44 research outputs found

    Ray Tracing Gems

    Get PDF
    This book is a must-have for anyone serious about rendering in real time. With the announcement of new ray tracing APIs and hardware to support them, developers can easily create real-time applications with ray tracing as a core component. As ray tracing on the GPU becomes faster, it will play a more central role in real-time rendering. Ray Tracing Gems provides key building blocks for developers of games, architectural applications, visualizations, and more. Experts in rendering share their knowledge by explaining everything from nitty-gritty techniques that will improve any ray tracer to mastery of the new capabilities of current and future hardware. What you'll learn: The latest ray tracing techniques for developing real-time applications in multiple domains Guidance, advice, and best practices for rendering applications with Microsoft DirectX Raytracing (DXR) How to implement high-performance graphics for interactive visualizations, games, simulations, and more Who this book is for: Developers who are looking to leverage the latest APIs and GPU technology for real-time rendering and ray tracing Students looking to learn about best practices in these areas Enthusiasts who want to understand and experiment with their new GPU

    Cognitive Foundations for Visual Analytics

    Full text link

    Numerical modelling and visualization of the evolution of extensional fault systems

    Get PDF
    The purpose of this work is split into two categories, the first was to analyse the application of real-time Physics Engine software libraries for use in calculating a geological numerical model. Second was the analysis of the applicability of glyph and implicit surface based visualization techniques to explore fault systems produced by the model. The current state of the art in Physics Engines was explored by redeveloping a Discrete Element Model to be calculated using NVIDIA's PhysX engine. Analyses regarding the suitability of the engine in terms of numerical accuracy and developmental capabilities is given, as well as the definition of a specialised and bespoke parallelisation technique. The use of various glyph based visualizations is explored to define a new standardised taxonomy for geological data and the MetaBall visualization technique was applied to reveal three dimensional fault structures as an implicit surface. Qualitative analysis was undertaken in the form of a user study, comprising of interviews with expert geologists. The processing pipeline used by many Physics Engines was found to be comparable to the design of Discrete Element Model software, however, aspects of their design, such as integration accuracy, limitation to single precision floating point and imposed limits on the scale of n-body problem means their suitability is restricted to specific modelling cases. Glyph and implicit surface based visualization have been shown to be an effective way to present a geological Discrete Element Model, with the majority of experts interviewed able to perceive the fault structures that it contained. Development of a new engine, or modification of one that exists in accordance with the findings of this thesis would result in a library extremely well suited to the problem of rigid-body simulation for the sciences.EThOS - Electronic Theses Online ServiceNERCGBUnited Kingdo

    Vision 2040: A Roadmap for Integrated, Multiscale Modeling and Simulation of Materials and Systems

    Get PDF
    Over the last few decades, advances in high-performance computing, new materials characterization methods, and, more recently, an emphasis on integrated computational materials engineering (ICME) and additive manufacturing have been a catalyst for multiscale modeling and simulation-based design of materials and structures in the aerospace industry. While these advances have driven significant progress in the development of aerospace components and systems, that progress has been limited by persistent technology and infrastructure challenges that must be overcome to realize the full potential of integrated materials and systems design and simulation modeling throughout the supply chain. As a result, NASA's Transformational Tools and Technology (TTT) Project sponsored a study (performed by a diverse team led by Pratt & Whitney) to define the potential 25-year future state required for integrated multiscale modeling of materials and systems (e.g., load-bearing structures) to accelerate the pace and reduce the expense of innovation in future aerospace and aeronautical systems. This report describes the findings of this 2040 Vision study (e.g., the 2040 vision state; the required interdependent core technical work areas, Key Element (KE); identified gaps and actions to close those gaps; and major recommendations) which constitutes a community consensus document as it is a result of over 450 professionals input obtain via: 1) four society workshops (AIAA, NAFEMS, and two TMS), 2) community-wide survey, and 3) the establishment of 9 expert panels (one per KE) consisting on average of 10 non-team members from academia, government and industry to review, update content, and prioritize gaps and actions. The study envisions the development of a cyber-physical-social ecosystem comprised of experimentally verified and validated computational models, tools, and techniques, along with the associated digital tapestry, that impacts the entire supply chain to enable cost-effective, rapid, and revolutionary design of fit-for-purpose materials, components, and systems. Although the vision focused on aeronautics and space applications, it is believed that other engineering communities (e.g., automotive, biomedical, etc.) can benefit as well from the proposed framework with only minor modifications. Finally, it is TTT's hope and desire that this vision provides the strategic guidance to both public and private research and development decision makers to make the proposed 2040 vision state a reality and thereby provide a significant advancement in the United States global competitiveness

    Contributions to the cornerstones of interaction in visualization: strengthening the interaction of visualization

    Get PDF
    Visualization has become an accepted means for data exploration and analysis. Although interaction is an important component of visualization approaches, current visualization research pays less attention to interaction than to aspects of the graphical representation. Therefore, the goal of this work is to strengthen the interaction side of visualization. To this end, we establish a unified view on interaction in visualization. This unified view covers four cornerstones: the data, the tasks, the technology, and the human.Visualisierung hat sich zu einem unverzichtbaren Werkzeug für die Exploration und Analyse von Daten entwickelt. Obwohl Interaktion ein wichtiger Bestandteil solcher Werkzeuge ist, wird der Interaktion in der aktuellen Visualisierungsforschung weniger Aufmerksamkeit gewidmet als Aspekten der graphischen Repräsentation. Daher ist es das Ziel dieser Arbeit, die Interaktion im Bereich der Visualisierung zu stärken. Hierzu wird eine einheitliche Sicht auf Interaktion in der Visualisierung entwickelt

    Dynamic simulation in virtual environments as an evaluation tool for architectural design

    Get PDF
    Ankara : The Department of Interior Architecture and Environmental Design and Institute of Economics and Social Sciences, Bilkent Univ., 1999.Thesis (Master's) -- Bilkent University, 1999Includes bibliographical references leaves 97-105.Prediction and evaluation of future performance of buildings are essential aspects of an efficient design process. This thesis aims to discuss dynamic simulation as a prediction and evaluation tool for architectural design. It is discussed that since buildings are living entities, whole life-cycles of buildings should be dynamically simulated in a highly visualized virtual environment to evaluate the future performance of prospective designs. The media of architectural design (traditional media: paper-based drawings and physical scale models; and digital media) are analyzed in terms of their capacity to support dynamic simulations. It is concluded that virtual reality systems and resulting virtual envu'onments are yet the best media for the dynamic simulation of building designs. Some recent applications are mentioned and some important considerations for the future use of dynamic simulations in virtual environments are presented.Taşlı, ŞuleM.S

    Dynamic physicality as a dimension of the design process

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2009.Includes bibliographical references (p. 161-167).At its core, the concept of Tangible Interfaces leverages the idea of using the movement of the body as an inherent part of the human side of a human-computer interaction, assuming that bodily engagement and tactile manipulation can facilitate deeper understanding and more intuitive experiences. However, as an interaction principle in our era of digital design, motion construction and control has been underutilized and little examined as a design tool, leaving open the possibilities of motion's natural ability to draw our attention, provide physical feedback, and convey information through physical change. This dissertation postulates that the ability to experiment, prototype, and model with programmable kinetic forms is becoming increasingly important as digital technology becomes more readily embedded in our objects and environments and need for tools and systems with which to create, manipulate and finesse motion in response to computational and material input remains an under-developed design area. This thesis aims to establish principles of kinetic design through the exploration of two approaches to motion construction and manipulation: motion prototyping as a methodology for design thinking, learning and communication and physically dynamic state memory as a methodology for organic form finding and transformation in the design process.(cont.) To demonstrate these aims, I present three interface systems: Topobo, a system for motion construction and dynamics physics education with children; Kinetic Sketchup, a system for motion construction and prototyping in architecture and product design; and Bosu, an augmented textile interface offering an experimental approach to digitally augmented organic form finding in fashion and product design.Amanda Jane Parkes.Ph.D
    corecore