED metric to the baseline policy, it can be observed that these did not vary 

significantly (p-value > 0.05). These observations suggest that patient flow did not improve 

significantly with these scenarios of non-overlapping shifts. Finally, we compared the number of 

handoff metrics and observed that adding restrictions can reduce handoffs by as much as 11.2%. 

Although the number of handoffs reduced for all the non-overlapping scenarios compared to the 

Scenarios Throughput 

(Patients per week) 

Number of handoffs per 

day 

Average Time in ED 

(mins) 
Baseline, 1 1506±5.3 89±1.6 215±3.0 

2 1508±5.8 85±1.8 217±3.1 

3 1507±6.5 83±2.0* (p-value = 0.041) 216±2.6 

4 1505±6.6 79±2.3* (p-value = 0.036) 222±3.9 

5 1504±5.8 60±2.0** (p-value = 0.019) 178±1.5** (p-value = 0.009) 

6 1505±5.3 57±1.9** (p-value = 0.013) 185±1.9** (p-value = 0.021) 

7 1504±6.9 55±2.4** (p-value = 0.010 185±3.9** (p-value = 0.021) 

8 1503±5.7 52±1.5** (p-value = 0.008) 185±1.8** (p-value = 0.021) 
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baseline, on performing a t-test, we observed that only scenarios 3 and 4, where physicians were 

restricted from high severity patients or no patients during the last hour, showed a statistically 

significant (p-value < 0.05) reduction. Scenario 3 observed a 6.7% decrease in handoffs, and 

scenario 4 observed an 11.2% decrease in handoffs compared to the baseline scenario. 

3.3.2.2 Overlapping vs. non-overlapping shifts 

Next, we compare the overlapping policy to the baseline scenario and other non-

overlapping scenarios. On comparing the throughput of overlapping scenarios to the non-

overlapping scenarios, including the baseline scenarios, it can be observed that there is no 

significant (p-value > 0.05) difference. Again, this is because of the limited patient arrival data 

provided to the model. To investigate the impact of overlapping shifts on patient flow, we 

compared the time in ED metric of overlapping scenarios to the non-overlapping scenarios. On 

comparing, we observed that non-overlapping scenarios had a statistically significantly (p-value 

<0.05) lower time in the ED than the non-overlapping shifts. On average, overlapping scenarios 

reduced the time in ED by 15.7% compared to the non-overlapping scenarios. It is imperative that 

there would be a reduction in the patient's time in the ED with the overlapping shifts as the 

physician shift length is extended by 1-hour compared to the current practices. However, it can be 

observed that the reduction in patient time in the ED (15.7%) exceeds the expected reduction of 

11.1% (1/9) by 4.6%, suggesting that this additional reduction could be because of the reduced 

number of handoffs. To verify this, we calculated the total time a physician spends performing 

handoffs under each policy. By reducing the handoffs under overlapping policies, we observed 

that the physicians spend less time performing handoffs during shifts, increasing their availability 

to provide care for patients by approximately 3.8%. Additionally, we observed that patients who 

require a handoff spent ten additional minutes on average in the system. These observations 
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explain the additional gain achieved by the new policy and the potential to improve patient flow. 

Further, by comparing the number of handoffs that occurred during overlapping scenarios to the 

non-overlapping scenarios, we observed a statistically significant (p-value < 0.05) decrease in the 

number of handoffs. 

3.3.2.3 Comparative results using queuing theory 

To further evaluate if these reductions observed from the simulation model can be 

replicated using a mathematical model, we approach this problem using a queuing model. Since 

we aimed to get an approximate number of handoffs per day, we combined all types of patients 

(ESI 1-5), generated the Poisson distribution for the arrival process, and fit an exponential 

distribution to their time in the ED metric rather than segregating patients based on ESI level. Then 

using an M/M/∞ queuing model, we calculated the number of handoffs for each physician shift to 

generate the number of handoffs per day. For the baseline scenario, the number of handoffs per 

day based on the queuing model was 91 compared to 89 from the simulation model output. 

Similarly, for the overlapping shift (scenario 4), which equated to the baseline policy except for 

the shift length, the number of handoffs using the queuing model was observed to be 63 compared 

to 60 from the simulation model output. These observations from the queuing model further 

validated the findings from the simulation model. Another critical observation was that the most 

impact of overlapping shifts on handoffs was observed during the peak hours of patient arrivals to 

the ED as more physicians were now available to provide patient care. On average, overlapping 

scenarios reduced the number of handoffs by 33.3% compared to the non-overlapping scenarios, 
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suggesting improved patient safety. Figure 3.10 below represents the number of handoffs and time 

in ED for different scenarios. 

3.3.2.4 Impact of varying patient arrivals 

Finally, to comprehend the impact of non-overlapping and overlapping shifts on different 

patient arrivals to the ED, we performed a sensitivity analysis. We consider ten scenarios where 

the first scenario represents the current patient arrival to the GMH ED, and the other nine scenarios 

represent where the patient arrivals are increased by 5%. Our aim was to identify at what increment 

of patient arrivals the overlapping shift approximately equates to the current ED schedule 

performance and comprehend when the ED gets overloaded. Hence, we used the baseline policy 

for the non-overlapping policy and scenario 4 for the overlapping policy, which is the equivalent 

of the baseline policy except for the fact that it had an extra hour in the shift. Table 3.8 below 

represents the number of handoffs and time in ED for different levels of patient arrivals. 

215 217 216 222

178
185 185 18589

85 83
79

60
57 55

52

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

Baseline 1 2 3 4 5 6 7

N
u

m
b

er
 o

f 
H

an
d

o
ff

s

Ti
m

e 
in

 E
D

 (
m

in
s)

Average Time in the ED Number of Handoffs per Day

Figure 3.10: Number of handoffs and time in ED for different scenarios. 



70 

 

 Table 3.8: Performance metrics for different patient arrivals. 

To evaluate at what increment of patient arrivals the overlapping shift approximately 

equates to the current ED schedule performance, we analyze Table 3.8, Figure 3.11, and Figure 

3.12. It can be observed that a 9-hour shift with a one-hour overlap can handle a 10-15% increase 

in arrivals and achieve the baseline performance based on the number of handoffs and Time in ED. 

 

Patient 

Arrival 

Scenarios 

Number of handoffs per 

day 

Average Time in ED 

(mins) 

ED Wait Time (mins) 

Non-

overlapping 

Overlapping Non-

overlapping 

Overlap

ping 

Non-

overlapping 

Overlapping 

Baseline 89±1.6 60±2.0 215±3.0 178±1.5 29±1.1 17.1±0.9 

5% increase 109±2.1 71±1.3 246±4.3 191±2.1 44±5.2 29±1.6 

10% increase 130±0.9 83±1.6 283±4.6 205±2.6 66±9.2 43±2.3 

15% increase 141±2.0 92±1.8 319±3.4 222±3.1 101±10.2 62±7.6 

20% increase 151±1.0 106±1.3 331±1.7 234±2.2 226±53.4 72±3.8 

25% increase 153±0.8 119±1.6 334±1.2 250±2.3 591±50.2 105±7.7 

30% increase 153±1.7 122±2.0 335±1.4 263±2.4 944±53.8 203±40.5 

35% increase 154±0.5 133±1.4 335±1.1 274±1.3 1351±51.2 371±50.2 

40% increase 155±0.4 138±1.2 335±0.9 275±0.9 1642±46.2 670±51.4 

45% increase 155±0.6 138±2.6 335±0.9 275±0.8 1885±41.6 925±71.2 

Figure 3.11: Number of handoffs for increasing patient arrivals. 

Figure 3.12: Time in ED for increasing patient arrivals. 



71 

 

It can be observed from Figure 3.11, and Figure 3.12. that with both 8-hour non-

overlapping shifts and 9-hour shifts with a one-hour overlap, the number of handoffs and time in 

the ED flattens after a certain period. However, it can be noticed that for non-overlapping shifts, 

the metrics start to flatten when the patient arrivals increase by 20%, whereas for the one-hour 

overlapping shifts, the flattening starts when patient arrivals increase by 35%. The flattening of 

the metrics suggests that after a specific increase in the patient arrivals, the ED gets overloaded, 

and irrespective of increasing patient arrivals, these patients have to wait to receive medical care 

because of resource constraints. However, this wait time will not be reflected in time in the ED 

metric or handoffs metric as they don't capture the wait time. Hence, we introduce Table 3.9, which 

represents the average patient wait times for a bed in the ED and weekly throughput, assuming 

that a patient arriving at the ED will not leave without getting served. 

 Table 3.9: Patient wait times and throughput for different patient arrivals. 

 

From Table 3.9, it can be observed that as the patient arrival increases, the average patient 

wait time also starts increasing, which shows an overloading ED and the impact of resource 

constraints. Additionally, after a specific point, the weekly throughput begins to flatten, meaning 

that irrespective of increasing patient demands, the ED cannot keep up because of resource 

Patient 

Arrival 

Scenarios 

Average Patient Wait Time (mins) Weekly Throughput 

Non-overlapping Overlapping Non-overlapping Overlapping 

Baseline 29±1.6 16.1±0.9 1506±5.3 1504±5.8 

5% increase 44±5.2 29±1.6 1577±9.1 1573±6.5 

10% increase 68.9±9.2 43±2.3 1652±5.5 1651±7.2 

15% increase 256±53.4 62±7.6 1684±11.4 1719±9.5 

20% increase 591±50.2 72±3.8 1712±4.5 1778±6.9 

25% increase 944±53.8 105±7.7 1715±5.1 1854±7.9 

30% increase 1351±51.2 203±40.5 1722±15.2 1897±17.3 

35% increase 1642±46.2 371±50.2 1733±4.5 1959±15.4 

40% increase 1885±41.6 670±51.4 1739±4.5 1978±15.2 

45% increase 2706±40.1 1055±71.2 1744±6.8 1980±20.1 
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constraints. For the non-overlapping and overlapping scenario, the throughput doesn't change 

much after a 20% and 35% increase in patient arrivals suggesting that ED would get overloaded 

quickly under the non-overlapping scenario compared to the overlapping shift. The minor change 

in throughput after the inflection point can be attributed to the variation in ESI levels, i.e., with 

increasing patient arrivals, the number of patients in each ESI will increase, and physicians can 

dispose of patients who require less time in the ED who might be prioritized in the waiting room 

based on their ESI. It is evident from the analysis that a 9-hour shift with a one-hour overlap can 

significantly decrease the number of handoffs and time in ED and improve the ED's capability to 

handle more patients before overloading. However, there is an increase in full-time equivalents 

(FTEs) of physician staffing as a result of increased shift length. 

3.3.2.5 Addressing the Secondary Resources 

It is evident from the results that overlapping policies and restriction policies can improve 

patient safety and patient flow with a slight increase in FTEs. However, one of the key limitations 

is that secondary delays are not modeled separately in the simulation model. Although this does 

not affect the validation, it could be possible that the additional physician FTEs can inflate the ED 

performance as there are no secondary delays. From an ED standpoint, some of the most common 

secondary delays are radiology (medical imaging) and labs. Although there are other delays like 

consults, these are not frequent orders. This was further confirmed from the data analysis, where 

we observed that approximately 54% of patients arriving at the ED required imaging compared to 

only 8% requiring a consult order. Based on these observations and the lack of data regarding labs, 

we decided to model the radiology process into the simulation model. Using expert opinions from 

the ED physicians and available data points, we divide the radiology process into three steps: order 

to begin, begin to end, and end to read. The order to begin represents the time between the ED 
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physician placing an order until the test is started, begin to end represents the time for performing 

the test as such, and finally, end to read represents the time between a test is completed and the 

results are read. The next step was to identify the population of patients that require radiology and 

those who do not need a radiology order. As patient severity level (ESI level) is one of the 

prominent factors influencing the radiology requirements, where it is a consensus that low severity 

patients (ESI 4 AND 5) would rarely require a radiology order, we decided to classify the data 

based on ESI levels. Table 3.10 represents the radiology requirements based on the ESI levels. It 

is evident from the table above that ESI levels have a significant impact on radiology requirements, 

with radiology orders increasing with patient severity. However, just looking at the radiology 

requirement is not sufficient for modeling because some patients require only a single imaging 

order, whereas a few others would require multiple imaging going as high as six orders. 

Table 3.10: Radiology requirements based on ESI level. 

 

Moreover, on analyzing the data, we observed that although multiple orders are placed, if 

they are placed simultaneously, those were performed together and did not have a significant 

impact on the time required for the radiology process. In contrast, if orders are placed in a 

sequential order where the order time for the second order is after the end to read time of the 

previous, that has a significant impact on the process as the patient had to wait for the subsequent 

order to be completed. Further, from the modeling standpoint, if a patient required only an order 

where all radiology requests are placed at the same time, it meant that the radiology order happens 

ESI # Patients at ESI Level 

Patient 

Distribution 

% that Require 

Imaging 

1 877 3.22% 88% 

2 6401 23.49% 64% 

3 12588 46.20% 61% 

4 5858 21.50% 36% 

5 899 3.30% 5% 
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after the first visit and before the second visit. If subsequent radiology orders are placed, it means 

that an additional visit was required with the physician. Thus, a patient with a single order would 

need two visits with the physician; two subsequent orders would need a total of 3 visits with the 

physician, and so on. However, based on discussion with physicians and for the sake of modeling, 

we decided to have a maximum of 4 visits as anything more than four orders were infrequent. 

Table 3.11 below represents the subsequent radiology order required based on the ESI level. After 

adding this information to the model, one final piece of distinction that was added to the model 

was classifying an order as Life or Death (LOD) or Routine. This was crucial as LOD orders that 

represented urgent orders required lesser order to begin time than routine orders. 

Table 3.11: Subsequent radiology orders based on ESI level. 

 

 

 

 

 

On investigating the LOD data, we observed that LOD orders were placed only for ESI 1 

and 2 patients on analyzing the data. Table 3.12 below represents the time for various processes of 

radiology based on the ESI level. For LOD patients, the only difference was that they had only 10 

mins of order to begin time.  

Table 3.12: Radiology process time. 

 

 

 

 

 

 

 

SI 1 order 2 orders 
3 orders or 

more 

% Needing 

Imaging 

1 59% 22% 7% 88% 

2 48% 13% 3% 64% 

3 50% 10% 2% 61% 

4 33% 3% 0% 36% 

5 5% 0% 0% 5% 

E

SI 

Order to Begin Time 

(min) 

Begin to End Time 

(min) 

End to Read 

(min) 

1 17 15 22 

2 45 12 19 

3 57 14 18 

4 30 10 16 

5 30 8 18 
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The next step was to validate the simulation model against the actual data. The patient's 

time with a physician and some other delays were adjusted from the previous model until the 

difference between the simulated data and actual data was less than 7%. Further, a t-test was 

performed to compare the simulated time to the actual time, and we observed a p-value = 0.96, 

suggesting that the simulated and actual time in the ED did not vary significantly. After validating 

the model, the next step was to investigate if the overlapping policies and restriction policies are 

effective in improving patient safety and patient flow in the ED. Figure 3.13 below represents the 

handoffs and time in the ED using the new simulation model. Further, Table 3.13 below represents 

compares the result from the updated model to the old model, which does not account for 

secondary delays.  

 

Table 3.13: Comparing overlapping to non-overlapping shifts. 

Policy Metrics Model 1 Model 2 

Baseline, NO-15 Handoffs -- -- 

94 93 92 86
77 75 74 68

213 215 213 216

190
198 198 196
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# Handoffs Time in ED (mins)

Figure 3.13: Number of handoffs and time in ED for different scenarios. 
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Time in the ED -- -- 

NO-30 
Handoffs -4% -1% 

Time in the ED 1% 1% 

NO-60, 45 
Handoffs -6% -3% 

Time in the ED 0% 0% 

N0-60 
Handoffs -11% -8% 

Time in the ED 3% 2% 

O-15 
Handoffs -33% -18% 

Time in the ED -17% -11% 

0-60, 45 
Handoffs -36% -20% 

Time in the ED -14% -7% 

0-60*, 45 
Handoffs -38% -21% 

Time in the ED -14% -7% 

0-60 
Handoffs -41% -28% 

Time in the ED -14% -8% 

It can be observed from the table above that compared to the non-overlapping baseline 

policy, overlapping policies and restriction policies improved the patient flow and patient safety 

in the ED. However, as suspected, adding the secondary delays reduced the effectiveness of the 

overlapping and restriction policies in improving the performance metrics. Another interesting 

observation was that the reduction associated with overlapping policies is higher compared to non-

overlapping policies because, in the prior model, we were not modeling any secondary delays as a 

result of imaging consults, etc., and adding a resource (extra physician hours) had a direct inflated 

impact on the performance metric. However, in the updated model, the impact of additional 

resources and physician availability is limited as there are ED activities that are physician-

independent which will still cause delays in the system.  

3.3.3 Discussions and Conclusions 

Transitions of patient care from one physician to another are major risk points that 

potentially lead to patient harm, especially in a care setting like the ED. Hence, it is critical that 

ED administrators consider the patient safety metric of handoffs along with other patient flow 

metrics while developing shift schedules to improve ED performance. This research focused on 
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identifying ED physician shift schedules that reduce handoffs while not negatively affecting the 

patient flow and other CMS core performance metrics, including throughput, patient time in the 

ED, etc. To address this research objective, we developed and validated a simulation model that 

replicates the partner ED and tested different scenarios under non-overlapping and one-hour 

overlapping policies, including policies that restricted physicians from taking either all or high 

severity patients during the end of the shift 118,119.  

We observed that restricting physicians from taking high-severity patients during the last 

hour of the shift could significantly reduce the number of handoffs without negatively affecting 

other performance metrics. Additionally, scenarios that restricted the physicians from taking both 

high and low-severity patients during the end of the shift were further able to reduce the number 

of handoffs without significantly increasing the patient time in the ED. These findings are similar 

to the findings from prior studies where restricting physicians during the end of the shift can 

significantly reduce the number of handoffs with a non-significant increase in time in ED 15,111. 

However, the percentage decrease in handoffs varies across the studies, as it depends on patient 

volumes, ESI level, number of pods in the ED, current shift schedule, and hours for which the 

restriction is placed. On testing a nine-hour shift with one hour overlap, we observed that it could 

reduce the handoffs and reduce the time in ED significantly but with additional cost due to 

physician FTEs. Combining the overlapping policy with various restriction policies, we observed 

that handoffs and patient time in the ED could be reduced as much as 41.5% and 14%, showing 

potential for significant improvement in ED performance. From a different point of view, if current 

performance provides a level of patient care considered acceptable, the overlapping policy 

suggests that the ED can immediately accommodate a 10-15% increase in patient volume. 
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We observed that implementing policies that only restrict a physician from taking either 

all or high severity patients during the end of the shift can improve patient safety by reducing the 

number of handoffs. However, it should be noted that these restriction policies result in a slight 

(statistically insignificant) increase in the patient time in the ED as physicians are restricted from 

taking patients during the end of their shift. Hence, we recommend that smaller EDs with fewer 

patient arrivals or large EDs with higher staffing levels could improve patient safety by 

implementing restriction policies as they could potentially reduce handoffs. However, each ED 

should set the restriction time (30 minutes, 60 minutes, etc.) based on their ED demand 

requirements, as an extended physician restriction period could further increase the patient time in 

the ED. Unlike restriction policies, utilizing a 9-hour shift with a one-hour overlap can potentially 

reduce both patient handoffs and time in the ED. However, we observed the most significant 

improvement in ED performance from both patient safety and patient flow standpoint on 

combining the restriction policy with the one-hour overlapping. Hence for larger EDs and Level 1 

trauma centers, although restriction policies could help in improving patient safety, we recommend 

a combination of restriction and overlapping shift policies to have the most impact. Although it is 

evident that overlapping policies and a combination of overlapping and restriction policies can 

significantly reduce the number of handoffs, the patient time in ED, and handle more patients, it 

incurs an additional cost due to extra physician hours. Hence, respective EDs must perform a risk-

cost-benefit analysis to balance additional physician staff hours and expected patient arrivals such 

that the policies better fit their patient demands and resource availability. However, a long-term 

solution for EDs is to develop staffing schedules using a mathematical model capable of finding 

exact solutions based on key performance metrics (time in the ED, handoffs, etc.) and constraints 

(budget, physician preference on the length of shifts, and shift start times, etc.). This approach 
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would help in physician shifts tailored for each ED based on their constraints and physician 

preferences, ensuring clinician and administration satisfaction. 

While this modeling approach allows the testing of various policies on performance metrics 

of handoffs and ED time, it cannot identify the "optimal" number of staff required for a given week 

based on historical patient arrivals. A logical next step in our research plan is to identify a static 

staffing plan that is optimized based on these key metrics and then is later validated through testing 

in the detailed simulation model. While our model representation accounts for estimates of the 

total time required for processing items such as radiology and labs, our current research does not 

account for specific delays resulting from these ancillary departments to the ED. Future research 

and modeling will also include an examination of patient-level and physician-level impacts of 

these resources that are external to the ED. 

4. Chapter 4 

4.1 Optimal Staffing for Improving Patient Safety and Patient 

Flow in ED 

4.1.1 Introduction 

Emergency departments (EDs) act as one of the primary patient care access points for 

millions of people seeking medical care. The ever-increasing volume of patient arrivals and 

varying severity among cases makes ED one of the most complex healthcare settings and prone to 

crowding 3.  Crowding is well-recognized public health and patient safety issue that has been 

explored over the last few decades, which occurs when the patient demand for emergency care 

exceeds the resources available in the ED to provide care in an acceptable time period 4,120. ED 

crowding has a negative impact on patients, providers, and health systems where it leads to reduced 
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quality of care, poor patient outcomes, increased medical errors, higher patient mortality, increased 

stress and burnout among providers, and increased healthcare costs 9,10. Despite the public 

awareness and significant efforts by researchers/government agencies, crowding still plagues EDs 

across the globe and has risen over the past several years 23. 

Although various reasons contribute to ED crowding, one of the primary reasons leading 

to ED crowding within the US is the overwhelming increase in patient arrivals to the ED, which 

has increased by 24%, and the decrease in the number of EDs, which declined by 15% over the 

last decade 3,22. This directly leads to a mismatch, and to worsen the scenario, most EDs are 

overwhelmed with a lack of provider availability and dynamic planning tools for maintaining 

adequate resources. Additionally, studies have attributed ED crowding to poor ED design and/or 

inefficient patient flow, often led by a lack of ED beds, inadequate staffing levels, and limited 

inpatient hospital beds 10,26. Although lack of inpatient beds is a primary cause leading to 

bottlenecks in the ED, these are shared resources and are often affected by factors beyond the 

control of ED administrators and stakeholders. However, factors including inadequate staffing and 

bed shortages in the ED can be avoided through better planning. Although the easiest and quickest 

solution to address these issues would be adding extra resources, including beds, staff, and 

ancillary units, adding new hospital resources could be very expensive. Moreover, researchers 

have observed that rather than adding physical resources (e.g., bed, equipment, machines, etc.), 

temporarily adding or changing staff schedules are comparatively cheaper options. However, 

generating a new schedule is not trivial as factors including provider preference, hospital budget, 

resource restrictions, etc., should be considered carefully such that they can improve patient flow 

and patient safety in the ED without overstaffing. 
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Among prior studies that have focused on developing ED staffing schedules, most studies 

have accounted for patient flow factor and budget, but to our knowledge, none of these studies 

have accounted for a patient safety factor 121,122. Patient safety is an integral aspect of the ED as it 

functions 24*7 for 365 days and interacts with multiple departments making it prone to errors. 

Recent studies have observed ED as one of the hospital departments with high error rates. Some 

of the common sources of ED errors are interruptions, miscommunications, and loss of 

information. Handoffs, transfer of a patient's care and responsibility from one physician to another, 

are fraught with miscommunications, omissions, errors, and information loss 85,86. However, 

handoffs are unavoidable in EDs as they operate throughout the day, and a physician ending their 

shift is required to transfer their current patients to the newly arriving physician. Although 

unavoidable, handoffs should be minimized, as it is a significant patient safety concern.  

A recent study where thirty-six ED physicians were shadowed for over 100 hours observed 

that a physician's likelihood of making an error while prescribing was significantly higher when 

interrupted 87. Similarly, studies have observed that approximately 80% of serious medical errors 

involve miscommunication during the patient handoff 88. Additionally, poor handoffs, which 

involve miscommunication, can lead to conflicting expectations for information and contribute to 

delayed patient onboarding and conditions that can pose safety threats 89. Further, studies that 

specifically investigated ED shift-change handoffs observed that for approximately 75% of the 

patients, the vital signs were not communicated, and errors were observed in about 60% of cases 

90. Finally, insurance claims involving missed ED diagnoses that harmed patients reported that 

24% of the cases involved inadequate handoffs 91. 

As mentioned earlier, to our knowledge, none of the prior studies have considered patient 

safety metrics as a performance indicator of the ED while generating staffing schedules. This 
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research developed a Mixed Integer Linear Programming (MILP) model to generate staffing 

schedules that can improve patient safety and patient flow while accounting for ED budgeting and 

not affecting other Centers for Medicare & Medicaid Services (CMS) core metrics.  

4.1.2 Background and Literature 

The contribution of operations research models and methodologies has had a significant 

impact on improving EDs throughout the world. A variety of approaches, including mathematical 

and optimization models, queuing theory, simulation modeling, and probabilistic models, have 

been used to address a variety of ED issues, including resource allocation, patient streaming, fast 

track ED, staffing, and scheduling, etc. Although various tools have been used to improve ED 

operations, researchers have endorsed simulation models as one of the best tools to model different 

phases of patient flow (arrival to departure) in the ED because of the complexity and nature of ED 

92,93. Specifically, researchers have identified discrete event simulation (DES) to be efficacious in 

representing and simulating ED activities 94,95. Additionally, the ability of simulation tools to 

model different ED processes, phases of patient flow, and test "what-if" scenarios make it an 

essential tool to investigate staffing and scheduling, resource allocation, and overall process 

improvement before implementing changes.  

Although simulation models allow for testing various staffing policies and scenarios to 

design and evaluate the ED physician shift schedules, these models are not capable of identifying 

the optimal staffing levels. A mathematical model can address this issue by formulating the 

problem with a specific objective, constraints, and parameters representing the system to generate 

an optimal solution. Over the last few years, various studies have used mathematical models to 

identify optimal staffing levels, generate schedules, optimal beds, other resource requirements, etc. 

121,123–129. Among these, queuing theory has been extensively used for determining staffing levels 
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as it allows the evaluation of patient flow criteria such as the waiting time of patients, throughput, 

etc. 130,131. However, using analytical formulas for generating optimal staffing schedules have 

several limitations, usually with complex systems, specifically in the case of ED replicating the 

multiple patient-physician interactions and accounting for the time-dependent stochastic arrival 

rates. However, numerical approximations can solve this problem where studies have used 

integrated queuing and optimization model to investigate the effect of time-varying arrival rates 

for staff scheduling 132. Additionally, researchers have used heuristics for generating schedules in 

ED 125. Although heuristic allows for generating a quicker solution, it cannot guarantee an optimal 

solution. In contrast, a mathematical programming approach guarantees an optimal solution. 

However, as the number of variables and constraints becomes large, the process of identifying the 

optimal solutions become time-consuming. Hence for large problems, researchers have usually 

integrated mathematical programming with other methods, including genetic algorithms 133.  

Prior studies have used various mathematical programming, including integer 

programming and multi-objective goal programming, and achieved optimal solutions for staff 

scheduling problems in the ED 121,134–136. However, except for one study which focused on 

physician scheduling in the ED, others focused on nurse scheduling. For the one study focusing 

on the physicians, the researchers used a CART analysis to estimate the various patient level 

parameters and then developed a mixed-integer linear programming (MILP) model to minimize 

understaffing with respect to patient volumes. In an effort to replicate the actual process in the ED, 

the researchers divided a patient visit to the ED into multiple patient-physician interactions. The 

findings from the study were implemented and resulted in significant improvements in different 

ED performance metrics, including median length of stay, door-to-provider time, and door-to-bed 

time 121. Further, researchers have used a combination of simulation-optimization models to 
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identify optimal solutions and test them in the simulation model for validating the optimal 

solutions 122,137. However, all these studies have focused on identifying solutions that can improve 

patient flow or improve ED performance by reducing the waiting time and length of stay or 

improving the ED throughput. To our knowledge, none of the studies using mathematical or 

simulation model approaches have used patient safety as an ED performance metric. In this 

chapter, we develop a MILP model for identifying optimal shift schedules that minimize the 

combined cost of patient wait times, handoffs, and physician shifts, thus considering the patient 

flow, patient safety, and staffing budget to generate schedules. Additionally, these new staffing 

policies are tested in the validated simulation model to evaluate their effectiveness.  

4.2 Phase One 

4.2.1 Methods 

4.2.1.1 Data 

Input data for the model, including the number of beds, allowable physician shifts, patient 

arrivals, ESI level of the patients, patient time in the ED, and the number of interactions between 

physicians and patients, were gathered from the PRISMA Health Greenville Memorial Hospital 

(GMH), Greenville, SC. Additionally, observations were conducted in the GMH ED, and the 

research team included ED physicians working in GMH, SC for guidance and addressing any other 

physician-dependent activities in the ED to be included in the model. PRISMA Health is the largest 

healthcare provider in South Carolina and serves as a tertiary referral center for the entire Upstate 

region. The flagship GMH academic Department of Emergency Medicine is an Adult Level 1 

Trauma Center seeing over 106,000 patients annually. 

We first introduce Figure 4.1, which represents the patient arrivals to the GMH ED utilized 

in our model. As seen in the image, the patient arrivals are low during the early hours and slowly 
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start picking up from 7:00 am until 12:00 pm when they reach the maximum and stay the same 

until 7:00 pm. This patient arrival trend is universal, and prior studies have reported the same 28,71. 

Moreover, it can be noted from Figure 4.1 that weekdays have higher patient arrivals compared to 

the weekends, and Mondays have the highest patient arrivals. Rather than using an entire year of 

patient arrival and using it for physician scheduling, we created clusters of 3 months and used the 

cluster with the highest patient arrivals for this research (July 2019 – September 2019). 

Additionally, based on expert opinions from the ED physicians, we wanted to use the pre-COVID-

19 data as the patient arrivals varied significantly. Another reason for using this specific time 

period was to test the optimal schedule in our validated simulation model that used the same patient 

arrivals. However, the model was developed such that any patient arrivals can be used to generate 

a weekly schedule. 
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Figure 4.1: Patient arrivals to the GMH ED. 
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Next, we introduce Figure 4.2, which represents the time a patient spends in the ED based 

on their ESI levels. As seen below, we split the data into two parts: "Bed to Disposition" and 

"Disposition to ED Departure." Bed to disposition represents the time for which a patient occupies 

an ED bed and is provided care by physicians and other medical providers, including performing 

tests, providing medicines, blood draws, etc. Although for some time, patients will be waiting in 

their beds during this period without receiving direct care while waiting for test results, medicines, 

etc. However, all these delays are related to patients’ medical care. In general, this represents the 

period a patient first occupies a bed in the ED until the physicians make a disposition decision 

(admit, discharge or transfer). The second part, "Disposition to Departure," is the period for which 

a patient occupies the ED bed from the time the physician makes a disposition decision until they 

are physically moved from the ED (discharged, admitted, or transferred). Hence, these are 

logistical delays where a patient can be either waiting until a bed is available in the hospital 

(admission) or waiting for transportation (discharged or transfer). As seen in the figure, the 

disposition to discharge time for ESI-1 patients, which represents the most urgent patients, is the 

highest and higher than their bed to disposition time because most ESI-1 patients are admitted to 

the hospital. Hence, they have to wait in the ED until a bed is available. However, as the severity 

reduces, the disposition to departure time also reduces as most of the low-severity patients are 
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discharged, and the delay we observe here is usually a result of patients waiting for transportation 

from ED.  

As mentioned earlier, the entire bed to disposition time of a patient is not spent with a 

physician as it includes other activities. Based on literature and discussions with ED physicians, 

we used between 15-30% of total time as the care time where a patient would be cared for by a 

physician 114. The percentages were assigned based on severity, such that the total time spent with 

an ESI-1 patient was the highest and that with an ESI-5 patient was the lowest. This approach was 

used mainly used because of the lack of detailed visit-by-visit data available to support detailed 

modeling.  

Further, to build a model representative of ED operations where a physician visits patients 

multiple times based on their severity (ESI- level), we split the care time into multiple smaller 

windows. Based on our past observational studies and discussion with ED faculties and physicians, 
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on average, an ES1-1 patient was visited four times by a physician, ESI-2 and 3 were visited three 

times, and ES1-4 and 5 were visited two times. The physician's time with a patient for each visit 

was a constant time block of 15 minutes as the MILP modeling approach considers time as a 

discrete block of events. 

4.2.1.2 Mathematical Model Development 

We formulate the ED physician shift scheduling problem as a MILP problem. The primary 

goal is to identify the optimal staffing levels of ED physicians such that the patient onboarding 

time, waiting time after ED admission, and patient handoffs are minimized while considering the 

physician staffing cost to avoid overstaffing. To compare the impact of each factor, we identified 

dollar amount as the common scale. Based on the literature and expert opinions, costs pertinent to 

each factor were included.   

Before formulating the problem, we first listed the key ED operational activities and 

processes that should be considered to develop an implementable MILP model. The first was 

accounting for the varying patient arrivals to the ED, including patient ESI levels. The second was 

modeling multiple patient-physician interactions based on the patient's ESI, accounting for 

minimum delays between patient-physician interactions to allow for secondary care (imaging, 

blood draws, etc.), ensuring that the same physician provides care for the patient unless the 

physician ends their shift (handoff), physician shift length is limited to 8 hours. Accounting for 

these operational activities, we next define the notation used in the MILP model. 

4.2.1.2.1 Notations 

We first introduce the sets and indices considered in this optimization model. The model 

included four sets and corresponding indices as follows: 
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• I represents the set of patient arrivals to the GMH ED indexed by i. 

• K represents the set of possible physicians that can be staffed for a day indexed by k. 

• T represents the set of time slots considered for staff scheduling indexed by t. 

• M represents the set of physician visits required by a patient indexed by m.  

 

Here, set I include all the unique patient arrivals to the GMH ED for a week, which totals 

more than 1500. Set K consists of the unique physician identification number that can start an ED 

shift for a day with an upper threshold of 25 physicians per day. Further, T  represents timeslots 

for an entire week (which varies based on slot length). Finally, set M includes values from 1 

through 4, representing the patient interaction with a physician. Next, we introduce the parameters 

considered in the model. Most of the parameters represent various patient characteristics, including 

severity, arrival time, physician visits, and fixed time slots that should be avoided for calculating 

patient wait time as these delays are inherent and one parameter defining the ED bed capacity.  

• αi represents the time slot of arrival for patient i. 

• βi represents the severity level of patient i. 

• γi represents the total number of visits required by patient i. 

• wi represents the total time slots for patient i that should not be considered for waiting cost 

as this represents the minimum delay for secondary care.  

• C represents the total bed capacity of the GMH ED. 

Finally, we introduce the decision variables in the model:  

 

• Uik      =    {
1, If patient i served by physician k

0, otherwise
 

 



90 

 

• Ystartkt   = {
1, If physician k starts their shift at time slot t

0,  otherwise
 

 

• Ykt      =    {
1, If physician k is available for service at time slot t

0, otherwise
 

 

• Xiktm    =   {
1, If patient i is served by physician  k at time slot t for their visit m

0,  otherwise
 

 

In our initial model formulation to best capture the ED activities discussed above, 

specifically, the multiple patient-physician interactions, we consider the time slot to be 10 mins 

meaning the t will be indexed over 144-time slots for a day. Additionally, in this stage, we also 

considered another notation, J, which represents the set of four pods in the GMH ED indexed by 

j. Although this allows for granularity in terms of operations, modeling the indices and iterations 

made it a hard problem to solve. In the next iteration, we increased the length of the timeslot to 30 

mins which reduced the number of time slots for a day to 48. Although the indices for time slots 

decreased significantly, we were not able to generate a weekly schedule even after reformulations. 

After discussing with ED stakeholders and staff scheduling methods, we agreed on dropping the 

pod index as this only resulted in a drawback where physicians/schedulers had to manually assign 

the shift to different pods based on the desired coverages. For example, certain pods in GMH ED 

require double coverage (minimum of two physicians), whereas pods with smaller capacities can 

be managed with single coverage (single physician). However, this was not a huge drawback as 

physicians, and the other stakeholders had a clear understanding of the limitations of certain pods 

and the staffing requirements. Based on these inputs, we increased the time slots to 1 hour, meaning 

that a day would have only 24-time slots. This reduced the model computation time significantly 
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compared to the previous scenarios. In our first formulation, which assumed a 10-minute block 

and other details, the model was not able to solve even after 20,000 secs (~6 hours), whereas the 

final formulation allowed the model to be solved in 393 secs. Next, we present the current 

formulation used for developing the ED physician staffing schedule.  

In the formulation presented below, the objective function (1) minimizes the cost of 

staffing the ED physicians, handoffs, patient onboarding, and patient waiting time in the ED. The 

cost of staffing an ED physician (SC) was based using the national average rate for ED physicians, 

and the onboarding cost (OC) for patients based on their ESI level was derived from the literature 

138,139. However, because of the lack of data on the cost of patient waiting once admitted, we used 

a factor value (F) between 0 and 1 and multiplied it by the OC to calculate the waiting cost. Finally, 

for the handoff cost (HC), we used high values ($1,000) to avoid any possible handoffs. 

 

 

 

 

 

 

Minimize: 

 

SC* ∑ Ystartkt

kt

+ OC* ∑ t*Xikt1 - αi

ikt

+ OC*F* ∑ (t*X
iktγi

 - t*Xikt1

ikt

 - wi) + HC* ∑ Uik

ik

   

 

Subject to: 

∑ t*Xikt1

kt

≥  αi       ∀i ∈ I  

 

∑ Xiktm

ktm

=  γ
i
          ∀i ∈ I 
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∑ Xiktm

km

 ≤ 2   ∀i ∈ I , ∀t ∈ T 

 

∑ Xiktm

kt

 = 1   ∀i ∈ I , ∀m ∈ M  

 

∑ Xiktm

ikm

  ≤ C        ∀t ∈ T 

 

∑ t*Xiktm

kt

≤ ∑ t*Xiktm +1

kt

    ∀i ∈ I  

 

∑ Xiktm

mt

  ≤ 4*Uik       ∀i ∈ I , ∀k ∈ K  

 

∑ Xiktm

im

  ≤ 4*Ykt       ∀k ∈ K , ∀t ∈ T 

 

∑ Ystrtkt

kt

≤1      ∀k ∈ K 

 

∑ Ystrtkt

kt

≤  K 

 

8*Ystartkt ≤ ∑ Y𝑘𝑞

Min(168, t+7)

q=t

   ∀k ∈ K, ∀q ∈ T 

 

Uik ,Ystartkt , Ykt , Xiktm   ∈ {0, 1}    

In the formulation, the first constraint ensures that a patient is served their first visit only 

after their arrival at the ED. The second constraint ensures that the patient is provided with all their 

required visits before discharging. As mentioned earlier, each hour represents a time slot, but from 

observations and discussions with physicians, we assume that a physician can visit four patients in 

an hour. However, the same patient cannot be visited four times during an hour as that is not 

realistic as patients wait to get their tests, imaging, radiology, etc., completed. The third constraint 

ensures that, at maximum, a patient can be visited only twice by a physician in an hour. The fourth 
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constraint assures that each visit m for a patient cannot exceed 1, making sure that each visit is 

completed fully during a physician visit.  The next constraint ensures that at any given time t the 

patients served cannot exceed the ED bed capacity. As patients have multiple interactions with 

physicians during an ED stay, these visits must be ordered such that a later visit follows the prior 

visit in terms of time slot, and our sixth constraint ensures the visits are ordered. The next two 

constraints assure that a patient can be visited a maximum of four times by a physician, and a 

physician can visit up to four patients during any given time slot (1-hour block). The next two 

constraints ensure that a physician starts their shift only once a day, and the total number of 

physicians staffed per day does not exceed the maximum possible physicians that can work for a 

day based on health system budget constraints. To ensure that a physician shift, once started lasts 

for eight hours, we use the second to the last constraint. Finally, the last constraint defines the 

variable types, which are all binary in this case.  

Formulating the problem as discussed above allowed us to replicate an actual emergency 

department scenario where patients interact with physicians multiple times, wait for tests between 

visits, and, more importantly, account for patient care handoffs that impact patient safety. 

4.2.1.3 Simulation Model 

After developing the mathematical model to generate staffing schedules, the next step was 

to develop and validate a simulation model representative of the PRISMA Health ED. We utilized 

a novel hybrid modeling approach to develop the discrete event simulation where both patients 

and physicians are represented as agents with unique attributes. This approach allowed us to 

simulate the actual patient arrivals to the PRISMA health ED with specific features, including 

severity level, arrival time, etc. Moreover, the main reason to adopt this modeling methodology 

was to replicate the physician activities in the ED in a realistic manner, including starting a shift 
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at a particular time, spending time in their workstation ordering tests, updating patient records, 

visiting patients multiple times, and finally handing off a patient to the next physician when their 

shift ends. These activities would have been challenging to include if we followed a traditional 

modeling approach where physicians are denoted simply as resources.  

Figure 4.3 below provides a high-level overview of patient flow and physician activities in 

the ED for a single pod. The patient arrival to the ED and ESI assignments upon patient arrival 

during the triaging process was based on the historical data. After triage, the patient is assigned a 

bed if available, and in case no ED beds are available, the patient waits in the waiting room, where 

the patients are prioritized based on the assigned severity level. The second block of arrivals 

represents physicians arriving at a specific pod in the ED at their assigned shift starting time. A 

physician, upon arrival, goes to the physician station, and in case another physician is leaving the 

ED at the same time, the patients from the leaving physician are transferred to the arriving 

physician representing the handoffs as observed in the ED. After patient handoffs, the physician 

spends time in the station going through the patient charts and starts visiting the patients in their 

beds as necessary.  

Further, whenever there are free beds in the ED, a physician, based on their workload, will 

sign up a patient from the waiting room and meet them in their bed (or room).To replicate the 

actual patient assignment process followed at PRISMA Health ED, physicians working in certain 

Figure 4.3: A high-level overview of patient and physician activities in a single ED pod. 
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pods were restricted from taking high severity patients as few pods do not have the equipment 

required to provide care for high severity patients. After visiting a patient for the first time, a 

physician always returns to the station to update charts and order tests. The patient will have 

subsequent visits by the same physician based on ESI level, as observed in the ED. If the particular 

physician is ending their shift, the patient is handed off to another active physician. Additionally, 

it can be noted from the figure that after a subsequent visit, there is a 40% chance that a physician 

visits another patient before returning to the station. Where historical data did not exist, expert 

opinions from ED physicians were used for modeling.  

After developing the simulation model representative of PRISMA health ED, the next step 

was validating the model against the actual data. For this, we utilized the patient time in the ED 

for the ESI level as the validation metric to ensure that patient time spent in the simulation model 

did not vary significantly from the actual data for each ESI level. The model was simulated for a 

three-week schedule with an additional two-day warm-up period for the model to attain 

equilibrium. A total of 60 replications were performed, such that the margin of error on time in the 

ED metric was ± 10 minutes (at α=0.05). Table 4.1 below represents the simulated data and actual 

data for each ESI level. It can be observed that the difference between these was less than 7% for 

each ESI level. Further, on conducting an independent t-test, there was no significant difference 

(p-value = 0.96) between the simulated data and actual data. 

Severity Actual Time in ED 
(mins) 

Simulated Time in ED 
(mins) 

Percent 
Difference 

ESI 1 236±16.8 250±8.6 6% 
ESI 2 272±12.4 272±6.6 0% 
ESI 3 229±9.6 231±4.2 1% 
ESI 4 114±8.9 117±5.4 3% 
ESI 5 122±7.1 123±5.5 1% 
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Table 4.1: Simulation model validation (with secondary delays). 

4.2.2  

4.2.3 Results 

To comprehend staffing schedules that can minimize patient handoffs, physician shifts, and 

patient wait times while considering the staffing budget, we specifically generated two policies.  

 

• Policy 1: This policy aims to minimize the combined costs of handoff, patient waiting, and 

physician staffing using the MILP model based on the costs discussed in the formulation 

section. 

 

• Policy 2: This policy also aims to minimize the combined costs of handoff, patient waiting, 

and physician staffing using the MILP model. However, here the handoff costs are 

penalized with a 3x multiplier of the original handoff cost with the central focus of 

eliminating handoffs as much as possible. 
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In the case of policy 2, handoff reduction might come at the cost of additional staffing as this 

policy aims to eliminate as much as handoffs as possible. However, we utilized an upper threshold 

on the number of physicians that can be staffed in the ED for a day. Weekly physician staffing 

schedules for both policies were generated such that a MipGap of < 3% was attained. Figure 4.4 

below represents the average hourly patient arrivals and physician availability for the week under 

the two generated schedules and the baseline policy (current practices at the partner ED). 

From Figure 4.4 above, it can be clearly identified how the schedules generated using the 

MILP model staff the ED compared to the baseline policy. The baseline policy aims to maintain a 

steady physician availability throughout the day, with more physicians during the peak hours (8:00 

am - 9:00 pm) and fewer physicians during the non-peak hours. However, both MILP models staff 

the ED in a dynamic manner considering the patient arrivals with a comparatively higher physician 

availability during the peak hours and lesser physicians during the non-peak hours. Table 4.2, 
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represents the physician shift start times for the week, and it can be noted that compared to the 

baseline policy, the other two policies staff more physicians during peak hours of patient arrivals. 

Table 4.2: Weekly physician shift start times. 

Time Baseline Policy 1 Policy 2 

12:00 AM 0 8 7 

1:00 AM 0 0 0 

2:00 AM 0 0 0 

3:00 AM 0 0 0 

4:00 AM 0 0 0 

5:00 AM 0 0 0 

6:00 AM 0 9 7 

7:00 AM 22 7 0 

8:00 AM 4 14 14 

9:00 AM 20 7 12 

10:00 AM 5 14 21 

11:00 AM 0 7 7 

12:00 PM 2 0 12 

1:00 PM 0 0 0 

2:00 PM 0 21 0 

3:00 PM 21 4 7 

4:00 PM 4 14 21 

5:00 PM 20 1 7 

6:00 PM 0 7 7 

7:00 PM 0 7 7 

8:00 PM 0 7 7 

9:00 PM 0 0 7 

10:00 PM 15 0 0 

11:00 PM 21 7 0 

Total Shifts 134 134 143 

Weekly Hours 1128 1072 1144 

Change in hours  -5% 1% 

 

Additionally, it can be observed that the two new policies use an overlapping approach to 

start shifts rather than starting most of the shifts at the same time. For example, in the baseline 

policy, most physicians start their shift at 7:00 am, 9:00 am, 5:00 pm, and 11:00 pm, whereas the 

shifts are staggered for the other two policies. Further, it can be observed that policy 2 staffs more 
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physicians as here handoffs are penalized significantly higher than the first policy. However, 

considering only the total number of shifts does not capture staffing cost, as some shifts are longer 

than 8 hours in the baseline policy. To ensure that handoffs are not minimized by overstaffing the 

ED, we compared the full-time equivalents (FTEs) under two new policies to the baseline policy. 

Although policy 1 reduced the FTE requirements by 5%, the FTE requirements increased by 1.4% 

under policy 2. 

After generating the schedules, the next step was to test the two new policies along with 

the baseline policy in the validated simulation model. We used three ED performance metrics to 

compare the model performance: throughput, patient time in the ED, and the number of handoffs. 

The first two metrics evaluate the patient flow, and the third metric evaluates patient safety. All 

three policies were simulated in the model for a three-week schedule and replicated until the 

margin of error on time in the ED metric was ± 10 minutes (at α=0.05). From Table 4.3 below, it 

can be observed that both the new policies outperform the baseline policies. To comprehend if 

these differences were statistically significant, we conducted an independent ANOVA and 

observed that weekly throughput did not vary significantly among the three policies (p-value 

>0.05). It is imperative that the throughput will not vary significantly as the simulation model uses 

historical data and with a limited patient arrival. However, both handoffs per day and patient time 

in the ED were not the same (p-value = 0.03) for the three policies, suggesting a significant 

difference among at least one of the policies. To identify which groups varied significantly, we 

performed a Tukey posthoc test and observed that the number of handoffs in policy 2 varied 

significantly (p-value < 0.05) from baseline policy and policy 1. Additionally, patient time in the 

ED varied significantly between policy 2 and the baseline policy. Compared to the baseline policy, 

policy 1 reduced patient time in the ED by 2.5% and handoffs by 5.2%. Further, policy 2 reduced 
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patient time in the ED by 6.4% and handoffs by 12.0%. Finally, in terms of FTE reduction, 

although we did not perform a statistical test, policy 1 reduced the FTE requirements by 56 hours 

(~1.5 FTEs) for a week, and FTE requirements increased for policy 2 by 16 hours (~.4 FTEs).  

Table 4.3: Simulation model results. 

Policy Weekly 
Throughput 

# handoffs per 
day 

Time in the ED 
(mins) 

Change in hours/ 
week 

Baseline 1505 93 213 0 
Policy 1 1503 88 207 -56 
Policy 2 1506 81 199 +16 

 

Finally, comparing policies 1 and 2, we observed that policy 2 improves patient safety and 

patient flow the best. However, it should be noted that the additional 4% reduction in patient time 

in the ED and 7% decrease in handoffs comes at the cost of  ~2 additional FTE requirements for a 

week 140. 

4.3 Phase Two 

4.3.1 Methods 

Although these initial findings are promising, the reduction in patient time in the ED and 

the number of handoffs add a cost burden on the system. Hence our next step was to identify areas 

of opportunities to improve these performance metrics without significantly increasing the FTEs. 

The results from our overlapping shift schedules suggest that staggering physician shifts with one-

hour overlap can help in reducing the number of handoffs and patient time in the ED. However, 

this could also lead to additional FTEs, and more importantly, this would require ED physicians 

to work an additional hour. To understand the physicians’ willingness to extend the shift, their 

perceptions of handoffs, and identify how overlapping could reduce handoffs: a) we decided to 

deploy a survey among all practicing attending physicians in the partner ED and b) analyze ED 

data to identify the pattern of handoffs.   
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After discussing with ED stakeholders, an online 7-question survey was developed and 

distributed to attending EM physicians via the email listserv using the Qualtrics survey tool. The 

survey was voluntary, anonymous, and gathered the physician perception of handoffs on patient 

safety, patient flow, patient satisfaction, preference for the number of handoffs, willingness to 

extend shift, and strategies to manage handoffs using multiple-choice, multiple-answer, and open-

ended question styles. Survey questions were created by a senior attending physician along with a 

professor from the Dept. of Industrial Engineering and were vetted by other attending physicians. 

Participants completed the survey between the months of June - December of 2021. For the 

retrospective chart review, we utilized three years of data (Sep 2018 - Aug 2021) which included 

all patient arrivals for the respective years along with patient characteristics, including their 

severity (ESI) level, chief complaint, arrival time, admit time, disposition time, departure time, 

unique provider identifier, longest provider, etc.  

4.3.2 Results 

A total of 84 responses were collected with a 70% response rate from 120 attending ED 

physicians, and descriptive statistics were used to analyze multiple-choice and other responses to 

the survey response. Survey questions to understand the physician perception of handoffs on 

patient safety, patient flow, and patient satisfaction had a seven-point Likert scale which translated 

to positive, negative, and no impact. Figure 4.5 below represents the physician's perception of how 

handoffs impact various performance metrics, and it can be observed that 69% of physicians felt 

that handoffs have a negative impact on patient safety, and 67% felt that handoffs increased the 

patient length of stay (negative impact) and 56% felt that handoffs reduce patient satisfaction. For 

both patient length of stay and satisfaction, 25% and 31% of physicians felt that handoffs did not 

have any impact and 6% felt the same for patient safety. Consistent with the literature, a few 
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physicians (25%) felt that handoffs actually improved patient safety, and 8% and 13% of 

physicians perceived that handoffs reduced patient length of stay and increased satisfaction.  

To delve deeper and understand the physician's mental model for these perceptions, we 

analyzed the free-text response. A thematic content analysis was performed for the open-ended 

questions, which included narrative responses. The primary reason why physicians felt that 

handoffs affected patient safety negatively was the higher chances of confusion with change in the 

care team and missing information. In contrast, physicians perceiving handoffs to impact patient 

safety positively reported that change in the care team could improve patient safety (double-

checking). Looking at the reasoning for increasing patient length of stay, physicians felt that 

handoff patients add a burden (workload) to oncoming physicians, and these patients may receive 

less attention as the oncoming physician might focus on new patients. The few physicians who felt 

that handoffs could reduce patient length of stay did not provide any particular reasoning. 
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Figure 4.5: Physician perception of the impact of handoffs on length of stay, safety, and satisfaction. 
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However, those who responded that handoffs would not have any impact on patient length of stay 

reported that the oncoming physician would provide care as effective as them and would not have 

any impact on the length of stay. Finally, looking at patient satisfaction, physicians who perceived 

that handoffs decrease patient satisfaction reported that patients felt worried/concerned when 

physicians mentioned handoffs during the end of shift rounds. The physicians who perceived 

handoffs to have a positive impact on patient satisfaction reported that they discussed the care plan 

thoroughly with patients during the final round-up. Finally, those perceiving handoffs to have no 

impact on patient satisfaction reported that patients are responsive to the fact that handoffs are 

unavoidable in the ED. Although the physician perceptions of the impact of handoffs on patient 

safety, length of stay, and satisfaction were mixed, the majority of the physicians reported handoffs 

to have a negative impact on these performance metrics. 

To understand physicians’ preference for the number of patients they handoff at the end of 

their shift and receive during the beginning of the shift, we analyzed the response to those two 

specific questions. Figure 4.6 below represents the physician's preference on the number of handed 

off and received during the beginning of the shift. It can be observed that, given the opportunity, 

51% of physicians prefer not to hand off any patients at the end of their shift. Additionally, 37% 

and 10% of physicians responded that they prefer to hand off 1-2 and 3-4 patients during the end 

of their shift. Similarly, for the number of patients received during the beginning of their shift, 

52% of physicians reported that they prefer not to receive any patients. Further, 31%, 13%, and 

4% of physicians responded that they prefer to receive 1-2, 3-4, and 5-6% of patients during the 

end of their shift.  
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These findings align with the majority response from the physician's perceptions of 

handoffs on performance metrics. However, even the physicians who perceived handoffs to have 

a positive impact on different performance metrics preferred to have fewer handoffs. Investigating 

the free-text response, most physicians preferred receiving and handing off fewer patients citing 

that handoffs burden the oncoming physician and affect patient safety. From these observations, it 

is evident that physicians prefer to avoid handoffs. However, to understand if physicians took any 

actions to avoid handoffs, we analyzed their response to the question, “ How often do you make a 

conscious effort to minimize the number of handoffs?”. The response was collected using a 5-point 

Likert scale, and Figure 4.7 below represents the physicians’ responses. It can be observed that all 

the physicians reported making some conscious effort to avoid handoffs in the ED. Specifically, 

77% of physicians reported that they always make a conscious effort to avoid handoffs. Further, 

18% of physicians reported that they frequently take action to avoid handoffs and the rest 5%, 

Figure 4.6: Physician preference on the number of patient handoffs. 
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reported that they take action sometimes to avoid handoffs. Analyzing the free-text response, the 

most common strategy used by physicians to avoid handoffs includes staying after shift, 

consolidating patient files during the end of shift, and signing up fewer patients at the end of shift.  

Finally, on analyzing the response to physicians’ willingness to extend the shift if 

compensated, we observed that 82% of the physicians were willing to extend the shift, and 18% 

did not want to increase their shift length. Figure 4.8 below represents the physicians’ willingness 

to extend the shift, and 61% of physicians reported that they were willing to extend the shift by an 

hour. Additionally, 4%, 8%, and 9% of physicians were willing to extend the shift by 90,30 and 

120 minutes, respectively.  
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Figure 4.7: Frequency of physician's efforts to reduce the number of handoffs. 

Figure 4.8: Physician willingness to extend shift. 
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To summarize the findings from the survey responses gathered, the majority of the 

physicians perceived handoffs reduced patient safety, patient satisfaction, and increased patient 

length of stay. Additionally, most physicians preferred not to hand off or receive patients during 

the end or beginning of the shift and reported taking actions to avoid handoffs. Finally, most 

physicians were willing to extend their shift by an hour which aligned with the idea of a one-hour 

overlapping shift.  

From our simulation results and some sparse literature, it is evident that one-hour 

overlapping shifts can reduce the number of handoffs. However, to better understand the number 

of handoffs observed in the partner ED, we analyzed 3- years' worth of retrospective data from the 

partner ED. Since no reports directly track if a patient was handed off or not, we had to manipulate 

a few columns to get the number number of handoffs. Each patient visit in the ED is marked with 

three provider features, including the ID of the first physician providing care, the ID of the last 

physician providing care, and the ID of the longest physician providing care. If the first and the 

last care physician IDs match, it suggests there was no handoff, and if it doesn’t match, it means 

the patient was handed off. If a patient was handed off, we compared the first physician ID to the 

longest physician ID, and the motivation for this was to identify if this handoff would have been 

avoidable. We define potentially avoidable handoffs as those where patients were signed up during 

the last hour of the shift and handed off. However, this is hard to capture as the time stamp of 

handoffs is not recorded. Hence we use time spent in the ED to identify these scenarios. For 

example, if a patient spends less than 121 minutes in the ED and the first physician is not the 

longest physician, then it suggests that the patient was signed up by the first physician during the 

last hour of the shift, which could have been potentially avoided. Similarly, we use various logic 

to isolate the avoidable handoff. However, it should be noted that if there are more than 2 
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physicians involved in care, then the handoffs cannot be captured using this approach, but those 

scenarios are rare as only a few patients spend over 10 hours in the ED. Table 4.4 below represents 

the percentage of patients handed off and the percent where the first physician is not the longest 

provider for three years.  

Table 4.4: Percent patients handed off, and the first physician is not the longest. 

Year Percent Patients 
Handed off 

Percent Handoffs where the 
first provider is not the longest 

Sep 2018 – Aug 2019 30% 47% 
Sep 2019 – Aug 2020 31% 48% 
Sep 2020 – Aug 2021 30% 50% 

From the table above, it can be observed that at least 30% of patients arriving at the ED are 

handed off, and of those handed off, about 47% of the cases had the first physician not be the 

longest caring physician. However, this does not suggest that 47% of handoffs are avoidable 

because some patients require complex care and spend extended time in the ED, which is 

unavoidable. However, we observed that 9-12% of cases of handoffs are avoidable based on the 

criteria defined above. This observation further suggested that one-hour overlapping shifts, if 

implemented, could practically reduce the number of handoffs.  

After discussing the findings from the survey, retrospective data analysis, and the first two 

shift schedules with the physician stakeholders, our next step was to develop new shift schedules. 

According to the ED physicians, one of the main drawbacks of the first two shift schedules was 

their lack of practical application to the ED. Based on their feedback, a few additional constraints 

were added to the model to restrict shift start times during certain hours. Specifically, physicians 

did not want to start a shift after 5:00 pm in the evening as the end time of those shifts would be at 

odd hours. For example, a shift starting at 7:00 pm in the evening would end at 3:00 am, given it 

is an eight-hour shift. However, to ensure that ED is covered to meet patient demands, physicians 

suggested adding a potential time window at 11:00 pm that can be used as a shift stating time. 



108 

 

Physicians suggested using 11:00 pm as a potential shift start time as the shift end would be after 

7:00 am. Further, any shift starting between 12:00 am, and 6:00 am was also restricted as these 

were operationally impossible. Further, we added a constraint to account for minimum ED 

coverage, which required at least three physicians to be present in the ED during any given hour 

of the day. With these new constraints, we generated an 8-hour shift schedule. Additionally, based 

on the survey feedback, we explored the idea of generating a 9-hour shift schedule as the majority 

of physicians were willing to extend their shift by an hour, and ED stakeholders suggested these 

were implementable in an ED. Finally, we also generated a weekly schedule with a combination 

of 8- and 9-hour schedules as some physicians preferred not to extend their shifts. Although a few 

physicians reported willingness to extend the shift by 30 mins, 90 mins, and 120 mins, we did not 

test these schedules as these were operationally impossible and added more confusion to shift 

scheduling start times and coverage. Thus, in total, we generated three new operational shift-shift 

schedules. 

Table 4.5 below represents the new shift start times for the week under each policy. Here 

policy 3 represent an 8-hour physician shift, policy 4 represents a 9-hour physician shift, and policy 

5 represents a combination of 8 and 9-hour shift. The first thing to notice here is how the start 

times are restricted to certain time frames that are very similar to the baseline policy, as these were 

added as the new constraints. Although the shift start windows are the same, one of the interesting 

factors to notice is how the schedule generated by the mathematical model recommends starting a 

shift in a staggering approach as opposed to starting shifts only at particular time frames (e.g., 

7:00, 9:00, etc.) as observed in the baseline policy.  
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Table 4.5: Weekly physician shift start times. 

Time Baseline Policy 3 Policy 4 Policy 5 

12:00 AM 0 0 0 0 

1:00 AM 0 0 0 0 

2:00 AM 0 0 0 0 

3:00 AM 0 0 0 0 

4:00 AM 0 0 0 0 

5:00 AM 0 0 0 0 

6:00 AM 0 0 0 0 

7:00 AM 22 21 14 21 

8:00 AM 4 14 14 14 

9:00 AM 20 14 14 14 

10:00 AM 5 7 7 7 

11:00 AM 0 7 7 7 

12:00 PM 2 7 0 0 

1:00 PM 0 0 7 7 

2:00 PM 0 7 7 7 

3:00 PM 21 14 14 14 

4:00 PM 4 14 21 14 

5:00 PM 20 14 0 7 

6:00 PM 0 0 0 0 

7:00 PM 0 0 0 0 

8:00 PM 0 0 0 0 

9:00 PM 0 0 0 0 

10:00 PM 15 0 0 0 

11:00 PM 21 21 21 21 

Total Shifts 134 140 126 133 

Weekly Hours 1128 1120 1134 1127 

Change in hours  -1% 1% 0% 

 

Figure 4.9 below represents the hourly average patient arrival and ED physician availability 

for a day. It can be noticed that the staffing schedule generated by the staffing schedule staffs ED 

in a dynamic manner based on patient arrivals to the ED, where more physicians are staffed during 

the peak time of patient arrivals to the ED. Especially between 10:00 AM to 6:00 PM, the dynamic 

staffing policies track the same pattern of patient arrivals, while the baseline policy aims to 

maintain a steady level of physician availability. Additionally, it can be noticed how the new 
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staffing policies generated using the mathematical model maintain the minimum required levels 

of physician staffing during the non-peak hours (12:00 am – 7:00 am). Further, for only a 9-hour 

policy (policy 4), it can be observed that staffing availability increases during 3:00 and 4:00 PM 

because a 9-hour shift cannot be started at 5:00 pm because of operational infeasibility.   

After generating the new schedules, we tested these three policies in the validated 

simulation model. The simulation runs and all the parameters were the same as the prior runs. 

Table 4.6 below represents the performance metrics under each policy, including the non-

operational policies. It can be noticed here that with these additional constraints, the amount of 

variation in FTEs compared to the baseline policy is not significantly different. However, we did 

observe a statistically significant difference in the time in the ED and the number of handoffs 

compared to the baseline policy. Further, in Table 4.7, we present these results in percentage 

differences for easier comparison and identifying the best policies.   
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Table 4.6: Simulation model results. 

Policy Weekly 
Throughput 

# handoffs per 
day 

Time in the ED 
(mins) 

Change in hours/week 
(FTEs) 

Baseline 1505 93 213±4.6 0 
Policy 1* 1503 88 207±7.2 -56 (-1.4FTEs) 
Policy 2* 1506 81 199±6.1 +16 (+0.4 FTEs) 
Policy 3 1509 87 206±8.3 -8 (-0.2 FTEs) 
Policy 4 1503 84 201±5.9 +6 (+0.2 FTEs) 
Policy 5 1501 85 201±6.0 -1 (+0.1 FTEs) 

*Non-operation policies  

Table 4.7: Percentage difference in metrics compared to the baseline policy. 

Policy Handoffs Time in ED Change in hours /Week 

Policy 1* -5.2% -2.5% -56 (-1.4FTEs) 

Policy 2* -12.0% -6.4% +16 (+0.4 FTEs) 

Policy 3 -6.1% -3.3% -8 (-0.2 FTEs) 

Policy 4 -9.2% -5.6% +6 (+0.2 FTEs) 

Policy 5 -8.7% -5.4% -1 (+0.1 FTEs) 
*Non-operation policies  

From Table 4.7, it is evident that policy 1 appears to be the best in terms of FTE reduction 

and performance improvement. But, policy 2 has the most significant reduction in the number of 

handoffs and time in the ED for a slight increase in FTE needs. However, based on feedback from 

the ED physicians, these two policies are operationally infeasible. Hence we move to the 

operational policies (3, 4, 5), which were developed based on the feedback from survey research 

and retrospective data analysis. Among these three policies, 8- and 9-hour shifts add the most value 

in terms of a decrease in the number of handoffs, time in ED, and a slight reduction in FTEs. 

Additionally, these policies align with the subjective feedback provided by the physicians, where 

some preferred to have a 9-hour shift whereas a few others preferred an 8-hour shift. However, 

policy 3, and 4, which maintains the same shift length (8 or 9 hours), might be preferred in some 

EDs as it ensures fairness and less confusion among ED physicians. A modified version of the 

shift schedule generated by the mathematical model is currently implemented at the partner health 

system. 
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4.3.3 Discussions and Conclusions 

Optimal staffing of an ED is a crucial factor in ensuring smooth patient flow and improving 

patient safety by avoiding overcrowding. Researchers have used various operations research 

methods to improve patient flow by minimizing the wait times, patient time in the ED and 

improving ED throughput. However, very few studies have considered patient safety as a 

performance metric along with the patient flow metrics to evaluate ED performance. Additionally, 

one of the primary issues with some results generated from operations research methods is the lack 

of implementation in the actual testing environment. Hence it is critical to involve stakeholders 

and end users while developing the solution. This research focused on developing optimal ED 

physician shift schedules that improve patient safety and patient flow while considering the 

staffing budget. To address this research objective, we developed a MILP model and used survey 

research along with retrospective data from partner ED to inform the modeling. Further, the shift 

schedules generated from the MILP model were tested in the validated simulation model 

representative of the partner ED.  

From the survey responses, we identified that 69% of physicians felt that handoffs have a 

negative impact on patient safety, 67% felt that handoffs increased the patient length of stay 

(negative impact), and 56% felt that handoffs reduce patient satisfaction. Although prior studies 

have reported similar findings with respect to patient safety, it is interesting to notice that handoffs 

can also act as a surrogate for patient satisfaction metrics. Additionally, the survey responses also 

helped shed light on physician preferences on the length of their shift and willingness to extend 

their shift, along with the preferred number of patients they would like to hand off or receive. 

Finally, the retrospective analysis further helped us understand the opportunity for reducing 

handoffs by using the overlapping shift approach discussed in the prior chapter.  
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Although handoffs, the transfer of patient care from one physician to another, are 

unavoidable in the ED because of the continuous patient flow, we developed a MILP model that 

minimizes the combined cost of handoffs as the (patient safety metric), time in the ED and waiting 

times (patient flow metric), along with the staffing cost to represent the ED staffing budget. After 

generating schedules based on physician preferences and feedback, we observed that a 

combination of 8- and 9-hour staffing schedule was the most effective, where it reduced the patient 

time in the ED by 5.4% and handoffs by 8.7% without affecting the ED budget. These findings 

could be scaled to other large Level 1 trauma centers depending on the patient census. However, 

smaller EDs with fewer patient arrivals (<35,000 patient arrivals/year) that have different operation 

constraints should be cautious while adopting similar policies.  

 

 

 

 

 

 

 



114 

 

5. Chapter 5 

5.1 Understanding and Detecting Physician Stress in Emergency 

Departments 

5.1.1 Background and Literature 

The crisis of physician burnout, stress, and clinical errors has been a topic of discussion 

and research for the past two decades 141,142. Burnout is defined as a condition of high emotional 

exhaustion, depersonalization, and low personal accomplishment. The burnout rates among 

physicians are increasing irrespective of the research and preventive measures that are adopted. A 

2019 survey investigating the burnout rate among 15,000 physicians from 29 different 

specializations reported that 44% of the physicians were burned out 11.  Moreover, Emergency 

Medicine was one of the top five specialties reporting higher levels of burnout 11. A comparative 

study that examined the burnout rates of physicians in the US to other general working adults 

reported that physicians had a 10% higher chance of burnout 143. Additionally, a two-stage study 

investigating burnout among ED physicians reported that they had high emotional exhaustion and 

depersonalization 144. 

The main reasons attributed to physician burnout are bureaucratic tasks (e.g., charting, 

paperwork) resulting in increased time spent on the EHR, long working hours, and stress 11,145–149. 

Frequently, burnouts are preceded or accompanied by periods of prolonged stress 142. ED staff are 

often exposed to high levels of stress due to the diverse nature of patient conditions, which include 

life-threatening emergencies, injuries, and chronic ailments. ED overcrowding, another potential 

source of stress, has also become more common. Prior studies have identified emergency 
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department overcrowding, high patient inflow, and long work hours as significant contributors to 

higher levels of stress and frustration among ED physicians 9,10,150.  

Stress and fatigue are important factors that contribute to medical errors and fatalities. 

According to the Institute of Medicine's (IOM) seminal article, "To Err is Human," between 

44,000-98,000 deaths per year result from medical errors 151. Furthermore, there were higher 

chances of errors when the ED was overloaded and did not have adequate resources or equipment 

152. Overall, human errors, primarily cognitive and incorrect clinical assessments, were reported as 

the leading causes of errors in ED 152. 

Studies that investigated the role of experience on stress and medical errors have observed 

that experience helps physicians to develop internal control mechanisms to cope with various 

treatment conditions in the ED. In a study analyzing over 7,000 hours of endocrine stress response 

from 112 nurses and 27 physicians working in critical care, the mean raw cortisol levels were 

lower among the experienced team members, suggesting the role of experience in stress 

management 153. The capability of experienced physicians to manage stress could be attributed to 

the coping mechanism they develop 154.  A study investigating medication errors in the pediatric 

ED setting reported that less experienced resident physicians made a higher number of errors 

compared to experienced physicians 155. Another study focusing on the extent of supervision 

required for the ED residents reported that out of 480 patients reviewed by the residents, 37% 

required a change in proposed care 156.  

Prior studies have extensively investigated the causes of errors, the number of errors, and 

their association with physician experience in the ED. Additionally, a few studies have compared 

the stress and burnout among the attending and resident physicians, but these studies used only 

qualitative methods and did not include an attending and resident physician working together on a 
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shift 157–160. A recent study that investigated the change in heart rate (HR) and salivary cortisol 

levels of pediatric ED attending physicians following resuscitation observed that both HR and 

salivary cortisol significantly increased after these events 161. Similar to other studies, this study 

did not consider a resident physician working on the same shift and did not monitor the 

physiological measures for the entire shift. However, the study by Joseph et al., (2016) compared 

the stress of attending and resident physicians during trauma and emergency surgery using 

qualitative and quantitative measures of heart rate variability (HRV) 162.  Our research furthered 

the existing research by comparing the physician's stress during an entire shift, which included 

both trauma and non-trauma events, using qualitative measures and quantitative measures of HRV 

and electrodermal activity (EDA). Moreover, we considered the various domains of HRV metrics, 

including time domain and frequency domain metrics. Finally, we also investigated the physician 

burnout levels. To our knowledge, this will be the first study that uses subjective and objective 

data to compare stress and burnout among attending and resident physicians, stress changes during 

an entire ED shift, and specific trauma and non-trauma events. Specifically, we investigated the 

following questions in this chapter: 

• Is the stress level the same in attending and resident physicians for an entire ED shift? 

• Is there a change in HRV of attending and resident physicians during trauma and non-

trauma events? 

• Is the burnout rate similar between attending and resident physicians? 

• Does experience impact the perceived workload of an ED shift? 

• Is there a correlation between the subjective and objective measures? 
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5.2 Phase One 

5.2.1 Methods 

5.2.1.1 Participants  

Participants for this study included 12 emergency physicians (8 male, 4 female) working a 

3:00 pm - 11:00 pm shift at Greenville Memorial Hospital (GMH) in Greenville, SC. The 

Greenville Health System (GHS), now called PRISMA Health, is the largest healthcare provider 

in South Carolina and serves as a tertiary referral center for the entire Upstate region. The flagship 

GMH academic Department of Emergency Medicine is integral to GHS patient care services as 

the Adult Level 1 and Pediatric Level 2 Trauma Center, Stroke and ST-Elevation Myocardial 

Infarction (STEMI) Comprehensive Center seeing over 106,000 patients annually.  

Meetings with ED physicians and faculty were organized prior to the start of data collection 

to discuss the purpose and methodology. Six participants (mean age = 26.8 ± 1.5 years, 4 male, 2 

female) were first-year resident physicians, and the other six (mean age = 42.66 ± 2.8 years, 4 

male, 2 female) were attending physicians with an average experience of 8 years of practice. An 

attending was paired with only one resident physician during the shift, and all the attendings had 

a minimum of five years of experience working in the ED. For analysis, we considered 42 events 

(21 trauma and 21 non-trauma) for each group. The number of events was based on a meta-analysis 

study that evaluated 297 studies that used HRV to compare two groups 163. Further, by power 

analyses, when the significance level was set at 0.05, a sample size of 21 events had 80.0% power 

to detect an effect size of .9 between two groups.  Consent was obtained from physicians before 

the shift, and the study was approved by GHS IRB Pro00058516. 
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5.2.1.2 Apparatus 

The Empatica E4 watch is a wearable device that collects real-time physiological data. This 

wrist band is equipped with four types of sensors: two metallic electrodes for measuring EDA, a 

three-axis accelerometer, an optical thermometer, and photoplethysmogram sensors for computing 

HRV. This device can measure skin temperature, HRV, EDA, and acceleration. Prior research has 

validated the effectiveness of this device, and one study that specifically compared it to the medical 

devices used in the hospital reported that Empatica E4 echoed the data collected from the medical 

devices 164. Additionally, multiple research studies have used Empatica E4 for computing stress, 

emotional arousal, epileptic seizures, sleep quality, and arterial fibrillation 165–170. 

Empatica EDA data captures the skin conductance response (SCR), i.e., the phasic 

response, and skin conductance level (SCL), i.e., tonic response. Variations in the phasic 

component are observed as GSR peaks, and it is sensitive to specific emotionally arousing stimulus 

events. In this research, we used only the tonic component, SCR, to examine the stress levels 

during an event.  

HRV measures the change in the time between successive heartbeats. The time between 

beats is measured in milliseconds (ms) and is called an “R-R interval” or “inter-beat interval (IBI).” 

In stressful situations, HRV is a product of a change in the autonomic nervous system, which is 

composed of the sympathetic and parasympathetic nervous system. Examining the relationship 

between the sympathetic and parasympathetic nervous system provides insight into the stress state 

of an individual 171–173. Empatica E4 collects the EDA data at a sampling rate of 4 Hz and HRV 

data at 64 Hz. 
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5.2.1.3 Procedure 

First, we identified the pair of residents and attending physicians working together for an 

eight-hour shift. Prior to the shift, each physician was handed the consent form. The physicians 

were then asked to put on the Empatica E4 wristwatch at least five minutes prior to the start of 

their shift to obtain the baseline data. As mentioned above, Empatica E4 collects various 

physiological measures, including EDA, HR, and HRV. Finally, before starting the shift, 

physicians were handed the Maslach Burnout Inventory-Human Service Survey (MBI-HSS), 

which measures emotional exhaustion, depersonalization, and personal accomplishment. 

Collectively, these measures provide a surrogate for the burnout rate. The MBI-HSS survey was 

administered prior to the shift to control for the effect of the shift on their response.  They were 

also given the NASA-TLX survey at the beginning of the shift to assess the current perceived 

workload. 

During the shift, an observation sheet was used by the person shadowing the physician to 

note the physician's activities. The main activities noted were computer interaction, patient 

interaction, discussion, and trauma, as described in Table 5.1. The researcher shadowing the 

physician time-stamped the beginning and end of each activity on the observation sheet. The 

physician activities were classified and coded as represented in Table 5.1 to maintain the 

consistency of classifying the physician activities by different researchers shadowing the 

physician. Further, any events or incidents that a researcher had concerns about were noted on the 

observation sheet and discussed as a team to address the issue. These time stamps were later used 

during the analysis to comprehend the change in physiological measures during certain events. 

Any events that could have a confounding effect on the data were noted on the observation sheet 

and not considered for analysis. 
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Table 5.1: Description of different shift activities. 

 

Post-shift, the physicians were again given the NASA-TLX to assess the shift workload 

and obtain a workload index score.  NASA-TLX measures include mental demand, physical 

demand, temporal demand, effort, performance, and frustration. NASA-TLX has been used and 

validated in the healthcare setting to measure stress, and the workload during a particular event, 

including surgeries, ICU shifts, etc. 174–177.   

5.2.1.4 Analysis 

The data collected from the Empatica E4 was first preprocessed before analysis. The data 

did not require downsampling as the maximum sampling rate was 4Hz. Hence, the first step was 

mapping the data points to the events recorded in the observation sheet based on the time stamp. 

This was performed as the first step to avoid the mix-up of data and events during data 

preprocessing. To remove the artifacts from the HRV data, we first visualized the RR Intervals 

(the time between two successive R waves), and any ectopic beats and motion artifacts were 

manually identified and marked 178. Additionally, any RR Intervals of more than 1300 ms and less 

than 400 ms were also marked. The marked data and any missing values were interpolated based 

on preceding and successive beats using the cubic spline interpolation technique 179. Similarly, any 

confounding spikes resulting from hand motions, etc., recorded on the observation sheet were 

Activity Description 
Average Number 

of events per shift 

Computer 

Interaction 

Physicians use the EHR, Charting, and reading 

reports. 
21 ± 2.1 

Patient 

Interaction 

Physicians interact with patients regarding their 

health issues. 
16 ± 1.8 

Discussion 

Attending physicians discuss/teach the resident 

physicians. 

Physicians talk / engage with other physicians. 

10.3 ± 2.3 

Trauma 

Level 1, 2, and 3 trauma cases include car 

crashes, gunshot wounds, etc. This includes 

complex procedures such as intubation, etc. 

4 ± 0.9 
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identified and interpolated from the EDA data. Only events that lasted for at least three minutes 

were considered for analysis because of the lack of inference that could be drawn from short 

events. The three minutes duration of events was based on observations from prior studies 

investigating the time and frequency domain metrics of HRV. Shaffer & Ginsberg (2017) observed 

that at least two minutes of HRV data is required for interpreting and inferring accurate 

conclusions. However, a recent study that compared the 2 minutes vs. 3 minutes data to >5 minutes 

data observed that 3 minutes data had a strong correlation to >5 minutes data 181. Hence, in this 

study, we decided to use three minutes as the minimum duration of an event to be considered for 

analysis.  Finally, any events noted in the observation sheet as potentially having confounding 

effects were not included in the analysis.  

For event-based comparison, we first sampled 21 random trauma events and 21 non-trauma 

events (7 patient interactions, 7 discussions, and 7 computer interactions) from various ED shifts. 

The 42 events of interest were now split into individual events from the dataset. Further, the 

physiological measures (EDA & HRV) for the activities of interest were compared between the 

attending and resident physician pairs. 

EDA refers to the variation of electrical properties of the skin in response to sudomotor 

activity 182. The nerve fibers trigger the sudomotor activity, and concurrence of the firing of these 

fibers results in a quick burst, which can be recorded as a skin conductance response (SCR) 183. 

SCRs are also referred to as the rapidly occurring phasic component of EDA. Variations in the 

phasic component are observed as EDA peaks, and it is sensitive to specific emotionally arousing 

stimulus events 184–186. Prior studies investigating the change in EDA during stressful stimuli have 

observed an increase in the SCR activity and amplitude during the stressful stimulus 187–189. The 

EDA data were compared by the number of skin conductance response (SCR) peaks for the events. 
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For this, data for each event were imported to MATLAB and prepared for analysis using the open-

source MATLAB package, Ledalab. Further, the data was analyzed by continuous decomposition 

analysis and optimized to correct motion artifacts. The peak threshold for the SCR was set as 0.01 

micro siemens based on prior research recommendations 190,191. Hence a burst will only be 

considered an SCR if its rise phase exceeds the threshold value. Finally, the number of peaks for 

the specific events was recorded. EDA data for the entire shift was not compared, as the high 

sensitivity of the data makes it undesirable to make accurate inferences 191. 

Similar to the EDA analysis, the HRV analysis of the attending and resident physician pair 

was compared for 21 trauma events and 21 non-trauma events (7 patient interactions, 7 

discussions, and 7 computer interactions) from various ED shifts. Additionally, to understand the 

long-term effect of stress, we conducted an HRV analysis on the full shift data.  

HRV, which is the change in the time between successive heartbeats, is a reliable reflection 

of many physiological factors 192. It has been used as a quantitative marker to understand the 

interplay between the sympathetic and parasympathetic nervous systems. The sympathetic nervous 

system is our fight and flight response, whereas the parasympathetic is the rest and digest response. 

The former activates during high stress, anxiety, or fear, while the latter helps the body to maintain 

homeostasis 193. Although HRV can be analyzed and interpreted using a variety of methods, the 

most common and reliable methods used are time domain and frequency domain metrics 178. Hence 

for analysis, we considered both time domain and frequency domain metrics of the HRV.  

In the time-domain metrics, the root means square of successive RR differences (RMSSD) 

is one of the most used metrics to interpret stress, and it is closely related to parasympathetic 

activity 194,195. Similarly, in the frequency domain metrics, the low frequency (LF) 0.04-0.15Hz 

and high frequency (HF) 0.15-0.4Hz bands and their ratio, i.e., LF/HF, are the validated metrics 
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for interpreting stress 196–198. The LF/HF ratio is interpreted as the ratio of the activity of the 

sympathetic nervous system to that of the parasympathetic nervous system (sympathovagal 

balance) 178. For analysis, we considered RMSSD as the time domain metric, LF/HF ratio as the 

frequency domain metric, and RR Interval as a metric to measure the overall HRV. A higher 

RMSSD value, RR Intervals, and a low LF/HF ratio suggests low stress 180. Description and 

interpretation of the HRV metrics are provided in Table 5.2. These metrics were selected based on 

previous research studies and the task force report 178,180.  

The preprocessed RR Interval data were imported to a validated HRV analysis software, 

Kubios 199. First, we calculated the RMSSD from RR Intervals data. Further, to obtain the 

frequency domain metrics, we used a fast Fourier transform (FFT) on RR Intervals. FFT was 

preferred over the autoregressive transformation because the latter tends to smooth the frequency 

curves, leading to misinterpretation of results 178. 

Table 5.2: Description and interpretation of HRV. 

 

5.2.2 Results 

In the following sections, we present results based on three classifications: stress, burnout, 

and workload. A series of two-sample t-tests were conducted to analyze the difference in 

Measure (units) Interpretation 

RMSSD (ms) 

The root mean square of differences of successive RR intervals 

describes short-term variations. 

A low value indicates high stress. 

RR Interval (ms) 

The time elapsed between two successive R waves of the QRS 

signal on the ECG. 

A higher value indicates higher variability/low stress. 

Power LF and HF (n.u.) 

High LF indicates high stress, and high HF indicates low stress. 

The ratio of LF and HF frequency band powers. 

A low LF/HF ratio indicates lower stress. 
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physiological measures, NASA-TLX scores, and MBI-HSS scores of attending and resident 

physicians. A 0.05  alpha level (α)  level of significance was maintained for all the t-tests. 

5.2.2.1 Stress  

The stress levels of the attending and the resident physicians were assessed via the different 

functions of the HRV and EDA from the data. Only the HRV functions were used to calculate the 

stress for the entire shift because the high sensitivity of EDA data makes it undesirable to use for 

longer durations. The stress levels during trauma and non-trauma events were interpreted with both 

HRV and EDA responses, and a total of 21 trauma and 21 non-trauma events were used for the 

analysis.   

For the 21 trauma events, attending physicians had a lower level of stress compared to the 

residents. This was supported by the time domain components and the frequency domain 

components of the HRV, as seen in Table 3. Figure 5.1 represents the box plot of RMSSD for 

attending and resident physicians. From the box plot, it is evident that the residents had a low 

overall RMSSD compared to the attendings. RMSSD reflects the beat-to-beat variance in the HR 

and estimates the parasympathetic changes in the HRV. The higher value among attendings 

represents a higher parasympathetic activity among this population during trauma events, 

indicating lower stress.   

Table 5.3: t-test result from trauma HRV. 

 

 

Similarly, Figure 5.2 represents the box plot of RR Intervals for both the attending and 

resident physicians for the trauma events. The RR Interval, which is the period between successive 

Function Physician N Mean P-value 

RMSSD 
Attending 21 47.0 ± 7.7 

0.001 
Resident 21 35.2 ± 12.4 

RR Interval 
Attending 21 845.4 ± 49.31 

<0.001 
Resident 21 774.6 ± 49.83 

LF/HF 
Attending 21 1.7 ± 0.5 

0.001 
Resident 21 2.5 ± 0.8 
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heartbeats, is an estimate of the overall HRV. The attendings had higher RR Intervals compared 

to the resident physicians during the trauma events, suggesting lower levels of stress. Figure 5.3 

represents the box plot of the LF/HF ratio, which represents the sympathovagal balance (the ratio 

of sympathetic activity to parasympathetic activity). Attending physicians had a lower LF/HF ratio 

compared to the resident population during the trauma events, suggesting higher parasympathetic 

activity (i.e., lower stress). Although the GSR metric of the mean number of SCRs was 25.3% 

higher among the resident physicians compared to the attendings, indicating elevated arousal levels 

suggesting higher stress levels during the trauma events, the results were not statistically 

significant. More samples of trauma events would be needed to reach a conclusion regarding EDA. 

Figure 5.1: Box plot of RR Interval during trauma. 

Figure 5.2: Box plot of RMSSD during trauma. 
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Table 5.4 represents the t-test results for the full shift HRV analysis. It can be observed that 

the difference in RMSSD values was significant, suggesting that attending physicians had a better 

coping mechanism for the entire shift. However, unlike in trauma events, the frequency domain 

metric differences were not significant. 

Table 5.4: t-test result from full shift HRV. 

 

 

 

 

 

Figure 5.4 represents the box plot of the average RMSSD value for the attending and 

resident physicians for the full shift. Similar to the trauma events, physicians had higher RMSSD 

compared to the resident physicians. It can be noticed that the maximum value of the residents’ 

RMSSD is almost the same as the median value of the attending physician. The higher variability 

in the HRV among the attending physicians represents lower stress. Although the attending 

physicians had a low LF/HF ratio and higher RR Intervals compared to the residents, the data was 

not statistically significant. 

Function Physician N Mean P-value 

RMSSD 
Attending 6 44.2 ± 7.5 

0.033 
Resident 6 35.4 ± 4.5 

RR Interval 
Attending 6 829.4 ± 66.5 

0.199 
Resident 6 780.1 ± 57.1 

LF/HF 
Attending 6 2.3 ± 0.5 

0.106 
Resident 6 2.7 ± 0.4 

Figure 5.3: Box plot of LF/HF ratio during trauma. 



127 

 

Finally, from the 21 non-trauma events considered, both the attending and resident 

physicians demonstrated higher RR Intervals, RMSSD, and lower LF/HF ratio, and the differences 

between groups were not statistically significant. This observation suggests that during non-trauma 

events, there was no significant difference in the levels of stress demonstrated by the attending and 

resident physicians.  

Figure 5.4: Box plot of RMSSD for the full shift. 

Figure 5.5: Box plot of RMSSD for all events. 
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Figure 5.5 above represents the box plot of RMSSD for attending and resident physicians 

for all events considered in the study. It can be observed that there was a high variability during 

the trauma events compared to the other three events. Additionally, although statistically 

insignificant, it can be seen that for all non-trauma events, the attending physicians had a higher 

RMSSD, which was also observed throughout the shift, suggesting lower stress among the 

attending physicians. 

5.2.2.2 Burnout  

Burnout was measured using MBI-HSS, which includes emotional exhaustion, 

depersonalization, and personal accomplishment. The survey noted that personal accomplishment 

was high for both attending and resident physicians (100% n=12), while depersonalization was 

higher in resident physicians (high=50%, average=33.3% and low=16%, n=6) compared to 

attending physicians (high=16.6%, average=16.6% and low =66%, n=6). For emotional 

exhaustion both groups reported low or average levels (resident: high=0%, average= 66%, low 

=34%, n=6; attending: high=0%, average =50% low =50%, n=6).  

A t-test was conducted to analyze the differences in the MBI-HSS score of attending and 

resident physicians, and not significant differences were observed (p-value = 0.12). This could be 

because of the small sample size, and additional attending and resident physicians’ participation 

would be needed to understand the burnout levels among the two groups. 

5.2.2.3 Workload 

The physician workload for the shift was calculated with the NASA-TLX response. The 

unweighted NASA-TLX was used for an accurate response. Table 5.5 represents the t-test results 

to understand the difference in the perceived workload. The results show that the attending 
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physician had a lower NASA-TLX score. Additionally, investigating the individual effects, we 

observed that attending physicians had lower mental demand, physical demand, and effort. The 

results for the temporal demand, performance, and frustration were not significant for the t-test as 

seen in Table 5.5 below. Although we did not aim to investigate the physiological responses from 

a workload standpoint, it is interesting to notice that the attending physicians reported less 

perceived workload, which aligned with the calmer (less stressful) physiological responses and 

vice versa for the resident physicians. These findings provide valuable insight into how attending 

and resident physicians perceive their workload and its relationship with physiological responses. 

Table 5.5: t-test results for NASA-TLX. 

Function Physician N Mean P-value 

Mental 
Attending 6 47.8 ± 6.4 

0.002* 
Resident 6 69.7 ± 11.4 

Physical 
Attending 6 23.2 ± 10 

0.01* 
Resident 6 47 ± 15.3 

Temporal 
Attending 6 37.7 ± 11.3 

0.137 
Resident 6 49.2 ± 13.2 

Performance 
Attending 6 14.7 ± 12.5 

0.356 
Resident 6 25 ± 23 

Effort 
Attending 6 52.7 ± 13.8 

0.042* 
Resident 6 70.2 ± 12.1 

Frustration 
Attending 6 34.7 ± 22 

0.95 
Resident 6 34 ± 12.8 

TLX-SCORE 
Attending 6 35.1 ± 7.3 

0.004* 
Resident 6 49.2 ± 5.7 

 

Figure 5.6 below represents the NASA-TLX score of the attending and resident physicians 

collected after the shift. It can be observed that the highest score observed among the attending 

physicians is less than the first quartile score of the resident physicians. Additionally, Figure 5.7 

below represents the mental demand score of the attending and the resident physicians. On average, 

the resident physician's mental demand score was 46% higher than the attending physician. 

However, the temporal load, frustration, and performance did not show a significant difference. 
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Finally, to comprehend the relationship between the subjective and objective measures, we 

performed correlation tests. Results from correlation tests of NASA-TLX vs. HRV metrics, we 

observed that NASA-TLX scores and RMSSD (r(10) = -0.41, p = 0.18) and RRI (r(10) = -0.1, p = 

0.76) were negatively correlated and LF/HF (r(10) = 0.28, p = 0.37) ratio was positively correlated. 

These observations suggest that NSASA-TLX scores were high for physicians with high stress; 

however, these observations were statistically insignificant. For the correlation tests between MBI-

HSS and HRV, the results did not replicate the pattern as observed in the NASA-TLX score, and 

all the results were statistically insignificant, which could be because of the small sample size. 

48

70

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Mental demand

M
en

ta
l 

d
em

an
d

 S
co

re

Attending Resident

Figure 5.6: Box plot of NASA-TLX SCORE. 

Figure 5.7: Mental demand score of physicians. 



131 

 

Further, to investigate the relationship between individual components and objective metrics, a 

series of correlation tests were conducted. A strong negative correlation was observed between the 

mental demand component of NASA-TLX and RMSSD, r(10) = -0.70, p= 0.01. None of the other 

individual components and objective metrics were statistically significant. 

5.2.3 Discussions and Conclusions 

The first research question sought to investigate if experience played a role in managing 

the stress of physicians’ work in the ED. To answer this, the stress levels for the entire shift were 

analyzed. Results from the HRV analysis showed that the experienced physicians had higher 

variability in the time domain HRV metrics, suggesting lower stress levels as compared to the 

residents. These observations are similar to previous studies that used subjective measures to 

compare attending and residents working in inpatient and pediatric medicine 157, junior and 

experienced attending endoscopists 158, and junior and experienced attending physicians 159. For 

the frequency domain components of HRV, the attendings had a lower LF/HF ratio, suggesting a 

higher parasympathetic activity. However, the results were not statistically significant. One reason 

for this observation could be the frequent change in the user's position and movements in the ED, 

which could have potentially resulted in motion artifacts. Moreover, it could be because of the lack 

of LF/HF ratio to systematically represent the sympathetic and parasympathetic activity as prior 

studies have reported this ambiguity while considering the long-term measurement of the LF/HF 

ratio 180. 

The second question focused on investigating if the HRV of attending and resident 

physicians were the same during specific events. Our results showed that differences in HRV 

between the attending and resident physicians were highly significant during trauma events, with 

attending showing high HRV, suggesting lower levels of stress. Additionally, we observed that the 
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resident physicians had a higher number of SCRs during the trauma events compared to the 

attending physicians. These observations of stress differences during stressful events are similar 

to previous studies that evaluated the salivary cortisol levels of experienced and novice physicians 

and nurses after stressful events 153, novice and experienced physical therapists 200, HRV of 

attending and resident physicians during trauma activation and emergency surgery 162 suggesting 

that experience plays an essential role in stress management during complex situations. We also 

observed that both the attending and resident physicians demonstrated low levels of stress during 

the non-trauma events, and there were no significant differences in their physiological measures. 

The third research question investigated the burnout levels among the attending and 

resident physicians. We hypothesized that the resident physicians would have a higher burnout 

rate compared to the attending physicians. However, the results were not significant to support this 

hypothesis as only the depersonalization items supported our view. This observation was similar 

to a past study that compared the burnout levels of attending and resident emergency physicians 

160. Although the results are statistically insignificant, it is worth noting that of the six residents, 

five reported moderate or high depersonalization compared to only two attendings.  

The fourth question investigated the perceived workload of physicians during an ED shift. 

NASA- TLX measured the mental, physical, and temporal demand along with the performance, 

effort, and frustration. We hypothesized that the experienced physicians would have a lower 

NASA-TLX score as they are more accustomed to the environment, and the results supported this. 

We did observe a stark contrast in the mental demand, where the average resident's score was 46% 

higher than the attending physician's score, again supporting our hypothesis. This observation was 

similar to a previous study that used NASA-TLX to compare the attending and resident physicians’ 

mental strain during trauma activation and emergency surgery 162. The two possible reasons for 
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these results could be a) the transition from academia to practice, especially in the case of first-

year residents, and b) the coping mechanism adopted.   

Finally, our last research question examined the correlation between subjective and 

objective measures. Although statistically insignificant, we observed that stress levels measured 

using HRV metrics correlated with the NASA-TLX scores. Specifically, we observed a strong 

negative correlation between the mental demand component of the NASA-TLX score and 

RMSSD. This observation is in line with prior studies that have observed RMSSD decreases during 

stressful situations 201–203. 

There are a few limitations associated with this first phase of the study. One of the 

drawbacks is the low number of participants. However, we collected over 100 hours of data which 

was sampled at 64 Hz, providing a large data set for analysis. Moreover, we considered 42 unique 

events for event-based analysis, which is good sample size for a pilot study. Further, collecting 

data over an entire shift, accounting for many movements and actions, contributes to more noisy 

data and results in a complex dataset to analyze. In particular, a sensitive response like EDA 

records irrelevant peaks or bursts, limiting researchers from using this metric for long-term 

analysis. However, by using multiple metrics, HRV and HR allowed us to draw conclusions from 

the entire ED shift. Moreover, our analysis was performed by considering all of these extraneous 

factors, including motion artifacts and ectopic beats.  All recorded shifts were also from the same 

3:00 pm - 11:00 pm time period and in the same pod, which included many trauma events. 

Therefore, we cannot generalize these results to other ED shifts with different parameters. Finally, 

we considered only first-year residents, which does not include the whole resident population. 
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5.3 Phase Two 

The observations and findings show that attending and resident physicians working in the 

ED are exposed to stressful events, and their physiological parameters change during these events. 

Our next step was to develop machine learning models to detect the early onset of stress among 

ED physicians. Stress can be estimated using various techniques, including subjective and 

objective measures. Few validated subjective measures include the Perceived Stress Scale (PSS) 

and other questionnaires, and objective measures include heart rate (HR), heart rate variability 

(HRV), electrodermal activity (EDA), and cortisol levels in endocrine stress response 204–209. 

Although PSS and other questionnaires are validated methods to estimate stress levels, these are 

subjective responses that could be biased., To monitor the stress levels continuously without 

interrupting the user to capture the involuntary changes in physiological features, objective 

measures are primarily adopted. 

The current developments in machine learning methods provide a great opportunity to use 

these stress response data to predict future stress levels and prevent risks. Deep learning neural 

networks has been applied in various research, including image detection in healthcare, natural 

language processing, detection of health conditions from electronic medical records, etc., with high 

accuracy and outperforming the current practices 47,210–213. Deep learning is a type of machine 

learning where a model is trained to predict outputs based on the inputs with the help of multiple 

hidden layers. Deep learning is highly efficient compared to other traditional methods because the 

multiple hidden layers enhance the model performance by calculating the probability of each 

output and updating the weights. A recent study implemented deep learning to predict in-hospital 

cardiac arrest, and this model significantly outperformed other methods, including the random 

forest algorithm and logistic regression 214.  
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Deep learning can be incorporated with different techniques depending on the type of input 

data. One of the most common approaches used in predicting temporal sequence data is Recurrent 

Neural Network (RNN). The RNNs, unlike a typical feedforward NN, use their internal memory 

to hold the temporal behavior of the input data to predict the output. A few common RNN 

architectures currently used for speech recognition and time-series data predictions are Long 

Short-term Memory networks (LSTMs) and Gated Recurrent Units (GRUs). LSTM is a type of 

RNN that can keep track of the temporal behavior of the sequence without losing the long-term 

dependencies. The main advantage of LSTM over a traditional RNN is its ability to address the 

vanishing gradient problem. Vanishing gradients occur in stochastic gradient descent or any 

gradient-based learning methods where the NN weights are not updated as the gradient values 

diminish. The gradient value decreases during the backpropagation through time as the gradient 

values are computed by the chain rule during the backpropagation. In a few cases, the vanishing 

gradients stop a NN from further training. Most of the time, the NN keeps training slowly but may 

leave out critical information from the previous sequences resulting in developing an incorrect 

model for prediction. LSTMs address this issue with the help of a memory cell with gates that 

regulate the flow of information. Figure 5.8 below shows the fundamental design of an LSTM cell 

without focusing on the underlying activations and mathematical complexities. 

Figure 5.8: The fundamental architecture of an LSTM cell. 
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An LSTM has multiple gates and cell states which manage to pass the critical information 

without loss. Gates can be considered a passage that controls the flow of information (data) passing 

through them.  There are three gates in an LSTM cell, including the input gate, output gate, and 

forget gate. The first gate in the LSTM cell is the forget gate, as this gate decides how much 

information from the past and new input should be allowed to the input gate. The input gate is used 

to update the cell state where the data from the previous hidden state and new input are transferred. 

The cell state, which is multiplied by the forget vector, forgets values close to zero, and the 

remaining values are added to the data from the input gate. The last gate in an LSTM cell is the 

output gate, which passes the new hidden state to the next LSTM cell, where this process is 

repeated. An LSTM cell has a self-recurrent connection, as seen in Figure 5.8 above. This research 

developed deep learning supervised LSTM to predict the physician HR and EDA based on their 

current HR and EDA to help them better manage an ED shift. 

5.3.1 Methods 

5.3.1.1 Participants 

Participants for this study included 12 emergency physicians (8 male, 4 female) working a 

3:00 pm - 11:00 pm shift at PRISMA Health - Greenville Memorial Hospital (GMH) in Greenville, 

SC. The PRISMA Health, is the largest healthcare provider in South Carolina and serves as a 

tertiary referral center for the entire Upstate region. This ED serves as the Adult Level 1 and 

Pediatric Level 2 Trauma Center, Stroke, and ST-Elevation Myocardial Infarction (STEMI) 

Comprehensive Center seeing over 106,000 patients annually. Six participants (mean age = 26.8 

± 1.5 years, 4 male, 2 female) were first-year resident physicians, and the other six (mean age = 

42.66 ± 2.8 years, 4 male, 2 female) were attending physicians with an average experience of 8 

years of practice. This particular sample set was selected to represent the diverse population of ED 
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physicians. Consent was obtained from physicians before the shift, and the study was approved by 

GHS IRB Pro00058516. 

5.3.1.2 Apparatus 

For collecting the physiological responses (HR, HRV, and EDA), we used the Empatica 

E4 wearable research device that allows real-time physiological data acquisition. This wrist band 

is equipped with four types of sensors that record EDA, hand motions, body temperature, HR, and 

HRV. Multiple studies have validated the efficacy of this device, and one study specifically 

compared it to the gold standard Holter Monitor and observed that Empatica E4 echoed the data 

collected from the medical devices 164. Additionally, multiple research studies have used this 

research device for computing stress, emotional arousal, sleep quality, and arterial fibrillation 167–

170. Empatica E4 collects the EDA data at a sampling rate of 4 Hz and HR data at 64 Hz. 

5.3.1.3 Procedure and Data Processing 

For the data collection, we first identified a resident-attending pair working an eight-hour 

shift in the ED. Both attending and resident physicians were familiarized with the study and asked 

to sign a consent form. After this, each physician was outfitted with the Empatica E4 at least five 

minutes prior to the beginning of the shift to collect baseline data. As detailed above, Empatica E4 

collects various physiological data, including HR, HRV, and EDA. Data collected using Empatica 

were first preprocessed for each physician separately. Initially, the data was visualized to remove 

the outliers and incorrect data points. Further, the missing values were interpolated using cubic 

spline interpolation. 179. Following the initial data preparation, the data was standardized to address 

the variations in the HR and EDA data. Later, each dataset was split into an 80:20 ratio for training 

and testing purposes, which roughly converts to 23,040 data points for training and 5,760 data 

points for testing for each physician. This split was adopted based on observations from prior 
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studies that have reported that a physician's productivity decreases as the shift progress and 

increases the chances of errors and develop a robust training model 116,117. We aimed at predicting 

the last 1.5 hours of the shift for each physician, which can thus help in managing the stress/fatigue 

experienced during the end of the shift.  

Finally, after training and testing each dataset individually, the hyperparameters were 

further tuned to improve the accuracy of the model. To evaluate if a general model with data from 

multiple physicians could improve the model, the individual datasets were merged, resulting in a 

dataset with 345,600 data points. As each data point represented HR and EDA values for a second, 

two consecutive data points were averaged to reduce the dataset by half. Further, to validate and 

test the new model, the data were randomly split into a train, validation, and test set with a 60:20:20 

split. A validation set approach was adopted to address the model overfitting issue.  Following the 

training, the model was initially fit on the validation set, and hyperparameters were further tuned 

and tested on the random validation set. Finally, the model was evaluated on the test set. 

5.3.1.4 Model Architecture  

A deep learning neural network with a single input layer, three hidden layers, and a single 

output layer was developed. The input was a multi-unit LSTM with an input channel shape similar 

to the training data shape, i.e., the LSTM can hold t-n steps of data in the input layer, where t 

denotes a data point at time t and n denotes the look_back (n) function. It equips the model to learn 

from the past n data points as input variables to predict the output variable. The output layer was 

designed to hold one output value. Between the input and output layer, there were three 

bidirectional multi-unit LSTMs. Each layer contains 50 units (25 in each direction). A dropout rate 

of 0.2 was applied to the final layer, and a tanh (hyperbolic tangent function) activation was used, 

which resulted in the outputs ranging from -1 to 1. The output was later inverse transformed for 
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deriving the HR and EDA. These values were selected from multiple model iterations and testing 

on the validation set, testing set, and prior research, which built an LSTM model for similar input 

data 215. Figure 5.9 below shows the underlying architecture of the final model, which was used to 

predict the physician’s HR and EDA. The model was implemented using the pen-source python 

program. 

 

Initially, we used a multi-layer single unit LSTM; however, this resulted in underfitting 

where the model did not capture the temporal dependencies. To address this, the hidden layers 

were stacked with multiple LSTM units. Although this architecture resulted in more computational 

time, the multiple connections between the units assured consideration of all dependencies and 

improved the robustness of the model resulting in a better model fit. Figure 5.10 below shows the 

difference between a single unit LSTM and multi-unit LSTM cells and their computational 

differences. In this research, we used a 50-unit multi-unit LSTM with three hidden layers. 

Additionally, in this model, we used a mean squared error method from the Keras library 

to compute the loss and a stochastic gradient descent algorithm: Adam. Adam is a combination of 

the Adaptive Gradient Algorithm (AdaGrad), which maintains a per-parameter learning rate that 

improves performance on problems with sparse gradients, and Root Mean Square Propagation 

(RMSProp), which uses the same learning rate technique that is adapted based on the average of 

Figure 5.9: Model Architecture. 
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recent magnitudes of the gradients for the weight. Adam uses the benefits of both methods to result 

in a better algorithm. Further, a dropout with a probability of 0.2 was used to prevent overfitting. 

This rate was derived from multiple model iterations and prior studies that used HR to predict 

cardiovascular risk 215. Lastly, return sequences were used in this model so that the hidden state 

output for each input time was used for developing the model. 

 

5.3.2 Results 

This research focused on developing a multi-unit deep learning LSTM model to predict 

physicians’ HR and EDA during an ED shift. To test the model, initially, we used n = 60 data 

points to predict the next data point for each physician. The model was run for ten epochs, using 

both return sequences and a dropout rate of 0.2. The computation time was around 15 minutes per 

dataset, and R-squared, Root Mean Square Error (RMSE), and loss were computed post-run. The 

average observed R-squared, RMSE, and loss for the HR data of twelve physicians were 0.90, 

0.97, 0.004, and 0.89, 1.04, and 0.003 for the EDA data. Further, to develop and evaluate a general 

model, all 12 datasets were merged. Following the training, the model was validated against the 

validation set and evaluated on the test set. A validation set approach was adopted to address the 

Figure 5.10: A single unit v/s multi-unit LSTM. 
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issue of model overfitting commonly observed in the machine learning model. On the validation 

set, the model achieved average values of 0.97, 0.31, and 0.004 for the R-squared, RMSE, and loss 

for EDA, and values of 0.99, 0.44, and 0.002 for HR. On the test set, the model achieved values 

of 0.98, 0.17, and 0.005 for the R-squared, RMSE, and loss for EDA, and values of 0.99, 0.41, and 

.002 for HR. Finally, the predicted HR and EDA values were plotted against the real HR and EDA 

values, as represented in Figure 11 and Figure 12 below. The model was able to predict with high 

accuracy, as seen in Figure 11 and Figure 12 below, on the test data because of the model 

validation and hyperparameters tuning. 

5.3.3 Discussions and Conclusions 

This research observed that a multi-unit deep learning LSTM could be used to develop 

general models for predicting heart rate and electrodermal activity 216.  Although the HR and EDA 

raw values do not add value, converting these into stress levels can help physicians better manage 

their shifts. We observed that training the model with more participants could develop a much 

more generalizable model that can better estimate the HR and EDA values. Our next step is to 

Figure 5.11: Predicted HR v/s Real HR. Figure 5.12: Predicted EDA v/s Real EDA. 
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predict heart rate variability (HRV), which provides more precise information regarding stress and 

can be used to represent a stress score. Further, we plan to utilize questionnaires and other 

subjective feedback from physicians to gather the physician's perceived stress. This will allow for 

developing multi-modal datasets with subjective and objective feedback (physiological measures) 

to develop single-point stress scores that can be used for tracking and monitoring physician well-

being. This stress score can be used to inform physicians and help them manage their shifts by 

taking short breaks or signing up less severe patients when stress levels are high, etc. 
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6. Chapter 6 

6.1 Contributions and Future Work 

In this chapter, we outline the main contributions of this dissertation and potential research 

directions.  

6.1.1 Contributions 

This research focused on improving patient safety, patient flow, and physician well-being 

in an academic ED that serves as an adult level 1 trauma center. EDs act as the healthcare safety 

net and is the primary entry point for millions of people seeking care in the US. Over the past 

several years researchers have focused on developing various strategies and tools to thwart the 

public health issues of ED crowding, medical errors in the ED, and burnout among ED physicians. 

Our work has contributed to each of these issues in the following ways: 

• Forecasting patient arrivals to the ED: We developed long-term and short-term forecasting 

models that can estimate daily and hourly patient arrivals to the ED along with their ESI 

levels. This is the first study that considers the two-forecasting time frames and provides 

insights on patient severity, which can be used for planning to avoid the issue of ED 

crowding. Additionally, this model uses only two simple input variables, which can be 

accessed directly from the hospital EHR database. Although we have not reconciled the 

results from the long and short-term forecasts in our current approach, our next step is to 

improve the model further using a hierarchical reconciliation model. 

• ED physician shift design and scheduling: This research developed a new ED shift design 

which by staggering (overlapping) physician shifts during the peak hours of patient arrivals 

to the ED. Our results show an improvement in patient flow and patient safety in the ED 
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evaluated using various validated metrics. These findings can be scaled and implemented 

in other EDs to potentially reduce ED crowding and the likelihood of medical errors.  From 

a modeling perspective to our knowledge, our work is the first in mathematical modeling 

approaches (simulation and MILP) to consider patient safety as a performance metric and 

model individual patient-physician interactions to replicate actual ED operations.  

• ED physician burnout and well-being: Our research makes a two-fold contribution to this 

area of research where we first inform how stress, well-being, and burnout varied between 

attending and resident physicians using multi-modal data sources. The findings from this 

observation can help academic/teaching EDs to better plan their shift length for attendings 

and residents to that they are not overloaded.  Second, we developed early-stage machine 

learning algorithms to detect the early onset of stress using physiological measures. This 

observation is critical to provide ED physicians with real-time interventions and feedback 

on their stress levels and suggest breaks. 

6.1.2 Future Work 

Based on the observations from this dissertation, there are various extensions of this work 

within the ED. Additionally, there are other possible areas of research within healthcare where 

some of these methodologies, approaches, and models can be applied. The immediate potential 

extension of work is presented in Figure 6.1 below. Here we propose an end-to-end solution for 

improving patient flow, patient safety, and physician's well-being in the ED by using output from 

various models discussed in this research along with updated models. Using the output from the 

patient arrival forecasting model, we will inform the ED administrators of long-term and short-

term planning. Additionally, the patient flow coordinator will use the short-term forecasts to better 

assign a patient pod depending on future needs and resource availability (pod parameters). Further, 
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the physician stress detection model will inform the patient flow coordinator about the physician 

stress levels and workload, which they can use to match the arriving patient to a physician. The 

overall objective of this system is to reduce the chances of crowding and medical errors by 

improving the patient-to-physician assignment while accounting for future arrivals and 

considering current levels of physician stress, time left in the shift, and current level of crowding 

measured using the National Emergency Department Overcrowding Scale (NEDOCS).  

 

Figure 6.1: An end-to-end ED system for managing patient flow in the ED. 

Another potential extension of work is incorporating the nursing team shift scheduling to 

get an overall perspective of the system. Additionally, consider redesigning the ED nurse and 

physician schedules by incorporating and analyzing factors including shift preferences and 

physiological parameters that influence clinician stress, burnout, and chances of medical errors. 

Along the same lines, physician nurse teaming and matching shift start times, etc. can be explored 

to identify how that impacts the overall patient flow and the likelihood of committing medical 

errors.  
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Beyond ED, the idea of incorporating physician well-being parameters measured using a 

combination of subjective and objective data can be used for long-term shift scheduling and real-

time shift interventions. Stress scores developed by combining physiological measures and 

subjective data can inform on factors such as taking breaks or providing specific interventions for 

real-time interventions. For long-term planning, the change in physiological parameters as the shift 

progresses and physician preferences can help better define the shift design (length, breaks, etc.) 

Moreover, these well-being parameters can be considered with patient demands to define various 

shift lengths to avoid over and under-staffing. Finally, identifying the involuntary physiological 

parameters and developing models to learn patterns and detect variations can be used along with a 

grounded theory framework in various areas of research to detect the onset of events of interest 

(stress, pain, medical condition, etc.) 217,218. 
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