1,652 research outputs found

    Accessing natural history:Discoveries in data cleaning, structuring, and retrieval

    Get PDF

    Building the knowledge base for environmental action and sustainability

    Get PDF

    Just-in-time Pastureland Trait Estimation for Silage Optimization, under Limited Data Constraints

    Get PDF
    To ensure that pasture-based farming meets production and environmental targets for a growing population under increasing resource constraints, producers need to know pastureland traits. Current proximal pastureland trait prediction methods largely rely on vegetation indices to determine biomass and moisture content. The development of new techniques relies on the challenging task of collecting labelled pastureland data, leading to small datasets. Classical computer vision has already been applied to weed identification and recognition of fruit blemishes using morphological features, but machine learning algorithms can parameterise models without the provision of explicit features, and deep learning can extract even more abstract knowledge although typically this is assumed to be based around very large datasets. This work hypothesises that through the advantages of state-of-the-art deep learning systems, pastureland crop traits can be accurately assessed in a just-in-time fashion, based on data retrieved from an inexpensive sensor platform, under the constraint of limited amounts of labelled data. However the challenges to achieve this overall goal are great, and for applications such as just-in-time yield and moisture estimation for farm-machinery, this work must bring together systems development, knowledge of good pastureland practice, and also techniques for handling low-volume datasets in a machine learning context. Given these challenges, this thesis makes a number of contributions. The first of these is a comprehensive literature review, relating pastureland traits to ruminant nutrient requirements and exploring trait estimation methods, from contact to remote sensing methods, including details of vegetation indices and the sensors and techniques required to use them. The second major contribution is a high-level specification of a platform for collecting and labelling pastureland data. This includes the collection of four-channel Blue, Green, Red and NIR (VISNIR) images, narrowband data, height and temperature differential, using inexpensive proximal sensors and provides a basis for holistic data analysis. Physical data platforms built around this specification were created to collect and label pastureland data, involving computer scientists, agricultural, mechanical and electronic engineers, and biologists from academia and industry, working with farmers. Using the developed platform and a set of protocols for data collection, a further contribution of this work was the collection of a multi-sensor multimodal dataset for pastureland properties. This was made up of four-channel image data, height data, thermal data, Global Positioning System (GPS) and hyperspectral data, and is available and labelled with biomass (Kg/Ha) and percentage dry matter, ready for use in deep learning. However, the most notable contribution of this work was a systematic investigation of various machine learning methods applied to the collected data in order to maximise model performance under the constraints indicated above. The initial set of models focused on collected hyperspectral datasets. However, due to their relative complexity in real-time deployment, the focus was instead on models that could best leverage image data. The main body of these models centred on image processing methods and, in particular, the use of the so-called Inception Resnet and MobileNet models to predict fresh biomass and percentage dry matter, enhancing performance using data fusion, transfer learning and multi-task learning. Images were subdivided to augment the dataset, using two different patch sizes, resulting in around 10,000 small patches of size 156 x 156 pixels and around 5,000 large patches of size 240 x 240 pixels. Five-fold cross validation was used in all analysis. Prediction accuracy was compared to older mechanisms, albeit using hyperspectral data collected, with no provision made for lighting, humidity or temperature. Hyperspectral labelled data did not produce accurate results when used to calculate Normalized Difference Vegetation Index (NDVI), or to train a neural network (NN), a 1D Convolutional Neural Network (CNN) or Long Short Term Memory (LSTM) models. Potential reasons for this are discussed, including issues around the use of highly sensitive devices in uncontrolled environments. The most accurate prediction came from a multi-modal hybrid model that concatenated output from an Inception ResNet based model, run on RGB data with ImageNet pre-trained RGB weights, output from a residual network trained on NIR data, and LiDAR height data, before fully connected layers, using the small patch dataset with a minimum validation MAPE of 28.23% for fresh biomass and 11.43% for dryness. However, a very similar prediction accuracy resulted from a model that omitted NIR data, thus requiring fewer sensors and training resources, making it more sustainable. Although NIR and temperature differential data were collected and used for analysis, neither improved prediction accuracy, with the Inception ResNet model’s minimum validation MAPE rising to 39.42% when NIR data was added. When both NIR data and temperature differential were added to a multi-task learning Inception ResNet model, it yielded a minimum validation MAPE of 33.32%. As more labelled data are collected, the models can be further trained, enabling sensors on mowers to collect data and give timely trait information to farmers. This technology is also transferable to other crops. Overall, this work should provide a valuable contribution to the smart agriculture research space

    Geoinformatics in Citizen Science

    Get PDF
    The book features contributions that report original research in the theoretical, technological, and social aspects of geoinformation methods, as applied to supporting citizen science. Specifically, the book focuses on the technological aspects of the field and their application toward the recruitment of volunteers and the collection, management, and analysis of geotagged information to support volunteer involvement in scientific projects. Internationally renowned research groups share research in three areas: First, the key methods of geoinformatics within citizen science initiatives to support scientists in discovering new knowledge in specific application domains or in performing relevant activities, such as reliable geodata filtering, management, analysis, synthesis, sharing, and visualization; second, the critical aspects of citizen science initiatives that call for emerging or novel approaches of geoinformatics to acquire and handle geoinformation; and third, novel geoinformatics research that could serve in support of citizen science

    Sustainability of fisheries

    Get PDF
    This chapter reviews the concept of sustainability in fisheries, focussing on fisheries in Europe and paying particular attention to the human dimensions of fisheries. The particular problems presented by fisheries (related to the “Tragedy of the Com- mons”) are introduced, followed by brief accounts of the importance of fisheries worldwide and of their history in Europe. We attempt to summarize the concepts embodied in fisheries management and governance and review the different dimensions (pillars) of sustainability in the context of fisheries: environmental, economic, social and institutional. We describe some current developments in management and governance of European fisheries, including the introduction of property rights, the role of ecological labelling and the concept of demand-led management, participation and co-management, marine protected areas and Integrated Marine Management. We advocate a system of governance under which more attention is placed on achieving the possible than in quantifying the unachievable, a system which delivers successful implementation of sustainabil- ity objectives based on holistic (and multidisciplinary) assessments of environ- mental, economic and social-cultural consequences of proposed actions and which is based on the full and active participation of all relevant stakeholdersinfo:eu-repo/semantics/publishedVersio

    Analysis of material efficiency aspects of personal computers product group

    Get PDF
    This report has been developed within the project ‘Technical support for environmental footprinting, material efficiency in product policy and the European Platform on Life Cycle Assessment’ (LCA) (2013-2017) funded by the Directorate-General for Environment. The report summarises the findings of the analysis of material-efficiency aspects of the personal-computer (PC) product group, namely durability, reusability, reparability and recyclability. It also aims to identify material-efficiency aspects which can be relevant for the current revision of the Ecodesign Regulation (EU) No 617/2013. Special focus was given to the content of EU critical raw materials (CRMs) ( ) in computers and computer components, and how to increase the efficient use of these materials, including material savings thanks to reuse and repair and recovery of the products at end of life. The analysis has been based mainly on the REAPro method ( ) developed by the Joint Research Centre for the material-efficiency assessment of products. This work has been carried out in the period June 2016-September 2017, in parallel with the development of The preparatory study on the review of Regulation 617/2013 (Lot 3) — computers and computer servers led by Viegand Maagøe and Vlaamse Instelling voor Technologisch Onderzoek NV (VITO) (2017) ( ). During this period, close communication was maintained with the authors of the preparatory study. This allowed ensuring consistency between input data and assumptions of the two studies. Moreover, outcomes of the present research were used as scientific basis for the preparatory study for the analysis of material-efficiency aspects for computers. The research has been differentiated as far as possible for different types of computers (i.e. tablet, notebooks and desktop computers). The report starts with the analysis of the technical and scientific background relevant for material-efficiency aspects of computers, such as market sales, expected lifetime, bill of materials, and a focus on the content of CRMs (especially cobalt in batteries, rare earths including neodymium in hard disk drives and palladium in printed circuit boards). Successively the report analyses the current practices for repair, reuse and recycling of computers. Based on results available from the literature, material efficiency of the product group has the potential to be improved, in particular the lifetime extension. The residence time ( ) of IT equipment put on the market in 2000 versus 2010 generally declined by approximately 10 % (Huisman et al., 2012), while consumers expressed their preference for durable goods, lasting considerably longer than they are typically used (Wieser and Tröger, 2016). Design barriers (such as difficulties for the disassembly of certain components or for their processing for data sanitisation) can hinder the repair and the reuse of products. Malfunction and accident rates are not negligible (IDC, 2016, 2010; SquareTrade, 2009) and difficulties in repair may bring damaged products to be discarded even if still functioning. Once a computer reaches the end of its useful life, it is addressed to ‘waste of electrical and electronic equipment’ (WEEE) recycling plants. Recycling of computers is usually based on a combination of manual dismantling of certain components (mainly components containing hazardous substances or valuable materials, e.g. batteries, printed circuit boards, display panels, data-storage components), followed by mechanical processing including shredding. The recycling of traditional desktop computers is perceived as non-problematic by recyclers, with the exception of some miniaturised new models (i.e. mini desktop computers), which still are not found in recycling plants and which could present some difficulties for the extraction of printed circuit boards and batteries (if present). The design of notebooks and tablets can originate some difficulties for the dismantling of batteries, especially for computers with compact design. Recycling of plastics from computers of all types is generally challenging due to the large use of different plastics with additives, such as flame retardants. According to all the interviewed recyclers, recycling of WEEE plastics with flame retardant is very poor or null with current technologies. Building on this analysis, the report then focuses on possible actions to improve material efficiency in computers, namely measures to improve (a) waste prevention, (b) repair and reuse and (c) design for recycling. The possible actions identified are listed hereinafter. (a) Waste prevention a.1 Implementation of dedicated functionality ( ) for the optimisation of the lifetime of batteries in notebooks: the lifetime of batteries could be extended by systematically implementing a preinstalled functionality on notebooks, which makes it possible to optimise the state of charge (SoC) of the battery when the device is used in grid operation (stationary). By preventing the battery remaining at full load when the notebook is in grid operation, the lifetime of batteries can be potentially extended by up to 50 %. Users could be informed about the existence and characteristics of such a functionality and the potential benefits related to its use. a.2 Decoupling external power supplies (EPS) from personal computers: the provision of information on the EPS specifications and the presence/absence of the EPS in the packaging of notebooks and tablets could facilitate the reuse by the consumer of already-available EPS with suitable characteristics. Such a measure could promote the use of common EPS across different devices, as well as the reuse of already-owned EPS. This would result in a reduction in material consumption for the production of unnecessary power supplies (and related packaging and transport) and overall a reduction of treatment of electronic waste. The International Electrotechnical Commission (IEC) technical specification (TS) 62700, the Standard Institute of Electrical and Electronics Engineers (IEEE) 1823 and Recommendation ITU-T L.1002 can be used to develop standards for the correct definition of connectors and power specifications. a.3 Provision of information about the durability of batteries: the analysis identified the existence of endurance tests suitable for the assessment of the durability of batteries in computers according to existing standards (e.g. EN 61960). The availability of information about these endurance tests could help users to get an indication on the residual capacity of the battery after a predefined number of charge/discharge cycles. Moreover, such information would allow for comparison between different products and potentially push the market towards longer-lasting batteries. a.4 Provision of information about the ‘liquid ingress protection (IP) class’ for personal computers: this can be assessed for a notebook or tablet by performing specific tests, developed according to existing standards (e.g. IEC 60529). Users can be informed about the level of protection of the computer against the ingress of liquids (e.g. dripping water or spraying water or water jets) and in this way prevent one of the most common causes of computer failure. The yearly rate of estimated material saving if dedicated functionality for the optimisation of the lifetime of batteries (a.1) were used ranges from around 2 360 to 5 400 tonnes (t) of different materials per year. About 450 t of cobalt, 100 t of lithium, 210 t of nickel and 730 t of copper could be saved every year. The estimated potential savings of materials when EPS are decoupled from notebooks and tablets (a.2) are in the range 2 300-4 600 t/year (80 % related to the notebook category, and 20 % to tablets). These values can be obtained when 10-20 % of notebooks and tablets are sold without an EPS, as users can reuse already-owned and compatible EPS. Under these conditions, for example, about 190-370 t of copper can be saved every year. This estimate may increase when the same EPS can be used for both notebooks and tablets (at the moment the assessment is based on the assumption that the two product types were kept separated). Further work is needed to assess the potential improvements thanks to the provision of information about the durability of batteries (a.3), and about the ‘liquid-IP class’ (a.4). The former option (a.3) has the potential to boost competition among battery manufacturers, resulting in more durable products. The latter option (a.4) has the potential to reduce computer damage due to liquid spillage, ranked among the most recurrent failure modes. (b) Repair/reuse b.1 and b.2 Provision of information to facilitate computer disassembly: the disassembly of relevant components (such as the display panel, keyboard, data storage, batteries, memory and internal power-supply units) plays a key role to enhance repair and reuse of personal computers. Some actions have therefore been discussed (b.1) to provide professional repair operators with documentation about the sequence of disassembly, extraction, replacement and reassembly operations needed for each relevant component of personal computers, and (b.2) to provide end-users with specific information about the disassembly and replacement of batteries in notebooks and tablets. b.3 Secure data deletion for personal computers: this is the process of deliberately, permanently and irreversibly erasing all traces of existing data from storage media, overwriting the data completely in such a way that access to the original data, or parts of them, becomes infeasible for a given level of effort. Secure data deletion is essential for the security of personal data and to allow the reuse of computers by a different user. Secure data deletion for personal computers can be ensured by means of built-in functionality. A number of existing national standards (HMG IS Standard No 5 (the United Kingdom), DIN 66399 (Germany), NIST 800-88r1 (the United States (US)) can be used as a basis to start standardisation activities on secure data deletion. The estimated potential savings of materials due to the provision of information and tools to facilitate computer disassembly were quantified in the range of 150-620 t/year for mobile computers (notebooks and tablets) within the first 2 years of use, and in the range of 610 2 460 t/year for mobile computers older than 2 years. Secure data deletion of personal computers, instead, is considered a necessary prerequisite to enhance reuse. The need to take action on this is related to policies on privacy and protection of personal data, as the General Data Protection Regulation (EU) 2016/679 and in particular its Article 25 on ‘data protection by design and by default’. Future work is needed to strengthen the analysis, however it was estimated that secure data deletion has the potential to double volume of desktop, notebook and tablet computers reused after the first useful lifetime. (c) Recyclability c.1 Provision of information to facilitate computer dismantling: computers could be designed so that crucial components for material aspects (e.g. content of hazardous substances and/or valuable materials) can be easily identified and extracted in order to be processed by means of specific recycling treatments. Design for dismantling can focus on components listed in Annex VII of the WEEE directive ( ). The ‘ease of dismantling’ can be supported by the provision of relevant information (such as a diagram of the product showing the location of the components, the content of hazardous substances, instructions on the sequence of operations needed to remove these components, including type and number of fastening techniques to be unlocked, and tool(s) required). c.2 Marking of plastic components: although all plastics are theoretically recyclable, in practice the recyclability of plastics in computers is generally low, mainly due to the large amount of different plastic components with flame retardants (FRs) and other additives. Marking of plastic components according to existing standards (e.g. ISO 11469 and ISO 1043 series) can facilitate identification and sorting of plastic components during the manual dismantling steps of the recycling. c.3 FR content: according to all the recyclers interviewed, FRs are a major barrier to plastics recycling. Current mechanical-sorting processes of shredded plastics are characterised by low efficiency, while innovative sorting systems are still at the pilot stage and have been shown to be effective only in certain cases. Therefore, the provision of information on the content of FRs in plastic components is a first step to contribute to the improvement of plastics recycling. Plastics marking (as discussed above) can contribute to the separation of plastics with FRs during the manual dismantling, allowing for their recycling at higher rates (in line with the prescription of IEC/TR 62635, 2015). However, detailed information about FRs content could be given in a more systematised way, for example through the development of specific indexes. These indexes could support recyclers in checking the use of FRs in computers and in developing future processes and technologies suitable for plastics recycling. Moreover, these indexes could support policymakers in monitoring the use of FRs in the products and, in the medium-long term, to promote products that use smaller quantities of FRs. An example of a FR content index is provided in this report. c.4 Battery marks: the identification of the chemistry type of batteries in computers is necessary in order to have efficient identification and sorting, and thus to improve the material efficiency during the recycling. It is proposed to start standardisation activities to establish standard marking symbols for batteries. The examples of the ‘battery-recycle mark’, developed by the Battery Association of Japan (BAJ), and the current standardisation activities for the IEC 62902 (standard marking symbols for batteries with a volume higher than 900 cm3) may be used as references to develop ad hoc standards. The benefits of actions for the design for recycling can be relevant. In particular, the proposed actions should contribute to increase the amounts of materials that will be recycled (6 350-8 900 t/year), in particular plastics (5 950-7 960 t/year of additional plastics), but also metals such as cobalt (55-110 t), copper (240-610 t), rare earths as neodymium and dysprosium (2 7 t) and various precious metals (gold (0.1-0.4 t), palladium (0.1-0.4 t) and silver (2 7 t)). Compared to the amount of materials recycled in the EU (2012 data), these values would represent a recycling increase of 1-2 % for cobalt, 2-5 % for palladium, and 13-50 % for rare earths.JRC.D.3-Land Resource

    Testing the use of port biological baseline surveys to support relevant marine alien species management applications in Africa

    Get PDF
    The prevention of non-native marine species introductions is the first line of defense in the management of alien invasive species problems occurring on coastlines around the world. Ports and the shipping industry have been targeted as a sector requiring increased attention and regulation to reduce the significance of the ballast water and biofouling pathways. Ballast water management (BWM) processes have matured significantly at international levels over recent decades, with the support of the International Maritime Organization (IMO) and its BWM Convention. The development of baseline species and environmental data for port areas is increasingly recognized as a foundational step in managing ports and ships with respect to potentially harmful species transfers. Several countries have been conducting port biological baseline surveys using protocols developed at the Centre for Research on Introduced Marine Pests (CRIMP) in Australia, which has become the recommended approach at the IMO for developing countries tackling this issue. This study applies the CRIMP methodology for conducting comprehensive baseline surveys in three key African ports to examine the relevance for practical and effective management outcomes. Lessons learned through survey implementation were consolidated into a set of guidelines for conducting port surveys in developing regions. The generation of species and environmental data allowed for investigation of methodologies for shipping-focused risk assessment for new species introductions. Furthermore, the ability of risk assessment processes to support decisions for Port State Control measures related to BWM was tested though the development of a ship-specific decision support system. Where the presence of a potentially problematic species has been recorded, the role of species-specific risk assessment was also considered. The European Green Crab Carcinus maenas, presently found in isolated bays of South Africa was assessed with respect to the validation of management concerns related to the likelihood for further spread and impact, especially to the valuable aquaculture sector
    • …
    corecore