64 research outputs found

    Game-theoretic Scalable Offloading for Video Streaming Services over LTE and WiFi Networks

    Get PDF
    This paper presents a game-theoretic scalable offloading system that provides seamless video streaming services by effectively offloading parts of video traffic in all video streaming services to a WiFi network to alleviate cellular network congestion. The system also consolidates multiple physical paths in a cost-effective manner. In the proposed system, the fountain encoding symbols of compressed video data are transmitted through long term evolution (LTE) and WiFi networks concurrently to flexibly control the amount of video traffic through the WiFi network as well as mitigate video quality degradation caused by wireless channel errors. Furthermore, the progressive second price auction mechanism is employed to allocate the limited LTE resources to multiple user equipment in order to maximize social welfare while converging to the epsilon-Nash equilibrium. Specifically, we design an application-centric resource valuation that explicitly considers both the realistic wireless network conditions and characteristics of video streaming services. In addition, the scalability and convergence properties of the proposed system are verified both theoretically and experimentally. The proposed system is implemented using network simulator 3. Simulation results are provided to demonstrate the performance improvement of the proposed system.111Nsciescopu

    Advancement in infotainment system in automotive sector with vehicular cloud network and current state of art

    Get PDF
    The automotive industry has been incorporating various technological advancement on top-end versions of the vehicle order to improvise the degree of comfortability as well as enhancing the safer driving system. Infotainment system is one such pivotal system which not only makes the vehicle smart but also offers abundance of information as well as entertainment to the driver and passenger. The capability to offer extensive relay of service through infotainment system is highly dependent on vehicular adhoc network as well as back end support of cloud environment. However, it is know that such legacy system of vehicular adhoc network is also characterized by various problems associated with channel capacity, latency, heterogeneous network processing, and many more. Therefore, this paper offers a comprehensive insight to the research work being carried out towards leveraging the infotainment system in order to obtain the true picture of strength, limitation, and open end problems associated with infotainment system

    Network coding for transport protocols

    Get PDF
    With the proliferation of smart devices that require Internet connectivity anytime, anywhere, and the recent technological advances that make it possible, current networked systems will have to provide a various range of services, such as content distribution, in a wide range of settings, including wireless environments. Wireless links may experience temporary losses, however, TCP, the de facto protocol for robust unicast communications, reacts by reducing the congestion window drastically and injecting less traffic in the network. Consequently the wireless links are underutilized and the overall performance of the TCP protocol in wireless environments is poor. As content delivery (i.e. multicasting) services, such as BBC iPlayer, become popular, the network needs to support the reliable transport of the data at high rates, and with specific delay constraints. A typical approach to deliver content in a scalable way is to rely on peer-to-peer technology (used by BitTorrent, Spotify and PPLive), where users share their resources, including bandwidth, storage space, and processing power. Still, these systems suffer from the lack of incentives for resource sharing and cooperation, and this problem is exacerbated in the presence of heterogenous users, where a tit-for-tat scheme is difficult to implement. Due to the issues highlighted above, current network architectures need to be changed in order to accommodate the users¿ demands for reliable and quality communications. In other words, the emergent need for advanced modes of information transport requires revisiting and improving network components at various levels of the network stack. The innovative paradigm of network coding has been shown as a promising technique to change the design of networked systems, by providing a shift from how data flows traditionally move through the network. This shift implies that data flows are no longer kept separate, according to the ¿store-and-forward¿ model, but they are also processed and mixed in the network. By appropriately combining data by means of network coding, it is expected to obtain significant benefits in several areas of network design and architecture. In this thesis, we set out to show the benefits of including network coding into three communication paradigms, namely point-topoint communications (e.g. unicast), point-to-multipoint communications (e.g. multicast), and multipoint-to-multipoint communications (e.g. peer-to-peer networks). For the first direction, we propose a network coding-based multipath scheme and show that TCP unicast sessions are feasible in highly volatile wireless environments. For point-to-multipoint communications, we give an algorithm to optimally achieve all the rate pairs from the rate region in the case of degraded multicast over the combination network. We also propose a system for live streaming that ensures reliability and quality of service to heterogenous users, even if data transmissions occur over lossy wireless links. Finally, for multipoint-to-multipoint communications, we design a system to provide incentives for live streaming in a peer-to-peer setting, where users have subscribed to different levels of quality. Our work shows that network coding enables a reliable transport of data, even in highly volatile environments, or in delay sensitive scenarios such as live streaming, and facilitates the implementation of an efficient incentive system, even in the presence of heterogenous users. Thus, network coding can solve the challenges faced by next generation networks in order to support advanced information transport.Postprint (published version

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    On Tunable Sparse Network Coding in Commercial Devices for Networks and Filesystems

    Get PDF

    A proxy for reliable 5G (and beyond) mmWave communications. Contributions to multi-path scheduling for a reliability focused mmWave proxy

    Get PDF
    Reliable, consistent and very high data rate mobile communication will become especially important for future services such as, among other things, future emergency communication needs. MmWave technology provides the needed capacity, however, lacks the reliability due to the abrupt capacity changes any one path experiences. Intelligently making use of varying numbers of available mmWave paths, efficiently scheduling data across the paths, perhaps even through multi-operator agreements; and balancing mobile power consumption with path costs and the need for reliable consistent quality will be critical to attaining this aim. In this thesis, the multipath scheduling problem in a mmWave proxy when the paths have dynamically changing path characteristics is considered. To address this problem, a hybrid scheduler is proposed, the performance of which is compared with the Round Robin scheduler, Random scheduler and the Highest Capacity First scheduler. Forward error correction is explored as a means of enhancing the scheduling. Keywords:Multipath Scheduling, mmWave Proxy, Forward Error Correction, beyond 5G
    corecore