
Adaptação automática de algoritmos de
otimização metaheurística

JOÃO MARCELO FERNANDES DE CARVALHO
julho de 2022

Automatic adaptation of metaheuristic

optimization algorithms

João Marcelo Fernandes de Carvalho

Student nº: 1150892

Dissertation for obtaining the Degree of

Master in Artificial Intelligence Engineering

Advisor: Dr. Tiago Manuel Campelos Ferreira Pinto, Invited Assistant Professor from
Instituto Superior de Engenharia do Instituto Politécnico do Porto and Assistant
Professor from Universidade de Trás-os-Montes e Alto Douro

Co-advisor: Dr. Rubén Augusto Romero, Full Professor from Universidade Estadual
Paulista “Júlio Mesquita Filho”

Evaluation Committee:

President:

Dr. Luiz Felipe Rocha de Faria, Associate Professor, Instituto Superior de Engenharia do Instituto
Politécnico do Porto

Members:

Dr. Ana Maria Marques Moura Gomes Viana, Associate Professor, Instituto Superior de
Engenharia do Instituto Politécnico do Porto

Dr. Tiago Manuel Campelos Ferreira Pinto, Invited Assistant Professor, Instituto Superior de
Engenharia do Instituto Politécnico do Porto, and Assistant Professor, Universidade de Trás-os-
Montes e Alto Douro

Porto, June 2022

Dedico este trabalho ao meu pai que não

teve oportunidade de me ver concluí-lo.

v

Resumo

A maioria dos problemas do mundo real tem uma multiplicidade de possíveis soluções. Além

disso, usualmente, são encontradas limitações de recursos e tempo na resolução de problemas

reais complexos e, por isso, frequentemente, não é possível aplicar um método determinístico

na resolução desses problemas. Por este motivo, as meta-heurísticas têm ganho uma relevância

significativa sobre os métodos determinísticos na resolução de problemas de otimização com

múltiplas combinações. Ainda que as abordagens meta-heurísticas sejam agnósticas ao

problema, os resultados da otimização são fortemente influenciados pelos parâmetros que

estas meta-heurísticos necessitam para a sua configuração. Por sua vez, as melhores

parametrizações são fortemente influenciadas pela meta-heurística e pela função objetivo. Por

este motivo, a cada novo desenvolvimento é necessária uma otimização dos parâmetros das

metas heurísticas praticamente partindo do zero. Assim, e, atendendo ao aumento da

complexidade das meta-heurísticas e dos problemas aos quais estas são normalmente aplicadas,

tem-se vindo a observar um crescente interesse no problema da configuração ótima destes

algoritmos.

Neste projeto é apresentada uma nova abordagem de otimização automática dos parâmetros

de algoritmos meta-heurísticos. Esta abordagem não consiste numa pré-seleção estática de um

único conjunto de parâmetros que será utilizado ao longo da pesquisa, como é a abordagem

comum, mas sim na criação de um processo dinâmico, em que a parametrização é alterada ao

longo da otimização. Esta solução consiste na divisão do processo de otimização em três etapas,

forçando, numa primeira etapa um nível alto de exploração do espaço de procura, seguida de

uma exploração intermédia e, na última etapa, privilegiando a pesquisa local focada nos pontos

de maior potencial. De forma a permitir uma solução eficiente e eficaz, foram desenvolvidos

dois módulos um Módulo de Treino e um Módulo de Otimização. No Módulo de Treino, o

processo de fine-tuning é automatizado e, consequentemente, o processo de integração de

uma nova meta-heurística ou uma nova função objetivo é facilitado. No Módulo de Otimização

é usado um sistema multiagente para a otimização de uma dada função seguindo a abordagem

de pesquisa proposta.

Com base nos resultados obtidos através da aplicação de otimização por enxame de partículas

e algoritmos genéticos a várias funções benchmark e a um problema real na área dos sistemas

de energia, o Módulo de Treino permitiu automatizar o processo de fine-tuning e,

consequentemente, facilitar o processo de introdução no sistema de uma nova meta-heurística

ou de uma nova função relativa a um novo problema a resolver. Utilizando a abordagem de

otimização proposta através do Módulo de Otimização, obtém-se uma maior generalização e

os resultados são melhorados sem comprometer o tempo máximo para a otimização.

Palavras-chave: algoritmos genéticos, configuração automática de algoritmos, otimização

meta-heurística, otimização por enxame de partículas, parametrização dinâmica, sistemas

multiagente

vii

Abstract

Most real-word problems have a large solution space. Due to resource and time constraints, it

is often not possible to apply a deterministic method to solve such problems. For this reason,

metaheuristic optimization algorithm has earned increased popularity over the deterministic

methods in solving complex combination optimization problems.

However, despite being problem-agnostic techniques, metaheuristic’s optimization results are

highly impacted by the defined parameters. The best parameterizations are highly impacted by

the metaheuristic version and by the addressed objective function. For this reason, with each

new development it is necessary to optimize the metaheuristic parameters practically from

scratch. Thus, and given the increasing complexity of metaheuristics and the problems to which

they are normally applied, there has been a growing interest in the problem of optimal

configuration of these algorithms.

In this work, a new approach for automatic optimization of metaheuristic algorithms

parameters is presented. This approach does not consist in a static pre-selection of a single set

of parameters that will be used throughout the search process, as is the common approach, but

in the creation of a dynamic process, in which the parameterization is changed during the

optimization. This solution consists of dividing the optimization process into three stages,

forcing, in a first stage, a high level of exploration of the search space, followed by an

intermediate exploration and, in the last stage, fostering local search focused on the points of

greatest potential. In order to allow an efficient and effective solution, two modules are

developed, a Training Module and an Optimization Module. In the Training Module, the fine-

tuning process is automated and, consequently, the process of integrating a new metaheuristic

or a new objective function is facilitated. In the Optimization Module, a multi-agent system is

used to optimize a given function following the proposed research approach.

Based on the results obtained using particle swarm optimization and genetic algorithms to solve

several benchmark functions and a real problem in the area of power and energy systems, the

Training Module made it possible to automate the fine-tuning process and, consequently,

facilitate the process of introducing in the system a new metaheuristic or a new function related

to a new problem to be solved. Using the proposed optimization approach through the

Optimization Module, a greater generalization is obtained, and the results are improved

without compromising the maximum time for the optimization.

Keywords: automatic algorithm configuration, dynamic parameterization, genetic algorithms,

metaheuristic optimization, multi-agent systems, particle swarm optimization

ix

Acknowledgements

I would like to start by thanking the professors at Instituto Superior de Engenharia do Instituto

Politécnico do Porto (ISEP) who passed me the necessary knowledge, throughout the master’s

degree, which allowed me to develop this work. I would also like to give a special thanks to my

advisor Dr. Tiago Pinto for his availability and contribution throughout these two years of

master’s degree. And another to Dr. Carlos Ramos for the concept and the structuring of the

master’s program. Additionally, I also thank Dr. Rubén Romero who accepted to co-supervisor

and have contributed towards making this work, even from another institution.

Secondly, I would like to thank ISEP for giving me the proper tools for the development of this

work and Grupo de Investigação em Engenharia de Computação Inteligente para a Inovação e

o Desenvolvimento (GECAD) for the resources that they made available, and which were used

as the basis for the development of the project.

I also thank my colleagues at ISEP, especially those who were part of my work team.

I would like to extend my thanks as well to my mother, my sisters, and my friends for all their

support and patience over these years.

Finally, my sincere thank goes to my girlfriend Diana. Not only for letting me know about this

master’s degree, also for all the encouragement and motivation she gave me over these two

years.

xi

Contents

1 Introduction ... 1

1.1 Problem definition ...1

1.2 Contextualization ..2

1.3 Main contributions ...3

1.4 Document structure ..5

2 Theoretical background ... 7

2.1 Planning and scheduling problems ...7

2.2 Metaheuristics on planning and scheduling problems8

2.3 Metaheuristics with dynamic parameterization ..9

2.4 Metaheuristics validation ... 11

2.5 Gap on the literature .. 11

3 Used Libraries ... 13

3.1 Pyticle Swarm ... 13
3.1.1 Pyticle Swarm basis library ... 13
3.1.2 Pyticle Swarm contributions .. 15

3.2 Genetic Algorithm .. 16
3.2.1 Genetic Algorithm basis library .. 16
3.2.2 Genetic Algorithm contributions ... 17

3.3 Spade .. 17

3.4 Benchmark .. 17

4 Proposed solution .. 21

4.1 Proposed solution overview ... 21

4.2 Training module .. 24
4.2.1 Generate combinations based on input file .. 26
4.2.2 Evaluate generated combinations ... 28
4.2.3 Calculate best parameterizations by training mode 29
4.2.4 Store parameterizations on the file system .. 31

4.3 Optimization module .. 32
4.3.1 Agents .. 34
4.3.2 Multi-agent system ... 35
4.3.3 Multi-agent system communication .. 37
4.3.4 Metaheuristics response processing.. 37

5 Results and discussion ... 41

5.1 Impact of the configured thread number in the training execution time 41

xii

5.2 Impact of the configured batch size in the training execution time 43

5.3 Impact of the training combinations in the training execution time 43

5.4 Impact of the training combinations number in the optimization results 44

5.5 Optimization module – execution time analysis ... 46

5.6 Impact of the number of trials on the optimization result 48

5.7 Impact of the training function on the optimizations results 50

5.8 Proposed solution applied to a real-world problem 51

5.9 Proposed solution using a genetic metaheuristic .. 53
5.9.1 Genetic Algorithm training configuration ... 53
5.9.2 Genetic Algorithm customization .. 53
5.9.3 Genetic Algorithm results and comparison with Pyticle Swarm 57

5.10 Summary ... 59

6 Conclusion ... 61

6.1 Achieved objectives ... 61

6.2 Limitations and future work .. 62

Bibliography .. 65

xiii

List of figures

Figure 1 - Proposed solution overview .. 4

Figure 2 - Flow chart of the PSO algorithm [40] ... 14

Figure 3 - Proposed solution component diagram .. 22

Figure 4 - Training module sequence diagram ... 26

Figure 5 -Training mode input file example ... 27

Figure 6 - Example of generated combinations for the PSO (Pyticle) metaheuristic 28

Figure 7 - Evaluate combinations sequence diagram .. 29

Figure 8 - Calculate parameterizations traditional mode sequence diagram 30

Figure 9 - Calculate parameterizations dynamic mode sequence diagram 30

Figure 10 - Structure of the parameters’ repository .. 31

Figure 11 - Example of the parameterization files content ... 32

Figure 12 - Optimization module input examples .. 34

Figure 13 - Multi-agent system component diagram .. 35

Figure 14 – Multi-agent system sequence diagram ... 36

Figure 15 - Example of the process of selecting the best solutions after a minimization 38

Figure 16 - Example of the process of select the initial solution in a minimization 39

Figure 17 - Metaheuristic execution time by number of configured threads AMD Ryzen 7 4700

 .. 42

Figure 18 - Metaheuristic execution time by number of configured threads AMD Ryzen 7 5700

 .. 42

Figure 19 - Metaheuristic execution type by the batch size .. 43

Figure 20 - Impact of the number of combinations in the training execution time 44

Figure 21 - Impact of the number of training combinations on fitness value. Trained and tested

with Schwefel(50) .. 45

Figure 22 - Impact of the number of training combinations on the fitness value. Trained with

Schwefel(50) and tested with Rastrigin(50) ... 46

Figure 23 - Impact of number of trials in the optimization results. Trained and tested with

Schwefel(50) ... 48

Figure 24 - Impact of number of trials in the optimization results. Trained with schwefel(50)

and tested with Rastrigin(50) ... 49

Figure 25 - Impact of training function on the optimization results of the Schwefel(50).......... 50

Figure 26 - Impact of training function on the optimization results of the Rastrigin(50) 51

Figure 27 - Impact of the trials number on the optimization results using a real-word problem

 .. 52

Figure 28 - Genetic Algorithm training dynamic configuration ... 53

Figure 29 - Genetic algorithm - Impact of number of trials in the optimization results. Trained

and tested with Schwefel(50) .. 58

Figure 30 - Comparation between the GA and PSO results obtained optimizing the

Schewefel(50) function .. 59

xv

List of tables

Table 1 - Configurable parameters on the Pyticle Swarm library .. 15

Table 2 - Configurable parameters on the Genetic Algorithm library [46] 16

Table 3 - Benchmark functions definition [19]... 18

Table 4 - Training module system properties .. 25

Table 5 - Optimization module system properties description .. 33

Table 6 - Optimization module execution time (milleseconds) analysis. 47

Table 7 - Optimization module time analysis summary ... 47

xvii

List of acronyms and symbols

List of acronyms

ABC Artificial Bee Colony

ACL Agent Communication Language

ACO Ant Colony Optimization

APSO Adaptative Particle Swarm Optimization

BA Bat Algorithm

BF Bacterial Foraging

BFO Biogeography-based Optimization

COP Combinatorial Optimization Problems

DSM Demand Side Management

FIPA Foundation for Intelligent Physical Agents

GA Genetic Algorithm

GARF Genetic Algorithm based on Random Forest

GECAD Grupo de Investigação em Engenharia de Computação Inteligente para a

Inovação e o Desenvolvimento

GP Genetic Programing

GPALS Gradient-based Parameter Adaption with Line Search

GPOL General Purpose Optimization Library

GWO Grey Wolf Optimization

PSO Particle Swarm Optimization

SMAC Sequential Model-based Algorithm Configuration

SSO Salp Swarm Optimization

XMPP Extensible Messaging and Presence Protocol

xviii

List of Symbols

𝑏 Baseline solution value

𝑓𝑠 Filter size

𝑚 Static number

𝑚𝑎𝑥 Maximum valid value

𝑚𝑖𝑛 Minimum valid value

𝑛 New objective function parameter value

𝑛𝑐 Number of combinations

𝑛𝑚𝑒 Number of metaheuristic executions

𝑝𝑛 Preprocessing repetition number

𝑟𝑓𝑙𝑜𝑎𝑡 Random real number

𝑟𝑖𝑛𝑡 Random integer number

𝑟𝑛 Repetitions number

1

1 Introduction

1.1 Problem definition

The main objective of this work is to study and develop an online parameter adaptation model

for metaheuristic optimization algorithms [1]. The proposed model should be problem-agnostic

and should be able to finetune the metaheuristic parameters. On the other hand, the

configuration of algorithm specific (parameters) and problem specific (function variables) must

be easy. In this way, the adaptation of the developed metaheuristic to a real-world problem will

be faster and the effectiveness of the problem resolution will increase significantly, taking into

consideration that the parameterization can be updated more than once in each execution.

The proposed dynamic parameter adaptation model is applied and experimented using two of

the most widely used metaheuristic algorithms, namely Particle Swarm Optimization (PSO) and

Genetic Algorithm (GA) [2], which have been selected after a thorough analysis of the

characteristics of multiple metaheuristic algorithms. Furthermore, the validation process

considers the experimentation using traditional benchmark functions and also using a real

problem related to electricity market transactions [3].

 To accomplish the main objective, the following specific objectives are proposed:

• Review the state of the art. The main metaheuristic optimization algorithms will be

analyzed in two perspectives. Firstly, to determine the most used metaheuristics in the

literature in order to solve real-world problems. Secondly, to analyze the

metaheuristics’ characteristics as means to incorporate the online parameter

adaptation.

• Create the proposal solution design.

• Develop a metaheuristic to be used as basis for development of the proposed solution.

• Develop the generic online parameter adaptation model, which must be problem and

metaheuristic agnostic.

• Test and validate the metaheuristic using the developed model and compare both

results – with and without online parameter adaptation - using several widely adopted

benchmark functions and, in addition, against a real scenario on the energy sector.

2

• Analyze the performance impact of the developed algorithm in the optimization

execution time.

• Incorporate the developed model in a different metaheuristic in order to experiment

and validate the metaheuristic-agnosticism of the proposed model.

1.2 Contextualization

Most of the real-world optimization problems, especially Combinatorial Optimization Problems

(COP) have a large solution space [4]. This is caused by a high complexity, nonlinear constraints,

and interdependencies among variables. Due to resources and time constraints, it is often not

possible to achieve the optimal solution for these problems, since it is not possible to evaluate

all the possible solutions as required to implement an exact (deterministic) method.

Consequently, in practice, metaheuristic optimization algorithms are being used in order to get

an acceptable solution in a reasonable amount of time [4, 5, 6].

Metaheuristics are generally problem-agnostic techniques that can be applied to several

optimization problems. These algorithms usually execute an iterative search process in order to

find a near-optimal solution [7]. For these reasons, metaheuristics have earned more popularity

over the deterministic methods in solving Combinatorial Optimization Problems (COP) [2], and

they are being widely used by researchers and developers in several contexts, such as financial

[8], medical [9], mechanical [10], chemical [11], electrical/energy [12] and social [13].

However, despite being problem-agnostic techniques, without some customization and fine-

tuning on the metaheuristic’s parameters, they generally present a low performance. The

customization allows the introduction of problem-specific knowledge to adapt the

metaheuristic to the particularities of the COP [7]. The parameterization strongly influences the

optimization results. This influence can be caused by the value of the parameters and by the

relation among them [14]. After these processes the algorithm can become problem tailored,

performing well for some optimization problems only [15]. Consequently, the researchers must

start “almost” from scratch, building their own metaheuristic version [7]. Taking into account

that most of the new generation metaheuristics have a huge complexity and a large number of

parameters [16], the time required to configure a complex optimization algorithm is likely to

increase in the future.

One possible solution to overcome this problem is the online parameter adaptation. Using this

approach, the metaheuristic parameters are updated dynamically based on the algorithm’s

performance, instead of being defined exclusively in a pre-processing phase [1]. Besides

simplifying the customization work, this approach, according with literature, allows to increase

the effectiveness and the performance of metaheuristics, by adapting the search process

throughout the optimization process [1, 17].

In order to contribute towards the dynamic adaptation of metaheuristics’ search process, this

work conceives, develops and validates a generic dynamic parameter definition model. This

model is able to fine-tune the metaheuristic parameters and automatize the optimization

3

process in order to facilitate the integration of new objective functions and new metaheuristic

algorithms in the system.

1.3 Main contributions

In this work, an online parameter adaptation model for metaheuristic optimization algorithms

is developed. The main contributions of this project are the following, as depicted by the Figure

1:

• Training module that allows to automatically train metaheuristics in two modes:

o Traditional approach - a single static parameterization is chosen

o Dynamic approach - three parameterizations are chosen and applied

consecutively throughout the search process, aiming at balancing the focus on

exploration and exploitation

• Optimization module, modeled as a multi-agent system that allows to perform the

optimization of a given problem using a selected metaheuristic.

• Validation of the proposed model, considering multiple problems and metaheuristics,

including a real-world problem in the power and energy system’s domain.

• Publication of an abstract, entitled “Online adaptation of the search process of

metaheuristic algorithms” and respective presentation at the “Artificial Intelligence

Technique for the Optimization of Electric Power Distribution Systems” workshop [18].

• Development of two articles in progress. One entitled “Multi-agent based model for the

dynamic adaptation of metaheuristic optimization”, to be submitted in the IEEE

Transactions on Industrial Informatics journal; the other entitled “Dynamic

parameterization of metaheuristics using a multi-agent system for the optimization of

electricity market participation” to be submitted at the 21st International Conference

on Practical Applications of Agents and Multi-Agent Systems (PAAMS) 2023.

• The development of this thesis contributed to development of the international project

“Development of Artificial Intelligence Techniques for the Optimization of Electric

Power Distribution Systems (FCT/CAPES 2019.00141.CBM)”

4

Figure 1 - Proposed solution overview

As shown by Figure 1, the proposed solution is composed by two different modules, a multi-

thread Training module and an agent-based Optimization module. These two modules use as

input metaheuristics and objective functions and together they have the capacity of generate

good parameterizations, execute the optimization, and retrieve the results.

The Training module is implemented comprising two different modes: (i) a traditional model, in

which several valid parameterizations are tested and the best one is chosen, and (ii) a dynamic

mode, in which three different parameterizations are chosen. These parameterizations are

chosen taking into consideration two characteristics, namely the exploration degree and the

results obtained. Thereby, the first parameterization should enable a deep exploration of the

solution space, in the second the exploration should be reduced, and in the last

parameterization, the focus is the local search.

The Optimization module, using the parameterizations obtained on the dynamic training mode,

executes the optimization sequentially using each of the parameterizations obtained in the

training phase. For the first optimization, the initial solution must be empty, while for the others

an initial solution is calculated by the algorithm according to the results achieved in the previous

executions.

Under this project, several of the most widely used metaheuristics in the literature have been

analyzed, including, PSO, Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), and GA

[2]. Considering their characteristics, PSO and GA have been chosen as the algorithms to test

and validate the proposed model, enabling assessing the algorithm-agnostic nature of the

proposed model. Complementarily, as means to test the capability of the proposed model in

dealing with different types of problems, several optimization problems have been considered,

namely several benchmark functions widely used in the literature [19] and a real-world problem

related with electricity market participation portfolio optimization [3].

5

1.4 Document structure

The document structure is composed by six different chapters. In chapter 1 the problem is

defined and contextualized, and the main objectives of the work are proposed.

In the second chapter, the theoretical background is reviewed, including the definition of

planning and scheduling problems, the use of metaheuristic algorithms on planning and

scheduling problems, a review on dynamic parameterization and on metaheuristic validation.

This chapter concludes by identifying the gaps in the literature.

In the third chapter, the libraries used throughout the project are presented, namely Pyticle

Swarm, Spade, Benchmark and Genetic Algorithm.

In the fourth chapter, the solution design is proposed for the online algorithm optimization

problem. This chapter presents the details on the implementation of the two main components

of the solution: the Training module, and the Optimization module.

In the fifth chapter, the results obtained in the several conducted experiments are discussed.

These comprise the analysis of objective function results when using the proposed model, as

well as the execution time analysis and the applicability and impact of applying the proposed

model to different optimization problems and using different metaheuristic algorithms.

Finally, in chapter 6, the main conclusions, the results achieved, as well as the limitations, and

suggestions for future work are presented.

7

2 Theoretical background

This chapter presents the theoretical background, including the definition of planning and

scheduling problems, the use of metaheuristic algorithms on planning and scheduling problems,

and then is described dynamic parameterization and metaheuristic validation.

2.1 Planning and scheduling problems

In order to solve various real-word engineering and management problems, driven by the rapid

advances in the computing technology, large optimization theories and algorithms have been

proposed [20]. These algorithms and theories can be considered deterministic and non-

deterministic. On the deterministic approach all the possible solutions are validated, and the

best solution is always found [21]. On a non-deterministic approach, a heuristic is implemented

in order to find a good solution without validating all possible solutions [7].

 So, the deterministic approaches always converge to the global best solution. On the

other hand, heuristic approaches are more flexible and efficient, namely for solving nonconvex

or large complex optimization problems. For these problems, the deterministic methods may

not be able to derive to the solution in a reasonable amount of time. The heuristics are

developed in order to reduce the computational resources; however, a feasible or a globally

optimal solution is not always guaranteed [20]. Despite the disadvantage, in large solution space

problems, the non-deterministic methods are the only feasible option [4, 5, 6].

 Metaheuristics are a subset of the non-deterministic techniques characterized by being

problem-agnostic techniques that can be applied to several optimization problems. Using these

algorithms, usually, an iterative search process is executed in order to find a near-optimal

solution [7]. Due to the performance and effectiveness obtained with these techniques, the

metaheuristics have earned more popularity over the deterministic methods in solving

Combinatorial Optimization Problems [2].

8

2.2 Metaheuristics on planning and scheduling problems

Influenced by the informatization and the amount of data available to process, during the past

years a lot of metaheuristic related works have been proposed. For the mentioned reasons,

several different metaheuristics has been created. Generally, they are grouped and classified by

some characteristics, nature inspired versus non-nature inspired, population-based versus

single-point search, iterative versus greedy, dynamic versus static objective function, memory

usage versus memory less, one versus multiple neighborhood structures [4].

The number of algorithm parameters has direct effect on the complexity and, consequently, on

the time/iterations required to optimize the metaheuristic parameters. Among these

characteristics, from the fine-tuning optimization perspective, the population-based ones can

be more complex because it implies the parameterization of a whole family of solutions [4, 22].

Dokeroglua et al. classified the metaheuristics created by the first time before the year 2000 as

“classical” metaheuristics and the others as “new generation”. Based on this assumption a state

of art review was done and the most implemented classical metaheuristics are the Genetic

Algorithm, Particle Swarm Optimization, Ant Colony Optimization and Genetic Programing (GP).

In the other hand, the most implemented new generation metaheuristics are Artificial Bee

Colony, Bacterial Foraging (BF), Bat Algorithm (BA) and Biogeography-based Optimization (BFO)

[16].

Another reason for the success of the metaheuristics is their versatility and the application to all

the real-word combinatorial optimization problems. So, these algorithms are being

implemented for a lot of different contexts, financial, medical, chemical, electrical/energy and

social.

Corazza et al. [23] implemented a hybrid PSO-based algorithm for costly portfolio selection

problems. On this paper an exact method, a classic PSO metaheuristic with static parameters

and a PSO metaheuristics with dynamic parameterization was compared. On the last approach,

a huge reduction of computational time was obtained.

Paul et al. [24] implemented a new feature selection strategy, GA based on Random Forest

(GARF) in order to predict the esophageal cancer. In this paper, when compared with the existing

algorithms on the literature, the outcome was improved in more than 8% for the predictive

study and more than 11% for the prognostic study. These improvements were obtained by the

optimization of the selected features and by the tuning of the metaheuristic parameters.

A structural design optimization method of fiber reinforced plastic was proposed by Kai et al.

[25]. The metaheuristic implemented was the ABC, through 20 executions with different

optimization control parameters, an improvement of 8.31% was obtained. However, the

proposed implementation requires a lot of time to get an optimum. The researchers, after some

experiments, concluded that the execution time is dependent of the defined parameters and

the model size. To optimize this time, model simplifying, and the improvement of the

optimization algorithm has been proposed.

El-Gendy et al. [26] implemented a hybrid of GA and PSO technique for tuning a Proposal-

Integral-Derivative controller parameters used in a chemical process. The proposed solution gets

9

better results when compared with the existing solutions in the literature. All the parameters,

of GA and PSO, are configured without turning the metaheuristic parameters, i.e. the used

parameterization is defined based on the existing papers on the literature.

In order to satisfy the user demands and make the best use of the available power on a

community parker charging station, Álvarez et al. [27] proposed an ABC algorithm with local

search. The implemented solution has been compared with the state of art and a similar result

was obtained. However, the computation time was reduced significantly allowing the utilization

in the real environments for online scheduling. The time was optimized by some manual updates

on the metaheuristic parameters.

In Ozbay and Alatas [28] two novel optimization approaches for fake news detection were

implemented. These approaches are implemented following the Grey Wolf Optimization (GWO)

and the Salp Swarm Optimization principals (SSO). Taking into consideration the obtained results,

these two metaheuristics are considered very promising. However, to improve the algorithm’s

performance, the researchers suggest a dynamic parameterization implementation and a

refactor on the metrics used on the model construction.

In summary, metaheuristics are very dynamic approaches, and for this reason they have been

used in several different contexts in order to solve combinatorial optimization problems.

However, a problem identified on the existing algorithms in the literature is the metaheuristics

parameterization. The parameterization influences significantly the performance of the

algorithm and consequently the computation time required to archive a good result. On the

papers referred on this section, the problems were already partially addressed with some

manual testing for each implementation or by problem specific dynamic online

parameterization. Using these solutions, the optimization code implemented cannot be reused

in other contexts and the research must start optimizing from scratch. A possible way to

overcome the limitation is to implement metaheuristic models with dynamic online

parameterization.

2.3 Metaheuristics with dynamic parameterization

The metaheuristics effectiveness depends on the interaction among several components.

Generally, without an online parameter configuration strategy, the components are configured

based on the similar problems on the literature or based on a preliminary experimentation with

different parameter combinations [29]. However, in the metaheuristics configuration there are

many possible choices, and it is almost impossible to guarantee that the best configuration has

been chosen. Besides this, the best configuration may be conditioned by the specific data of

each execution [17].

 To overcome this, to get better results and to improve the algorithm performance,

online parameter adaption algorithms can be implemented. Using this approach, the

metaheuristic is able to modify, in runtime, the configuration and the strategic parameters. The

parameters are set based on the feedback obtained in the current execution and the knowledge

acquired previously [17, 30].

10

 Motivated by the potential of this approach, several algorithms with dynamic

parameterization have been developed in the last years. Generally, the outputs are not a new

metaheuristic, but an improved version of the most used metaheuristics, such as GA and PSO.

 Melin et al. [31] developed three fuzzy systems for online parameter adaptation. These

algorithms are incorporated in a base PSO metaheuristic. The four versions are tested against

the same benchmark functions and a significant improvement was obtained in two of the three

implemented PSO versions. The results allowed to conclude that dynamically adjusting

parameters can improve the quality of the metaheuristic results. Zhan et al. [32] extended the

PSO metaheuristic to an Adaptative Particle Swarm Optimization (APSO). The APSO is

formulated by an elitist learning strategy and an evolutionary state estimation technique. The

developed APSO algorithm was tested against 12 benchmark functions, and it was concluded

that the adaptative algorithm enhances substantially the convergence speed, the global

optimally, the solution accuracy and the algorithm reliability.

 Motived by the time and results inconsistency of the heuristic algorithms on solving

vehicle routine problems, Zakharov and Mugayskikh [33] implemented a dynamic adaption

procedure for the GA metaheuristic. The procedure was evaluated using the Traveling Salesman

library and a significant improvement was achieved. The generated solutions are significantly

better, and the time needed to achieve the solution was more consistent. Moctezuma et al. [34]

implemented a self-parameter adaption mechanism that can be used with the GA metaheuristic.

The algorithm was optimized to dynamic problems. When a change on the problem occurs, the

system is able to apply a diversification on the mutation and the crossover probabilities. The

solution was tested against benchmark functions, and it demonstrates an improvement on the

metaheuristic performance.

Tatsis and Parsopoulos [1], in order to reduce the effort needed to the metaheuristic’s

parameter tunning and control, proposed a gradient-based parameter adaptation method. The

implemented solution is metaheuristic agnostic and can be by any population-based

metaheuristic and it use a reinforcement learning approach to adapt dynamically the algorithm

parameters. A high-dimensional test suite was used. Based on the obtained results, it is possible

to conclude that the algorithm is able to get automatically a good parameters configuration

without increasing the execution time.

Tatsis and Parsopoulos [29] proposed a Gradient-based Parameter Adaption with Line Search

(GPALS). The algorithm works using a primary population and several secondary populations

with a set of different parameters configured. Periodically, the results obtained by the secondary

populations are evaluated and, if it is appropriate, the settings of the main population are

updated. The developed model was able to correctly identify the adequate parameters, taking

that responsibility way from the user. The results obtained when compared with related

literature demonstrate a very competitive performance. The comparison was made using

benchmark functions.

Shadkam [35] developed a hybrid algorithm called Demand Side Management (DSM). The

algorithm, optimizing the metaheuristic parameters, is able to maximize its efficiency. On this

paper, the algorithm was applied to the cuckoo optimization metaheuristic; however, in a future

work it can be applied to other metaheuristics. In order to evaluate the performance, the

11

metaheuristic was tested against a covid-19 management problem. When compared with the

baseline metaheuristic, the metaheuristic with DSM shows a better performance in terms of

solution time, number of iterations, efficiency, and accuracy.

Han and Xiao [36] proposed an improved adaptative genetic algorithm. The proposed solution

updated online the crossover probability and mutation probability in order to enhance the

global optimization ability of the algorithm. The solution was validated using the traveling

salesman problem and the experimental data revealed improvements in the convergence speed

and in the operation efficiency.

2.4 Metaheuristics validation

As mentioned on the previous sub chapters, the metaheuristics are problem agnostic

optimization algorithms that can be applied to a lot of real-world optimization problems.

However, even with the automated parameter tuning, to utilize a developed metaheuristic in a

real-word problem it is required some problem specific knowledge in order to enable suitable

feature selection and objective function definition. For this reason, to evaluate the

metaheuristics effectiveness and efficiency several benchmark functions have been used on the

literature [29, 31, 32, 34].

Following the metaheuristic development, in the past decades, a huge variety of benchmark

problems and collections have been developed. However, according with Sala and Müller [37],

there is a gap between the benchmark functions and the real-word optimization problems. The

possible explanation for this gap is the growing complexity of the real-world problems, the focus

of the research community on the benchmark functions that are secondary for the real-word

problems and the small size/complexity of the benchmark functions.

To overcome the mentioned gap, some authors suggest the development of more realistic and

complex benchmark functions. Nevertheless, overall, these suggestions were not followed by

the researchers and, consequently, there are no benchmark functions in the literature that are

sufficiently representative, complex, and realistic [37].

2.5 Gap on the literature

In the past years, several online parameter adaption algorithms have been developed and

published on the literature. Generally, with these algorithms, the metaheuristics efficiency and

effectiveness have been increased significantly. However, the existing online parameter

adaption methods were optimized to the problem in study (overspecialized), and it implies the

inclusion and configuration of new critical parameters [29].

Besides the referred weaknesses, these algorithms that already exist in the literature were not

tested against a representative set of problems. Generally, the algorithm’s validation was made

following one of two approaches. The first one is testing against only one real-world problem,

causing overspecialization. The second one is testing only against benchmark functions. Despite

12

the improvements obtained with the algorithms in the literature, taking into consideration the

overspecification of the first testing approach and that the benchmark functions are not

representative, complex, and realistic, it is not possible to guarantee that the algorithms will

have a good performance when applied to a significant set of real-world problems.

13

3 Used Libraries

This chapter presents the libraries used throughout the project, namely Pyticle Swarm, Genetic

Algorithm, Spade and Benchmark. In addition, the contributions developed to the Pyticle Swarm

and the Genetic Algorithm are also presented.

3.1 Pyticle Swarm

3.1.1 Pyticle Swarm basis library

This work uses the PSO metaheuristic as basis since it is one of the most widely implemented

metaheuristics and it is a population-based approach that has several parameters to configure.

Besides this, the existing online parameter adaption methods applied to the PSO algorithm

demonstrate a good improvement on the metaheuristic efficiency.

The PSO algorithm is a population-based stochastic optimization technique proposed by

Kennedy and Eberhart in 1995 [38]. It is inspired on the social behavior of the swarming animals,

like insect, herds, birds, and fishes. The swarms working together in order to establish a

cooperation between them changing their behavior based on the previous experiences [39].

In order to uniformize and optimize the swarm artificial life systems, Millonas proposed five

basic principles that should be followed in the PSO, and similar metaheuristics. The principals

are proximity, quality, diverse response, stability, and adaptability. To fulfill the proximity

principle the swarm should be able to carry out simple space and time computations. To satisfy

the quality principle, the environment quality factors should be responded. To carry out the

diverse response principle, the algorithm should not limit the response to a subset of the domain

solutions. The last two principles can be considered contradictory, but it means that the swarm

should not change its behavior after each environment change. The system should be able to

realize when it is beneficial to adapt to the environment [39].

A flowchart of the basic PSO metaheuristic is depicted in Figure 2.

14

Figure 2 - Flow chart of the PSO algorithm [40]

As shown by Figure 2, the algorithm starts by creating a population of particles in a random

location, for each particle a random velocity is associated. Iteratively, an objective function

evaluates each particle location and determines the better located particle. Based on the current

velocity, the velocities of the best located particles and their neighbors are updated. After each

iteration the particles are moved to the next location. The next location is calculated based on

the previous one and the velocity defined by the algorithm. This process is executed until a stop

condition is reached or the maximum number of iterations is exhausted [40].

In order to get valid results in a reasonable time, before each utilization, the PSO parameters

must be optimized. The parameter list, generally, may depend on the PSO version, but generally,

it includes the number of particles, acceleration constant, inertia weight and maximum limited

velocity [39, 40].

In the past years several PSO libraries, like PySwarms [41], General Purpose Optimization Library

(GPOL) [42] and Pyticle Swarm [43], have been published. On this project, the Pyticle Swarm is

used as baseline since it is a work in progress open-source library developed by Grupo de

Investigação em Engenharia de Computação Inteligente para a Inovação e o Desenvolvimento

(GECAD), aiming at a fully flexible version of PSO, offering the possibility to configure all

parameters and apply the PSO to any optimization problem. This means that, in the end of the

project, the developments made in the scope of this work can be included on the library.

Using Pyticle Swarm, it is possible to optimize any problem. To do so, the library allows the

configuration of several parameters, such as the initial and final weigh inertia, the learning

factors, the total amount of particles and total number of iterations. The full list of parameters

and the associated description can be consulted in Table 1.

15

Table 1 - Configurable parameters on the Pyticle Swarm library

Parameter Name Default Value Description

initial_solution [] Matrix or array containing the initial solutions or
solution

brm_function 4 Function to handle boundary constraint violation

n_jobs -2 Number of concurrently running jobs
direct_repair None The direct repair function

perc_repair 0 Value between 0 and 1 that determines the
percentage of iterations starting from the end
where a repair function is applied

wmax 0.5 The maximum value of the inertia weight
wmin 0.1 The minimum value of the inertia weight

c1min 0 Minimum value of the acceleration coefficient c1

c1max 0.4 Maximum value of the acceleration coefficient
c1

c2min 0.1 Minimum value of the acceleration coefficient c2

c2max 2 Maximum value of the acceleration coefficient
c2

n_iterations 100 The total number of iterations

n_particles 10 The total number of particles

n_trials 30 The total number of trials
show_fitness_graphic False Boolean that indicates if the fitness graphic is to

be shown or not
show_particle_graphics False Boolean that indicates if the particles graphics

are to be shown or not (Only works with
solutions of 2 dimensions)

verbose True Boolean that indicates if the results are to be
logged on the console

From the architectural perspective, the library is composed by three different modules. The

function module contains all the mathematic functions required to the algorithm, such as initial

solution creation function, inertia updating function, local and global acceleration coefficients

updating function, velocity updating function, velocity limits control function and position

updating function. The main module that should be customized by the user and the results class

module that can be used to return the metaheuristic results compacted and standardized.

3.1.2 Pyticle Swarm contributions

Pyticle Swarm was used as basis to develop the proposed algorithm. In this process, some

enhancements have been made:

• Update the metaheuristic to support maximization problems. The basis version of

Pyticle Swarm was only prepared to deal with minimization problems.

• Allow, by configuration, that all evaluated solutions are stored and returned.

• Improve the metaheuristic API to be dynamic on the received parameters. In this way it

is not necessary to always send all the parameters.

16

3.2 Genetic Algorithm

3.2.1 Genetic Algorithm basis library

This works uses the GA metaheuristic since it is one of the most widely implemented

metaheuristics. It is a population-based approach that has several parameters to configure.

GA is a search metaheuristic inspired by Charles Darwin’s evolution theory. Through an iterative

process, the natural selection process is simulated. It means that during the optimization, the

species who can adapt better to the environment changes will survive and consequently will be

a part of the creation of the next generation. To create the next generation, the previous one is

used as basis and three main types of rules are applied. The selection rules impose that only

some individuals are filtered out of the population. The crossover rules consider that two

selected individuals are combined in order to generate a valid and different solution. The

mutation rules introduce some random values that are randomly applied in the generated

population [44].

In the past years several GA libraries, like Pygad [45], Genetic Algorithm [46] and Genetic-

Algorithms [47], have been published. On this project, the Genetic Algorithm is used since it is

an open-source library that offers the possibility of configuring all the parameters and applying

the GA to any optimization problem.

Using Genetic Algorithm, it is possible to optimize any problem. To do that, the library receives

the configuration of several parameters. The full list of parameters, the default value and the

associated description can be consulted in Table 2.

Table 2 - Configurable parameters on the Genetic Algorithm library [46]

Parameter Name Default Value Description

max_num_iteration None Determines the max number of iterations
that can be executed in the optimization. If
the value is None, this param is not
considered.

population_size 100 Determines the number of trial solutions in
each iteration.

mutation_probability 0.1 Determines the chance of each gene in
each individual solution to be replaced by
a random value

elit_ratio 0.01 Determines the number of elites in the
population.

crossover_probability 0.5 Determines the chance of an existed
solution to pass its genome to new trial
solutions.

parents_portion 0.4 The portion of population filled by the
members of the previous generation.

crossover_type uniform There are three options including
one_point, two_point, and uniform cross.

max_iteration_without_improv None Max number of iterations without
improving until stop the optimization.

17

3.2.2 Genetic Algorithm contributions

On this project, the Genetic Algorithm library was used to validate the adaptability of the

proposed solution to different metaheuristics. In the process of integrating this metaheuristic in

the proposed system, some enhancements have been made, as follows:

• Allow, by configuration, that all evaluated solutions are stored and returned.

• Addition of a new parameter named initial_population. By default, it is an empty list and

if filled, it is used as basis in the optimization.

3.3 Spade

Spade is an async-based multi-agent systems platform developed in Python. It is based on an

Extensible Messaging and Presence Protocol (XMPP) instant messaging, it supports the

Foundation for Intelligent Physical Agents (FIPA) [[48] metadata using XMPP Data Forms, and

the development of agents based on behaviors [49].

The communication can be done using templates. On these templates it is possible to define the

sender, the receiver, the message body, and the metadata. The metadata is a strings dictionary

containing useful information, such as the FIPA attributes [49].

The agents are implemented based on behaviors. The spade supports four different behaviors:

(i) one shot behaviors that are only executed once, (ii) cyclic behaviors that are used by agents

that are waiting for messages, (iii) periodic behaviors that are executed periodically and (iv) fine

state machine behaviors that are more complex and are composed by a set of registered states

and transitions [49].

On this project, the agents are implemented using the one shot, the cyclic and the periodic

behaviors. The communication between agents is performed using templates through a local

instance of the ejabberd software [50]. The body of the templates is a Python dictionary

converted in json.

3.4 Benchmark

The metaheuristics are problem agnostic techniques that can be used in several real-word

problems. For this reason, to evaluate the accuracy and the effectiveness of a metaheuristic and

to avoid the metaheuristic overspecification, they should be tested under several different

contexts. However, the process of customizing a metaheuristic to a real-world problem is too

long and requires knowledge about the application sector. To overcome this, and enable a solid

validation of metaheuristic performance, several benchmark functions have been created.

The Python library Benchmark Function is an open-source and contains a collection of

benchmark functions written in Python 3.X version. This is a very useful collection because it is

possible to increase the functions dimension in an arbitrary way, consequently it increases the

complexity of the function. The dimension default value is 2, it is the smallest value, and it means

18

low complexity. Besides this, the library allows to configure the function to maximize instead of

minimizing, consequently it increases the list of covered scenarios. As a result, the function

allows the visualization in a graphic way [19]. In Table 3 a subset of the benchmark functions

available on the mentioned library is explained. All the data on the table was extracted from the

library official documentation.

Table 3 - Benchmark functions definition [19]

Name Image Description

De Jong 5

Continuous, multimodal, multiple symmetric local optima
with narrow basins on a plateau. It is defined only for 2
dimensions.

𝑓(𝑥) = (0.002 + ∑(𝑖 + (𝑥1 − 𝐴1𝑖)6 + (𝑥2 − 𝐴2𝑖)6)−1

25

𝑖=1

(1)
Egg Holder

Non-convex, contains multiple asymmetrical local optima.

𝑓(𝑥) = − ∑ (𝑥𝑖+1 + 47)𝑠𝑖𝑛√|𝑥𝑖+1 + 47 + 0.5𝑥𝑖|
𝑁−2

𝑖=0

+ 𝑥𝑖𝑠𝑖𝑛√|𝑥𝑖 − (𝑥𝑖+1 + 47)|

(2)
Schwefel

Non-convex and (highly) multimodal. Location of the
minima are geometrical distant.

𝑓(𝑥) = 418.9829N ∑ 𝑥𝑖 sin (√|𝑥𝑖|)

𝑁−1

𝑖=0

(3)
Griewank

Non-convex and (highly) multimodal, it shows a different
behavior depending on the scale (zoom) that is used.

𝑓(𝑥) = ∑
𝑥𝑖

2

4000
−

𝑁−1

𝑖=0

∏ cos
𝑥1

√𝑖 + 1

𝑁−1

𝑖=0

+ 1

(4)
Rana

Highly multimodal symmetric function.
𝑓(𝑥)

= ∑ 𝑥𝑖 cos √|𝑥𝑖+1 + 𝑥𝑖 + 1| sin √|𝑥𝑖+1 + 𝑥𝑖 + 1|

𝑁−2

𝑖=0

+ (+𝑥𝑖+1) sin √|𝑥𝑖+1 + 𝑥𝑖 + 1| cos sin √|𝑥𝑖+1 + 𝑥𝑖 + 1|

(5)
Michaewicz

Non-convex and (highly) multimodal. Contains n! local
minimum. Use a parameter 𝑚 that defines the stepness of
the curves. Global minimum around f([2.2,1.57])=-1.8013
for n=2, f(x)=-4.687 for n=5 and f(x)=-9.66 for n=10 (no
optimal solution given).

19

Name Image Description

𝑓(𝑥) = − ∑ sin(𝑥𝑖) 𝑠𝑖𝑛2𝑚(
𝑥𝑖

2(𝑖 + 1)

𝜋

𝑁−1

𝑖=0

(6)
Rastrigin

Non-convex and (highly) multimodal. Location of the
minima are regularly distributed.

𝑓(𝑥) = 10𝑁 + ∑(𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖))

𝑁−1

𝑖=0

(7)
Rosenbroc
k

Non-convex and unimodal. Global minimum difficult to
approximate.

𝑓(𝑥) = ∑(100(𝑥𝑖+1 − 𝑥𝑖
2)

2
+ (𝑥𝑖 − 1)2)

𝑁−2

𝑖=0

(8)
Pycheny,
Goldstein
and Price

Non-convex, multimodal with multiple asymmetrical slopes
and global minimum near local optima. It is defined only
for 2 dimensions.

𝑓(𝑥) = 2.427−1 (𝑙𝑜𝑔 [(1

+ (𝑥0 + 𝑥1 + 1)2(19 − 14𝑥0 + 3𝑥0
2

− 14𝑥1 + 6𝑥0𝑥1 + 3𝑥1
2)) . (30 + (2𝑥0

− 3𝑥1)2(18 − 32𝑥0 + 12𝑥0
2 + 48𝑥1

− 36𝑥0𝑥1 + 27𝑥1
2))] − 8.693)

(9)

This library is used to validate the proposed solution. However, as concluded on the previous

chapters, the benchmark functions, when compared with some real-world problems are not

complex enough. On this project, to test the developed model, a real-world problem in the

power and energy systems’ domain is used. The problem consists of the portfolio optimization

for electricity market participation. The main goal is to replicate the solution proposed by Faia

et al. [51] and compare the results obtained with the results obtained on the published paper.

The data required is provided and anonymized by GECAD.

21

4 Proposed solution

This section presents the proposed solution for the online algorithm optimization problem. The

solution is composed by two main modules, the Training module and the Optimization module.

Initially an overview of these modules and the relation between them is described. After that,

these modules are separately described in detail.

4.1 Proposed solution overview

The objective of this project is to implement an online parameterization algorithm capable of

optimizing the fine-tuning process of metaheuristic algorithms and at the same time improve

the optimization results. In addition, the algorithm must be metaheuristic- and problem-

agnostic.

Taking into consideration that the metaheuristic parameters are not standardized, two modules

are built, the Training and the Optimization modules. These modules can be used for

maximization and minimization problems, and are totally generic, i.e. they can be used with any

metaheuristic and objective function.

The Training module is responsible for generating and evaluating a list of valid parameterizations

in order to create a set of parameters that can be used on the optimization. The Training module

is supported and configured through an input file. On the input file the metaheuristic, the

objective function, the metaheuristic parameters, the parameters range, and the relation

between these parameters must be configured. This module supports two modes (i) a traditional

mode where several parameterizations are evaluated, and the best one is chosen; and (ii) a

dynamic mode where the parameterizations are chosen assuming that optimization will occur

in three steps. On the first step, the optimization should occur trying to explore several locations

22

on the search space. On the second, the exploration should be reduced and on the third, the

local search should be privileged.

The Optimization module is composed by a multi-agent system with three different agent types

that uses a set of parameters already defined and can be used to optimize an objective function.

For each supported metaheuristic, the Optimization module requires, at least, three different

configurations. This is mandatory because the system optimizes the metaheuristic following the

dynamic approach already described, where the optimization is executed in three steps. So, on

the first execution, the parameters should force a high exploration on the solutions; on the

second, parameters should ensure that exploration is reduced and excludes the non-worth

exploring places of the search space; on the last execution, the parameterization should

represent a high exploitation from the metaheuristic algorithm. In this way, before converging

to a good solution, the optimization explores a wide range of solutions avoiding local minimum

or maximum solutions. These parameters can be obtained using the Training Module or can be

defined manually by the user.

Figure 3 presents a component diagram of the proposed solution.

Figure 3 - Proposed solution component diagram

As can be observed by the diagram of Figure 3, other components have been implemented in

addition to the two main modules, as means to guarantee the adequate interaction between

them and with the user. The Configuration component is used by both modules and allows the

user to customize the executions. The Params Repository is used to store and retrieve optimized

parameters. The repository is a configured directory, and the parameterizations can be added

manually or automatically by the Training Module. The Functions Repository and the

Metaheuristics Repository are externalized and must be updated for each supported

metaheuristic or objective function.

The Functions Repository is a Python file that must be always implemented on the directory

<base_dir>/customization/. In the code snippet 1 is an example of the mentioned Python

function.

23

import benchmark_functions as bf

def get_function(function_id):
 if function_id == " Schwefel50":
 return bf.Schwefel(50)
 if function_id.startswith("Rana50"):
 return bf.Rana(50)
 raise ValueError("The function received is not supported!")

Code snippet 1 – FunctionsRepository.py implementation example

So, the function get_function that receive an identifier and based on it retrieve the right

implementation. If the identifier is not known the function must retrieve a ValueError exception.

The Metaheuristic repository is also a Python class that must also be implemented inside the

directory <base_dir>/customization/. In the code snippet 2 is an example of the mentioned

Python function.

from metaheuristic.example import run
from ftoptimizer.model.optimization_result import OptimizationResult
from customization.functions_repository import get function

def execute_optimization(algorithm_id, function_id, mode, parameters):
 if algorithm_id == "example":
 return run_example(function_id, parameters)
 raise ValueError("The metaheuristic received is not supported!")

def run_example(function_id, parameters):
 parameters["fitness_function"] = get_function(function_id)
 # It is possible to add custom configurations
 parameters[“example”] = True
 res = run(parameters)
 return OptimizationResult(res.fitness_value, res.solution,

res.all_fitness_values, res.all_solutions)

Code snippet 2 – MetaheuristicsRepository.py implementation example

This class must implement the function execute_optimization that receives the following

parameters:

• algorithm_id – It is unique, and it identifies a metaheuristic that must be used.

• function_id – It is unique, and it identifies the objective function that must be optimized.

• mode – It can assume the values “maximization” or “minimization”, and it indicates if

the generic algorithm is trying to maximize or minimize the objective function.

• parameters – It is a Python dictionary with all the parameters that should be considered

on the current execution.

The function retrieves an OptimizationResult object. This is an internal object that has the

following attributes:

• best_fitness_value – It should contain the best fitness function value.

• best_solution – It should contain the solution used to obtain the best fitness value.

24

• fitness_values – It should contain the list of all fitness values obtained on the

optimization.

• solutions – It should contain the list of solutions analyzed on the algorithm. The values

on this list must match the values on the fitness_values attribute.

If the memory used on the optimization is a critical factor, instead of all the solutions, the

metaheuristic can only return the best one hundred evaluated solutions.

On the development of the proposed solutions the Python libraries Benchmark, Pyticle Swarm

and Genetic Algorithm were used. In the integration of the Pyticle Swarm library some

improvements described on the section 3.1.1 are implemented.

4.2 Training module

The Training module is a problem- and metaheuristic- agnostic module developed in Python that

allows the automatization of the metaheuristics fine-tuning process. The module supports two

different modes. The traditional mode where several combinations are evaluated and the best

are chosen, and the dynamic mode where several combinations are evaluated and a high

exploration, an intermediate and a high exploitation parameterization are chosen.

In order to facilitate the integration with different metaheuristics, the Training module is

configurable by system properties. These properties must be defined in a training.properties file

located in the base directory. The Table 4 describes all the system properties and shows an

example value for each property.

The metaheuristic is not standardized and for this reason to build a training the available

parameters and their range must be configured.

The metaheuristic is not standardized and for this reason to build a training the available

parameters and their range must be configured.

The metaheuristic is not standardized and for this reason to build a training the available

parameters and their range must be configured.

The metaheuristic is not standardized and for this reason to build a training the available

parameters and their range must be configured.

The metaheuristic is not standardized and for this reason to build a training the available

parameters and their range must be configured.

The metaheuristic is not standardized and for this reason to build a training the available

parameters and their range must be configured.

The metaheuristic is not standardized and for this reason to build a training the available

parameters and their range must be configured.

25

The metaheuristic is not standardized and for this reason to build a training the available

parameters and their range must be configured be configured.

Table 4 - Training module system properties

Property Description Example value

training.queue.directory Directory where the input files

are located.

C:\tmp\training_queue

training.archieve.directory Directory where the input files

are moved after being processed.

C:\tmp\archieve_dir

output.params.base.dir Base directory where the

information with the output

parameters will be stored.

C:\tmp\params

parallel.threads.number Number of parallel threads used

on the training.

6

thread.exec.batch.size Size of the batch’s processed for

each thread execution. Condition

the interval of a progress log is

printed on the console.

20

pre.processing.rept.number Number of repetitions executed

on the preprocessing. It means

that for each combination

created, n trails will be executed.

3

calculate.params.filter.size Number of parameters filtered

for evaluation after the

preprocessing phase.

100

calculate.params.rept.number Number of repetitions executed

for each combination selected

after the preprocessing phase.

20

The system properties pre.processing.rept.number(prn), calculate.params.filter.size (fs) and

calculate.params.rept.number(rn) impact directly the number of times the objective function is

evaluated and consequently it directly impacts the training execution time. The number of

metaheuristic executions can be calculated using the equation 10.

where 𝑛𝑚𝑒 is the number of metaheuristic executions, 𝑝𝑛 is the preprocessing repetition

number, 𝑛𝑐 is the number of combinations, 𝑚 is a static number, 1 for the traditional mode and

3 for the dynamic mode, 𝑓𝑠 is the filter size and 𝑟𝑛 is the calculate parameters repetitions

number.

Figure 4 presents a sequence diagram describing the training workflow.

𝑛𝑚𝑒 = 𝑝𝑛 × 𝑛𝑐 + 𝑚 × (4 × 𝑓𝑠 × 𝑟𝑛) (10)

26

Figure 4 - Training module sequence diagram

As can be observed by Figure 4, the system properties are read on the start-up and four

components invoked sequentially. The GenerateParams is responsible by input file processing

and by generating all the parameterizations that must be evaluated. After this, the

EvaluateParams evaluates 𝑛 configured times each combination and stores the results. The

CalculateParams processes the results and chooses the best parameterizations taking into

consideration the training mode. In the end, the StoreParams stores the calculated parameters

and archives the processed input file.

4.2.1 Generate combinations based on input file

The metaheuristic is not standardized and for this reason to build a training the available

parameters and their range must be configured. These must be configured in an input file. For

the two supported modes, the input structure is the same, however the file must start with

“dynamic_” for the dynamic mode and with “traditional_” for the traditional mode.

In Figure 5 is presented an example of a valid configuration for the PSO (Pyticle) metaheuristic

and for the Schwefel objective function.

27

Figure 5 -Training mode input file example

On the input file is configured the metaheuristic identifier, the name of the function, the

optimization mode, the fixed parameters, the dynamic parameters, and the relations between

the dynamic parameters that must be followed on the process of generating the combinations.

The metaheuristic identifier and the function name must be on the respective repositories and

the mode can be maximization or minimization. The fixed_param attribute is used to configure

the parameters that are valid for all the combinations and for all the parameters that impact the

number of objective function evaluations. It means that, for every generated combination the

number of objective function evaluations will be the same.

The dynamic_param attributes must follow the structure:

• <parameter name>:<minimum value>:<maximum value>:<split factor>

On this configuration, the split is used to define the list of parameters for each dynamic

parameter. So, for the minimum value 0 and for maximum value 1, if the split factor is 5 the list

of parameters used build the combinations will be (0, 0.2, 0.4, 0.6, 0.8, 1), if it is 4 the list will be

(0, 0.25, 0.5, 0.75, 1). This factor conditionate the number of combinations generated and,

consequently, it impacts the training execution time.

The relations attribute contains the restrictions that must be followed for the parameterization

to be considered valid. For example, if the wmin domain is (0, 0.5, 1) and the wmax domain is

(0.5, 1, 1.5), taking into consideration the restriction wmin<wmax, for wmin = 1, the domain for

the wmax value will only be 1.5.

In Figure 6 are presented examples of the combinations generated using the input file depicted

in the Figure 5.

28

Figure 6 - Example of generated combinations for the PSO (Pyticle) metaheuristic

As one can see by Figure 6, each parameter combination contains the identifiers, the

optimization mode, the fixed and dynamic parameters. These parameterizations are stored in

memory and are sent to back to the Training component in order to be used by the component

Evaluate combinations described on the following subchapter.

4.2.2 Evaluate generated combinations

The evaluate generated combinations component receives a list of parameterizations and

evaluates them, stores the parameterization and results in a file on the file system and retrieves

the file location to the Training main component. To optimize this process, the user has the

possibility of configuring, by system property, the number of parallel threads, the batch size

processed for each thread, the output file directory, and the number of times each combination

is evaluated.

Figure 7 shows a sequence diagram describing the process of evaluate the parameterizations.

29

Figure 7 - Evaluate combinations sequence diagram

The list of parameter combinations, generated on the previous step, are grouped in batches,

and each batch is executed where there is a thread available. The thread, using the

metaheuristic repository, evaluates the configurated number of repetitions of all the received

combinations. After each asynchronous operation, the results are stored, and the progress is

printed in the console. This training step, from the execution time perspective, is highly impacted

by the number of combinations and by the number of repetitions.

On the next section, it is described how these results are processed.

4.2.3 Calculate best parameterizations by training mode

This component calculates and selects the best parameterization to the selected training mode,

traditional or dynamic. These supported modes have different behaviors but are conditioned by

the same system properties. On this component, it is possible to configure the number of

parallel threads to be used, the number of parameterizations that should be reevaluated and

the number of repetitions for each reevaluation. On this step the number of repetitions is a

determinant factor to minimize the impact of the randomness associated to the optimization.

For this reason, to get a good parameterization, it should not assume a small value.

Figure 8 presents the sequence diagram for the traditional static mode.

30

Figure 8 - Calculate parameterizations traditional mode sequence diagram

As shown by Figure 8, initially the parameterizations with best results on the preprocessing

evaluation are filtered and a thread is created for each parameterization. On the parallel thread

the parameterization is evaluated several times. After this, the best parameterization is chosen

and retrieved. Figure 9 presents the sequence diagram for the dynamic mode training.

Figure 9 - Calculate parameterizations dynamic mode sequence diagram

31

The dynamic training process is similar to the traditional training, however three

parameterizations are chosen. To do that, the parameterizations are grouped by the standard

variation of all the solutions in three different groups. For each group a configurable number of

options are filtered by best fitness value. These options are re-evaluated. For the intermediate

and high exploitation execution, the initial solutions used on the training are calculated using

the already calculated parameterizations. So, for the intermediate, using the high exploration

configuration already calculated, the system generates a set of initial solutions to be used on

the intermediate training. For the high exploitation, the same happens, but the initial solutions

are generated calling the optimization service twice, one using the high exploration and other

using the intermediate parameterization. This strategy allows to simulate the optimizing

strategy in the Training module.

In the end the best parameterizations are retrieved to the Training main component in order to

be stored by the StoreParams module described on the next section.

4.2.4 Store parameterizations on the file system

This component is responsible by storing the parameterizations obtained on the configured

directory and to archive the processed files. Figure 10 presents an example of the directories

created to store the information on the configured repository.

Figure 10 - Structure of the parameters’ repository

The parameterizations are stored separately by metaheuristic. It can be seen by Figure 10 that

for each metaheuristic, two sub folders are created, identifying the mode used to generate the

parameterizations. Inside these folders, a folder is created following the pattern:

• <function Id>_<number of executed trains by function>_<number of combinations used

to train>

32

The first two attributes are important and mandatory because they are used to identify the

parameterization. The last one is purely indicative. Inside each folder there are three text files

for the dynamic training and one for the traditional. The file names are important and must

match the example. Figure 11 shows an example of the content of the mentioned

parameterization files.

Figure 11 - Example of the parameterization files content

These files, as shown by Figure 11, contain a Python dictionary converted in json, concatenating

the objective function, the algorithm id, the optimization mode used on train and the calculated

parameters. This can be added manually, as long as the described standards are met.

4.3 Optimization module

The Optimization module is a problem- and metaheuristic- agnostic multi-agent system

developed in Python that allows to maximize or minimize different objective functions. The

algorithm reads the configurations from an externalized configurations file and executes the

optimization using an external service. The system is developed using the Spade library and it is

composed by three different agents.

• A Timer agent responsible for starting the optimization and notifying when the timeout

is close

• A Coordinator agent responsible for coordinating the optimization

• An Executer agent responsible for calling the metaheuristic and process the results

The agents communicate using a XMPP server. On this project the used server is an instance of

the ejabberd installed locally [50]. The chosen XMPP server is not relevant and can be replaced

by any other similar application.

This module is configurable by system properties. These properties must be defined in an

optimization.properties file located on the base directory. Table 5 contains all the system

properties described and an example value for each property.

33

Table 5 - Optimization module system properties description

Property Description Example value

ftoptimizer.logs_base_dir Directory where the application

logs will be stored.

C:\tmp\ftoptimizer\logs

ftoptimizer.timer.agent The XMPP identifier of the timer

agent.

timerAgent@localhost

ftoptimizer.coordinator.agent The XMPP identifier of the

coordinator agent.

coordAgent@localhost

ftoptimizer.executer.agents The XMPP of the executer

agent.

execAgent@localhost

ftoptimizer.agents.password The password to connect to the

XMPP server.

password1

ftoptimizer.number.trials Number of trials executed on

the optimization.

4

ftoptimizer.archive.directory Directory where the input files

are moved after being

processed.

C:\tmp\opt_archive

ftoptimizer.params.directory Directory that contains the

parameters to be used on the

optimization.

C:\tmp\params

ftoptimizer.results.directory Directory where the results of

the optimization should be

stored.

C:\tmp\opt_results

ftoptimizer.timer.agent.period Time interval in seconds when
the timer agent will check the
optimization queue.

1

The critical system properties of this module are the ftoptimizer.timer.agent.period and the

ftoptimizer.number.trials. The first has impacts on the execution time because it conditions the

interval when the queue is verified. In real time environments this value should be small in order

to avoid optimizations in the queue without being processed. The second impacts the number

of times the objective function is evaluated.

In Figure 12 are presented two examples of the input files structure for the Optimization module.

The input files must be text files that start with exec_ and must be located on the configured

optimization queue directory.

34

Figure 12 - Optimization module input examples

As can be observed by Figure 12, the following attributes must be defined in the input file:

• metaheuristic_id – it is an optimization algorithm identifier that must be defined on the

metaheuristic repository.

• function_id – it is the objective function identifier that must be known by the system.

• function_parameters – identifies the parameters that should be used on the

optimization. On this attribute, the function used to define them does not need to

match the function to be optimized. Apart from that, it can be configured with and

without the version associated. If the version is not defined, the most recent version will

be chosen, if the version is defined, the parameters of the specific version are used.

• time_to_run – it is a number in seconds, and it is used to condition the maximum time

available to run the algorithm.

• mode – it can be minimization or maximization and it conditions the optimization

execution.

In the following section, the agents and their behaviors are described.

4.3.1 Agents

The developed multi-agent system has a complex architecture with three different agents, the

Timer agent, a Coordinator agent, and an Executer agent. The communication between these

agents is direct, without using a facilitator, and the implemented communication strategy is the

transmission of messages between agents. From the coordination point of view, the model

follows the master-slave architecture. The timer agent request services from the coordinator

and the coordinator requests services from the Executer.

Figure 13 presents the component diagram of the developed model. It contains the agents, the

behaviors, and the initialization process.

35

Figure 13 - Multi-agent system component diagram

As one can see by Figure 13, the Executer is initialized by the Coordinator and the Coordinator

is initialized by the Timer.

The Timer agent is a cognitive agent capable of initializing the Coordinator, reading the queue,

starting the optimization, managing the execution time, and requesting a faster solution if the

time to run is being exceeded. To do that, the agent is composed by 3 behaviors. A one-shot

behavior, responsible by starting the coordinator (InitializeCoordinatorAgentBehav), a period

behavior, responsible by checking periodically the training queue

(CheckOptiomizationQueueBehav) and a cyclic behavior, responsible by processing the received

messages (ProcessResponsesBehav).

The Coordinator is a cognitive agent capable of initializing the Executer, calculating the best

parameterizations for each execution, requesting an optimization, storing and managing the

best responses and sending the optimization result to the Timer agent. To do that, 2 behaviors

were implemented. A one-shot behavior, responsible by starting the Executer

(InitializeExecuterAgentBehav) and a cyclic behavior responsible by processing the received

messages (CoordinatorAgentExecuters).

The Executer agent is a reactive agent capable of receiving a request to execute the necessary

optimization, processing the optimization response, and sending back the answer. This agent is

composed by only one cyclic behavior, which is executed every time a request is received by the

agent (ExeciteOptimiazationBehav).

The following section contains the flow of the developed multi-agent model.

4.3.2 Multi-agent system

Besides the agents, the system requires a custom implementation of the MetaheuristicRepo and

FunctionRepo components. These two modules are described in detail on the section 4.1. In

Figure 14 is presented the sequence diagram of the optimization process using the developed

model.

36

Figure 14 – Multi-agent system sequence diagram

From Figure 14 it can be seen that, after being initialized, the Timer agent periodically checks

the optimization queue until a new optimization request is registered. Once a request arrives,

the input file is processed, and an asynchrony message is sent to the Coordinator. In the

meantime, the Timer starts an iterative process of checking the elapsed time since the

optimization started. If the time to run is close to being exceeded, a new message is sent

requesting a valid result. In the end, after receiving the result, this agent stores it on the

configured output directory.

Regarding the Coordinator agent, after receiving a message to start, it reads the metaheuristic

parameterization and sends a message to the Executer indicating the required data to run the

algorithm, parameterization, the number of trials, the function identifier, the metaheuristic

identifier, the execution mode, and the initial solutions. Afterwards, the agent waits for the

executer response. When the response is received, the agent calculates the next iteration initial

solutions, reads the parameterization of the next iteration, and sends another message to the

Executer agent so that it may start the new execution using the new parameter set. Generally,

the loop ends after the end of the high exploitation execution. However, if the agent receives a

timeout notifying message, it retrieves the current best response and stops the execution at the

end of the next iteration.

37

The Executer agent reacts based on the received messages. When it receives a message, it

performs the optimization using the metaheuristic and functions repositories, and it sends the

response back. During the optimization a configured number of trials received on the request is

executed. These are executed using asynchronous threads. Each thread executes only one trial,

and the parallel processing includes the optimization and the processing of the optimization

results, described in section 4.3.4. In the end, the results are aggregated, and the response is

sent back to the Coordinator agent.

The following section describes the messages used by the system to support the

communications.

4.3.3 Multi-agent system communication

As mentioned on the previous sections, the developed multi-agent system uses FIPA ACL (Agent

Communication Language) messages to communicate. The body of all the messages is a Python

dictionary converted in a valid json structure. The supported messages are:

• Start optimization from Timer to Coordinator. This has the inform performative code

and it indicates to the Coordinator that an optimization must be supported.

• Notify timeout from Timer to Coordinator. This has the request performative code, and

it means the timeout is being exceeded and a faster response is needed.

• Run optimization from Coordinator to Executer. This has the request performative

code, requesting for an optimization execution.

• Optimization result from Coordinator to Timer. This has the inform performative code

and it informs of the optimization result.

• Execution result from Executer to Coordinator. This has the inform performative code,

and it contains the optimization execution result.

4.3.4 Metaheuristics response processing

In order to improve the optimization results, as mentioned before, after each optimization the

three best solutions are selected. This is important since for each optimization the system

executes several trials. So, if a specific trial does not retrieve good results, it can be completely

excluded, and it is not processed on the following iterations. After being selected, the best

solutions of all the trials are analyzed and the most appropriate are used as the initial solutions

of the next iteration.

Figure 15 shows a diagram explaining the first step of the mentioned process. The example is

purely exemplificative, and it is not a result of an optimization.

38

Figure 15 - Example of the process of selecting the best solutions after a minimization

The best responses are processed in three steps, as shown by Figure 15. Initially the best 50

solutions obtained are selected, sorted by fitness values and the best one is selected. The sort

can be descending or ascending, depending on the optimization mode: maximization or

minimization. On the second step, it is calculated the variation of each objective function result,

calculated between the selected best solution and the others. The solutions are sorted by the

calculated value and the solution with highest variation is chosen. This is performed so that the

three selected solutions, to be used as initial solutions for the next execution, are sufficiently

spread along the solution space and are not focused on the same search point. On the third step,

the processing is similar; however, the variation is calculated using the two already selected

solutions. In this way, a third, distinct, solution is identified.

These selected solutions are combined with the solutions of the other trials and enable starting

the process that filters the most appropriate solutions. This process is conditioned by the current

step of the optimization. In Figure 16 is explained how the initial solutions are selected for the

intermediate configuration when the number of trials configured is 4.

39

Figure 16 - Example of the process of select the initial solution in a minimization

The process, as depicted by Figure 16, is executed by the following steps:

1. Process the three best solution for each trial. Process described in Figure 15.

2. Exclude the worst 1/3 solutions. The highest values for minimizations and the smallest

values for maximizations.

3. Sort by fitness value and select the smaller value in minimizations and the highest value

in maximizations.

4. Calculate the variation between the selected solution and the others.

5. Select the solution with the highest variation. It means that, theoretically, it is, among

the best solutions, the solution farthest from the already selected.

6. Calculate the variation between the two selected solutions and the others.

7. Select the solution with highest variation.

8. Calculate the variation between the three selected solutions and the others.

9. Select the solution with highest variation.

Following this approach, it is possible to ensure that the best solution is always considered on

the next iteration. Besides that, if an optimization retrieves bad results, it can be excluded, and

it is not taken into consideration in the second step. At the same time, selecting by variation,

instead of fitness value, the chances of selecting two similar initial solutions are reduced

significantly.

For the high exploration parameterization, the initial solution is not defined and for the high

exploitation, the process is similar to the intermediate parameterization. However, taking into

consideration that the focus of the high exploitation optimization is the local search, instead of

40

selecting the initial solutions by the variation, the list is sorted by fitness value, and the best

solutions are selected.

41

5 Results and discussion

In this section, the proposed solution is tested and validated by being compared with the

traditional approach for executing metaheuristic models. The analysis includes the training

execution time, the optimizations results based on the number of combinations used to train,

the analysis of the performance of the Optimization module, the impact of the number of trials,

and a comparison between the results obtained using different training functions. The test and

validation process includes the optimization of multiple benchmark functions, using the

Benckmark Python library and also the experimentation using a real-world problem in the power

and energy domain. PSO is used as the basis metaheuristic for the performed experiments, using

the Pyticle Swarm Python library, but a GA, using the Genetic Algorithm Python library is also

experimented as means to validate the applicability of the proposed solution to different

metaheuristic algorithms.

5.1 Impact of the configured thread number in the training
execution time

The Training module developed on this project supports parallel processing. In order to evaluate

the impact of the configured thread number on the execution time, the module was tested using

two different processors, the AMD Ryzen 7 4700 (8 threads) and the AMD Ryzen 7 5700 (16

threads). Figure 17 shows the analysis for the processor AMD Ryzen 7 4700 and Figure 18 shows

the analysis for the processor AMD Ryzen 7 5700, both considering the training process for

optimizing two benchmark functions, namely Rana(50) and Schewefel(50).

42

Figure 17 - Metaheuristic execution time by number of configured threads AMD Ryzen 7 4700

As shown by Figure 17, for processor AMD Ryzen 7 4700, with parallel processing, the

optimization execution time was reduced significantly when compared with the execution

without multi-processing. The reduction can be considered exponential until it reaches the

minimum value, when the number of threads configured is 7. Besides the expected differences

on the execution time, the same pattern was observed on both functions used on this test.

Figure 18 - Metaheuristic execution time by number of configured threads AMD Ryzen 7 5700

For the AMD Ryzen 7 5700 the behavior is similar, as shown by Figure 18. However, the minimum

time was obtained when the number of threads configured was 15. This can be explained by the

architecture differences between these processors. The first supports 8 threads running at the

same time and the second one 16.

43

Therefore, the number of threads significantly impacts the training execution time. The number

of threads should be smaller than the number of multi-threading supported by the used

processor.

In the following tests the AMD Ryzen 7 4700 processor was used with 4 parallel threads. This

value was chosen since the time difference is not significant and using only 4 threads, the

execution does not impact the other processes running on the machine.

5.2 Impact of the configured batch size in the training
execution time

The batch size is a system property that can be configurable. It conditions the number of

combinations evaluated for each thread. Figure 19 presents the analysis of the impact of this

system property on the metaheuristic execution time for the Rana (50) and for the Schewefel(50)

objective functions.

Figure 19 - Metaheuristic execution type by the batch size

As can be observed by Figure 19, the size of the batch does not impact the execution time.

Nevertheless, it is still useful as it conditions how often the progress is printed in the console.

5.3 Impact of the training combinations in the training
execution time

The Training module is composed by 4 components. The GenerateParams that generates the

combinations to process, the EvaluateParams that evaluates all the generated combinations,

the CalculateParams that processes the evaluations executed on the previous module and

calculates the best parametrization for the traditional mode and three parameterizations for the

dynamic mode, and the StoreParams that stores the calculated parameters. From these

44

components, only the EvaluateParams and the CalculatedParams have real impacts on the

training execution time.

The training execution time is highly influenced by the number of combinations that are

generated to be processed. Figure 20 presents the comparison analysis between the training

execution times for the Schewefel(50) function for the two execution modes.

Figure 20 - Impact of the number of combinations in the training execution time

Based on the obtained results, shown by Figure 20, by increasing the combinations number, the

traditional mode execution time increases greatly comparing to the dynamic mode. It occurs

since running the EvaluateParams in the traditional mode, the objective function is evaluated

three times more. It occurs because, in this step, all the combinations are evaluated the same

number of repetitions and two training execution are only considered equivalents when the

number of executions configured for the traditional is three times bigger.

When the number of combinations is lower, the difference is not significant, as it is related with

the CalculateParams component. For the dynamic approach, in this component, three different

parameterizations must be calculated instead of one. So, the EvaluateParams is faster on the

dynamic mode and the CalculateParams is faster on the traditional. However, the execution

time of the second component is not impacted by the number of combinations.

5.4 Impact of the training combinations number in the
optimization results

Another important aspect in the optimization of metaheuristic parameters is the optimization

results. Theoretically, the increase of evaluated combinations of parameters improves the

results obtained. In Figure 21 is shown the comparison between the number of combinations

used to train and the results obtained on the minimization of the Schwefel(50) function. The

parameterizations used on this analysis were generated using the same function.

45

Figure 21 - Impact of the number of training combinations on fitness value. Trained and tested

with Schwefel(50)

Contrarily to the formulated hypothesis, as can be seen by Figure 21, the obtained results do

not improve consistently with the increase of the number of tested parameter combinations.

For the dynamic mode, the objective function has a decreasing trend with the increase of

combinations. However, for the number of 3718 combinations, the value is considerably worst

in comparison to the value obtained with 2197 combinations. For the traditional mode, the best

result is obtained with 2197 combinations and with the increasing of the number of

parameterizations considered the results become substantially worse.

This unexpected behavior can be explained by the combination’s generation process and the

small number of parameterizations considered on the training, taking into consideration the

metaheuristic complexity. As explained on section 4.2.1 the combinations are generated based

on an input file. This input file must contain, for each parameter, the maximum and minimum

values, and the number of different values that must be considered for the parameter. For

example, if the parameter x must be between 0 and 2, for the factor 5, the list of values

considered is (0, 0.5, 1, 1.5, 2). On the other hand, for the factor 6, the list of values considered

is (0, 0.4, 0.8, 1.2, 1.6, 2). As can be observed, for this scenario, only the extremes are in both

lists, and there is no guarantee that the values in the longer list are better and will produce

better results.

Figure 22 presents a similar analysis; however, in this case the training is executed with the

Schwefel(50) function, but the tests are run using the Rastringin(50) function.

46

Figure 22 - Impact of the number of training combinations on the fitness value. Trained with

Schwefel(50) and tested with Rastrigin(50)

For this second test, displayed in Figure 22, the same inconsistence is observed, for both modes.

There is no pattern that represents the evolution of the results improvement by number of

combinations used to train.

Another conclusion achieved from these experiments is that the proposed solution gets better

results than the traditional solution. The difference is greater and more noticeable for the

second scenario, where the function used to train is different than the function used to test,

which means that the proposed dynamic Training model enables reaching a parameterization

set that is more suitable to deal with multiple problems, and not as problem specific as the one

achieved with the traditional mode.

5.5 Optimization module – execution time analysis

As described in section 4.3, the Optimization module is a multi-agent system composed by three

different modules that optimize in parallel a configured number of trials. This developed model

incorporates in the optimization additional processing. Namely communication between agents,

thread management and handling optimization responses. The additional processing execution

time, in real time environments, cannot be significant. In Table 6 is presented a performance

analysis, in milliseconds, of the proposed Optimization module by number of optimization trials.

In Table 7 is presented a summary containing the most relevant times of the mentioned analysis,

in percentage. The processor used in these tests is the AMD Ryzen 7 4700 (8 threads).

47

Table 6 - Optimization module execution time (milleseconds) analysis.

Trial Number 1 2 3 4 5 6 7 8 9 10

Optimization
execution

time
1377 1367 1402 1434 1467 1565 1622 1643 1581 1630

Process
response

time
227 234 222 230 236 242 256 262 256 261

Parallel
processing

time
1606 1636 1681 1725 1806 1915 1978 3898 3894 4095

Threading
management

time
2 35 57 61 103 108 100 1993 2057 2204

Total Time 1672 1688 1728 1788 1869 1978 2057 3945 3958 4156

Algorithm
additional

time
66 52 47 63 63 63 79 47 64 61

Difference to
1 trial time

0 16 56 116 197 308 385 2373 2386 2484

Table 7 - Optimization module time analysis summary

Trial Number 1 2 3 4 5 6 7 8 9 10

Algorithm
additional
time (%)

3.9 3.1 2.7 3.5 3.4 3.2 3.8 1.2 1.6 1.5

Threading
management

time (%)
0.1 2.0 3.3 3.4 5.5 5.5 4.9 50.5 52.0 53.1

Process
response (%)

13.6 13.9 12.9 12.8 12.6 12.2 12.4 6.6 6.5 6.2

Optimization
time (%)

82.4 81.0 81.1 80.3 78.5 79.1 78.9 41.6 39.9 39.2

As once can see by Table 6 and Table 7, the additional algorithm time (agents communication,

read and store filles, etc.) is not impacted by the number of trials and it is not significant. In

percentage, the highest value is less than 4% and in absolute numbers, it is stable, always below

80 milliseconds.

Thread management time is the time it takes to initialize the optimizing threads. This time is

highly impacted by the number of trials configured. For 1 trial the number is close to 0, the time

goes up slightly until reaching 8 trials, in which it has a sharp rise representing 50% of algorithm’s

execution time. It can be explained by the characteristics of the used processor; it supports only

8 threads running at the same time. So, for this processor the maximum number of trials that

should be used is 7. However, this analysis is only valid for this processor, being required a similar

analysis is using the proposed model in different processors.

48

The process response time is not impacted by the number of trials, and it is always below than

250 milliseconds. The optimization time, time spent running the optimization algorithm,

excluding when number of trials is higher than 7, represents about 80% of the total time.

So, using the algorithm it is possible to automatize the process of running a metaheuristic. This

algorithm includes additional processing that for a reasonable number of trials (below the

number of threads supported by the processor) does not significantly impact the optimization

time.

5.6 Impact of the number of trials on the optimization result

As concluded in the previous section, the number of configured trials, depending on the

processor used to run the algorithm, can have impacts on the optimization execution time.

However, it is not the only aspect that must be taken into consideration. The execution time

analysis must be associated with the obtained results. In theory, by increasing the number of

trials, the optimization results will be better.

Figure 23 shows the comparison between the fitness values obtained for the traditional mode,

for the dynamic mode considering only the best solution, and the proposed model. These values

are obtained using parameterizations generated with the Training module.

Figure 23 - Impact of number of trials in the optimization results. Trained and tested with

Schwefel(50)

As can be observed by Figure 23, the obtained results support the initial theory, with the

increase of the number of trials, the optimizations results are improved. These improvements

are more significant when the number of trials is low. It occurs because in complex optimizations,

there is a considerable randomness in the results.

49

Comparing the three optimization modes, the proposed solution always achieves better results.

Considering the solution that uses only the best solution after each iteration, for a low number

of trials, the results are close to the proposed solution; when the number of trials increases, the

difference increases and ends up getting closer to the traditional solution.

Figure 24 shows a comparison using the same parameterizations, reached after training with

Schwefel(50) function; however, the function used to test is the Rastrigin(50).

Figure 24 - Impact of number of trials in the optimization results. Trained with schwefel(50)

and tested with Rastrigin(50)

For this test, as shown by Figure 24 the same can be observed: the best results are obtained

using the proposed solution. However, the difference between the traditional solution and the

others is much higher if compared with the previous example.

It occurs because on the traditional mode, several combinations are tested, and the best is

chosen. This choice is made only and exclusively considering the fitness value obtained. So, the

probability of overspecialization is high. Using the proposed solution, the parameterizations are

not chosen taking into consideration only the objective function fitness value. First, the choice

is made focused on the proposed approach, which consists of reducing the exploration as the

number of iterations increase. So, regardless of the objective function to be optimized, in the

first iteration the variability of the solution is higher, in the second it will decrease, and in final

iteration the focus will be the local search.

To understand better the impacts of the proposed approach on the metaheuristic parameters

generalization, on the next section the Schwefel(50) and the Rastrigin(50) are tested with

parameterizations obtained using several benchmark functions.

50

5.7 Impact of the training function on the optimizations results

In some cases, it is not possible train the metaheuristic with the objective function that must be

optimized, e.g. if the function/problem is new and unknown, and requires a fast response time.

For these scenarios a parameterization optimized using different training functions must be

used. For this reason, an important factor on the metaheuristic parameters selection is the

generalization.

Figure 25 one can see the comparison between the results obtained for the Schwefel(50)

function using different parameterizations obtained by training with different objective

functions. Figure 26 shows the same comparison, but the optimized function is the Rastrigin(50).

Figure 25 - Impact of training function on the optimization results of the Schwefel(50)

51

Figure 26 - Impact of training function on the optimization results of the Rastrigin(50)

The results from Figure 25 and Figure 26 are very similar. In both situations, as expected, the

best result is obtained using the proposed solution with the parameterization obtained using

the same function in the training process. When applying the same parameterization reached

by the proposed model to optimize other functions that have not been used in the training phase,

the results are very close to the dynamic baseline and some of them are better than the

traditional baseline. The results obtained with traditional approach are worse than when using

the dynamic mode. When comparing with the global results, some high values can be observed.

So, with the proposed approach, the results are better, and the variation between the results

with each different parameterization is smaller than the results obtained with the traditional

approach. Therefore, besides enabling reaching better results for a specific objective function,

this approach allows the increase of the generalizability of the parameterizations.

5.8 Proposed solution applied to a real-world problem

In order to validate the suitability of the proposed model in dealing with real-world problems, a

case study considering an existing problem in the power and energy systems’ domain is

presented. Energy production from renewable sources is characterized by its intermittent

nature [52]. When it comes to its distribution this can prove to be a big challenge. Consequently,

energy distribution based on renewable sources requires new solutions, capable to deal with

these characteristics. The smart grid concept is pointed out as one of the most suitable solutions

to facilitate the participation of small players in electric power negotiations while improving

energy efficiency [53]. Smart grid considers the management of local generation, loads and

storage systems to be independent of the main system

52

Therefore, since market players as well as regulators have an interest in predicting market

behavior, it is crucial that they understand the market and learn how to evaluate their

investments in such a competitive environment. And simultaneously to take suitable decisions

about how and to participate in each market type [3].

Consequently, Pinto et al. [3] developed a part of an ongoing work that proposes a portfolio

optimization methodology that analyses different market opportunities and provides the best

investment profile for an electricity market player. In summary, this problem considers as input

the forecasted market prices for different market opportunities, e.g. day-ahead market, intraday

market sessions, bilateral contracts negotiation, local market trading, and given the total

amount of generation or consumption of a certain player, optimizes the volume to be transacted

in each of these markets in each (defined) transaction period in order to minimize the purchasing

cost or maximize the sale profit.

This model was used to validate the proposed solution. To validate it, two training executions

with 2197 combinations, one for the traditional and the other for the dynamic modes, were

executed. The fine tunned parameters are evaluated and the comparison between the results

obtained by number of trials is presented in Figure 27.

Figure 27 - Impact of the trials number on the optimization results using a real-word problem

As one can see from Figure 27, the results are similar to the results obtained using the

benchmark functions. For a low number of trials, the results obtained are very similar. However,

with the increase of number of trials, the results using the dynamic mode increases considerably

when compared with the same test using the traditional mode. It occurs because with the

proposed solution, using several trials, the bad results obtained on the first iterations are not

considered in the following executions.

53

5.9 Proposed solution using a genetic metaheuristic

In order to validate the capability of the proposed solution in dealing with multiple metaheuristic

algorithms, a Python open-source library Genetic Algorithm was integrated with the proposed

solution. The integration process includes the configuration for the training process, the

customization and the evaluation of the obtained results. The results were also compared with

the results obtained using PSO, with the Pyticle Swarm library.

5.9.1 Genetic Algorithm training configuration

The metaheuristics are not standardized. For this reason, to train a metaheuristic, the

parameters and their range must be configured. More details regarding the mentioned

configuration can be consulted in section 4.2.1. Figure 28 presents an example of a possible

configuration for the Genetic Algorithm library.

Figure 28 - Genetic Algorithm training dynamic configuration

As Figure 28 shows, the metaheuristic, in this configuration, is identified in the system by the id

GeneticAlgorithm, there are two fixed parameters that condition the number of times the

objective function will be executed, five dynamic parameters and one relation, the elit_ratio

must be smaller than the parents_portion. Using this configuration, 1620 different

parameterizations are evaluated.

The following section explains the code implemented on the customization layer in order to

support the mentioned metaheuristic.

5.9.2 Genetic Algorithm customization

Besides the training configuration file, another important step that must be implemented for

each supported metaheuristic is the customization layer. As described in section 4.1, for this

layer, it is only standardized the input parameters and the expected output. So, inside it the

code that must be introduced is strongly dependent on the algorithm characteristics.

To support the referred metaheuristic, several functions were implemented. In the Code snippet

3 is the parse_crossever_type function.

54

Parse crossover type.It is considered numeric by the training
Combinations generator
def parse_crossover_type(crossover_int):
 if int(crossover_int) == 1:
 return "uniform"
 if int(crossover_int) == 2:
 return "one_point"
 if int(crossover_int) == 3:
 return "two_point"
 raise ValueError("Crossover type is not supported!")

Code snippet 3 – Support genetic algorithm metaheuristic – Parse crossover

This function is required due a limitation on the generate combinations module. In the current

version, this module is not able to process string values. So, to overcome the referred limitation,

the Generate Combinations component considers the crossover an integer value between 1 and

3. On this function, the integer is converted to a string value that can be processed by the

optimization algorithm.

Generally, the objective function variables are conditioned by a maximum and a minimum value.

To support this feature, the metaheuristic must receive the number of variables and a vector

containing the maximum and minimum values for each variable. The Code snippet 4 contains

the function get_varbound_and_dimensions implemented.

def get_varbound_and_dimensions(func_id, param_index):
 #get function from functions repository
 function = get_function(func_id)
 # get dimension number
 n_vars = function.n_dimensions()
 m = function.suggested_bounds()
 # create vector using suggested bounds
 varbound = np.array([[m[param_index][0], m[param_index][0]]] * n_vars)
 return varbound, n_vars

Code snippet 4 – Support genetic algorithm metaheuristic – calculate min and max bound for

each parameter

For this project, this metaheuristic is only tested against benchmark functions and for this reason

the implemented function uses the function n_dimensions and suggested_bounds provided by

the Benchmark library. In theory, the suggested bounds are conditioned by the objective

function and, consequently, the function must be updated according to the functions supported

by the system.

Besides that, this library requires an initial population and does not support a single initial

solution. Note that the PSO version, using Pyticle Swarm, is able to generate automatically

(randomly) all the initial population individuals that are not provided as initial solution. For this

reason, taking into consideration that the proposed solution only selects a single solution after

each iteration, the code on the Code snippet 5 was developed in order to create a population

based on the selected solution.

55

def get_factor_and_bounds_by_iteration(varbound, index):
 max_bound = varbound[0][1]
 min_bound = varbound[0][0]
 factor = (varbound[0][1] - varbound[0][0])/200
 return max_bound, min_bound, factor

def build_initial_population(func_id, parameters, varbound,
population_size):
 if "initial_solution" not in parameters.keys() or
len(parameters["initial_solution"]) == 0:
 return []
 new_population = []
 init_sol = []
 # append initial solution
 for el in parameters["initial_solution"]:
 init_sol.append(el)
 init_sol.append(get_function(func_id)(init_sol))
 new_population.append(init_sol)
 # process other individuals
 for index in range(population_size - 1):
 individual = []
 param_index = 0
 for el in parameters["initial_solution"]:
 calculate_and_append_variation(varbound, param_index)
 param_index += 1
 individual.append(get_function(func_id)(individual))
 new_population.append(individual)
 return new_population

def calculate_and_append_variation(varbound, param_index):
 max_bound, min_bound, factor =
get_factor_and_bounds_by_iteration(varbound, param_index)
 #conditon if a negative, a positive or non value is applied
 rd_int = random.randint(-1,1)
 value = random.random() * rd_int * factor
 # add number, if the number exceed the max or
 # min bound, the max or min values are applied

 if el + num > max_bound:
 individual.append(max_bound)
 elif el + num < min_bound:
 individual.append(min_bound)
 else:
 individual.append(el + num)

Code snippet 5 – Support genetic algorithm metaheuristic – generate an initial population based

on an initial solution.

In summary, using the received initial solution as baseline, and taking into consideration the

maximum values for each variable, new valid solutions are created until the population size is

met. Equation 11 presents the formula used to calculate the value of each variable

𝑛 = 𝑏 + (
|𝑚𝑎𝑥 − 𝑚𝑖𝑛|

200
) ∗ 𝑟𝑖𝑛𝑡 ∗ 𝑟𝑓𝑙𝑜𝑎𝑡

(11)

where 𝑛 is the new function parameter value, 𝑏 is the baseline solution value, 𝑚𝑎𝑥 is the

maximum valid value, 𝑚𝑖𝑛 is the minimum valid value, 𝑟𝑖𝑛𝑡 is a random integer number between

-1 and 1, and the 𝑟𝑓𝑙𝑜𝑎𝑡 is random real number between 0 and 1.

56

The maximum variation that a parameter calculated by two hundredth part of the module of

the difference between the maximum value and the minimum value of objective function

parameter. So, if the maximum value is 500 and the minimum value is -500. The maximum

variation will be 5. The 𝑟𝑖𝑛𝑡 is used to condition the addition type, if the 𝑟𝑖𝑛𝑡 is -1 the number to

add will be negative (-5), if it is 1 the number to add will be positive (5) and if is 0 the value

calculated will be the baseline. The 𝑟𝑓𝑙𝑜𝑎𝑡 is used to randomize the amount that will be added.

For example, if the maximum variation is 5 and the 𝑟𝑖𝑛𝑡 is 1 and the 𝑟𝑓𝑙𝑜𝑎𝑡 is 0.5, the value added

to the baseline is 2.5. This is executed iteratively to all the objective function variables and after

each complete iteration, a new algorithm individual is generated.

After this processing, the metaheuristic can be instantiated and executed. The code to execute

the algorithm is presented in the Code Snippet 6.

def run_genetic_algorithm(function_id, parameters):
 # get dimension and bounds
 varbound, dimension = get_varbound_and_dimensions(function_id)
 # create parameters input dictionary
 algorithm_param = {
 "max_num_iteration": parameters["max_num_iteration"],
 "population_size": parameters["population_size"],
 "mutation_probability": parameters["mutation_probability"],
 "elit_ratio": parameters["elit_ratio"],
 "crossover_probability": parameters["crossover_probability"],
 "parents_portion": parameters["parents_portion"],
 "crossover_type":
parse_crossover_type(parameters["crossover_type"]),
 "max_iteration_without_improv": None,
 "initial_population": build_initial_population(function_id,
parameters, varbound, parameters["population_size"])
 }
 # Instance genetic algorithm model
 model = ga(
 algorithm_parameters=algorithm_param,
 function=get_function(function_id),
 dimension=dimension,
 variable_type="real",
 variable_boundaries=varbound,
 progress_bar= False,
 convergence_curve=False
)
 # run optimization
 model.run()
 # process response
 solutions, fitness_values = process_response(model)
 # initialize optimization result
 return process_response(model)
)

Code snippet 6 – Support genetic algorithm metaheuristic – initialize and run the Genetic

Algorithm library

Initially, a Python dictionary containing the required parameters is initialized, then the instance

of the Genetic Algorithm is initialized, and in the end, the optimization is executed.

57

After the optimization, the optimization response must be processed and an OptimizationResult

must be created in order to returned. The code that processes the response and creates the

mentioned object is in the Code Snippet 7.

def process_response(model):
 solutions = []
 fitness_values = []
 for el in model.all_solutions:
 it_solutions = []
 it_fitness_values = []
 for el2 in el:
 it_fitness_values.append(el2[-1])
 it_solutions.append([x for x in el2[0:-1]])
 solutions.append(it_solutions)
 fitness_values.append(it_fitness_values)
 return OptimizationResult(
 model.best_function, model.best_variable, fitness_values,
solutions)

Code snippet 7 – Support genetic algorithm metaheuristic – process response in the

OptimizationResult format.

As can be observed, the evaluated solutions inside the metaheuristic are iterated and

manipulated in order to be in the correct structure.

Summing up, taking into consideration that the huge differences between the Pyticle Swarm

and the Genetic Algorithm metaheuristics, it can be concluded that with some customizations,

the proposed solution is problem-agnostic and can be integrated with several algorithms

without huge developments. However, the metaheuristic must be able to retrieve the solutions

evaluated during the optimization process and must be able to receive an initial solution.

On this project, both metaheuristics are improved in order to support the required features and

facilitate the integration with the developed modules. More details about the changes

developed can be consulted in the section 3.

5.9.3 Genetic Algorithm results and comparison with Pyticle Swarm

To evaluate the effectiveness of the approach with GA, the parameterizations obtained using

the configuration file in Figure 28 is compared with a similar configuration obtained using the

traditional mode. In Figure 29 is presented the result of this comparison by number of trials.

58

Figure 29 - Genetic algorithm - Impact of number of trials in the optimization results. Trained

and tested with Schwefel(50)

As can be observed by Figure 29, using the proposed solution, the fitness values obtained are

considerately better when compared with the traditional mode. Additionally, as observed in

previous experiments, the difference between the obtained results using the proposed solution

and the traditional mode increases with the increase of the trials number.

Therefore, the results reinforce the conclusions obtained in the previous sections, using the

proposed approach. Taking into consideration that it is a requirement of the proposed solution

to be metaheuristic agnostic, Figure 30 presents the comparison between the results obtained

using the PSO and the Genetic Algorithm metaheuristics.

59

Figure 30 - Comparation between the GA and PSO results obtained optimizing the

Schewefel(50) function

From Figure 30 it can be seen that the best results are obtained using the Genetic Algorithms

library. This allows to conclude that the developed model is not over specified to the algorithm

used on the development, especially considering that the proposed model was developed using

the Pyticle Swarm library as the basis throughout the development and implementation phase.

The good results achieved with both metaheuristics meet the expectations, taking into

consideration that the metaheuristic specifications are externalized in a customization layer,

making the proposed mode, in fact, metaheuristic-agnostic.

5.10 Summary

Results show that the developed Training module is highly impacted by the number of threads

that is configured and this configuration depends on the processor used to execute the

algorithm. In the other hand the batch sizer does not have significant impact.

The training for the proposed solution is faster than the training for the traditional mode. The

difference between these two approaches increases exponentially with the increase of the

number of parameter combinations that are experimented.

In theory, the increase of the number of combinations used to train, improves the result.

Contrary to the expectations, for the number of combinations considered on this project, it is

not possible to find a correlation between the number of combinations and the outcomes

obtained. It occurs because there is no guarantee that all parameterizations evaluated in one

execution are also evaluated in another that evaluates more combinations of parameters.

The Optimization module is highly impacted by the configured number of trials. From the

execution time perspective, it increases slightly until it suddenly increases considerably. The

60

value at which this happens is not static and it is conditioned by the processor used on the

optimization. The results, as expected, are improved consistently for each additional trial.

The results obtained using dynamic optimization approach in comparison with the traditional

approach obtains better results. This improvement is more evident when the function used to

train is different than the function used to test.

Besides the mentioned conclusions, the proposed approach, when applied to a real-world

problem or a different metaheuristic obtains similar results. It means that it is problem- and

metaheuristic- agnostic.

61

6 Conclusion

6.1 Achieved objectives

Given the complexity of real-world problems, the impact of the metaheuristic parameterization

on the optimization results and the impact of the objective function in the metaheuristic

configuration, this thesis developed an automatic parameter configuration solution composed

by two modules, the Training and the Optimization module.

The Training module, through a configuration file, is a problem and algorithm agnostic system

that can be used to automatize the process of training a metaheuristic, facilitating the fine-

tuning process. The module supports two modes, a traditional mode where several

combinations are tested and the best one is chosen, and a dynamic mode where fine-tuning is

executed assuming that the optimization will occur in three steps and the exploration degree

will decrease after each step.

The Optimization module is a multi-agent system that optimizes a function using parameters

optimized through the Training module dynamic mode. The module introduces extra processing

that increases optimization execution time. However, most of the time spent continues to be in

optimizing and this approach improves considerably the obtained results, especially when the

function used to optimize is different from the function used to fine tune the metaheuristic

parameters. Furthermore, for each execution, the maximum execution time is defined and if the

time is being exceed, the system is prepared to stop the execution and retrieve the current best

solution.

Summing up, as proven by experience, using the Training module, the fine-tuning process is

automized, and consequently, the process of supporting a different function or metaheuristic is

facilitated. Using the dynamic approach inside the Optimization module, the results are

improved without compromising the optimization deadlines. The improvement is bigger when

the function used to train is different from the function used to optimize. So, with this approach,

the generalization is bigger. It occurs because the fine-tuning is executed taking into

consideration the approach (force the reduction of exploration) and not the problem.

62

The project was developed using the PSO metaheuristic and a set of benchmark functions. In

the end, to validate the proposed solution it was tested using a real-world optimization problem

that optimizes energy portfolios and using the Genetic Algorithm Python library. In order to

guarantee the compatibility of the used metaheuristics with the developed system, the

metaheuristics are improved in order to support the required features.

The results achieved during this work have led to the publication of an extended abstract,

entitled “Online adaptation of the search process of metaheuristic algorithms”. This publication

was integrated in the workshop “Artificial Intelligence Technique for the Optimization of Electric

Power Distribution Systems”. Besides that, two articles are being written. One entitled “Multi-

agent based model for the dynamic adaptation of metaheuristic optimization” to be submitted

in the IEEE Transactions on Industrial Informatics journal; the other entitled “Dynamic

parameterization of metaheuristics using a multi-agent system for the optimization of electricity

market participation” to be submitted at the 21st International Conference on Practical

Applications of Agents and Multi-Agent Systems (PAAMS) 2023.

The development of this thesis contributed to development of the international project

“Development of Artificial Intelligence Techniques for the Optimization of Electric Power

Distribution Systems (FCT/CAPES 2019.00141.CBM)”

6.2 Limitations and future work

During the development of this project, some limitations impacted directly the developed work.

There are not many real functions that can be used to test metaheuristics and as this project is

focused on the optimization process and not on the problem itself, it limited considerably the

testing phase.

The performance of the proposed approach is highly influenced by the processor characteristics.

It means that in order to configure the ideal number of threads it is necessary to know the

processor characteristics every time the algorithm is executed in a different machine, resulting

in a specific update of the system configuration.

Both modules of the proposed solution are algorithm agnostic, however, in general the

metaheuristics are very complex, and it is essential to understand the metaheuristic in order to

define the parameters range correctly. Additionally, if the number of parameters or their range

is huge, the number of combinations that must be evaluated in order to get good results should

be huge as well. Consequently, the training can become slow making it difficult to perform a

specific training process for each supported objective function.

To minimize the mentioned limitations and, at same time, to increase the effectiveness, the

generalization, and the value of the proposed solution, several improvements should be

implemented in the future.

The Training module needs to be updated in order to evaluate small variations of the calculated

metaheuristic parameterizations. On the other hand, other offline training approaches, such as

63

grid search [54] or Sequential Model-based Algorithm Configuration (SMAC) [55], can be

evaluated and compared with the solution proposed in this project.

From the combination’s generation perspective, the Generate Combinations must be more

dynamic and support other configuration types, such as a static list of values. Besides that,

dynamism must be added to the parameters that impact the number of function evaluations.

For example, the value for these parameters can be defined based on the variation between

each iteration and the maximum time to run.

Regarding the Optimization module, it should be prepared to run using the traditional approach.

The number of trials, instead of being static, can be adapted to environment conditions. For

instance, the execution time should be predicted and if the time is close to the maximum time

to run, the number of trials should be reduced.

In the end, both modules should be tested and validated using other metaheuristics and using

further real-world objective functions.

65

Bibliography

[1] V. Tatsis and K. Parsopoulos, "Reinforced Online Parameter Adaptation Method for

Population-based Metaheuristics," in 2020 IEEE Symposium Series on Computational

Intelligence (SSCI), Canberra, ACT, Australia, 2020.

[2] K. Hussain, M. Najib, M. Salleh, S. Cheng and Y. Shi, "Metaheuristic research: a

comprehensive survey," Artificial Intelligence Review, vol. 52, p. 2191–2233, 2019.

[3] T. Pinto, Z. Vale and S. Widergren, "Local Electricity Markets," Academic Press, pp. 1-3,

2021.

[4] A. G. &. A. Tayal, "Metaheuristics: review and application," Journal of Experimental &

Theoretical Artificial, vol. 25, no. 4, pp. 503-526, 2013.

[5] E.-G. Talbi, Metaheuristics: From Design to Implementation, Wiley, 2009.

[6] L. Bianchi, M. Dorigo and L. M. Gambardella, "A survey on metaheuristics for stochastic

combinatorial," Natural Computing, vol. 8, pp. 239-287, 2009.

[7] F. Peres and M. Castell, "Combinatorial Optimization Problems and Metaheuristics:

Review, Challenges, Design, and Development," Applied Sciences, vol. 11, no. 14, 2021.

[8] A. Soler-Dominguez, A. A. Juan and R. Kizys, "A Survey on Financial Applications of

Metaheuristics," vol. 50, no. 15, pp. 1-23, 2017.

[9] V. Coleto-Alcudia and M. A. Vega-Rodríguez, "A metaheuristic multi-objective

optimization method for dynamical network biomarker identification as pre-disease

stage signal," AppliedSoftComputing, vol. 109, no. 107554, 2021.

66

[10] M. A. Elaziz, A. H. Elsheikh, D. Oliva, L. Abualigah, S. Lu and A. A. Ewees, "Advanced

Metaheuristic Techniques for Mechanical Design Problems: Review," Archives of

Computational Methods in Engineering, vol. 29, p. 695–716, 2021.

[11] A. A. Dadvar, J. Vahidi, Z. Hajizadeh, A. Maleki and M. R. Bayati, "Experimental study on

classical and metaheuristics algorithms for optimal nanochitosan concentration

selection in surface coating and food packaging," Food Chemistry, vol. 335, no. 15, 2021.

[12] M. Papadimitrakis, N. Giamarelos, M. Stogiannos, E. Zois, N.-I. Livanos and A.

Alexandridis, "Metaheuristic search in smart grid: A review with emphasis on planning,

scheduling and power flow optimization applications," Renewable and Sustainable

Energy Reviews, vol. 145, no. 111072, 2021.

[13] U. Can and B. Alatas, "A novel approach for efficient stance detection in online social

networks with metaheuristic optimization," Technology in Society, vol. 64, no. 101501,

1021.

[14] G. Juarez, O. Abarrategi, Eguia and P., "Importance of Parameterization to Improve

Meta-heuristics Performance for Smart Grid Applications," in 18th International

Conference on Renewable Energies and Power Quality, Granada, Spain, 2020.

[15] F. Almeida, D. Giménez, J. J. López-Espín and M. Pérez-Pérez, "Parameterized Schemes

of Metaheuristics: Basic Ideas and Applications With Genetic Algorithms, Scatter Search,

and GRASP," TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, vol. 43,

no. 3, pp. 570-586, 2013.

[16] T. Dokeroglua, E. Sevinc, T. Kucukyilmaz and A. Cosar, "A survey on new generation

metaheuristic algorithms," Computers & Industrial Engineering, vol. 137, 2019.

[17] A. E. Eiben, R. Hinterding and Z. Michalewicz, "Parameter Control in Evolutionary

Algorithms," RANSACTIONS ON EVOLUTIONARY COMPUTATION, vol. 3, no. 2, pp. 124-

141, 1999.

[18] J. Carvalho, T. Pinto and R. Romero, "Online adaptation of the search process of meta-

heuristic algorithms," in Abstract for the Workshop on Artificial Intelligence Techniques

for the Optimization of Electric Power Distribution Systems, Online, 2022.

[19] "Benchmark Functions - A Python Library," 29 September 2021. [Online]. Available:

https://gitlab.com/luca.baronti/python_benchmark_functions/-

/blob/master/README.md. [Accessed 22 January 2022].

[20] M.-H. Lin, J.-F. Tsai and C.-S. Yu, "A Review of Deterministic Optimization Methods in

Engineering and Management," Mathematical Problems in Engineering, vol. 2012, no.

756023, 2012.

[21] P. Liu, X. Cai and S. Guo, "Deriving multiple near-optimal solutions to deterministic

reservoir operation problems," Water Resources Researchers, vol. 47, no. 11, 2011.

67

[22] I. Boussaïd, J. Lepagnot and P. Siarry, "A survey on optimization metaheuristics,"

Information Sciences, vol. 237, pp. 82-117, 2013.

[23] M. Corazza, G. d. Tollo, G. Fasano and R. Pesenti, "A novel hybrid PSO-based

metaheuristic for costly portfolio," Annals of Operations Research, vol. 304, pp. 109-137,

2021.

[24] D. Paul, R. Su, M. Romaina, V. Sébastienb, V. Pierrea and G. Isabellea, "Feature selection

for outcome prediction in oesophageal cancer using genetic algorithm and random

forest classifier," Pattern Recognition, vol. 60, pp. 42-29, 2017.

[25] L. Kaia, Y. Yanyun, W. Yunlong and H. Zhenwu, "Research on structural optimization

method of FRP fishing vessel based on artificial bee colony algorithm," Advances in

Engineering Software, vol. 121, pp. 250-261, 2018.

[26] E. El-Gendy, M. M. Saafan, M. S. Elksas, S. Saraya and F. F. G. Areed, "Applying hybrid

genetic–PSO technique for tuning an adaptive PID controller used in a chemical

process," Soft Comput, vol. 24, p. 3455–3474, 2020.

[27] J. G. Álvarez, M. Á. González, C. R. Vela and R. Varela, "Electric Vehicle Charging

Scheduling by an Enhanced Artificial Bee Colony Algorithm," Energies, vol. 11, no. 10,

2018.

[28] F. A. Ozbay and B. Alatas, "A Novel Approach for Detection of Fake News on Social

Media Using Metaheuristic Optimization Algorithms," Elektronika Ir Elektrotechnika.

[29] V. Tatsis and K. Parsopoulos, "Dynamic parameter adaptation in metaheuristics using

gradient approximation and line search," Applied Soft Computing, vol. 74, pp. 368-384,

2019.

[30] A. Rodríguez-Molina, E. Mezura-Montes, M. G. Villarreal-Cervantes and M. Aldape-

Pérez, "Multi-objective meta-heuristic optimization in intelligent control: A survey on

the controller tuning problem," Applied Soft Computing , vol. 93, no. 106342, 2020.

[31] P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria and M. Valdez, "Optimal design of fuzzy

classification systems using PSO with dynamic parameter adaptation through fuzzy

logic," Expert Systems with Applications, vol. 40, no. 8, pp. 3196-3206, 2013.

[32] Z.-H. Zhan, J. Zhang, Y. Li and H. S.-H. Chung, "Adaptive Particle Swarm Optimization,"

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 6,

pp. 1362-1381, 2009.

[33] V. Zakharov and A. Mugaiskikh, "Dynamic Adaptation of Genetic Algorithm for Solving

Routing Problems on Large Scale Systems," Advances in Systems Science and

Applications, vol. 20, no. 2, pp. 32-43, 2020.

[34] C. J. M. Moctezuma, J. Mora and M. G. Mendoza, "A self-adaptive mechanism using

weibull probability distribution to improve metaheuristic algorithms to solve

68

combinatorial optimization problems in dynamic environments.," Math Biosci Eng., vol.

17, no. 2, pp. 975-997, 2019.

[35] E. Shadkam, "Parameter setting of meta-heuristic algorithms: a new hybrid method

based on DEA and RSM," Environmental Science and Pollution Research, 2021.

[36] S. Han and L. Xiao, "An improved adaptive genetic algorithm," in 2022 International

Conference on Information Technology in Education and Management Engineering

(ITEME2022), SHS Web Conference, 2022.

[37] R. Sala and R. Müller, "Benchmarking for Metaheuristic Black-Box Optimization:

Perspectives and Open Challenges," Neural and Evolutionary Computing, 2020.

[38] J. Kennedy and R. Eberhart, "Particle Swarm Optimization," in MHS'95. Proceedings of

the Sixth International Symposium on Micro Machine and Human Science, Nagoya,

Japan, 1996.

[39] D. Wang , D. Tan and L. Liu, "Particle swarm optimization algorithm: an overview," Soft

Computing, vol. 22, pp. 387-408, 2018.

[40] N. K. Jain, U. Nangia and J. Jain , "A Review of Particle Swarm Optimization," Journal of

The Institution of Engineers (India): Series B, vol. 99, pp. 407-411, 2018.

[41] L. James and V. Miranda, "PySwarms: a research toolkit for Particle Swarm Optimization

in Python," The Journal of Open Source Software, vol. 3(21), no. 433, 2018.

[42] I. Bakurov, M. Buzzelli, M. Castelli, L. Vanneschi and R. Schettini, "General Purpose

Optimization Library (GPOL): A Flexible and Efficient Multi-Purpose Optimization Library

in Python," Applied Sciences, vol. 11, no. 4774, 2021.

[43] B. Veiga, R. Faia, T. Pinto and Z. Vale, "https://pypi.org/project/Pyticle-Swarm/," 14

January 2022. [Online]. Available: https://pypi.org/project/Pyticle-Swarm/#description.

[Accessed 22 January 2022].

[44] S. Katoch, S. S. Chauhan and V. Kumar, "A review on genetic algorithm: past, present,

and future," Multimedia Tools and Applications, vol. 80, p. 8091–8126, 2021.

[45] PYGAD, "PyGAD - Python Genetic Algorithm," [Online]. Available:

https://pygad.readthedocs.io/en/latest/. [Accessed January 2022].

[46] R. M. Solgi, "geneticalgorithm - Project description," [Online]. Available:

https://pypi.org/project/geneticalgorithm/. [Accessed January 2022].

[47] T. Devlin, "Genetic Algorithms for python," [Online]. Available:

https://pypi.org/project/genetic-algorithms/. [Accessed January 2022].

69

[48] F. Bellifemine, A. Poggi and G. Rimassa, "Developing multi-agent systems with a FIPA-

compliant agent framework," SOFTWARE—PRACTICE AND EXPERIENCE, vol. 31, pp. 103-

128, 2001.

[49] SPADE, "The SPADE agent model," [Online]. Available: https://spade-

mas.readthedocs.io/en/latest/model.html. [Accessed 5 2022].

[50] Ejabberd, "Ejabberd," [Online]. Available: https://docs.ejabberd.im/get-started/.

[Accessed 2022].

[51] R. Faia, T. Pinto and Z. Vale, "Portfolio Optimization for Electricity Market Participation

with Particle Swarm," in 2015 26th International Workshop on Database and Expert

Systems Applications (DEXA), Valencia, Spain, 2015.

[52] "Nexus between financial development and renewable energy: Empirical evidence from

nonlinear autoregression distributed lag,," Renewable Energy, vol. 193, pp. 475-483,

2022.

[53] N. Mostafa, H. S. M. Ramadan and O. Elfarouk, "Renewable energy management in

smart grids by using big data analytics and machine learning," Machine Learning with

Applications, vol. 9, no. 100363, 2022.

[54] D. M. Belete and M. D. Huchaiah, "Grid search in hyperparameter optimization of

machine learning models for prediction of HIV/AIDS test results," International Journal

of Computers and Applications, 2021.

[55] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T.

Ruhkopf, R. Sass and F. Hutter, "SMAC3: A Versatile Bayesian Optimization Package for

Hyperparameter Optimization," ournal of Machine Learning Research, vol. 22, pp. 1-9,

2021.

