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ABSTRACT

DYNAMIC SIMULATION IN VIRTUAL ENVIRONMENTS AS AN 

EVALUATION TOOL FOR ARCHITECTURAL DESIGN

Şule Taşlı

M.F.A in Interior Architecture and Environmental Design 

Supervisor: Prof. Dr. Bülent Özgüç 

May, 1999

Prediction and evaluation of future performance of buildings are essential 

aspects of an efficient design process. This thesis aims to discuss dynamic 

simulation as a prediction and evaluation tool for architectural design. It is 

discussed that since buildings are living entities, whole life-cycles of buildings 

should be dynamically simulated in a highly visualized virtual environment to 

evaluate the future performance of prospective designs. The media of 

architectural design (traditional media: paper-based drawings and physical 

scale models; and digital media) are analyzed in terms of their capacity to 

support dynamic simulations. It is concluded that virtual reality systems and 

resulting virtual envu'onments are yet the best media for the dynamic 

simulation of building designs. Some recent applications are mentioned and 

some important considerations for the future use of dynamic simulations in 

virtual environments are presented.

Key Words: Architectural Design, Dynamic Simulation, Virtual 

Environments.
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ÖZET

SANAL ORTAMLARDA DİNAMİK BENZETİMİN MİMARİ 

TASARIMDA BİR DEĞERLENDİRME ARACI OLARAK

KULLANILMASI

Şule Taşlı

İç Mimarlık ve Çevre Tasarımı Bölümü 

Yüksek Lisans

Tez Yöneticisi; Prof. Dr. Bülent Özgüç 

Mayıs, 1999

Yapı tasarımlarının gelecekteki performanslarının kestirilmesi ve değerlendirilmesi 

her başarılı tasarım sürecinin ayrılmaz bir parçasıdır. Bu tez dinamik benzetim 

modellerinin mimari tasarımda bir değerlendirme aracı olarak kullanılmasını 

tartışmayı amaçlamaktadır. Binaların gelecekteki performanslarını kestirebilmek 

ve değerlendirmek için binaların yaşam süreçleri görsel bir tasarım ortamında 

dinamik olarak benzetim modelleriyle inşa edilmelidir. Tez içerisinde mimari 

tasarım ortamları (geleneksel tasarım ortamları: çizimler ve maketler; ve sayısal 

tasarım ortamları) dinamik benzetim modellerini destekleme yeterliliğine göre 

analiz edilmektedir. Sonuç olarak sanal gerçeklik sistemleri ve onların yarattığı 

sanal ortamlar dinamik benzetimler için şu ana kadar bilinen en iyi ortamlar olarak 

ortaya konmaktadır. Bu konuyla ilgili en son uygulamalar ve gelecekteki olası 

uygulamalarla ilgili önemli konular tezin sonunda tartışılmaktadır.

Anahtar Kelimeler: Mimari Tasarım, Dinamik Benzetim Modelleri, Sanal 

Ortamlar.
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INTRODUCTION

Although buildings have static structures, everything else related to 

architecture is dynamic. Environmental factors like sun, wind, and humidity 

change with time. People move through the buildings and they interact with 

them in numerous ways. Use patterns are likely to change in time and in some 

probabilities several events like fires, earthquakes, or floods may happen.

Evaluation of architectural designs against the criteria such as environmental 

factors, human factors, economy, etc. is an essential part of an efficient design 

process. This evaluation is usually conducted through a normative process. 

However, we discuss that architectural systems are rather complex to 

comprehend and to make predictions about future performance. In order to 

cope with such complex systems in architectural design a means of predicting 

the performance of buildings is needed. Dynamic simulation is building a 

model, that incorporates time, and using this model to test or experiment with 

designs. To conduct a dynamic simulation for architectural design, a medium 

is needed to “virtually” build and live in a building before the actual 

construction. A virtual environment or world in this sense is

1. The contents of some medium; 2. A space that exists in the mind of its creator, 

often manifested in some medium; 3. A description of a collection of objects in a



space, and the rules and relationships governing those objects (Shennan and Craig in 

Rowell, Definition 21).

Although the idea of simulation is not new for architectural design, simulation 

media (should) change due to the developments in technology. We believe that 

new technological developments should be explored by architects to enhance 

the methods of design process and quality of designs. This thesis aims to 

explore the potentials of dynamic simulations in virtual environments for 

architectural design in relation to the design media. Contents of the thesis are 

listed below.

Modeling complex phenomena is accepted as the domain of science and to 

produce dynamic simulations for architectural design, a methodological or 

scientific approach to design is needed. Therefore, Chapter 1 begins with an 

historical overview of methodological approach to architectural design. 

Several techniques and theories that were borrowed from operations research 

are also covered. Then, simulation as a methodology in design is discussed 

focusing on its use in architectural design.

Since the term “virtual environment” is defined as to be closely related to a 

“medium,” modeling media in architectural design is discussed in Chapter 2. 

In order to obtain the maximum benefits from their design media, architects 

should be aware of the advantages and disadvantages of each medium. Hence, 

in this chapter each design medium is analyzed in terms of its capability to



support dynamic simulation. The design media is categorized into two: 

traditional design media (drawings and physical models) and digital design 

media (computer graphics and CAAD). In the related literature, it is 

undoubtedly accepted that digital design media has revolutionized modeling in 

architectural design. Working with a computer, the architect does not 

cooperate with another person, but enters a new world. The discussion on 

digital design media begins with a brief historical overview of computer 

graphics and CAAD. Then, digital design media is covered according to the 

media dimension: one, two, three, and multi dimensional design media. 

Among them multi dimensional design media is observed to be the one best 

suited to dynamic simulation. Some promising modeling areas in multi 

dimensional media for architectural design are also discussed: computational 

fluid dynamics, mechanical modeling, and human modeling.

Virtual reality (VR) is a topic that has been discussed widely in 1990s. VR 

systems and resulting virtual environments (VEs) represent the ultimate 

development in the process of digitalization of architectural designs, which 

initially started with CAAD. We discuss that the promise of VEs is not due to 

the capabilities of VR systems produced so far, but it is due to the powerful 

vision underlying. The ability to produce real-time interactive simulation is a 

unique attribute of computer, and by this ability computer becomes an 

unprecedented medium. Virtual reality, as the most developed interface, is a 

promising medium for many applications in architectural design. In Chapter 3, 

VR is discussed as a tool for architectural design. The chapter begins with an



overview of virtual reality including its brief history and types of VR systems. 

Then, applications of virtual environments in architectural design are covered.

In Chapter 4, the current and future applications in VEs in terms of dynamic 

simulations are discussed. There is an ongoing debate on the use of dynamic 

simulations in VEs on different fronts. Many industries such as aerospace, 

automotive, military, and medicine have already embraced dynamic 

simulations in VEs. Such systems are also penetrating into many other 

potentially fruitful areas like architectural design. Unfortunately, current 

architectural applications are limited in both the scope and amount, since, they 

are mostly produced by non-architects. In this chapter, current applications in 

other fields and in architecture are mentioned. Then, some important 

considerations for the future use of dynamic simulations in VEs for 

architectural design are discussed; suggestions for further research and 

conclusions are presented.



CHAPTER 1. MODELING AND SIMULATION IN ARCHITECTURAL 

DESIGN

1.1 An Historical Overview of Methodological Approach to Design

The origins of methodological approach to design dates back to post-second 

world war period, when the techniques from operations research, systems 

engineering, ergonomics, information theory and cybernetics began to 

penetrate many areas in order to cope with the pressing problems of the 

period. This movement had developed through a series of conferences in 

1960s and 1970s (Cross 16).

Design methods movement claimed to bring systematic methods for designers 

in order to cope with the increased complexity of design process. Design was 

explained as a rational process composed of three steps; analysis, synthesis 

and evaluation. These steps were either formulated by linear flow charts, or by 

spiral forms representing reiterating sequence. Several techniques and theories 

were borrowed from operations research such as linear programming, network 

analysis, Monte Carlo method, value analysis, decision theory and theory of 

games. These may be summarized as follows:

Linear programming: Linear programming is perhaps the most frequently used 

of all operations research techniques. It is based on the fact that, in many



problems, when the relationship between variables is plotted on a graph it 

proves to be linear. Although the number of architectural design problems that 

can be formulated as linear equations are limited, once it is done linear 

programming guarantees to find the optimum solution in a fixed number of 

steps (Radford and Gero 90).

Network analysis: Network analysis is conducted to analyze the activities 

within an overall project. An activity is defined as a task that takes time and 

usually consumes resources. Its starting and finishing points are known as 

events. Once the activities are defined, they are placed in logical sequences. 

Network analysis makes use of special charts in which each activity is 

represented by an arrow, and the events, which mark its start and finish, are 

marked by circles. In such a representation the critical path (the path to which 

attention must be paid if there is to be any shortening of the total schedule) of 

the scheduling operation is readily discernible. In architectural design, 

network analysis can be utilized, for example, for construction planning (Al, 

1993) or for predicting the evacuation times of buildings in case of fire 

(Çağdaş and Sağlamer, 1995).

Queuing theory: Queuing theory as its name implies, is concerned with 

waiting of any kind. It has been developed to calculate for any given situation 

what kind of queue will result and how long the items will have to wait before 

service (Duckworth 34). In architectural design queuing theory can be used for



lift siting, circulation analysis, canteen design, car parking provision, airport 

terminal layout, supermarket design, etc. (Reynolds 102).

Value analysis: Value analysis is an industrial technique by which the cost of 

the elements within a product is examined critically in relation to their utility. 

In value analysis, performance of each component of a product is assessed in 

relation to its cost, and the aim is to achieve the maximum utility for the 

minimum cost (Duckworth 42).

Decision theory: Decision theory can be defined as the application of scientific 

method to decision-making. It drew on experience from many other fields, 

particularly theory of games, cost accounting, information theory and logic. 

Decision-making can be defined as taking some course of action when several 

possibilities exist. According to decision theory decision-making is related to 

two different classes of things: performance of a physical system and a value 

system. Value system is often so complex that its components cannot be 

measured. Moreover, the condition under which decisions are made is not 

always certainty. If the probabilities of possible consequences of a decision are 

known then the decision is made under conditions of risk. Certainty is a 

special case of risk in which the probabilities are 0 or 1. Nevertheless, many 

decisions have to be made under circumstances in which the probabilities are 

not known: then it is said that these decisions are made under conditions of 

uncertainty. In order to cope with uncertainty, a predicting system that 

provides a list of possible outcomes for each action is needed. All the



resources of simulation, model building, experiment and test can be used in a 

predicting system (Duckworth 72-82).

Theory of games: Theory of games is an extension of decision theory where 

instead of one’s choice of action being conditional on the possibilities of 

several outcomes, it is determined by the possible alternative actions of an 

opponent playing the same game (Duckworth 83). A game in this sense is a set 

of rules which determine what a player may do, what is to be won and who 

wins it, depending on what the players have chosen to do. Gaming can be 

effectively used in urban planning to enhance collaborative design (Brown et. 

al., 1998) and (Goodfellow,. 1998).

Monte Carlo method: Monte Carlo method is a kind of simulation in 

operations research. As its name implies, it is concerned with situations in 

which events occur at random. Monte Carlo method employs random numbers 

for solving stochastic or deterministic problems where passage of time plays 

no role. It can be used for building cost estimation (Yaylagiil, 1994) and 

(Arpacı, 1995).

Although all these techniques remained influential, even the early pioneers of 

the design methods movement began to reject it in 1970’s (Cross 16). Mitchell 

identifies three main areas that led to the failure of the “first generation” 

design methods. One of them is the apparent complexity of much of the early 

work on the subject. Mitchell claims that designers are well known for their



aversion to science, so the early complex diagrams and dense text of design 

methodology looked too analytical, too abstract, too inapplicable to the task of 

design as then understood. According to Mitchell, another reason for the 

failure of design methods was that design methods seem to have been 

embraced only by those who mistakenly believed design to be a completely 

explicable, rational proposition. On the other hand, the principal failure of 

design methods was identified by Mitchell as a social one. He explains that 

design methodologists tended to view their work as a “good thing” that would 

naturally be taken up once publicized. They gave insufficient attention to the 

profound social implications of design methods. Specifically, adoption of 

design methods as they were originally conceived would entail users being 

“reeducated,” organizational changes in design offices, and design 

methodologists changing their own ideas and roles. In each case the people 

with the power to change were disinclined to do so (C. Mitchell 47-50).

Heath’s explanations of the failure of “first generation” design methods are 

similar to that of Mitchell. He claims that design methodologists failed to 

reduce design time or cost, while providing minimal improvements in designs. 

The problemis they could solve were often only very simple ones, the sort of 

problems that cropped up after the architects had done all the really hard work 

anyway (Heath in Stevens 320).

Despite all the failures of the “first generation” design methods, the seeds of 

the most advanced approach to user-sensitive design yet developed is implicit



in the philosophy of early design methods. The recognition of the systems 

related to architecture had its origins in this movement and the idea of 

“simulation” for architectural design dates back to this period (C. Mitchell 51).

In 1970’s the criticism of first generation design methods led to a new 

understanding of design as an argumentative process. Architectural design was 

considered as a participatory process in which designers are partners with the 

problem owners (clients, customers, users, and community) (Lang 43). The 

main criticism of the early models of design process can be summarized in the 

following way: design is not a strictly sequential process and design problems 

are “ill-defined” and a linear step-by-step procedure cannot be applied to 

them. “Ill-defined” refers to the difficulty of articulating what the problem is 

and of determining whether or not a design proposal is really a solution to a 

problem. Ill-defined problems are characterized as follows: they have no 

definitive formulation and their formulations tend to change during the 

process; they have no definitive set of operations to solve them or to evaluate 

solutions; knowledge required for solving them is partial and sometimes 

contradictory (W. Mitchell, Computer 60-62).

Consideration of design as an “ill-defined” problem led to the recognition of 

satisfactory or appropriate solution types. Simon in his famous book The 

Sciences of Artificial introduced the notion of “satisficing” solutions. 

However, this approach tends to be more relevant to architecture and planning 

than engineering and industrial design. Therefore, design methodology in

10



architecture and engineering appeared to diverge from each other in the 1970s

and 1980s (Cross 17).

In late 1980s and 1990s, there has been a broad renewal of interest in design 

methodology, especially in Artificial Intelligence (A1) developments (Cross 

17). AI is a branch of computer science that deals with the development of 

computer programs which solve problems in a way that would be considered 

intelligent if done by a human (Waterman 5). It is claimed that, AI is a means 

of understanding a problem itself, besides solving it, and because of this 

property and the possibility of incremental growth in AI programs, AI is a 

helpful device for ill-understood problems like architectural ones (Flemming 

1-5). Knowledge-based systems have been produced for architectural design 

by the help of the AI techniques. The aim of these systems has been design 

automation and/or electronic design assistance.

1.2 Modeling

1.2.1 Definition

A model can be defined as a representation of relevant characteristics of a 

reality. In other words, it is a means of expressing certain characteristics of an 

object, system or situation that exists, existed, or might exist (Echenique in

Rowe 163).

I I



Rowe identifies five steps in the process of model making. First step is the 

existence of an object, setting, or a system that is of interest. Second step is the 

clearly expressed intention, enabling the selection of appropriate 

characteristics of the object, setting, or system. Third step is the process of 

observation and abstraction enabling the reality in question to be observed in 

relation to selected variables. Fourth step is the process of translation, enabling 

the creation of a suitable conceptual framework for organizing the 

information. The final step is the validation of the model. It is the process of 

making sure the computer model accurately represents the object, setting, or 

system being studied (Rowe 164).

Discussing models, it should be always in mind that no matter how much 

effort goes into its construction, a model could never be a perfect or complete 

representation of reality, because human beings do not have perfect 

information about the real world. Therefore, the validity and usefulness of 

dynamic models should be judged not against an imaginary perfection, but in 

comparison with the mental and descriptive models that could be used 

otherwise (Forrester in Radford and Gero 16).

Architectural design is a purposeful activity that necessitates decisions made 

about physical form of buildings and spaces in response to needs and goals 

related to the building’s intended purposes (Radford and Gero 19). Architects 

always deal with some kind of representation or model while designing. In 

fact, architectural design is a modeling process ($enyapili and Ozgii?,

12



Interface 106). An architectural model may exist only in the mind of the 

architect, but normally it needs to be manifested in some medium (paper, 

cardboard, digital media, etc.). Modeling media in architectural design are 

discussed in the Chapter 2.

1.2.2 Classifications of Models

In this part of the thesis some classifications of models are discussed in a 

broad sense to encompass a range of models in addition to architectural ones. 

The use of the word “model” in this sense stems from the field of operations 

research. Churchman, Ackoff and Arnoff in their early Introduction to 

Operational Research identify three types of models: Iconic, analogue and 

symbolic. By its definition, an iconic model “looks like” what it represents. 

For example, photographs, paintings or sculptures may provide iconic models 

of people, objects or scenes* On the other hand, in an analog model, the 

various properties of the original may be represented by properties of quite 

different kinds in the model. A map for instance, is an analogue model in this 

sense: roads and political boundaries are represented by lines, different kinds 

of land use by different kinds of hatching or color, and so on. Lastly, symbolic 

models are made in terms of numbers or of symbols from logic. Mathematical 

models of all kinds are symbolic models and symbolic models generally are 

the basis of computing. Mathematical models can be classified as analytical 

and simulation models. In analytical models, values of functions can be 

determined directly by performing algebraic operations. On the other hand,

13



with simulation models values of functions are not so readily determinable, 

they can only be discovered by simulating and observing the behavior of the 

system in an appropriate way (W. Mitchell, Computer 38-40).

Broadbent mentions descriptive and normative models; that is models 

concerned with describing a reality from a particular point of view, and with 

indicating what might be expected if certain clearly defined condition are 

fulfilled. Descriptive models can be static (i.e. constant over time) or dynamic 

(i.e. concerned with things which change over time). Normative models on the 

other hand, are used to describe an unfamiliar situation by drawing analogies 

with a familiar one and they may be used for prediction (Broadbent 90).

Rowe proposes a hierarchical classification of four types of models, according 

to the general purposes of their application. They are descriptive models, 

predictive models, explorative models and planning models. According to 

Rowe, the principal intention behind a descriptive model is explanation of 

phenomena in the domain of interest and descriptive model is logically 

essential for any other three types. On the other hand the purpose of a 

predictive model is to give a forecast of the temporal disposition of the 

phenomenon under study. A planning model necessarily incorporates 

prediction, but it is extended to allow for the evaluation of predicted outcomes 

in terms of goals. In other words, this type of model is primarily developed for 

simulating the effects of different decisions and evaluating those decisions or 

strategies against a specified goal structure (Rowe 166-68).

14



1.3 Simulation as a Methodology in Design

1.3.1 Definition

Simulation is the use of a model to develop conclusions that provide insight on 

the behavior of any real world system or it can be defined as the use of a 

model to experiment (test) with it. Therefore simulation includes not only 

model development but also the use of it. (McHaney 2).

Computer simulation is a branch of applied mathematics that is widely used by 

many disciplines. It is used in different senses to study a variety of systems 

that may be classified as continuous vs. discrete, deterministic vs. stochastic or 

dynamic vs. steady state. Simulation is used within many areas, so it is 

considered to be a methodology. The process of describing many complex real 

world systems using only analytical or mathematical models can be difficult or 

even impossible in some cases. This necessitates the employment of a more 

sophisticated tool such as a computer simulation. Using a computer to imitate 

or simulate the operations of a real world process or facility requires that a set 

of assumptions taking the form of logical or mathematical relationships be 

developed and shaped into a model (Nance and Overstreet 40).

The main advantage in using simulation is the reduction of risk involved with 

implementing a new system or modifying an existing one. Simulation enables

15



several “what if*’ scenarios constructed into a model so that several 

alternatives can be tested prior to realization. By this way, a detailed 

simulation may reveal unforeseen problems that exist in a system’s design. 

Moreover, simulation increases the overall system knowledge. Because, 

knowledge required for modeling complex systems is usually complex and 

divergent. To develop a working simulation, all this knowledge needs to be 

gathered together and organized. This process of collection and organization 

inevitably cause an increase in knowledge on the system being studied. 

Finally, when a model is developed, simulation may provide speed in analysis 

if time is compressed in the simulation model and it enhances creativity by 

enabling comparison of new and somewhat risky solutions with conservative 

ones (McHaney 41-43).

Computer simulation can be an expensive and complicated technique.

McH aney describes some situations warranting the use of computer 

simulations as:

1. The real system does not exist and it is too costly, time-consuming, 

hazardous, or simply impossible to build a prototype.

2. The real system exists but experimentation is expensive, hazardous, or 

seriously disruptive.

3. A forecasting model is required that would analyze long periods of time in 

a compressed format.
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4. Mathematical modeling of the system has no practical analytical or 

numeric solutions (McHaney 3).

1.3.2 Simulation for Architectural Design

Architectural design deals with many intermingling systems (environmental, 

psychological, economical, cultural, etc.). Therefore, simulation as a means of 

imitating a real system and predicting its behavior, is an essential phase of an 

efficient design process (Bertol 43). In fact, architectural design should be 

considered as an interface between people and buildings and it should respond 

to the needs of the people and environmental conditions. Unfortunately, it is 

observed that this fundamental role of design as an interface has been 

forgotten for most of the cases. It is not only because of the ignorance of the 

architects, but also of the complexity of the factors that are essential to design 

but difficult to incorporate the design process. These factors are becoming 

more and more complex in time, therefore computers should be used to 

simulate them (Iwaki 122-23; C. Mitchell 44).

Jones claims that designers should be dealing not only with the “things” but 

also with the functions and uses of things, the “systems” into which they are 

organized, or the “environments” in which they operate. Moreover, he claims 

that the change in scale, from physical objects to systems and environments, is 

also a change from designing-in-space to designing-in-space-and-time. As the 

scale of designing is increased, the way things are used, their life cycles
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become as much designed as do their shapes (Jones xxxi-xxxiii). However, 

incorporating dynamic systems in design is not an easy work. It can only be 

achieved by the use of dynamic simulations generated by computers.

Robertson also recognizes the “non-material” aspects of design and proposes 

the concept of “4D design” instead of traditional design process. The fourth 

dimension refers to time and 4D design is described as “the dynamic form 

resulting from the design of the behavior of artifacts and people in relation to 

each other and their environment.” Based on the classical assumption of 

“science” and “art” aspects of design, 4D design focuses on dynamic form that 

incorporates knowledge of “kinetic art” and particularly performing arts at one 

extreme and dynamics within engineering science at the other (A. Robertson 

149-50).

In general, there are two basic approaches to representing knowledge in 

evaluative methods in architecture. The first one is the rule or norm that are 

manifested in checklists, guidelines, and rules of thumb. The second approach 

is modeling and simulation. These two approaches are compared by many 

authors. According to Koutamanis the rule-based approach although valuable 

in some aspects, has a limited capacity to respond to the uniqueness of each 

situation in architectural design. Simulation can be a more useful tool for 

extreme or unexpected cases (Koutamanis 97-101).
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Steinfeld claims that in practice of architecture, knowledge about many 

systems is represented in design activities primarily through a normative 

process. Such knowledge is based on architect’s own experience of what has 

worked in the past, or that of some other designers’ embodied in existing 

buildings that can be observed. However, if the normative approach is used 

exclusively, it is very limited due to the general nature of this knowledge 

(Steinfeld 330). Since any departure from a solution that has worked before 

leaves the architect with no point of reference -She cannot be sure that her 

new design will work-, original solutions are discouraged and the basic 

designs tend to remain unchanged. Remaining designs unchanged, the less 

obvious mistakes can become “fossilized” and carried from one building to the 

next. On the other hand, simulation approach enables testing new and 

innovative designs and comparing them with the conservative ones by 

reducing the risk of implementing a totally new design. Therefore, simulation 

enhances creativity for architectural design (Reynolds 101).

Stevens compares simulation with mies of thumb and identifies two important 

problems in relying on rules of thumb. First, a mle of thumb is useless as an 

aid to understanding, this means anything cannot be learned if it fails. Since 

the rule was developed from past experience -because there is no theoretical 

guide- a failure of a rule cannot lead to any advance in providing better mies. 

Second, rules of thumb are often incomplete, partial or contradictory. On the 

other hand, a simulation model has an important advantage over a mle of
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thumb; such a model explicitly lay down its assumptions. Therefore, it can be 

controlled and criticized at each step of its development (Stevens 281-82).

Negroponte forecasts in 1975 book The Architecture Machine that “Someday 

designers will be able to subject their projects to the simulations of an entire 

day or week or year of such events as use patterns and fast time changes in 

activity allocations. On display devices, designers will be able to see the 

incidence of traffic jams, the occurrence of sprawl, or sweltering inhabitants 

searching for shade.” According to him the simulation of events can benefit 

the architect in two ways. If the designer does not fully understand the 

behavioral aspects of an event she can play with rules and regulations, 

searching for recognizable activity patterns. In other words, from empirical 

knowledge of a set of actions and reactions for specific environments, a 

designer could inductively compose algorithms applicable in other contexts. 

The second benefit of simulations is pretesting; assuming the model is correct, 

designs can be tested (Negroponte 47-8).

As mentioned before, although it is very powerful, simulation can be an 

expensive technique. Reynolds claims that simulation cannot usually be said 

to save the architect money, but its justification is a better design and better 

use of the client’s budget (Reynolds 110). The previously mentioned 

arguments on situations warranting the use of computer simulations by 

McHaney can be translated to the use of simulation for architectural design.
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Then, the reasons for using simulation for architectural design are presented

below:

1. Unlike in other industries, it is impossible to build a first realistic prototype, 

because normally every building is unique.

2. Real experiments can be dangerous (e.g. fire evacuation, thermal comfort.

etc.)

3. Since buildings are living entities, forecasting models are needed to analyze 

periods in building life cycle in a compressed format.

4. Mathematical modeling of most of the architectural systems does not lend 

themselves to practical analytical or numeric solutions.

Nevertheless, it should be in mind that simulation makes use of models and 

models give us only a partial picture of the reality. Therefore, simulation 

provides only approximate answers. Even to have these approximate answers, 

the model used for simulation needs to be validated. Validation can be a 

difficult task for some cases. Moreover, simulation is not an optimization tool. 

Answers to questions can be provided but these answers are not always the 

optimal solutions (Reynolds 102).
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CHAPTER 2. MODELING MEDIA IN ARCHITECTURAL DESIGN

In architectural design, modeling is a process, either mental or externalized, of 

translating conceptual ideas into visual forms. Although at its root the idea of 

modeling has been the same throughout the history, it has taken on many 

forms of expression. These expressions are mainly the result of technological 

advances in producing imagery.

Burden classifies design media in architectural design as follows:

1. Drawings 2. Physical models 3. Special techniques (photogrammetry, 

holography, etc.) 4. Computer graphics and 5. Sequential simulation 

(combination of computer graphics and video) (Burden VI-VII).

Abbo identifies three types of models for architectural design:

1. Two dimensional models; drawings, photographs, slides, films and 

computer graphics

2. Models that give three dimensional impressions such as stereoscopic 

slides, holograms and virtual reality

3. Three-dimensional physical models either scaled or full-size.

Then he explains that drawings, three dimensional scale models, computer 

graphics and virtual reality are the most widely used types (Abbo 70).

22



In this section, traditional design media (drawings and physical models) and 

digital design media are analyzed in terms of their capacity to support dynamic 

simulations. Medium’s ability to represent time dimension and the systems 

that architects have to deal with beyond the building geometry are the main 

concerns. Virtual reality as a modeling and simulation tool is covered in 

Chapter 3 and 4.

2.1 Traditional Design Media: Drawings and Physical Models

2.1.1. Drawings

Paper-based drawing is perhaps the oldest of today’s modeling media. Use of 

computer graphics is already widespread and continuously increasing, but 

even today the debate of replacing paper-based drawing with computer 

graphics is still on (Sullivan, Holdouts 126-28). Paper-based drawing is mostly 

used at the earlier stages of design while sketching and producing design 

concepts. The main reason for this is the lack of support for sketching in most 

of the CAD software (Palmer 120). Dorsey and McMillan compares the use of 

traditional design media with that of digital design media and they claim that 

traditional media is preferred by architects at that stage of design development. 

Since traditional media is pliant, flexible and forgiving and by their nature, 

they encourage exploration and iteration. In contrast, the representations used
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in CAAD systems tend to be rigid and precise that makes them inefficient at 

the earlier stages of design (Dorsey and McMillan 46).

On the other hand, although widely used by the architects, drawings are 

inefficient to support simulations for architectural design. A drawing is a 

rather abstract representation that is not related to the context of use.

Therefore, it is not a proper medium for testing and refinement of designs. 

Jones contrasts the rigidity and limitations of “design-by-drawing” with the 

responsiveness of the craft process. He explains that trial and error is separated 

from production by using a scale drawing in place of the product as the 

medium of experiment and change. The scope for using drawings as a means 

of producing well adapted designs is limited. Because, “The principle of 

deciding the form of the whole before the details have been explored outside 

the mind of the chief designer does not work in novel situations for which the 

necessary experience cannot be contained within the mind of one person.” 

Jones claims that by design-by-drawing, designers focus on visual articulation 

and ignore everything non-visual that the scale drawing fails to represent 

(.Tones in C. Mitchell, 41-43).

2.1.2 Physical models

Three-dimensional physical scale model is also an old and widely used means 

of representing designs in architecture. By working directly in space, although 

at small scale, concepts are formed and reshaped as a result of their
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exploration in three dimensions. In this way, new options might appear to the 

designer trapped within the confines of the paper. However, one significant 

disadvantage of scale models is their rich displays of spatial intricacy that 

cause a “miniaturism” -an attitude associated with the discrepancy between 

human and scale model scales-. Therefore, the significance of an idea in a 

scale model may be lost or reduced when enlarged to full size (Porter 107-12).

As a means of surmounting the scale barrier and having dynamic views of 

physical scale models, modelscopes can be used. Modelscopes are miniature 

periscopes inserted into models. Movement through model space can be 

simulated by panning and tracking and these views can be photographed by 

attaching a camera. Similarly, a video camera can be attached to modelscopes 

to have a sequential view. Video-based simulators provide better picture 

quality compared to photograph-based simulators (Burden 76-77).

Full scale models or experimental mock-ups are alternatives to physical scale 

models. They are usually constructed fi-om materials other than those intended 

for the ultimate form (e.g. painted canvas and timber). A common practice in 

United States is the on site cohstmction of one floor of a skyscraper before 

building commences, the prototype being utilized for experiments with 

lighting, services detailing, color schemes and furniture layout. For mass 

production of housing, full size mock-ups of designs provide better public 

participation in their designs. Layman who find difficulty in reading 

architect’s drawings may easily understand designs by the help of the mock-
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ups. Depending upon the nature of the mock-up, all visual cues can be 

represented in space besides tactile information. A mock-up is also capable of 

introducing the opportunity for the designer to articulate space against the 

reactions of the intended users. However, the use of full-scale models for 

architectural design is extremely limited due to the very high costs of such 

models. They can only be applied to repetitive, small units when such 

modeling is affordable (Porter 132-36).

2.2 Digital Design Media: Computer Graphics and Computer Aided 

Architectural Design

Computer graphics and CAAD revolutionized modeling media in architectural 

design, since a digital model of a design is capable of representing a design 

much better than traditional media. One basic advantage of a computer model 

is its flexibility. Designs can easily be modified, observed in different settings 

with different point of views, even by “walking” through them. However, the 

most important advantage of digital media is the opportunity of testing 

buildings before they are built (Greenberg, Architecture 541). Batty claims 

that the single most important difference between digital computation and 

other media rests in the concept of simulation. Digital simulation enables 

stmctured manipulation of virtual worlds that can be manipulated easily in 

comparison with other forms of model making (Batty 254).
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Çenyapili compares traditional design media with the digital one in terms of 

capacity to represent the design model formed in the designer’s mind. She 

claims that both paper-based drawings and physical models fail to represent 

mental design model, because they do not have the capacity for performance 

analysis and rapid changes of design. However, digital design media has the 

capacity to represent the whole design process and with the emergence of 

digital media “the model became the design method itself*’ (Çenyapili, Tme 

Model 135).

Mitchell and McCullough in their excellent book Digital Design Media 

categorize digital design media by media “dimension.” Excluding practical 

computation and numerical modeling tools such as databases and spreadsheets 

they organize their discussion of software not by category or task, but by the 

dimension of the media. Their classification is presented below:

1. One-dimensional media: words, texts ,and sounds

2. Two-dimensional media: images, drafted lines, polygons, plans and maps

3. Three-dimensional media: wire frame models, surfaces and renderings, 

and assemblies of solids

4. Multi-dimensional media: motion models, animation, and hypermedia

In this section digital design media is discussed according to this 

classification. The discussion of the digital design media and its uses and 

limitations for architectural design follows a brief history of CAAD.

27



2.2.1 A Brief History of Digital Design Media

Although it has been revolutionary to the theory and practice of architectural 

design, the use of computers in architecture has a relatively recent history. For 

the scope of this thesis the history of computer aided architectural design is 

summarized in this section according to the following structure:

1. Drafting and mechanization of design process

2. Knowledge based systems and AI in design

3. 3D modeling, visualization in motion and virtual reality

4. Object-oriented 3D single building models

The idea of communicating in graphical form and of producing graphics with 

a computer was born during the 1950s, almost at the same time as the 

introduction of the first commercially available computers. In 1963 Ivan 

Sutherland developed an interactive computer graphics system called 

“Sketchpad” that displays drawings and allows manipulation of graphic 

objects. Another important development of the period was due to Steve Coons 

who introduced surface patch techniques that laid the basis for solid modeling. 

Steve Coons was the originator of the term “Computer Aided Design” 

(Ferrante et al. 4). In 1960s and 1970s some experimental interactive graphics
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computer aided design systems were developed like COPLANNER (Souder 

and Clark, 1964) and URBAN 5 (Negroponte and Groisser, 1970).

From 1970s onwards, the cost of hardware started to decrease. Pen plotters, 

graphic tablets, digitizers, light pens and different devices for cursor control 

like trackball and joystick became typical computer graphics hardware during 

this period. By the mid 1970s CAD/CAM became an industry. Several 

ambitious large-scale computer aided design systems were established like 

CEDAR, HARNESS, OXSYS, CARBS, SSHA, etc. These were specialized 

systems developed to serve large public sector constmction organizations (W. 

Mitchell, Computer 16-17).

During the 1980’s integrated CAD/CAM systems that combine computer 

graphics and numerical processes emerged. Nevertheless, computer systems 

were still very expensive until the mid-1980s and only the largest firms could 

afford their use. In the second half of the 1980s, by the development of first 

inexpensive personal computers, mass-market CAD systems appeared. The PC 

has brought automation to firms of all sizes. Therefore, the early commercial 

CAD systems were simplified and standardized to minimize the need for 

installation, training and support services. There has been a shift from vendors 

with proprietary hardware-plus-software packages to an open market with 

thousands of software developers competing on multiple platforms. Moreover, 

they mimicked the traditional tools (pens, paper, paint brushes, etc.) The 

negative effect of early commercial CAAD systems was to establish a “banal”
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or rather simplistic conception of CAAD systems in the minds of the 

architects. CAAD systems were seen as simple devices for manipulating 

graphics just like word processors for manipulating texts (W. Mitchell, 

Afterword 481-83). Therefore, CAAD gained acceptance as a term referring to 

automated drafting with the “D” in “CAAD” actually to be read as “drafting” 

(Ohira 7)

Knowledge-based systems gained acceptance in the late 1980s to shift the 

computer aid in architecture from mere drafting to design. They have created 

great enthusiasm among many academicians who view design as a 

“knowledge-based” activity. Many of them claimed that knowledge-based 

design systems would push aside the other CAAD systems and would 

introduce new building modeling systems that are capable of producing 

original solutions with expert languages (W. Mitchell, Paradigms 379-83).

Despite the hype that was created, knowledge-based systems failed to achieve 

their goal as “intelligent design assistants” for the practice. In architectural 

offices CAAD has been used primarily for production drawings, or rendered 

presentation drawings. The main benefit of CAAD to architectural design 

remained as efficiency and production quality. Recognizing these issues, it 

began to be claimed that computer should be used as a “medium of design” 

instead of a "thinking machine.” The supporters of this idea claimed that 

architectural CAD should be predominantly visual. It should be able to 

manipulate or simulate solid, void, and plane; light, color, and texlme; and
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acoustics. Instead of evaluating designs formally against predefined 

objectives, computer modeling and simulation should be used in an evaluation 

process that incorporates both the designer and the client (Richens 307-8).

3D modeling, visualization in motion and virtual reality introduced a new 

dimension to architectural presentation in 1990s (Emmett 30). -The issue of 

virtual reality is covered in Chapter 3.- Demands of clients for 3D modeling 

and visualization in motion has been the main driving force for the widespread 

use of such tools. The public is exposed to high-end graphics on a regular 

basis in games, on TV and in movies. It is this type of output that most of the 

clients began to demand in 1990s. As a result, to edge out the competition 

architects have had to use advanced modeling and animation (Mahoney, 

Moving 20-22). In 1998, virtual reality, especially the screen-based type, has 

already become a common presentation practice for many offices in United 

States. Such systems have been used for previewing numerous aspects of 

designs and teaching architects where designs fail (Mays, Making 162-63).

In the second half of 1990s several 3D-based object-oriented software 

products have emerged. The basic idea of object-oriented software is to 

combine software and data into the same object i.e. combination of the data 

describing the object and the operations related to it. In fact, this was an old 

idea that dates back to 1960s. Objects originated in the simulation 

programming languages like Smalltalk and Simula. Such software has enabled 

the definition of objects in a hierarchy so that an object can inherit the
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properties of its “parent” object (Sanders 104-6). The benefit of object- 

oriented software to architecture is clear “because object-oriented design is 

what architecture is all about.” Architects can use object-oriented software to 

describe the attributes and behavior of a broad range of architectural objects 

most of which are well described by their interfaces (Sanders 108-10).

The emergence of 3D-based object-oriented commercial software for 

architectural design has been viewed by many authors as the result of a 

paradigm shift from automation to simulation of designs. The primary reason 

for the long time required reaching such a point is that architectural design is 

an extremely complex process. In such products a single 3D building model is 

produced by designing directly in three dimensions. 2D drawings are produced 

from the 3D model. In this way, the 3D building model itself becomes the 

contract document, instead of drawings (Novitski 22-28). Advantages of 3D- 

based object-oriented architectural design software are summarized below.

1. Simulation support for the whole building life cycle.

With these systems, the model becomes an easily searchable electronic 

simulation of the physical building that grows more valuable in time. With 

data attached to three-dimensional building elements, cost estimating, 

maintenance plans, and monitoring for safety and security will be far easier 

(Mays, Longer 154).
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2. Help to maintain the architect's copyright of design.

A 3D-based firm owns and retains a computer model that can be locked, 

unlike a paper-based practice that transmits the design as a set of bluelines that 

can be easily copied. Unless arrangements are made to sell the digital building 

to the client, not just the right to use it for construction, the original architect 

will have a competitive advantage in winning remodeling and facilities 

management work for that building for the whole life of the building (Novitski 

27).

3. Support for collaboration.

The need for collaboration with clients and other professionals involved in 

design process has been increasing. In a survey of large architectural firms 

made in summer 1998, 94 percent of principals responding ranked 

“collaboration throughout the building process” over “individual productivity” 

in their five year goals. This is a significant shift in architects' perceived 

technological needs. Earlier surveys have tended to show 80 to 90 percent of 

respondents focused on the desire for better drafting and drawing systems. 3D- 

based object-oriented software supports collaboration by sharing a single 

model among professionals dealing with the project (Ross 175).

2.2.2 One- and Two-dimensional Design Media

Sound sequences and texts are one-dimensional structures of data elements in 

which each element has a unique predecessor and successor. One-dimensional
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structures constitute the basis of computing. Although their direct use in 

architecture may be less than that of other occupations, the two-dimensional, 

three-dimensional and four-dimensional stmctures that concern designers must 

always be translated into one-dimensional stmctures at some level usually 

invisible to the computer user (Mitchell and McCullough 70-71).

Two-dimensional media includes bitmapped images, drafted lines, polygons, 

plans and maps. A bitmapped image is a picture that is encoded and stored as a 

rectangular array of integers. The rectangular array is called a raster grid, a 

single row from the grid is called a raster line, and a single square element is 

called a pixel (standing for “picture element.”) Systems for capturing, storing, 

manipulating and displaying such images are known as image processing and 

paint systems and they have a wide range of applications in design. 

Nevertheless, a bitmap is just a numerical equivalent of a picture i.e. it may 

represent a painting or a photograph. Therefore, image-processing software is 

incapable of showing detail of indefinitely fine resolution, showing objects in 

scene from other than original view point, or providing manipulative 

operations on objects that depend on knowledge of the internal stmcture of the 

manipulated object (Kerlow and Rosebush 14-15).

On the other hand, computer graphics software that is designed for use in 

technical drafting provides tools for precise manipulation and accurate 

presentation of geometric entities. Such systems make use of coordinate 

systems. Points are described in terms of x and y coordinates; lines are
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described in terms pairs of points and so on. Moreover, they provide basic 

tools for inserting, selecting, and deleting lines, and some other additional 

tools like break, extend and trim operations. Similarly, they provide tools for 

creating, transforming and deleting complex shapes. Some basic geometric 

transformations are translation, rotation, scaling, reflection, stretching, 

shearing, projection and deformation (Bertol 74-5).

A model that consists of a set of two-dimensional line drawings of a building 

is a highly abstracted representation (like a paper-based drawing). Although it 

explicitly represents the building geometry and appropriately structures the 

information related to a particular stage in building design, it deals with only a 

few aspects of a very complex reality. Therefore, there are many important 

design activities that it cannot support. The main disadvantage of such an 

abstract representation is that the viewer must “fill in” a great deal of 

information to interpret two-dimensional shapes as projections of three- 

dimensional objects. Misinterpretation is possible. Mitchell and McCullough 

claims that the main advantage of using computer for drafting is that “static, 

location-addressable, fixed format, non-machine-analyzable design 

representations give way to dynamic, content addressable, variable-format, 

machine analyzable representations.” Hence, faster production of finished 

drawings and efficiency in drawing production are only useful by products but 

not the aim of drafting with computers (Mitchell and McCullough 131-33).
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Unlike drafting systems that represent the boundaries of things by lines, 

polygon-modeling systems deal with the spaces between these boundaries. 

Therefore they are used for producing drawings consisting of areas of color 

and pattern and for working on space-planning, analysis and management 

problems. Plan-based and map-based information systems can be produced by 

establishing cross-references between polygon files and files of non-geometric 

information (Mitchell and McCullough 147-52)

2.2.3 Three-dimensional Design Media

Three-dimensional design media includes wireframe models, surface models 

and solid models. Similar to that of two-dimensional media there are two ways 

to represent models in three-dimensional media: voxel representation and 

boundary representation. Voxels (volumetric elements) are three-dimensional 

arrays of data points. For this purpose a cuboid is subdivided into cubic voxels 

just like a rectangle is divided into square pixels. However, for designers’ 

purposes voxel representations suffer from the same sorts of limitations as the 

bitmapped images as considered in 2.2.2. They are low-level, unstructured, 

imprecise, and inefficient in use of available computational resources. For 

greater precision and economy and to provide higher level design operations, 

three-dimensional models should be represented in terms of x, y, z 

coordinates, bounding lines and surfaces (Mitchell and McCullough 238-39)
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wireframe models represent buildings as collections of lines in three- 

dimensional space that had been projected in perspective onto a two- 

dimensional picture plane. A wireframe model provides a more complete 

representation of building geometry than a collection of two-dimensional 

drafted lines. Most importantly, a wireframe model can support forms of 

design exploration, geometric problem solving and measurement and analysis 

that are very difficult or impossible with two-dimensional representations 

(Bertol 71).

Surface-modeling systems represent buildings not in terms of their edge lines, 

but as collections of surfaces described by their outlines and curvatures. Such 

systems can produce not only wire frame images, but also hidden surface 

views showing opaque surfaces in light. They allow information specifying 

surface properties (color, specularity, texture, etc.) to be associated with 

surface elements and allow the light sources to be specified. Surface models 

provide much more realistic images than a wireframe view. Amor claims that 

advanced rendering software has great benefits for architectural design. Since, 

it can bring the virtual environment (computer rendering) closer than anything 

else to the built environment. Then he mentions six aspects of visualization 

that can be performed much more effectively with computer technology than 

with traditional tools: unlimited perspectives, material appearance, surface 

characteristics, transparency and translucency, lighting and context of the 

project (Amor 19-20).
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Solid modeling systems represent buildings as assemblies of solids. The 

displays produced by solid modeling systems may look like the displays 

produced by wireframe or surface modeling systems, but the underlying 

geometric databases are very different. Therefore, solid modeling systems 

have powerful geometry-editing operations not available in wireframe or 

surface systems and they also have some additional data extraction and 

analysis possibilities. For example, solid models are particularly appropriate 

for volumetric and engineering analysis. Properties of closed solids (volumes, 

surface areas, centers of gravity, moments of inertia, etc.) can be easily 

calculated by such systems. Therefore, a solid modeling system can be used to 

measure the amount of material to be cast in a form, to measure the volume of 

an auditorium for heating and cooling and acoustical analysis, or to measure 

the volume of a building for iu"ban design analysis. For detailed analysis of 

engineering properties, solids may be broken up into small pieces, known as 

finite elements. Advanced solid modeling systems provide algorithms for 

automatically constructing finite-element meshes from boundary models. 

Finite-element analysis procedures can be used to produce detailed and 

accurate analysis of structural properties, thermal properties and so on 

(Mitchell and McCullough 268-69).

2.2.4 Multi-dimensional Design Media

Multi-dimensional media includes motion models, animation and hypermedia. 

A digital model of a three-dimensional solid in motion over some time interval
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constitutes a motion model that has three space coordinates and one time 

coordinate. Each four-dimensional data point is called a “hypervoxel.” Such 

four-dimensional objects are very difficult to visualize directly. Mitchell and 

McCullough explain two ways to visualize four-dimensional objects. One of 

them is collapsing a four-dimensional model to a three-dimensional one by 

collapsing the time dimension. The other way is to select a plane, then 

collapse the three-dimensional scene onto that plane at successive moments. 

This produces a sequence of two-dimensional bitmapped images i.e. frames of 

a digital movie (Mitchell and McCullough 271-73). In practice, software for 

modeling solids in motion typically provides the operation of keyframing for 

specifying such four-dimensional models. A pair of key frames show a three- 

dimensional solid at two moments in time. These two time points state the 

beginning and end of a motion sequence. Motion modeling software simulates 

the movement of object between these two moments (Mitchell and 

McCullough 275).

It can be claimed that motion models of three-dimensional assemblies are 

relatively costly to build, modify, and maintain and they are not necessary 

because the analyses conducted by them can also be produced from much 

more abstract means. Nevertheless, the costs of building and maintaining 

motion models are dropping as the technology advances. Most importantly, 

the demands for more through evaluation of designs are growing.
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For most of the industries motion models of products, that are called digital 

prototypes, are replacing the place of physical prototypes. Digital prototyping 

is producing a computer model of a product, instead of a physical one, for 

product evaluation and testing. With digital prototyping tools, product designs 

can be tested and evaluated for problems during the design cycle rather than at 

the end of it. Furthermore, digital prototypes provide the ability to perform 

multiple what-ifs, run tests, and other analyses of the behavior of a product 

design in a way that may not even be possible using conventional methods. 

Digital prototypes, for example, can be used in computer-based simulations 

that evaluate how a product will perform in varied environments like extreme 

temperatures, specific atmospheric conditions, or other test settings that would 

be difficult or even impossible to duplicate for evaluating a physical prototype 

(Rowell, Prototyping 55-58). Virtual reality technology is also used to create 

digital prototypes called “virtual prototypes.” This type of modeling is 

discussed in 4.1.1.

There is a growing interest in advanced motion modeling software in 

architecture too. In the early 1990s architectural firms that used 3D computer 

renderings and/or animations to present their prospective designs were unique 

enough that they could almost win a bid on the novelty of their approach 

alone. This situation has changed toward the end of the decade. Architects 

have been forced to use motion models by their clients. By animating rendered 

CAAD sequences, architects, in one sense, turned out to be “movie directors” 

that design a four-dimensional experience. In other words, the architect has
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shifted from a static design stance to one that is cinematic (Porter 122-26). 

Nevertheless, producing a “building movie” represents only the first step in 

opportunities for “virtually” building. Clients’ demands for realistic simulation 

of design performance has been increasing and in many cases, architects have 

to explore new technologies to respond these demands (Mahoney, Moving 

21).

There may be three main areas of modeling in multi-dimensional media that 

have potential benefits for architectural design:

1. Computational fluid dynamics

2. Mechanical d3mamics

3. Ergonomic modeling

These areas of modeling are covered in the following parts.

2.2.4.1 Computational Fluid Dynamics

Computational fluid dynamics solves the equations that govern fluid flow 

(momentum, energy, and mass) and translates the numeric solutions into easy- 

to-read graphics. Computational fluid dynamics, by its definition, involves 

patterns of change over time and space. To understand even simple 

phenomena often requires several types of representation. Truly informative 

displays must be dynamic. Through animation, icons can be watched moving

41



and changing over time. Techniques for the display of flows include vectors, 

streamlines, streaklines, and particle paths (Richards 282).

Computational fluid dynamics can be used in architectural design to predict 

air flow speed, pressure, temperature, turbulence levels, heat transfer, a 

potential fire’s progress and concentration of contaminants such as smoke. 

Although it was first used in the early 1970s to predict air movement in 

buildings, commercial software programs targeted the modeling techniques for 

building applications are relatively new (Sullivan, Modeling 163-64).

Battle and McCarthy discuss the use of advanced computer software for 

simulating natural forces like temperature and air movement in buildings.

They explain that architects may use such tools to expand their interpretation 

of natural forces with form. Such computer simulations do not claim to 

provide architectural solutions for the built form but claim to be more realistic 

representations for predicting the future environmental performance of 

buildings than any artist’s impression submitted in a planning submission 

(Battle and McCarthy II-III).

The steps of conducting a computational fluid dynamics analysis for buildings 

are explained below. The first step of such analysis is to break down the 

particular building volume into hundreds of thousands of geometric cells, 

which make up a three-dimensional mesh or grid. Boundary conditions must 

be incorporated into the mesh, including flow rates, air temperature, and the
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location of supplies and exhaust grilles. After the boundary conditions have 

been entered, equations for heat, mass, and energy are solved at every cell in 

the mesh. The result is an incomprehensible volume of numbers and it can 

effectively be understood by the dynamic displays mentioned before.

Nevertheless, like all the other types of simulation, computational fluid 

dynamics analysis cannot be said to save architects money. The skills required 

to perform an accurate computational fluid dynamics analysis remain 

challenging; the computer power needed is considerable, and the costs are 

high. For architects, the pay off is in smaller, more energy-efficient 

mechanical systems. Computational fluid dynamics encourages innovation in 

mechanical design, while lowering margin of error. Sullivan claims that 

widespread use of computational fluid dynamics in Europe has encouraged 

more efficient climate control techniques, such as displacement ventilation, 

radiant cooling, and natural ventilation (Sullivan, Modeling 164).

2.2.4.2 Mechanical Dynamics

The idea of detailed physical modeling of assemblies by describing solids and 

the interfaces between them can be developed by introducing laws of 

dynamics into motion simulation. In this sort of simulation, solids have mass 

and elastic properties; initial conditions of position, velocity, and acceleration 

are specified; and the laws of dynamics are used to work out physically 

possible sequences of events. Dynamic simulations of mechanisms provide the
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basis for static and dynamic structural analysis of assemblies that are not 

mechanisms like building stmctures (Mitchell and McCullough 285-86).

2.2.4.3 Human Modeling

The interest and development of digital humans have increased in the last 

decade (B. Robertson 33). Digital humans are computer-generated, graphically 

displayed entities that represent either imaginary characters or real humans. 

The former commonly referred to as “avatars” are used primarily in the 

entertainment industry. The other digital humans are potentially valuable for 

architectural design. They are used to test the fit, reach, and motions of people 

in vehicles and environments. They also permit assessment of movement 

patterns of individuals and groups of people (Miller 24).

The growth in the interest and development of digital humans can be due to 

two major factors. First, the advances in computer graphics technology have 

provided the performance and speed necessary to efficiently duplicate and 

visualize human motion. Second, design professionals are becoming 

increasingly aware that human factor is a critical design element that must be 

accounted for in every phase of the product life cycle (Miller 26).

In one sense, modeling humans is a special case of mechanical dynamics. 

Digital humans incorporate restrictions on limb and Joint movements, and may 

be scaled for different body types and sizes (Richards 283). Nevertheless, the
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scope of human modeling can be increased to include not only the laws of 

dynamics but also other dynamic factors peculiar to humans. Thalmann 

identifies two main approaches to three-dimensional computer animation and 

its evolution. The first approach corresponds to an extension of traditional 

animation methods. The animator uses the computer to assist him in the 

creation of keyframes and simple motions and deformations like stretching. 

The second approach corresponds to simulation methods based on laws of 

physics, physiology or even psychology. Traditional methods allow us to 

create three-dimensional characters with exaggerated movements while 

simulation methods are used to try to model a human behavior accurately. The 

second type of animation is called behavioral animation. (Thalmann 183-84)

Capucci mentions two important factors that should be considered in the 

development of human models. One of them is the high computer power 

needed to represent complex shapes, textures, and materials. This is a 

technological problem and by the development of technology, it is 

disappearing as mentioned before. The other problem, which exists in all types 

of modeling, is the issue of true modeling. In order to improve human models 

and search for more adequate ones to describe humans better knowledge of 

both the phenomenal reality and our way of perceiving it have to be 

researched (Capucci 101).

Several major industries have embraced human modeling and simulation. 

Among the first to apply the technology were the aerospace, automotive, and
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shipbuilding industries. These industries can be characterized by long product 

development cycles, high-cost start ups, and intense manual labor demands. 

Digital humans have been used for cockpit design, aircraft crew cabin layout 

and instrumentation evaluation, automobile seat and passenger comfort 

studies, and space station construction planning (Richards 284). In 

architectural design, although their use is not as widespread as other 

industries, such models are used in interior design, layout of rooms and office 

spaces and design of furniture (Krupa 85).
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CHAPTER 3. VIRTUAL ENVIRONMENTS AND ARCHITECTURAL 

DESIGN

3.1 An Overview of Virtual Reality

3.1.1 Definition

Virtual reality is a topic that has been discussed widely in 1990s. Although the 

interest and developments in virtual reality have only increased, there is not 

any common definition of it. Several pioneers and groups involved in virtual 

reality research have developed their own views of virtual reality. Analyzing 

the related literature, three concepts appear as to be fundamental to the 

definition of virtual reality: simulation, interaction, and immersion. In this 

section these concepts are analyzed in relation to the different definitions of 

the term in the literature.

3.1.1.1 Simulation

The ability to produce real-time interactive simulation is a unique attribute of 

the computer. In fact, by this ability computer becomes an unprecedented 

medium. Ivan Sutherland in his famous paper “The Ultimate Display” 

emphasized this property of computer graphics. He wrote that “The screen is a 

window through which we see a virtual world. The challenge is to make that
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world seem real and to make it behave as if it were real” (Sutherland in 

Garassini 77).

The idea of real-time interactive simulation dates back to military flight 

simulators. These devices have been used to train pilots without endangering 

the pilot and aircraft since the early days of flying. The advent of computer 

graphics made the inclusion of visual feedback possible in the simulator. In 

such simulations views are generated by computers so that the display 

instantly responds to the trainee pilot’s cockpit controls. Computer graphics 

used in such systems have a high degree of realism. The realism of simulations 

applies to sound as well. Spatially synthesized sound systems control every 

point of digital acoustic space.

In recent years the use of virtual reality as simulation has increased. Visual 

simulations are programmed for complex scientific research; for training 

purposes, as in flight or driving simulators; for entertainment, education or 

architectural design (Cotton and Oliver 184). These applications are covered 

in detail in 4.1.

3.1.1.2 Interaction

Virtual reality, in one sense, is considered to be any electronic representation 

that can be interacted. For example, to clean up a computer desktop, a graphic 

representation of a trashcan is seen on the computer screen, mouse is used to

48



drag an unwanted file down to the trashcan to dump it. The trashcan is an icon 

for a deletion program, but it is used as a “virtual” trashcan. What makes the 

trashcan different from cartoons or photos on TV is the interaction it provides. 

The virtual trashcan does not have to fool the eye to be virtual. In this view of 

virtual reality, interaction is more fundamental to the definition of virtual 

reality than illusion (Heim 110).

Virtual reality is usually characterized by a real time interaction. For example. 

The Dictionary of Computer Graphics gives three definitions of virtual reality 

each emphasizing the term interaction. According to this dictionary virtual 

reality is

1. An electronic simulation in which perspective images are generated in real 

time from a stored database corresponding to the position and orientation of 

the head of a user, who observes the images on a head-mounted display.

2. An electronic simulation in which images are generated in real time or near 

real time from a stored database and displayed in such a way as to facilitate 

real-time interaction with the database, such as a vehicle simulation with 

imagery presented for viewing out the windows of the vehicle.

3. Most generally, any electronic simulation or display that suggests the sense 

of involvement or interaction associated with virtual reality as practiced using 

head mounted displays (Latham 148).
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Defined broadly, the concept of virtual reality has increased its scope to 

include many aspects of electronic life in recent years. The term is used to 

define any kind of interactive electronic experience in computer networks. It 

includes virtual universities where students attend classes on line, visit virtual 

classrooms, and socialize in virtual cafeterias. The term virtual practice is used 

for many disciplines, including architecture, to define professional groups 

working on computer networks usually being physically in remote locations. 

Marlatt predicts that in future economics, accelerated market conditions, and 

increasing building sophistication will require architects to work at “virtual 

firms” specializing in a specific building type and that exist only for the 

duration of a project (Marlatt 94).

3.1.1.3 Immersion

Many people in the virtual reality industry prefer to focus on a specific 

hardware and software configuration while defining virtual reality. This is the 

model set for virtual reality by some pioneers such as Sutherland, Fisher, 

Furness, and Brooks. According to this view, virtual reality means sensory 

immersion in a virtual environment. The specific hardware first called virtual 

reality combines two small three-dimensional stereoscopic optical displays, or 

“eyephones,” a head-tracking device to monitor head movements, and a data 

glove or hand-held device to add feedback so the user can manipulate objects 

perceived in the virtual environment. Audio with spatially synthesized
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acoustics can support the illusion of being immersed in a virtual world (Heim

112).

Such systems, known primarily by their head-mounted displays (HMD) and 

gloves, were first popularized by Jaron Lanier’s VPL (Virtual Programming 

Language) Incorporated. The HMD cuts off visual and audio sensations from 

the surrounding world and replaces them with computer-generated sensations. 

The body moves through virtual space using feedback devices like gloves, foot 

tread mills, bicycle grips, joy sticks, etc (Bertol and Foell 99-103).

However, this understanding of virtual reality has been considered to be avant- 

garde and remained in the research laboratories. Probably due to the 

limitations and shortcomings of this hardware like motion sickness, few 

systems were delivered to real customers for real applications. Therefore, 

attention has shifted elsewhere (Rosenblum et al.. Reborn 21). The definition 

of virtual reality has broadened its scope as the term describing the 

conventional interface to late twentieth century computing. Such interfaces are 

now almost exclusively graphics driven and increasingly, they include three- 

dimensional animated graphics augmented by appropriate sound (Batty 253). 

Hence, today it is common to classify virtual reality as immersive and non- 

immersive types. (Zampi and Morgan 15).

51



Walker also views VR as a new type of interface suggesting a taxonomy for 

five generations of computing (Walker in Zampi and Morgan 20). The table 

below represents this taxonomy.

Table 1. The Five Generations of Computer Interfaces
The Interface Properties
The plugboard -the computer as 
switch board-

The punched card machines

The keyboard and screen

The menu driven program

Graphical User Interface (GUI)

Virtual reality

The earliest type, capable of 
performing only a limited set of 
instructions

Provided greater data handling, and 
more complex routines

Commands could be directly input 
and modified

User is even closer to the machine, 
not needing to memorize complex 
commands and routines

The current state of technology, in 
which a mouse is used to point and 
click

The next level of technology that 
provides greatest interaction between 
the computer and user

The term virtual reality was coined by Jaron Lanier. The designation is, from 

any viewpoint, a contradiction in terms. The contradiction between the two 

words is evident; reality cannot be defined as virtual from an existential 

perspective because virtuality denotes the opposite. Nevertheless, the term 

expresses the fact that “virtual reality” is not about illusion but rather is about 

the creation and physical expression of an imaginary world, created and 

controlled by the user. In spite of the semantic contradiction, the term has
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become immediately accepted by both the computer community and general 

public. The other terms such as artificial reality and cyberspace have not been 

used to embrace all kinds of activities named virtual reality (Bertol and Foell 

69).

Artificial reality is a term coined by Myron Krueger, and its scope usually 

confined within his works. The other term “cyberspace” was coined by 

William Gibson in his famous book Neuromancer. This term attracted many 

people with its fictional content. However, it has more or less remained its 

first scope and never used for scientific works. The expression “virtual 

environment” is being increasingly used instead of “virtual reality.” This term, 

that has a more semantically correct meaning, probably has been coined at 

NASA Ames Research Center, in preference to the oxymoronic “virtual 

reality” ( Latham 147). In the scope of this thesis the expression virtual reality 

denotes the technology involved, while the creative contents and specific 

applications utilize the terms virtual worlds or environments.

3.1.2 A Brief History of Virtual Reality

Many authors date back the history of virtual reality to the developmental 

work of Ivan Sutherland at the University of Utah. In 1965, he presented a 

vision of virtual environments, in the paper titled “The Ultimate Display,” that 

continues to inspire many researchers. His vision was influenced by the 

introduction of computer-driven display technology (Weimer 246).
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Sutherland’s aim was to place an observer in the midst of a dynamic 

computer-generated graphic space and, furthermore, allow the observer to 

move around and within this real-time perception. In 1968, the first head- 

mounted display system was reported by Sutherland. His solution was to 

mount two miniature cathode ray tubes in a headpiece, one positioned in front 

of each eye. The device was linked to a computer by three aerials that 

conveyed coordinates locating the position of the wearer’s head and direction 

of view. The display processor instantaneously provided the correct image. 

The displayed image was a transparent wireframe structure (Porter 138-39). 

Sutherland's prototype, although crude and cumbersome, led to many 

achievements in VR. The early works in VR were in three major areas: art, 

flight simulation and robotics, and military and space-related research 

(Schroeder 388).

In art, Myron Krueger was the front-runner in exploring the potential of VR- 

like interactive computing devices. In the early 1970s, Krueger created a 

gallery installation that allowed users to interact with a two-dimensional 

computer-generated environment. The main difference between Krueger's 

approach, called “Artificial Realities,” and immersive VR systems is that he 

did not attempt to create a simulation which gives the person the impression of 

bodily presence in the virtual environment. Instead, ICnieger’s system allows 

participants to interact with silhouette images projected on a wall-sized screen 

by simply moving in front of these worlds. The system achieves interactivity 

by recording the user’s movements with video camera so that the user’s
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silhouette image can interact with the projected image. This system could also 

allow multiple users to interact with each other in projection. Krueger claimed 

to bring a model of interactivity that has not been applied to architecture 

before. He called his later works as “responsive environs” and “interactive 

buildings” and emphasized the opportunity of conceiving buildings as defining 

environments that are “playfully alive” rather than as sterile objects (Krueger 

273-83)

In 1980s VR was popularized with Jaron Lanier who came from a completely 

different background of computer games. At that time, there was an increase 

in the ongoing research mainly due to the increase in affordable computing 

power. Computing power is especially required for generating the necessary 

computer images to create realistic three-dimensional representation. The 

conceptual groundwork had been laid much earlier by Sutherland, however it 

was only during the 1980s that the technical means became available to 

produce working systems that were more than prototypes (Schroeder 390).

The early 1990s saw significant growth in both the number of VR researchers 

and the research quality, driven by decreasing costs for needed computational 

and peripheral equipment. At the same period the concept of VR entered 

common currency. In the popular media it was exploited and trivialized. Due 

to the fiction-like articles and the movies such as “Lawnmower Man” and 

“Johnny Mnemonic,” the public and research sponsors developed entirely 

unrealistic expectations of the possibilities and time scale for progress. Many
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advances occurred on different fronts, but they rarely synthesized into full- 

scale systems. Then, the excitement turned into unrealizable “hype” 

(Rosenblum et al.. Reborn 21). Besides unrealistic expectations, 

implementation of the VR vision has been hampered in several other ways 

such as technology limitations, lack of understanding of human factors, and 

lack of experience in creating and using new three-dimensional paradigms 

(Rosenblum et al.. Unbound 19).

In spite of all the problems faced in VR research, there is still much ongoing 

research, probably because of the powerful vision underlying. Rosenblum et 

al. claim that the next decade will see extensive growth in VR, a process 

already beginning. Then, he mentions four factors that driving this growth: 

decreasing costs; developing software architectures that can be used by system 

builders keeping them from having to reinvent the wheel and relearn old 

mistakes; confluence caused from more interdisciplinary teams capable of 

combining the separate advances; and finally the increase in fielded systems 

that enables field tests for research projects (Rosenblum et al.. Reborn 22-23).

3.1.3 Types of VR Systems

A major distinction of VR systems is the way they interface to the user. 

According to this distinction five general VR system types are described in 

this section: screen-based VR, immersive systems, video mapping, 

telepresence, and augmented reality.
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Screen-based VR systems use a conventional computer monitor to display the 

virtual environment. This is also called desktop VR or a Window on a World 

(WoW). Screen-based VR systems are the most widely used type of VR 

systems mainly due to the low costs. In the second half of the 1990s, high end 

PCs have begun offering near-workstation performance at a fraction of cost 

and many VR software companies have been focusing their efforts on the PC- 

based products. Such systems are mainly used for presentation purposes. With 

the emergence of Virtual Reality Modeling Language (VRML) their use has 

increased (See 3.2.2.1) (Mahoney, PC 53).

Immersive VR systems are often equipped with a Head Mounted Display. This 

is a helmet or a facemask that holds the visual and auditory displays. The 

helmet may be free ranging, tethered, or it might be attached to some sort of a 

boom armature. Projection-based VR systems display three-dimensional 

images on video projection screens or monitors; users wear lightweight stereo 

glasses to view them. Some immersive systems project images directly into 

the both of the user's eyes (HITL, VRD 2). Each image is created from a 

slightly different viewpoint to create a three-dimensional view. There are 

several research projects to utilize immersive design environments as media 

for early stages of architectural design (See 3.2.2.3)

Video mapping is a very specific type of VR system developed by Myron 

Krueger. This system merges a video input of the user’s silhouette with a two-
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dimensional computer graphics. The user watches a monitor that shows his 

body’s interaction with the virtual world. This type of VR is explained in 

3.1.2.

Telepresence is the process through which a participant is allowed to view and 

interact with a remote location using cameras and other communication 

devices. Telepresence may involve different types of environments and tasks, 

from robotic control to simple video conferencing. It is often used for human 

control of activities in inaccessible or dangerous places such as in fire fighting 

and surgery. Telepresence applications, except video conferencing, are not 

much used for architectural design (Bertol and Foell 73-74).

In augmented reality systems computer generated images are merged with the 

user's view of the real world. Instead of creating representations whose 

perception replaces that of the real world, an augmented reality application 

complements the real world perception with information not ordinarily 

discernible by human senses. The actual and virtual worlds coexist in the 

participant’s perceptions as a tool to improve the participant’s understanding 

of her environment. There are some research projects to use augmented reality 

for architectural construction (Webster et al. 109).
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3.1.4 Virtual Reality Modeling Language (VRML)

Virtual environments are expanded to web by the development of VRML 

(Virtual Reality Modeling Language) in 1994. VRML, both a language and a 

file format for describing three-dimensional worlds and objects brought the 

ability to render complicated three-dimensional images in web utilizing simple 

instructions. Like HTML, VRML is designed to be platform-independent and 

extensible. Although VRML was developed to be independent of HTML, it 

depends on the same protocols used to transfer files across the Internet.

VRML documents are accessible using a VRML browser. The main advantage 

of VRML is that powerful and expensive workstations are no longer needed to 

create virtual worlds. With VRML complex virtual environments can be 

created with a PC, using text-based instructions. A VRML world is a model of 

a three-dimensional space, which can contain three-dimensional objects, lights 

and backgrounds. Objects are built from solid shapes and text, or from 

primitive points, lines and faces. Material properties and textures may be 

applied to the objects. In the latest versions of VRML, behaviors can be added 

to the objects through scripting. In this way VRML enables simulations and 

walk-throughs of devices and buildings (Heller 19-20).

Von Schweber and Von Schweber predict that in near future design, 

engineering, manufacturing, marketing and sales will work together on the 

same media using real-time three-dimensional visualization via the Internet. 

VRML will enable customization applications, leading consumers to be their
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own producers and built three-dimensional worlds in the three-dimensional 

market place. Shoppers in Europe can already browse furniture and interior 

design elements on the web using VRML, then change attributes such as 

finish, fabric, color, dimensions, etc. (Von Schweber and Von Schweber 157).

3.2 Architectural Design and Virtual Environments

3.2.1 Virtual Environments as the Ultimate Digital Media for 

Architectural Design

Virtual reality represents the ultimate development in the process of 

digitalization of architectural design, which initially started with CAAD. 

Virtual reality can be envisioned as an extension of computer-generated three- 

dimensional models. The database comprising three-dimensional computer

generated models is the base for any further rendering and can be utilized by 

several different applications such as rendering and animation. CAAD models 

grow into virtual environments in the following order.

Static perspective renderings, from wireframe models to textured surface

renderings

I
Animated noninteractive walk-throughs

Interactive screen-based virtual environments

. ^Immersive virtual environments
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It can easily be observed that the characteristics of VR, three-dimensionality 

and immersion, interaction, and simulation find correspondence in 

architecture. Architectural artifacts are by their own nature three-dimensional 

and immersive; in contrast to sculptures or other three-dimensional objects 

that can be perceived and manipulated from their outside, architectural designs 

can be inhabited and walked through on its inside. The natural physical 

immersion of architecture can be rendered at its best in immersive virtual 

environments. This property is an invaluable help to experience architecture 

that may find many useful applications. For example, may be one day house- 

buyers will inhabit virtual model of their prospective houses one week before 

purchasing.

Another advantage of immersion can be realized by designing in an immersive 

virtual environment (See 3.2.2.3 for examples of applications). Immersive 

design can be defined as the act of designing in a virtual environment, where 

the designer is inside her design. Within an immersive design environment the 

creation of space becomes possible without any intermediation. Traditional 

compositional rules, such as symmetry and central organizations that are 

usually implemented in two-dimensional representations, assume different 

values when implemented in a three-dimensional immersive environment. The 

1:1 scale of the immersive design environment gives the ability to perceive the 

designed space without the false assumptions that often accompany two- 

dimensional representations. Furthermore, since the perception of architecture
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is dynamic, the best aesthetic judgment of an architectural space is provided 

by the change of perspectives giving a succession of views (Bertol and Foell 

115-17).

Interactivity is proposed as an essential characteristic of design media at the 

early stages of design development by many authors (Campbell and Wells 2; 

De Vries and Achten 5). Interaction refers to the cognitive aspect of the design 

process. At the earlier phases of design, architects deal with recursive 

sketching. Many ideas are generated and tested in a fast manner at this stage. 

Often the rate can exceed 20 drawings per hour (McCall et al. in De Vries and 

Achten 5). While sketching architects interact with their designs by re

forming representations. However, traditionally most CAAD packages are not 

intuitive enough to the designer's thought process to support rapid 

development of design ideas. Fortunately, virtual reality has great potential for 

enhancing the way architects interact with their digital models since, it 

provides a natural interface for design by real time feedback and more 

intuitive design actions (Smets et al. 197-98; Campbell and Wells 2).

As mentioned several times in this thesis simulation and visualization of 

design performance are very useful for architectural design. Simulation 

enables representation of many aspects of design and visualization presents 

non-visual information in a visual manner to provide feedback. In recent 

years, taking cues from other parts of society, architects have begun to 

reinterpret the computer as a tool for processing and communicating
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information about buildings. In fact, in CAAD the attention has shifted from 

mechanization of design process to the simulation of buildings with the whole 

life cycles. The goal of the architect is not to compress the time required to 

produce traditional documentation, but to explode the amount and nature of 

information available about a designed building, to the benefit of the building's 

designers, users and owners (Bojar 91). Virtual environments offer several 

possibilities for the simulation of designs. These issues are covered in detail in 

Chapter 4.

De Vries and Achten compare VR-based design systems with conventional 

CAAD and claim that although VR technology is relatively young and there is 

no established standard of VR-based design systems, VR technology promises 

good performance in the early design stage. Because, it provides interaction 

and simulation that are cmcial at that stage of design development. CAAD 

tools offer good visualization of the design but very poor natural interaction 

with the user. CAAD does not feature immersion and simulation. On the other 

hand, VR technology is not suitable for production of the traditional 

documents used for information exchange and CAAD technology shows the 

best performance in the final design stage, using two-dimensional 

representations. Therefore, VR-based design systems should be designed to be 

used at the earlier design phases and at the documentation phase conventional 

CAAD should be used (De Vries and Achten 5-8).
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To sum up, it can be said that the previous domain of trainee astronauts and 

video game designers, i.e. virtual environments, return architects to the full 

scale design practice used by the ancients but this time reconstmcted 

electronically. Architects can design in three-dimensions by trial and error in a 

dynamically simulated virtual environment. Virtual environments, in this 

sense, can be the type of design media that was proposed by Jones in 1970s as 

mentioned in 2.2.2. Being free of most of the limitations of other design media 

-most importantly incapability of representing time dimension and that of 

supporting dynamic simulation- analyzed so far in this thesis, virtual 

environments have great potential to be yet the ultimate electronic media for 

architectural design.

3.2.2 Applications of Virtual environments in Architectural Design.

Virtual environments are used in architectural design in various ways. These 

applications are grouped under five headings; virtual environments as 

presentation tool, virtual environments as aid to digital reconstmction of 

buildings, virtual environments as design aid, virtual environments as design 

product, and virtual environments as a tool for simulation and evaluation.
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The use of virtual environments as a presentation tool comprises the majority 

of architectural applications. Virtual reality representations are well suited to 

the visual evaluation of alternative designs, since they allow viewing a design 

from any angle and position. The observer can take imaginary walks through 

the designed building in a much more intuitive way than other digital 

representations. Walk-throughs can become quite sophisticated if the 

interaction and control devices include voice commands, audio, and a haptic 

system allowing not only the ability to see but also to touch walls and 

furniture. Very realistic simulations can be achieved when photographs of the 

building sites are combined with the computer-generated design, in an 

augmented reality type of experience.

Moreover, architectural virtual reality applications allow the user to become 

actively involved in the design process. The user can make changes of colors, 

textures, materials, lighting, furniture, etc. Therefore, virtual environments 

provide effective designer-client communication and they are used as 

marketing tools by many architectural offices.

In United States, residential home builders use virtual reality model homes for 

display at real estate sales centers in the place of model homes. Commercial 

developers use virtual reality for tenant fit-outs in office buildings or retail

3.2.2.1 Virtual Environments as Presentation Tool for Architectural

Design
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spaces. Product manufacturers also use VR applications to display at trade 

shows or retail centers. Interior designers and merchandisers use VR 

applications to help their clients visualize how they will decorate and furnish 

spaces. Similarly, using the virtual reality modeling language (VRML), some 

architectural offices place buildings on the Internet to help clients market their 

projects. These VRML files can be downloaded from the Internet onto home 

computers. Potential buyers or tenants can experience these spaces by using 

navigational controls provided by VRML-supported World Wide Web 

browsers found free on the internet (Neil 53).

Although major VR facilities still cost much, even the smallest firms can 

produce web- and CD-ROM-based VR presentations. On the other hand, firms 

with larger budgets can rent theater-like facilities to present their three- 

dimensional walk-throughs to small audiences. The return on the investment 

comes as clients make comprehensive decisions as a result of thoroughly 

understanding of the building designs. A navigation can reveal many design 

problems that would not be detected from static renderings. By walking 

through an unbuilt design, the spatial feeling of the rooms and the proportions 

of different architectural elements can be experienced. Using these tools at the 

beginning of the project can save many costly changes late in the design 

process (Mays, Making 163).
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3.2.2.2 Virtual Environments as Aid to Digital Reconstruction of 

Buildings

Another valuable application of VR is in the reconstruction of important 

buildings and sites that are difficult to access. These may be historic buildings, 

archeological sites, museums or popular science centers. The experience of 

visiting these virtual buildings is interactive and self-directed (Kirk 63). The 

most outstanding presentation of VR reconstmction is offered by a series of 

conferences called “Virtual Heritage” that took place for the fist time in 1995. 

The United Nations Educational, Scientific and Cultural Organization 

(UNESCO) World Heritage Program supports the use of VR in world heritage 

applications. The recent virtual world heritage projects are widely spread 

across the globe from the virtual Stonehenge to Giza pyramids and jfrom 

Macedonian churches to Chinese palaces (Fisher and Fraser 16-17). The 

Italian company Infobyte develops VR projects focused on the reconstmction 

of monuments and sites. One of their VR project, called “St. Peter’s 

Basilicas,” combines models of the current church with the earlier basilica, 

both demolished in the sixteenth century. The project points out the 

effectiveness of VR in the study of historical layering of sites and monuments 

(Fakespace, 3-4).
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The potential of VR as design aid is increasingly being explored by 

researchers. Virtual environments offer several possibilities to be utilized as 

design media, so that some researchers began to discuss “Virtual Reality 

Aided Design (VRAD)” instead of CAAD (Regenbrecht and Donath, 155).

3.2.2.3 Virtual Environments as Design Aid

However, due to the relative recentness of VR technology and complexity of 

design process, applications of VR as aid to architectural design is still at an 

experimental stage. It should be emphasized that most of the experimental 

projects are proposed to support conceptual design stage. The main reason for 

this is that VR technology is accepted most promising at this stage of design 

development due to the interactive and intuitive interface provided. The other 

reason is a technological one, because of the limitations of VR hardware and 

computing power, the models that can be created within these systems tend to 

be rough and imprecise. The main idea for such systems is to sketch a design 

idea in three dimensions. Therefore, at the current state of development VR- 

based design systems do not claim to replace CAAD packages but search for 

the new possibilities for architects. Moreover, most of these experimental 

systems utilize CAAD features like pull-down menus for the design operations 

and mouse as control device (although these are three-dimensional). It can be 

said that VR-based design systems tend to mimic conventional CAAD just 

like early CAAD packages had mimicked traditional design media. In this 

section some experimental works designed to utilize immersive virtual
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environments as design media are covered. The examples are not aimed to be 

exhaustive, only the most outstanding projects are mentioned.

The Blocksmith project conducted at the Community and Environmental 

Design and Simulation Laboratory (CEDeS Lab) of Washington University 

aims to provide software tools to facilitate immersive conceptual design. The 

system allows designers to create simple objects and modify existing objects 

in virtual environments. Blocksmith project uses similar data topology (point, 

line, plane, volume) and design operations (copy, cut, paste, snap, etc.) to 

CAAD programs. While the software is being used only for research and 

educational purposes, the CEDeS Lab predicts that the project can eventually 

aid in the development of commercial software packages that enable architects 

to design real-time in virtual environments (Campbell and Davidson 207-8).

Conceptual Design Space (CDS) project of Georgia Institute of Technology is 

another fully immersive real-time virtual environment designed to be used at 

the early stages of design. The CDS system combines functionality of any 

walkthrough package with modification and creation functionality. The 

models created in CAAD packages can be modified (translate, rotate, scale, 

change, etc.) and simple building units can also be created (Bowman 1).

Voxdesign is another VR-based design system developed at Bauhaus 

University, Weimar, Germany. Voxdesign aims to provide an immersive 

environment supporting a one-to-one experience for the user. Through the use
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of a physical environment called platform the free interaction space in the real 

world is provided. Voxdesign utilize voxels as units to produce design. The 

user builds architectural space by placing and modifying voxels. Color, texture 

and audio are also used. The research team reports that although there are 

some problems like computation speed, motion sickness, etc. the system is 

promising to be used for architectural design and design education 

(Regenbrecht and Donath 157-68).

3.2.2.4 Virtual Environments as Design Product

In general there may be two broad application categories for virtual 

environments in architectural design. One of them, that is discussed so far in 

this thesis, is the use of virtual environments to produce better built- 

architecture. The other type of application that attracts many designers is to 

design virtual environments as a final product. The unprecedented growth of 

the on-line culture has led to a desire and demand for three-dimensional 

content experienced trough three-dimensional (even virtual by the help of the 

VRML) interfaces. This three-dimensional content needs to be consciously 

designed and constructed (Benedikt in Campbell and Davidson 221).

Architects as three-dimensional designers are being called to answer this 

challenge. Architects, since they are educated in three-dimensional design, 

have an advantage over computer illustrators in creating realistic spatial 

environments and are quickly moving into multimedia markets. In the United
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States several architectural firms offer this type of digital design service 

(Sullivan, Multimedia 121). Since there is no constraints (physical constraints 

like gravity, or legal constraints like building codes) in virtual environments, 

architects feel more freedom while designing such environments. This area of 

design has developed so fast that some architects declared the birth of a new 

design profession; virtual architecture. They claim that in time virtual 

designers will be educated side-by-side with the designers of physical 

buildings learning to design three-dimensional space in studio setting. Their 

technological education (equivalent of “construction”) will be that of 

computer science and programming (Campbell and Davidson 218).

Inevitably, such developments have affected architectural praxis. Some 

architects, mostly the academicians, attempt to use abstract potential of virtual 

environments to produce physical buildings or “hybrid” stnxctures. The most 

well-known of them is Marcos Novak and his team at the University of Texas 

at Austin. Novak named three kinds of future architectiue: liquid spaces, 

transarchitecture, and avatarchitecture. He proposed long theoretical 

justifications for these fantastically named works of architecture. However, for 

all their aspirations of creating a space that breaks the boundaries between the 

real and the virtual, these architectural studies only exist mainly in the 

computer (Betsky 88-94)

71



CHAPTER 4. DYNAMIC SIMULATION IN VIRTUAL 

ENVIRONMENTS AS AN EVALUATION TOOL FOR 

ARCHITECTURAL DESIGN

4.1 Applications in Other Fields

Research in VR has shifted from the technology to the content of virtual 

environments in the second half of the 1990s and parallel to the development 

of VR technology and available computational resources, the use of virtual 

environments for utilitarian purposes have rapidly increased (Sherman 473). 

In this part of the thesis applications of simulation and modeling in virtual 

environments are discussed under three headings: virtual prototyping and 

manufacturing process simulation, training, and visualization.

4.1.1 Applications in Engineering Design: Virtual Prototyping and 

Manufacturing process Simulation

Although the idea of using VR in industry is not a new one, VR technology 

has only recently matured enough to enable engineering design applications. 

Several companies and government agencies are currently investigating the 

application of VR techniques to their design and manufacturing processes. 

Virtual prototypes of product designs are replacing the real ones. Virtual 

prototypes can be defined as dynamic, interactive, often immersive three
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dimensional CAD models utilizing VR technology and developed to analyze 

product designs. Such computer-based models are usually referred as to be 

“intelligent” and they capture product content, generate and simulate 

manufacturing processes, and predict product behavior. When once built, a 

virtual prototype can be used to support diverse activities such as cost 

estimation, marketing, and material-requirements planning throughout the 

product’s life cycle (Halpern 23).

The most widespread and rewarding use of such virtual prototyping tools 

occurs at conceptual design. Automotive industry is forerunner for these 

applications. They use virtual prototypes to eliminate costly physical models 

at the early stages of the stylistic design process by allowing a series of 

designs to be produced and distributed in a fast manner among the design 

professionals (Hodges, Visualization 56).

As the cost of VR systems drops, other applications that once seemed cost- 

prohibitive are becoming a possibility, for example, simulators that allow 

service providers to experience the impact of their work on their customers. 

By studying the results of potential customers’ interaction with a virtual 

prototype designers can understand the advantages and disadvantages of a 

proposed design. For example, automotive industry uses virtual models to 

evaluate interior design of automobiles. For such an evaluation, automobile 

designers sit in a stripped-down car interior consisting of a seat, a steering 

wheel, and pedals. This physical model is calibrated to the fully designed
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virtual model of the car’s interior. When a designer is evaluating a virtual 

prototype, the display tracks the designer’s head motion as she looks around, 

and the visualization is updated in real time. Accessibility is tested through the 

use of a hand -tracking mechanism. Force feedback and haptics can also be 

utilized in such evaluations (Mahoney, Chrysler 61-62). Another advantage of 

virtual prototypes is explaining concepts and ideas to non-technical persons. 

Designers usually have difficulty in this process. Three-dimensionality and 

interactivity of virtual prototypes help designers in explaining design ideas to 

the others (Harding 20)

The other industrial application of simulation and modeling in virtual 

environments is the simulation of plant layout and manufacturing. Plant 

simulation in virtual environments makes it possible to evaluate material flow, 

analyze manufacturing and assembly processes, and optimize the entire 

production process. In a simulated manufacturing environment bottlenecks can 

be eliminated by trying out several “what i f ’ scenarios (Boyd 46).

Increases in computational power and control methods enable the creation of 

three-dimensional virtual humans for real-time interactive applications 

(Earnshaw et al. 20). The issues related to human factor in a product’s design 

can be explored by the help of virtual humans. Such simulations provide 

insight into a product’s usability, and help to determine the optimal placement 

of components based on the information (Mahoney, Prototyping 39). Virtual 

humans can also be added to the virtual manufacturing environments. Humans
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are modeled in terms of their interactions with machines considering such 

things as arm’s reach, posture and caloric use when performing production 

activities. In addition, researchers are currently investigating ways of having 

virtual humans perform complex tasks reliably (Earnshaw et al. 20).

Schulz et al. explain that stereoscopic viewing proved its value in all simulated 

environments for engineering applications. Nevertheless, a fully immersion is 

not needed for most of the applications. VRML files at low-cost workstations 

and PCs can effectively be used for documentation and communication of 

engineering concepts (Schulz et al. 48).

4.1.2 Applications in Training

Simulation in virtual environments is used for training purposes in many 

areas; industry (Greengard, 1998), medicine (Mahoney, Simulating 1997); or 

other work areas involving high risk like fire fighting (Tate et. al., 1997), truck 

driving (Mahoney, Defensive 1997), etc. According to the advocates of 

training in virtual environments, trainees could learn by performing in 

environments nearly identical to actual ones using VR simulations. Virtual 

reality simulations are most valuable in training where “hands-on” practice is 

essential but actual equipment cannot often be used -either because it is too 

expensive, too dangerous, too susceptible to damage, or simply unavailable at 

training sites.
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For training purposes VR systems mostly do not need to be immersive. 

Therefore, PC-based non-immersive VR systems are increasingly used for 

training. Immersive virtual environments are used to simulate medical case 

studies like emergencies (Mahoney, Simulating 95). By the help of such 

systems physicians “walk in the shoes” of their patients and oncologists may 

understand the fatigue felt by chemotherapy patients. Hodges claims that if 

technology enhancements continue, nonimmersive VR training systems will 

become common in training programs in the next few years (Hodges, Training 

58).

4.1.3 Applications in Visualization

Visualization is the use of computer graphics to create visual images that aid 

in the understanding of complex numerical representations of concepts or 

results. Such numerical representations may be the output of numerical 

simulations, as in computational fluid dynamics (CFD) or molecular 

modeling; recorded data as in geological or astronomical applications; or 

constructed shapes, as in visualization of topological arguments.

Visualizing data provides new understanding of data sets because it can help 

to identify patterns that are not otherwise apparent. These simulations often 

contain multi-dimensional data in a three-dimensional volume. VR systems 

are very helpful in the unambiguous display of these data structures by 

providing spatial and depth cues. Moreover, VR interfaces allow rapid and
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intuitive exploration of the volume containing the data. In a virtual 

environment, objects representing data can be directly manipulated. For 

example, a user can physically reach out and grab an object that is creating 

traces through a velocity field and move it to a new location. Otherwise, this 

must be done using complex user-interaction techniques. Visualization in 

virtual environments is already feasible with the current technology, since 

visualization is oriented toward the informative display of abstract quantities 

and concepts, rather than realistically representing objects in the real world 

(Bryson 62-64).

Visualization of simulation results find many applications in engineering 

design. For example, the latest generation of acoustic simulation tools enable 

designers visualize the propagation of noise and vibration throughout a 

proposed design. Such visualizations are very useful for determining how 

changes in one design variable will affect others, and they reduce costs and 

cycle times. Moreover, they can also be effective tools for discovering 

phenomena that physical testing may not reveal; since, they increase the user’s 

level of understanding of simulation results (Deitz 65-66).

4.2 Applications in Architectural Design

Theoretically, anything can be simulated in a virtual environment. Donald 

Greenberg, one of the computer graphics pioneers, predicts that if the progress 

in computer graphics and hardware technology continue as of today, near the
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end of 2025 the display and computational capability to produce images that 

are both physically accurate and perceptually indistinguishable from real 

world scenes will be available. This means that at that time simulation 

technology will reach such a level of capability that there will be no difference 

with real and virtual worlds and verification tools might be needed to avoid 

confusion between them (Greenberg, Outlook 36). Therefore, we suggest that 

dynamic simulations in VEs can be produced for the each component of the 

life cycle of a building fi om the decision about designing the building to its 

demolition.

Although there is no limit for the application areas of dynamic simulations in 

virtual environments for architectural design, at the current state of simulation 

technology two areas seem especially promising for near future: evaluation of 

human factors issues and visualization of environmental factors.

4.2.1 Evaluation of User-building Interaction

Any type of design should be considered as an interface between people and 

physical things (products, buildings, etc.) and each work of design has to 

respect the user needs to be regarded successful. .Tones argues that designs 

should be based on the dynamic and experiential user needs. He calls this user 

responsive way of designing as “process-based design” and contrasts it with 

“product-based design” that is static and object-dependent (Jones in C. 

Mitchell 61). However, the information needed for user responsive design is
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fragmentary, imprecise, and highly subjective. Even if reliable information 

existed, it is not so easy for it to be used for design purposes (Iwaki 124). 

Fortunately, new developments in computer technology leads to a new 

generation of user responsive designs focusing on the dynamic experience of 

users, not on the product itself (C. Mitchell 62). Companies are increasingly 

trying to develop products that are more responsive to the users. For example, 

in .Japan “humanware” products are evolved by interdisciplinary product 

planning teams that concentrate on adapting products to the life style of their 

users (Iwaki 130). It is obvious that architects can benefit from these 

developments to produce buildings that are better adapted to their users. In this 

part of the thesis the opportunities for architects to evaluate user-building 

interaction in VEs are discussed and some already realized examples are also 

mentioned.

As discussed earlier in this thesis, human modeling software has already 

reached a level of maturity to be used in design testing applications. By 

combining the virtual model of her design with virtual humans, an architect 

can understand the possible results of interaction between the proposed 

building and its prospective users. At a very simple level, accessibility, and 

safety considerations can be analyzed according to the different user types 

(female, male, elderly, children, disabled, etc.) Using specially designed 

software architects can be immersed in their designs “becoming” the actual 

user. Simple levels of this operation are already possible with the current 

technology. Although Transom .Tack and Division’s dV/Manikin are first to
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use motion-captured input data, most human-modeling software packages are 

now adding the ability to puppet a virtual human with data captured from real 

people (B. Robertson 36). Transom Jack is the human factors and ergonomics 

visualization software that has gained the most recognition and use in the U.S. 

Jack was produced in 1982 by Norman Badler and his team, when NASA 

contracted the University of Pennsylvania’s Technology Transfer Center to 

develop detailed computer models of humans. NASA’s Flight Crew Support 

Division, The Army Research Office and Army Human Engineering 

Laboratory supplied the university with human factors research. Jack can be 

used for architectural and interior design applications to test the building 

designs against an average user (Knipa 84-85). However, users can be 

extremely diverse for the buildings and it will be a real challenge for architects 

to simulate people with unusual properties. For example, an architect 

designing a house for an elder person with glaucoma (an eye disability for 

elderly) will really benefit from seeing the virtual model of the building 

“through the eyes” of her client.

A similar possibility has been recently realized for the wheelchair users. Ohio 

State University’s Rehabilitation Engineering Center for the Quantification of 

Physical Performance conducted a research for the determination of 

environmental accessibility and wheelchair user proficiency through virtual 

simulation. They developed a virtual-structure prototyping system that allows 

navigation by a person using a power wheelchair. The system consists of an 

instrumented, joystick-driven power wheelchair connected to a high
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performance graphics workstation. The system simulates the actual speed and 

maneuverability of the particular wheelchair within a virtual structure. The 

display generates realistic interiors containing multiple light sources and 

surface textures and is viewed in stereo through lightweight polarized glasses. 

Collisions between the virtual wheelchair and the environment are detected by 

a hierarchical data structure. Although the aim of the system is not only 

architectural applications, the developers mention architects as prospective 

users of the system to improve the handicapped accessibility of building 

designs (Stredney 1-3).

Autonomous virtual humans can be used in analyzing the events like 

evacuation, panic, or wayfinding in buildings. An interesting example to this 

was realized by Colt virtual reality, a company that makes ventilation systems, 

in 1994. The company produced a virtual reality simulation model of 

evacuations for building design. The system is based on a mathematical model 

initially designed for Britain’s defense ministry to simulate how people get in 

and out of places. The model is applied to people mnning from burning 

buildings. The resulting program called virtual-egress analysis and simulation 

(VEGAS) combined object orientation and virtual reality. VEGAS lets 

architects create a virtual world in which the way people react to events 

depends on the individual characteristics allotted to them. This means that in a 

fire egress simulation everyone follows a different set of mles. The 

personalities given to virtual humans are drawn from behavioral studies. The 

mix of personalities can be changed easily. This is very useful because user
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profiles may change in a building. The program can be run repeatedly with 

different groups of people, so that designers can find out how their designs 

work for unexpected cases (for example if there is an unexpectedly large 

number of wheelchairs in a theatre). With VEGAS the architect can get inside 

the virtual environment and see it from the viewpoint of the actors. She can 

check the visibility of exit signs as the smoke spreads and discover what 

happens if an actor behaves in an unusual manner i.e. runs against the flow, 

blocks a door etc. (The Economist 84-85)

4.2.2 Visualization of Environmental Factors

Environmental performance of buildings like thermal behavior, structural 

behavior, acoustics and lighting are important criteria for building design. The 

computers can currently relatively easily simulate most of these aspects of 

design. Nevertheless, experiencing design behavior is yet only possible with 

VR. Conventional simulation tools leave architects with a large amount of data 

in a difficult to understand format. Mahdavi explains that architects are not 

willing to use conventional performance simulation tools because of the non- 

graphical output and uncomfortable interface of such tools. On the other hand, 

as discussed in 4.1.3 virtual environments have the potential of providing 

more information in an easily understandable form. VR interfaces can display 

data in a way much closer to their nature than by means of other symbols such 

as words and numbers. Design behavior such as thermal insulation, acoustic 

isolation, structural stress, etc. are represented as colors, sounds, motion-
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models and so on and these can be directly mapped on the virtual model. 

Interaction in a three-dimensional space, navigation, and instant feedback are 

the other benefits of visualization in VEs.

One promising area of visualization in VEs for architectural design is 

Computational Fluid Dynamics (CFD). As discussed in 2.2.4.1 CFD is used 

for the simulation of air movements and heat transfer in buildings. An 

example for visualization of CFD simulation results in VEs was realized by 

Division for Matsushita Electronic Industries in Japan. In the project a VE is 

created to simulate the interior of a modern .Japanese two-storey house. 

Wearing a HMD and holding a three-dimensional mouse each room can be 

explored, turning on and off the lights, running the water in the bathroom; 

opening and closing the curtains, doors and windows, moving fiu*niture, etc. 

Since Matsushita’s main business is designing air-conditioning and heating 

systems for domestic market, the virtual house provides them an environment 

to evaluate new designs. New designs are imported to the display from CAD 

files without the expense and delay of making a series of full-scale models. 

Their designers can review how their products would look and could be 

operated in a typical setting. The program is set to visualize and evaluate air 

and heat flows. The program also visualizes the light rays projected from the 

lamps (Zampi and Morgan 110-12).

Another application area of visualization in VEs for architectural design is the 

visualization of simulation results of a fire in a building. Bukowski and Sequin
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reports an integrated VR system that creates a simulation-based design 

environment to evaluate the performance of building designs in case of fire. 

The program integrates an architectural walkthrough (Berkeley Architectural 

Walkthrough) with a numerical fire simulator (National Institute of Standards 

CFAST fire simulator). It provides real-time, intuitive, realistic and scientific 

visualization of building conditions in»a fire hazard situation from the 

perspective of a person walking through a burning building. The viewer can 

observe the natural visual effects of flame and smoke and the concentrations 

of toxic compounds in the air, as well as the temperatures of the atmosphere, 

walls and floor. Warning and suppression systems such as smoke detectors 

and sprinkler heads can be observed in action to help determine their 

effectiveness. The researchers claim that building design evaluation is one 

application domain for dynamic simulation and visualization in VEs with a 

particularly high expected pay off and their system is useful for architects who 

want to evaluate their designs for fire safety (Bukowski and Sequin 35-36).

Auralization of sound in VEs (i.e. rendering spatialized sound based on 

acoustic modeling) is another application area of visualization in virtual 

environments for architectural design. A recent spatialized sound VR system 

developed in the Bell Laboratories computes reverberation paths from a sound 

source to a listener and visualizes the results. This can be a great help for the 

architects trying to solve acoustical problems in building designs. Since sound 

may travel from source to listener via a multitude of reflection, transmission 

and diffraction paths accurate simulation of sound propagation is not an easy
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work. Researchers claim that their system realistically and interactively 

simulates the behavior of sound even in the complex VEs and it supports the 

evaluation of the paths of reverberation, reflection and diffraction (Funkhouser 

et al. 21-22).

4.3 Discussion on the Future Use of Dynamic Simulation in Virtual 

Environments as an Evaluation Tool for Architectural Design

.Although the benefits of CAAD tools and techniques are well known in 

architecture, dynamic simulations in virtual environments are not much used 

for architectural applications. This is probably due to the fact that architects 

themselves are not much involved in exploration of the possibilities offered by 

the computer technology. However, as mentioned several times in this thesis, 

increased complexity in architectural design processes and clients’ ever

growing demands toward results force architects to explore and adapt new 

technologies. Criteria like environmental performance of buildings and human 

factors issues should be taken into account, preferably in the early stage of 

design and not during analysis later in the process. Otherwise, there is always 

a danger that designs will be more and more based on intuition and aesthetic 

considerations rather than a realistic understanding of future performance of 

proposed buildings.

We suggest that in order to meet these demands a virtual model of proposed 

building, that dynamically simulates all the phases of a building life span from
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the brief to the demolition, should be produced in an early stage of design 

development. Such a virtual model can be used for several types of 

applications from design to marketing and facilities management. We believe 

that future use of CAAD will be more and more based on simulation of 

buildings rather than other aspects of CAAD. The main advantage of using 

computers in architectural design is producing realistic models of a proposed 

building and its context. The building model should not only look as if it was 

real, but also it should “behave” as if it was real. A single three-dimensional 

digital model that includes the behavior of the design elements and simulates a 

building with its whole life cycle has long been a dream for CAAD 

researchers. However, the current design media for architectural design, paper- 

based drawings, physical scale models and conventional CAAD software are 

very limited compared to the functionality of virtual prototypes used in 

engineering design (See 4.1.1). The 3D-based object oriented CAAD software 

mentioned in 2.2.1 is an important step toward realization of this idea for 

architecture. The next step should be virtually constmcting and making use of 

a building prior to actual construction. With the rapid developments in 

computer technology this idea once may seemed unrealistic can be realized 

now. Developments in VR technology and successful applications in 

engineering design have proved the effectiveness of dynamic simulations in 

virtual environments. In the following parts of the thesis, first our approach is 

compared with conventional CAAD, and then development proposals are 

discussed.
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4.3.1 Comparison of Dynamically Simulated Virtual Models with 

Conventional CAAD

The possible advantages of a three-dimensional, interactive, dynamically 

simulated virtual model for architectural design compared to conventional 

CAAD are listed below:

1. Simulation of building performance for the whole life span of a proposed 

building saves the client and architect time and money and enhances the 

quality of design. Buildings are expensive entities to build and maintain. The 

Building Cost Information System (BCIS) of U.K reports that house 

rebuilding cost index has risen continuously between 1996-1999 (BCIS 1). 

Besides construction, operating and maintenance costs of buildings also tend 

to increase. The Building Owners and Managers Association (BOMA) reports 

that costs of operating buildings and rents per square meter were increased for 

the office buildings in U.S. in 1998 (BOMA 1-2).

We discuss that the deficiencies in a building design may cost much through 

the whole building life. Even a small increase in the operating and 

maintenance costs of buildings per square meter will be totaled much through 

the years. We claim that many of these deficiencies can be eliminated by 

dynamic time simulations in virtual environments.

87



In architectural design, most of the important decisions (orientation, 

circulation, functional layout, etc.) are made at the early stages of design. 

Nevertheless, in the related literature it is well documented that most of the 

CAAD software do not support these stages of design development. CAAD 

software is traditionally used for producing construction documents after the 

preliminary design is complete. The digital model produced at this stage is 

rarely used after the construction of the building. On the other hand, as 

discussed in 4.1.1 VEs technology has proved itself in the early phases of 

engineering design.

One may claim that such applications for architecture will cost much, but the 

rapid decreases in the costs of computer products suggest that they can be 

feasible even for the smallest offices. Screen-based VR can be used for most 

of the applications instead of the immersive type and PCs that are widely used 

in architectural offices may suffice for most of the applications.

2. In conventional CAAD modeling, analysis and visualization processes 

follow a linear sequence. Analyses are applied after the modeling is complete 

and visualization occurs at the latest stages of design only for presentation 

purposes. However, a virtual model is more flexible compared to physical 

models and other CAAD models. Simulation, evaluation, and modification can 

take place within seconds through a highly interactive user interface with real 

time feedback functionality. Therefore, modeling, analysis and visualization
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can occur concurrently. The benefits of this property are clear; the shortening 

of the design cycle and quality improvements due to gained information (See 

Figure 1).

Figure 1. Comparison of Dynamically Simulated Virtual Models with 
Conventional CAAD
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3. Unlike conventional simulation tools based on texts and two-dimensional 

charts and tables that are difficult to understand by non-technical persons, 

virtual environments allow three-dimensional and dynamic visualization of 

simulation results. This property helps understanding and communicating 

design ideas by related parties even they are non-technical. The developments 

in the web-based VEs are promising for the transportation of virtual models.

89



Through Intranets or the Internet virtual models can be transported to the 

clients, colleagues, and other technical professionals related to building design.

4.3.2 Conclusions and Suggestions for Further Research

Analyzing the current media of architectural design, we conclude that VR 

systems and resulting VEs are yet the best media for dynamic simulation of 

building designs. Although their uses are very promising, production and 

utilization of dynamic simulations in VEs for architectural design require 

further study on different fronts.

First of all, we suggest that architects should redesign their design processes 

according to the new possibilities. They should redefine their expectations from 

CAAD and its way of use in their professional activities. This can be viewed as 

an extra work for architects, but in the age of virtual reality most of the 

professions had to redefine their work processes and architectural design could 

not be an exception. We discuss that competitive market conditions, increasing 

life cycle costs of buildings, and clients’ demands toward high quality results 

have been already forcing architects toward such a change.

The other important considerations for the efficient use of dynamic simulations 

in VEs for architectural design are discussed below.
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Compatibility and Standards

Compatibility and standardization have always been problems for the users of 

CAAD software. Architects usually have to use two or more software packages 

to produce a high-level output such as a complete animation. Designs are 

produced with a two-dimensional drafting software, and then an animation or 

rendering software is used to complete the task. Lack of compatibility between 

different computer aided design software renders the use of them together 

impossible. Moreover, integration of evaluation tools with design tools has 

often been very difficult because of the difference of the internal information 

representations. VEs will not be an exception to these problems. Since a great 

deal of data is needed to perform simulations, VEs should allow gathering data 

from different nodes. In order to read data from different systems, the VR 

system and the other digital tools of the architect have to be compatible.

Market conditions have been already forcing the vendors of CAAD software to 

produce compatible products, but we suggest that these efforts should also 

embrace VR systems.

Since VR technology is relatively new, it can be easier to solve these problems 

at this stage of development. Development of standards for the VEs on the web 

is an important step toward compatibility and standardization of VEs. Virtual 

Reality Modeling Language (VRML) is the result of such efforts (See 3.1.4 for 

more information on VRML). The current version of the language, VRML 97, 

became an International Organization for Standardization (ISO) standard in 

1997 and now forms the basis for many new works (Nadeau 18).
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Interface Design

Computer is a tool that can provide several kinds of services, but to benefit 

from these services users must communicate with the computer system. 

Therefore, interface design is an important factor for obtaining maximum 

benefit from the CAAD software. We discuss that most of the conventional 

CAAD interfaces are difficult to use and waste time and energy. For example, 

we may compare the mental effort needed to draw a line with a pen on a paper 

and the mental effort needed to draw a similar line with a conventional CAAD 

system. The CAAD system requires much attention to activate the “line” 

command and to specify several parameters. Attention shifts from the design 

task to interaction task that consumes time and energy. We suggest that a 

design system should be quick and intuitive, capturing the flow of the concepts 

as quickly and naturally as possible. Advantages of VR interfaces are 

mentioned several times in this thesis. In general, it can be said that a virtual 

model is more adaptive to design processes of architects than any digital 

model. We believe that VR interfaces can eliminate most of the problems in 

conventional CAAD interfaces. Nevertheless, to obtain maximum benefits 

from dynamic simulations in VEs for architectural design, specific needs of 

this task should also be addressed. For example, what should be the properties 

of an ideal interface to obtain simulation data from different nodes and to 

integrate them into the geometric model? Or, how the visualization of 

simulation results should interface to architects? Since simulation data and 

resulting visualizations should be shared by the different participants of
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building process, how a common ground can be provided for different 

applications? Answers to these and similar questions lie in the interface design 

research. It is not possible to mention all the related issues in the scope of this 

thesis, but we believe that these considerations deserve more attention for 

further work.

The Need for the Collection and Distribution of Information

Any type of computer simulation necessitates information to be gathered.

When this information is complex and/or divergent, as in our case, this process 

can be time-consuming and expensive. Moreover, this data needs to be 

continuously updated. Interdisciplinaj'y work is needed for most of the 

instances and we cannot expect that single architectural offices, no matter how 

large they are, will be willful or capable of conducting these processes. We 

suggest that the information required for the production of dynamic simulations 

should be drawn from Environmental Design Research (EDR). EDR has been 

producing a huge amount of data already that is waiting to be used.

Researchers of environmental design often complain that their works do not 

have impact on the architectural community. We discuss that this not only due 

to the ignorance of the architects, but it is also due to the inconvenient format 

of the outputs of EDR for architects. In fact, some architects still do not know 

what EDR means and they do not have time to learn much in the rapid market 

conditions. Simulation in virtual environments can effectively utilize research 

data and present the results in a way familiar to the architects. Architects, as
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designers working in three-dimensions, will really benefit from the three- 

dimensional and interactive visualization in VEs.

We also suggest that government agencies, research institutions and 

professional organizations such as Chamber of Architects in Turkey (a member 

of The Union of International Architects) should support and fund research and 

development on this topic. Potential applications of dynamic simulations in 

VEs are so rapidly evolving that perhaps in near future buildings will be 

checked against regulations in dynamically simulated VEs.

Simulation in VEs will also help to increase the methodological knowledge in 

architectural design. As discussed earlier in this thesis, simulation enlarges the 

insight in the overall system and effects of a certain alteration on one or more 

variables can be observed easily. Therefore, verification of some design 

theories can be possible in VEs.

Simulation models and programs can be distributed over the Internet easily. In 

this way, even the architects having the simplest computer configurations can 

conduct simulations by connecting to the high performance computers 

preserving simulation model in a distant place. The simulation data can be 

marketed over the network, for example, in the form of virtual human profiles 

derived from behavioral research. In order to preserve the copyrights, several 

measures can be taken such as presentation of low resolution data at the trial 

stages.
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Vfilidation of Simulation Models and Representations for Visualization 

Validation of simulation model is a common step for every type of computer 

simulation as discussed in 1.3.2. This process is required to ensure that the 

mathematical model successfully represents the reality. Discussing dynamic 

simulations in VEs for architectural design, a more philosophical question lies 

in the “True Model” concept (§enyapili and Ozgii9, Proposal 178; §enyapili, 

True Model 137-38). Visual experience and perception comes into the scene 

for this case and certain difficulties in modeling time, colors and textures in 

relation to the scale factor of physical dimensions should be adressed. Since, it 

is yet impossible to simulate the real visual experience, it is offered to “catch a 

likeness” that reveals a key aspect of a prospective design, rather than trying to 

simulate the whole visual experience (Mark in $enyapili. True Model 138).

As discussed in 4.2.2, we believe that more effective visualization of building 

performance will lead to new insights and more efficient decision-making for 

architectural designs and the decreasing costs and increasing speed of hardware 

and softwiare and the developments in the Internet have already rendered 

visualization a potentially useful and feasible design tool for architects. 

However, for the effective use of visualization in architectural design some 

points should be considered.

First of all, we introduce that visualization techniques and representations 

should be well adapted to the needs of architects. Visualization research
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originated from the scientific community’s efforts to cope with the huge 

amount of scientific data. Therefore, specific representations have already 

produced in scientific visualization for the technically skilled audience. Since 

architects are not scientists, ease of use is a key factor for the efficient 

architectural visualizations. Visualization designed for architects should enable 

them· to get the information they need on their specific problems, make sense of 

it, and reach decisions easily in a relatively short time. Interfaces should allow 

easy manipulation of data and representations should not lead to 

misinterpretations. Avoidance of misinterpretations is extremely important, 

since architects tend to regard the results that are obtained from computers as 

totally correct. If they misunderstand the information, this may cause 

remarkable faults in their designs.

The lack of standards and ways to integrate visualization across multiple 

applications (Gershon and Eick 30) renders these tasks difficult. Fortunately, 

the developments in the Internet is promising for visualization applications.

The visualization data can be sent over the network, and visualization can be 

performed on the architect’s side. This not only saves the time required to 

import the visualization product over the network, but it also lets the architect 

manipulate the displayed visualization to suit her specific problems or needs. 

Last but not least, we suggest that since the media of visualization are 

relatively new, potential benefits of using them need to be well understood. 

Architects should not use this medium as a replica of paper, but should explore 

the new possibilities offered.
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