375 research outputs found

    Initial Solution Heuristic for Portfolio Optimization of Electricity Markets Participation

    Get PDF
    Meta-heuristic search methods are used to find near optimal global solutions for difficult optimization problems. These meta-heuristic processes usually require some kind of knowledge to overcome the local optimum locations. One way to achieve diversification is to start the search procedure from a solution already obtained through another method. Since this solution is already validated the algorithm will converge easily to a greater global solution. In this work, several well-known meta-heuristics are used to solve the problem of electricity markets participation portfolio optimization. Their search performance is compared to the performance of a proposed hybrid method (ad-hoc heuristic to generate the initial solution, which is combined with the search method). The addressed problem is the portfolio optimization for energy markets participation, where there are different markets where it is possible to negotiate. In this way the result will be the optimal allocation of electricity in the different markets in order to obtain the maximum return quantified through the objective function.This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013.info:eu-repo/semantics/publishedVersio

    Computational intelligence based complex adaptive system-of-systems architecture evolution strategy

    Get PDF
    The dynamic planning for a system-of-systems (SoS) is a challenging endeavor. Large scale organizations and operations constantly face challenges to incorporate new systems and upgrade existing systems over a period of time under threats, constrained budget and uncertainty. It is therefore necessary for the program managers to be able to look at the future scenarios and critically assess the impact of technology and stakeholder changes. Managers and engineers are always looking for options that signify affordable acquisition selections and lessen the cycle time for early acquisition and new technology addition. This research helps in analyzing sequential decisions in an evolving SoS architecture based on the wave model through three key features namely; meta-architecture generation, architecture assessment and architecture implementation. Meta-architectures are generated using evolutionary algorithms and assessed using type II fuzzy nets. The approach can accommodate diverse stakeholder views and convert them to key performance parameters (KPP) and use them for architecture assessment. On the other hand, it is not possible to implement such architecture without persuading the systems to participate into the meta-architecture. To address this issue a negotiation model is proposed which helps the SoS manger to adapt his strategy based on system owners behavior. This work helps in capturing the varied differences in the resources required by systems to prepare for participation. The viewpoints of multiple stakeholders are aggregated to assess the overall mission effectiveness of the overarching objective. An SAR SoS example problem illustrates application of the method. Also a dynamic programing approach can be used for generating meta-architectures based on the wave model. --Abstract, page iii

    Hybrid particle swarm optimization of electricity market participation portfolio

    Get PDF
    This paper proposes a novel hybrid particle swarm optimization methodology to solve the problem of optimal participation in multiple electricity markets. The decision time is usually very important when planning the participation in electricity markets. This environment is characterized by the time available to take action, since different electricity markets have specific rules, which requires participants to be able to adapt and plan their decisions in a short time. Using metaheuristic optimization, participants' time problems can be resolved, because these methods enable problems to be solved in a short time and with good results. This paper proposes a hybrid resolution method, which is based on the particle swarm optimization metaheuristic. An exact mathematical method, which solves a simplified, linearized, version of the problem, is used to generate the initial solution for the metaheuristic approach, with the objective of improving the quality of results without representing a significant increase of the execution time.This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 703689 (project ADAPT) and No 641794 (project DREAM-GO); NetEfficity Project (P2020 − 18015); and UID/EEA/00760/2013 funded by FEDER Funds through COMPETE pro-gram and by National Funds through FCT.info:eu-repo/semantics/publishedVersio

    Optimizing Opponents Selection in Bilateral Contracts Negotiation with Particle Swarm

    Get PDF
    This paper proposes a model based on particle swarm optimization to aid electricity markets players in the selection of the best player(s) to trade with, to maximize their bilateral contracts outcome. This approach is integrated in a Decision Support System (DSS) for the pre-negotiation of bilateral contracts, which provides a missing feature in the state-of-art, the possible opponents analysis. The DSS determines the best action of all the actions that the supported player can take, by applying a game theory approach. However, the analysis of all actions can easily become very time-consuming in large negotiation scenarios. The proposed approach aims to provide the DSS with an alternative method with the capability of reducing the execution time while keeping the results quality as much as possible. Both approaches are tested in a realistic case study where the supported player could take almost half a million different actions. The results show that the proposed methodology is able to provide optimal and near-optimal solutions with an huge execution time reduction.This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and grant agreement No 703689 (project ADAPT); from the CONTEST project - SAICT-POL/23575/2016; and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013.info:eu-repo/semantics/publishedVersio

    Cooperative agent-based SANET architecture for personalised healthcare monitoring

    Full text link
    The application of an software agent-based computational technique that implements Extended Kohonen Maps (EKMs) for the management of Sensor-Actuator networks (SANETs) in health-care facilities. The agent-based model incorporates the BDI (Belief-Desire-Intention) Agent paradigms by Georgeff et al. EKMs perform the quantitative analysis of an algorithmic artificial neural network process by using an indirect-mapping EKM to self-organize. Current results show a combinatorial approach to optimization with EKMs provides an improvement in event trajectory estimation compared to standalone cooperative EKM processes to allow responsive event detection for patient monitoring scenarios. This will allow healthcare professionals to focus less on administrative tasks, and more on improving patient needs, particularly with people who are in need for dedicated care and round-the-clock monitoring. ©2010 IEEE

    Particle swarm and simulated annealing for multi-local optimization

    Get PDF
    Particle swarm and simulated annealing optimization algorithms proved to be valid in finding a global optimum in the bound constrained optimization context. However, their original versions can only detect one global optimum even if the problem has more than one solution. In this paper we propose modifications to both algorithms. In the particle swarm optimization algorithm we introduce gradient information to enable the computation of all the global and local optima. The simulated annealing algorithm is combined with a stretching technique to be able to compute all global optima. The numerical experiments carried out with a set of well-known test problems illustrate the effectiveness of the proposed algorithms.Work partially supported by FCT grant POCTI/MAT/58957/ 2004 and by the Algoritmi research center

    A human centred hybrid MAS and meta-heuristics based system for simultaneously supporting scheduling and plant layout adjustment

    Get PDF
    Manufacturing activities and production control are constantly growing. Despite this, it is necessary to improve the increasing variety of scheduling and layout adjustments for dynamic and flexible responses in volatile environments with disruptions or failures. Faced with the lack of realistic and practical manufacturing scenarios, this approach allows simulating and solving the problem of job shop scheduling on a production system by taking advantage of genetic algorithm and particle swarm optimization algorithm combined with the flexibility and robustness of a multi-agent system and dynamic rescheduling alternatives. Therefore, this hybrid decision support system intends to obtain optimized solutions and enable humans to interact with the system to properly adjust priorities or refine setups or solutions, in an interactive and user-friendly way. The system allows to evaluate the optimization performance of each one of the algorithms proposed, as well as to obtain decentralization in responsiveness and dynamic decisions for rescheduling due to the occurance of unexpected events.This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019

    Adaptação automática de algoritmos de otimização metaheurística

    Get PDF
    A maioria dos problemas do mundo real tem uma multiplicidade de possíveis soluções. Além disso, usualmente, são encontradas limitações de recursos e tempo na resolução de problemas reais complexos e, por isso, frequentemente, não é possível aplicar um método determinístico na resolução desses problemas. Por este motivo, as meta-heurísticas têm ganho uma relevância significativa sobre os métodos determinísticos na resolução de problemas de otimização com múltiplas combinações. Ainda que as abordagens meta-heurísticas sejam agnósticas ao problema, os resultados da otimização são fortemente influenciados pelos parâmetros que estas meta-heurísticos necessitam para a sua configuração. Por sua vez, as melhores parametrizações são fortemente influenciadas pela meta-heurística e pela função objetivo. Por este motivo, a cada novo desenvolvimento é necessária uma otimização dos parâmetros das metas heurísticas praticamente partindo do zero. Assim, e, atendendo ao aumento da complexidade das meta-heurísticas e dos problemas aos quais estassão normalmente aplicadas, tem-se vindo a observar um crescente interesse no problema da configuração ótima destes algoritmos. Neste projeto é apresentada uma nova abordagem de otimização automática dos parâmetros de algoritmos meta-heurísticos. Esta abordagem não consiste numa pré-seleção estática de um único conjunto de parâmetros que será utilizado ao longo da pesquisa, como é a abordagem comum, mas sim na criação de um processo dinâmico, em que a parametrização é alterada ao longo da otimização. Esta solução consiste na divisão do processo de otimização em três etapas, forçando, numa primeira etapa um nível alto de exploração do espaço de procura, seguida de uma exploração intermédia e, na última etapa, privilegiando a pesquisa local focada nos pontos de maior potencial. De forma a permitir uma solução eficiente e eficaz, foram desenvolvidos dois módulos um Módulo de Treino e um Módulo de Otimização. No Módulo de Treino, o processo de fine-tuning é automatizado e, consequentemente, o processo de integração de uma nova meta-heurística ou uma nova função objetivo é facilitado. No Módulo de Otimização é usado um sistema multiagente para a otimização de uma dada função seguindo a abordagem de pesquisa proposta. Com base nos resultados obtidos através da aplicação de otimização por enxame de partículas e algoritmos genéticos a várias funções benchmark e a um problema real na área dos sistemas de energia, o Módulo de Treino permitiu automatizar o processo de fine-tuning e, consequentemente, facilitar o processo de introdução no sistema de uma nova meta-heurística ou de uma nova função relativa a um novo problema a resolver. Utilizando a abordagem de otimização proposta através do Módulo de Otimização, obtém-se uma maior generalização e os resultados são melhorados sem comprometer o tempo máximo para a otimização.Most real-word problems have a large solution space. Due to resource and time constraints, it is often not possible to apply a deterministic method to solve such problems. For this reason, metaheuristic optimization algorithm has earned increased popularity over the deterministic methods in solving complex combination optimization problems. However, despite being problem-agnostic techniques, metaheuristic’s optimization results are highly impacted by the defined parameters. The best parameterizations are highly impacted by the metaheuristic version and by the addressed objective function. For this reason, with each new development it is necessary to optimize the metaheuristic parameters practically from scratch. Thus, and given the increasing complexity of metaheuristics and the problems to which they are normally applied, there has been a growing interest in the problem of optimal configuration of these algorithms. In this work, a new approach for automatic optimization of metaheuristic algorithms parameters is presented. This approach does not consist in a static pre-selection of a single set of parameters that will be used throughout the search process, as is the common approach, but in the creation of a dynamic process, in which the parameterization is changed during the optimization. This solution consists of dividing the optimization process into three stages, forcing, in a first stage, a high level of exploration of the search space, followed by an intermediate exploration and, in the last stage, fostering local search focused on the points of greatest potential. In order to allow an efficient and effective solution, two modules are developed, a Training Module and an Optimization Module. In the Training Module, the finetuning process is automated and, consequently, the process of integrating a new metaheuristic or a new objective function is facilitated. In the Optimization Module, a multi-agent system is used to optimize a given function following the proposed research approach. Based on the results obtained using particle swarm optimization and genetic algorithms to solve several benchmark functions and a real problem in the area of power and energy systems, the Training Module made it possible to automate the fine-tuning process and, consequently, facilitate the process of introducing in the system a new metaheuristic or a new function related to a new problem to be solved. Using the proposed optimization approach through the Optimization Module, a greater generalization is obtained, and the results are improved without compromising the maximum time for the optimization
    corecore