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Abstract— This paper proposes a novel hybrid particle swarm 

optimization methodology to solve the problem of optimal 

participation in multiple electricity markets. The decision time is 

usually very important when planning the participation in 

electricity markets. This environment is characterized by the time 

available to take action, since different electricity markets have 

specific rules, which requires participants to be able to adapt and 

plan their decisions in a short time. Using metaheuristic 

optimization, participants’ time problems can be resolved, 

because these methods enable problems to be solved in a short 

time and with good results. This paper proposes a hybrid 

resolution method, which is based on the particle swarm 

optimization metaheuristic. An exact mathematical method, 

which solves a simplified, linearized, version of the problem, is 

used to generate the initial solution for the metaheuristic 

approach, with the objective of improving the quality of results 

without representing a significant increase of the execution time.  

Index Terms— Artificial intelligence, electricity markets, hybrid 

resolution methods, portfolio optimization, metaheuristic 

optimization  

I. INTRODUCTION  

Hybrid optimization algorithms are characterized by 
combining different types of optimization methods. Different 
combinations of optimizations methods have been used in the 
scientific community: exact methods combined with other 
exact methods, exact methods combined with metaheuristics, 
and combinations of different metaheuristics [1]. Metaheuristic 
does not have a standard definition, however, a widely accepted 
characterization is provided by Osman and Laporte [2]: “A 
metaheuristic is formally defined as an iterative generation 
process which guides a subordinate heuristic by combining 
intelligently different concepts for exploring and exploiting the 
search space, learning strategies are used to structure 
information in order to find efficiently near-optimal solutions.”  

Metaheuristic approaches are especially useful for reaching 
good solutions for heavy computational problems in fast 
execution times. This is especially relevant when solving real-
world problems, in which the decision time is a relevant 
decision factor. The participation in electricity markets is one 
of these problems due to the significant changes during the last 
decades [3]. Before the liberalization of electricity markets, the 

system operator considered demand to be fixed and scheduled 
operation plans based on generation resources. This made 
electricity negotiations highly restricted, mostly due to the fact 
that much of the produced energy came from fully controllable 
generation sources. 

The recent energy policy has favored a massive introduction 
of renewable energy sources on electricity markets, which has 
greatly impacted their penetration in power systems [4]. The 
intermittent nature of renewable energy had a very large impact 
on the way the negotiations operated, since the energy supply 
directly influences the market prices. At the market level the 
competition has increased, bringing a greater number of sellers 
to participate [5]. This also leads to the emergence of 
aggregators to represent (and even manage) groups of small 
player [6], in order to increase their impact on the market. A 
market dimension is also being introduced into retail markets, 
in order to motivate consumers to change their passive attitudes. 
The enlargement of metering infrastructure is now creating the 
means to enable consumers to participate in competitive retail 
markets by overcoming the lack of infrastructure that enables 
sending market signals to and from consumers [7].  

With the increase in competitiveness in electricity markets 
[8], caused by the increase of energy producers (in particular 
renewables), there is an increasing need for tools that can 
provide support to electricity market participants. Multi-Agent 
Simulator of Competitive Electricity Markets (MASCEM) [9] 
is integrated with a decision support system that aims at 
providing market players with suitable suggestions on which 
actions should be performed at each time and in different 
contexts of negotiation. This system is Adaptive Decision 
Support for Electricity Markets Negotiations (AiD-EM). AiD-
EM is itself composed by several distinct decision support 
systems, directed to the negotiation in different EM types; e.g. 
Adaptive Learning Strategic Bidding System (ALBidS) [10].  

After this introduction, section II presents an overview of 
the related work the field, and section III presents the 
mathematical formulation of the addressed problem. Section IV 
details the proposed hybrid model based on particle swarm 
optimization methodology. Section V presents the results of the 
case study, and finally, section VI presents the most relevant 
conclusions of this work. 
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II. RELATED WORK 

Markowitz proposed the Markowitz Portfolio Selection 
Theory in 1952 [11]. This theory enables combining assets in 
such a way that the resulting portfolio is characterized by a 
higher return to risk ratio, when compared to that provided by 
every single asset by itself, an effect known as diversification; 
i.e. the more diversified the portfolio, the lower risk level. 

The concepts of portfolio optimization and diversification 
are instrumental in the development and understanding of 
financial markets and financial decision making. However, in 
the last years, the theory of portfolios has been applied in the 
electricity markets area, with the purpose of supporting the 
decision making [12]. Using the portfolio optimization results, 
market participants can obtain a better market participation, by 
obtaining a larger profit / lower cost from their participation.  

In [10], the authors propose a portfolio optimization for 
multiple electricity market participation. In this methodology, 
the players can sell and buy electricity in several markets as 
well as selling the produced energy. A risk management model 
is also considered, but it considers that risk is originating from 
the prices forecasting. The prices forecasting is made through 
an artificial neural network (ANN) [13] and three different 
values for each case are presented. These three values are 
considered as the risk levels. The risk is associated with the 
expected price because with the simulations ANN arrives to 
different values for the same case. The maximum, minimum 
and average values for all simulations are calculated, in order 
to feed the optimization problem. A Particle Swarm 
Optimization (PSO) [14] variant is used to solve the 
optimization problem. 

In [15], the authors propose a methodology for risk analysis 
and portfolio optimization of power assets with hydro, wind and 
solar power. In case study the authors considering the 
Regulated Contacting Environment and the Mechanism for 
Reallocation of Energy Brazil.    

When the execution time for reaching a solution for these 
problems is a relevant decision factor, metaheuristic 
optimization approaches are often applied. Metaheuristics can 
be based on [16]: single-solution, if they use a single starting 
point (e.g. local search, simulated annealing, iterated local 
search and tabu search) or population-based if a population 
search points is used (e.g. particle swarm, evolutionary 
algorithms, colony based optimization). Many of these 
approached are inspired by natural processes (e.g. evolutionary 
algorithms from biology or simulated annealing from physics).   

In metaheuristics search there two ways to characterize the 
research: exploration of the search space (diversification) and 
exploitation of the best fond solution (intensification). 
Exploration means the diversification of the search to different 
regions in the search space for a better sampling of the solution 
space. In the other hand, exploitation means the intensification 
of the search around some the good quality solutions in other to 
find an improved solution. A balance between two 
contradictory objectives must therefore be guaranteed [17]. 
When applying these strategies to the solution of any 
optimization problem, the main concern is to determine the 
algorithm capability for finding the global optimum. The 

desirable feature of an effective optimization method is a high 
successes probability for finding the global solution ate the 
expenses the lower computational efforts. Theoretically, it is 
important to remark that stochastic methods (metaheuristics) 
need an infinite number of objective function evaluations to 
guarantee the convergence of the global optimum. This number 
is determined by the parameters employed for controlling the 
search process (exploitation and exploration) and the 
termination criterion [18]. There are many stopping criterion 
used in stochastic optimization methods: they are based on the 
measurement of the relative error to the know value of the 
global optimum, the improvement of the value of objective 
function for a certain number of iterations or functions 
evaluations, or a maximum allowable numerical effort that is 
defined in terms of the number of algorithm iterations or 
objective function evaluations.  

In summary, the optimal solution cannot be guarantee when 
using a metaheuristic, but a reasonable good solution is 
obtained without having to explore the whole solutions space, 
and consequently in a much shorter time, when compared to 
resolution by exact methods. There are different metaheuristics 
that can be applied, these vary depending on the search heuristic 
method chosen to guide the search. Thus, each metaheuristic 
can present different results. In real world applications, the 
main interest is in obtaining a good solution in a reasonable 
amount of time. Therefore, metaheuristic methods are highly 
appreciated as efficient means for dealing with real-world 
applications [19]. 

III. MATEMATICAL FORMULATION 

The formulation presented in (1) is used to represent the 
optimization problem, as proposed in [20] . In (1) 𝑑 represents 
the weekday, 𝑁𝑑𝑎𝑦 represent the number of days, 𝑝 represents 
the negotiation period, 𝑁𝑝𝑒𝑟 represent the number of 
negotiation periods, 𝐴𝑠𝑒𝑙𝑙𝑀 and 𝐴𝑏𝑢𝑦𝑆 are boolean variables, 
indicating if this player can enter in negotiation in each market 
type, 𝑀 represents the referred market, 𝑁𝑢𝑚𝑀 represents the 
number of markets, 𝑆 represents a session of the balancing 
market, and 𝑁𝑢𝑚𝑆 represents the number of sessions.  
Variables 𝑝𝑠𝑀,𝑑,𝑝 and 𝑝𝑠𝑆,𝑑,𝑝 represent the expected 

(forecasted) prices of selling and buying electricity in each 
session of each market type, in each period of each day. The 
outputs are 𝑆𝑝𝑜𝑤𝑀 representing the amount of power to sell in 
market 𝑀 and 𝐵𝑝𝑜𝑤𝑆 representing the amount of power to buy 
in session 𝑆.   

𝑓(𝑆𝑝𝑜𝑤𝑀…𝑁𝑢𝑚𝑆 , 𝐵𝑝𝑜𝑤𝑆1…𝑁𝑢𝑚𝑆)

= 𝑀𝑎𝑥

[
 
 
 
 
 

∑ (𝑆𝑝𝑜𝑤𝑀,𝑑,𝑝 × 𝑝𝑠𝑀,𝑑,𝑝 × 𝐴𝑠𝑒𝑙𝑙𝑀)

𝑁𝑢𝑚𝑀

𝑀=𝑀1

−

∑ (𝐵𝑝𝑜𝑤𝑆,𝑑,𝑝 × 𝑝𝑠𝑆,𝑑,𝑝 × 𝐴𝑏𝑢𝑦𝑆

𝑁𝑢𝑚𝑆

𝑆=𝑆1 ]
 
 
 
 
 

 

∀𝑑 ∈ 𝑁𝑑𝑎𝑦, ∀𝑝 ∈ 𝑁𝑝𝑒𝑟, 𝐴𝑠𝑒𝑙𝑙𝑀 ∈ {0,1}, 𝐴𝑏𝑢𝑦
∈ {0,1} 

𝑝𝑠𝑀,𝑑,𝑝 = 𝑉𝑎𝑙𝑢𝑒(𝑆𝑝𝑜𝑤𝑀)𝑀,𝑑,𝑝 

𝑝𝑠𝑆,𝑑,𝑝 = 𝑉𝑎𝑙𝑢𝑒(𝐵𝑝𝑜𝑤𝑆)𝑆,𝑑,𝑝 

(1) 



 

 

The formulation considers the expected production of a 
market player for each period of each day. The price value of 
electricity in some markets depends on the power amount to 
trade. With the application of a clustering mechanism it is 
possible to apply a fuzzy approach to estimate the expected 
prices depending on the negotiated amount. Equation (2) 
defines this condition. 

𝑉𝑎𝑙𝑢𝑒(𝑆𝑝𝑜𝑤𝑀  𝑜𝑟 𝐵𝑝𝑜𝑤𝑆)𝑑,𝑝,𝑀,𝑆

= Data(fuzzy(pow))𝑑,𝑝,𝑀,𝑆, 
(2) 

Equation (3) represents the main constraint to be applied in 
this type of problems, and imposes that the total power that can 
be sold in the set of all markets is never higher than the total 
expect production (TEP) of the player, plus the total of 
purchased power [20] . Restrictions (4), (5) and (6) refer to the 
type of generation of the supported player. 

∑ 𝑆𝑝𝑜𝑤𝑀

𝑁𝑢𝑚𝑀

𝑀=𝑀1

≤ 𝑇𝐸𝑃 + ∑ 𝐵𝑝𝑜𝑤𝑆

𝑁𝑢𝑚𝑆

𝑆=𝑆1

 (3) 

𝑇𝐸𝑃 = ∑ 𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑟𝑜𝑑 , 𝐸𝑛𝑒𝑟𝑔𝑦𝑝𝑟𝑜𝑑

∈ {𝑅𝑒𝑛𝑒𝑤𝑝𝑟𝑜𝑑 , 𝑇ℎ𝑒𝑟𝑚𝑝𝑟𝑜𝑑} 
(4) 

0 ≤ 𝑅𝑒𝑛𝑒𝑤𝑝𝑟𝑜𝑑 ≤ 𝑀𝑎𝑥𝑝𝑟𝑜𝑑  (5) 

𝑀𝑖𝑛𝑝𝑟𝑜𝑑 ≤ 𝑇ℎ𝑒𝑟𝑚𝑝𝑟𝑜𝑑 ≤ 𝑀𝑎𝑥𝑝𝑟𝑜𝑑 , 𝑖𝑓 𝑇ℎ𝑒𝑟𝑚𝑝𝑟𝑜𝑑

> 0 
(6) 

From the presented restrictions and considerations one can 
see that the energy produced comes from renewable sources 
and non-renewable sources (thermoelectric). If the player is a 
producer of thermoelectric power, the production has to either 
be null or set at a minimum value, since it is not feasible for the 
production plant to work under a technical operation limit. If 
the player is a producer of renewable energy, the only 
restriction is the maximum production capacity. 

IV. PROPOSED HYBRID APPROACH 

The methodology proposed in this work is created to solve 
the portfolio optimization problem. In this case two different 
methods are used, namely an exact resolution method and a 
stochastic resolution method (PSO). As it is possible to observe 
by Fig. 1, a simplified version of the problem optimization is 
done by using the exact method, using the Cplex solver to solve 
the Mixed Integer Linear Programing (MILP) problem. The 
solution that is achieved for the simplified version of the 
problem is then used as initial solution for the approximate 
method (PSO) to be executed. 

All the metaheuristic optimization methods require an 
initial solution to start the optimization process (which is often 
randomly generated). The role of Cplex is to provide the initial 
solution for PSO to initialize the search. Usually the resolution 
of MILP problems, as indicated in the Fig. 1, can take along 
execution time, depending on the problem in hand, However, 
to circumvent this problem the solutions are only restricted to 
integers and the resolution time is quite acceptable (the 

comparison can be consulted in the case study presented in 
section V). 

𝐶𝑟𝑒𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑐𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑓𝑜𝑟 𝑀𝐼𝐿𝑃   
𝐴𝑝𝑝𝑙𝑦 𝐶𝑝𝑙𝑒𝑥 𝑚𝑒𝑡ℎ𝑜𝑑 𝑡𝑜 𝑠𝑜𝑙𝑣𝑒 𝑀𝐼𝐿𝑃  
𝐼𝑛𝑖𝑐𝑖𝑎𝑙𝑖𝑧𝑒 𝑃𝑆𝑂 

𝑺𝒕𝒆𝒑 𝟏. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝐶𝑟𝑒𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

 𝑏𝑎𝑠𝑒𝑑 𝑖𝑛 𝐶𝑝𝑙𝑒𝑥 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝒘𝒉𝒊𝒍𝒆 (𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑)  
           {𝑺𝒕𝒆𝒑 𝟐.  𝑆𝑒𝑎𝑟𝑐ℎ 

𝐴𝑝𝑝𝑙𝑦 𝑎 𝑠𝑒𝑎𝑟𝑐ℎ 𝑚𝑒𝑡ℎ𝑜𝑑 𝑡𝑜 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 𝑥𝑖 

𝐿𝑒𝑡 𝑥𝑖
′ 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 

𝒊𝒇 (𝑥𝑖
′ 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑠 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡) 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 

                       𝑖 = 𝑖 + 1} 

Fig. 1. Hybrid methodology pseudo code 

As can be followed by Fig. 1, after performing the 
optimization by Cplex, the iterative search process, the PSO, is 
started. In the first step the initial solution is created so that the 
PSO method starts its search. Different variants are 
experimented and compared in the case study of section V for 
the creation of the initial solution, but all based on the solution 
from Cplex. 

The PSO algorithm does not guarantee the global optimal 
solution, generally the search is stopped when the stopping 
criteria is reached. At each iteration PSO applies equation (7) 
and equation (8). During the iterations of the algorithm each 
particle of PSO moves in the space with a velocity that is 
dynamically adjusted (different in each iteration). The velocity 
determines particles’ positions according to their own and their 
neighboring-particles experiences, thus moving two points in 
each iteration: (i) the best position found so far by itself, called 
Pbest; and (ii) the best position of all neighbor particles, called 
Gbest  [14]. 

𝑣𝑖𝑑
𝑘+1 = 𝑤. 𝑣𝑖𝑑

𝑘 + 𝑐1. 𝑟1
𝑘 . (𝑃𝑏𝑒𝑠𝑡𝑖𝑑

𝑘 − 𝑥𝑖𝑑
𝑘 )

+ 𝑐2. 𝑟2
𝑘 . (𝐺𝑏𝑒𝑠𝑡𝑖𝑑

𝑘 − 𝑥𝑖𝑑
𝑘 ) 

(7) 

𝑥𝑖𝑑
𝑘+1 = 𝑥𝑖𝑑

𝑘 + 𝑣𝑖𝑑
𝑘+1 (8) 

Where, 

• 𝑣𝑖𝑑
𝑘 - velocity of particle i, parameter d and iteration k, 

• 𝑥𝑖𝑑
𝑘 - position of particle i, parameter d and iteration k,  

• 𝑘- iteration, 

• 𝑃𝑏𝑒𝑠𝑡- personal best, 

• 𝐺𝑏𝑒𝑠𝑡- global best, 

• 𝑤 - inertia term,   

• 𝑐1 – local attraction term.  

• 𝑐2 - global attraction term.  

• 𝑟1, 𝑟2 - random numbers between [0,1].  



 

 

Afterwards, equation (7) and (8) are applied to find new 
positions for each particle, and the fitness is calculated by using 
the objective function, equation (1). The next step is to update 
the best individual positions (Pbesti) if the current position of a 
particle is the best found so far by that particle. Pbest is also 
compared to the best global position (Gbest). If Pbesti is better 
than Gbest, Gbest is also updated to the new position. 

V. CASE STUDY 

This section presents the case study that illustrates the 
application of the proposal methodology. As has been 
previously started, the PSO algorithm starts with an initial 
solution based on the Cplex resolution. In this scenario, five 
different markets type have been considered, the considered 
markets are the day-ahead spot market, negotiations by means 
bilateral contacts, the balancing or intra-day market, and a local 
market, at the Smart-Grid (SG) level. 

The balancing market is divided into different sessions. In 
the day-ahead spot market the player (acting as seller) is only 
allowed to sell electricity, while in the other market types the 
player can either buy or sell depending on the expected prices. 
Limits have also been imposed on the possible amount of 
negotiation in each market. In this case, it is only possible to 
buy up to 10MW in each market in each period of negotiation, 
which makes a total of 40 MW purchased. It is possible to sell 
power on any market, and it can be transacted as a whole or in 
installments. The player has 10 MW of own production (TEP) 
for sale.  

Table 1 shows the initial solution achieved by the Cplex 
method. For this resolution the Tomlab toolbox of Matlab has 
been used. Cplex2 represents the version of Cplex resolution 
used to generate the initial solution. In this case, the variables 
that constitute the solution are only positive integer values; this 
particularity greatly simplifies the method, enabling it to solve 
the problem in a short execution time. In Table 2 Cplex1 
represents the complete version of Cplex resolution (when the 
variables of the solution can be positive rational numbers), 
which leads to high execution times.    

Table 1. Cplex result for initial solution  

Method Spot Bilateral Balancing 1 Balancing 2 Smart Grid 

Cplex2 
Sell 14 12 0 0 9 

Buy 0 5 10 10 0 

Table 1 presents the optimized variables, assuming only 
integer values; this configuration of the solution allows to 
obtain an objective function value present in the Table 2. In the 
Spot market, 14 MW are sold, 12 MW by means of bilateral 
contracts and 9 MW in SG, in the variables that represent the 
purchase can see that in the balance markets the maximum 
quantity (10 MW) is bought, and it will also buy 5 MW to 
bilateral markets. 

In the bilateral contracts, as can be observed in the variables, 
the two actions are performed, buying and selling. This is 
possible due to the fact that in this market the quantity of 
electricity traded influences the price of it. In the SG market, 
there is also this possibility but the resolution by this method 
does not present this possibility. 

After obtaining the initial solution, it is tested as input for 
different versions of the PSO. These versions differ in the 
construction of the initial solution. Initially it is considered that 
only one particle receives the solution of Cplex2, and thus the 
other particles will have a random solution, this version is called 
"Hybrid PSO". 

In order to understand the influence of the initial solution in 
the PSO research, 4 more versions were created. In these 
versions all the particles receive solutions built from solution of 
the Cplex2. In the solution construction phase is used the 
normal distribution, since, as explained in section IV, since the 
problem has ten variables, each variable must have a value for 
PSO to start the search. Fig. 2 presents three representations of 
normal distribution, varying the Standard Deviation (STD), for 
the first variable: sell in spot market,.  

 
Fig. 2. Normal distribution for mean=14  

The normal distribution is characterized by the mean and 
the STD. In PSO, the initial solution requires one solution for 
each variable, so 1 particle has ten different variables. The 
representation in Fig. 2 demonstrates the influence of the STD 
in the creation of the initial solution, since the average of the 
distribution was used the value of the variable of sale in the spot 
market optimized by the Cplex2 present in Table 1, this process 
is repeated for all variables and for each particle. 

From the analysis of the Fig. 2 one can verify that the bigger 
the STD the greater the dispersion of the distribution, and the 
possible range values for each variable increase. E.g. if 
STD=0.5 there is higher probability of the value created to be 
closer to the value of the mean than if STD = 2.5. In this case, 
the STD value allows the creation of different initial solutions 
to the problem using the variables that resulted from the Cplex2 
resolution. 

Table 2 presents the objective function results for all 
methods. The STD= 0.5 version represents the hybrid PSO that 
starts its search with a solution created from a normal 
distribution with mean corresponding to the deterministic 
resolution value (Cplex2, Table 1) and with STD=0.5. The 
versions of STD = 1.5 and STD = 2.5, is exactly the same as 
version STD = 0.5, but the value of the standard deviation is 
respectively 1.5 and 2.5.  
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Table 2. Objective function results (€) 

Method Min Mean Max STD 

Cplex1   2000,64557539  

Hybrid PSO* 2000,36 2000,63 2000,64557501 0,033 

STD 2,5* 1978,81 1999,96 2000,64557488 1,605 

STD 1,5* 1980,38 2000,28 2000,64557444 1,552 

STD 2,5 (>=0)* 1999,82 2000,54 2000,64557339 0,104 

STD 0,5* 1990,82 2000,06 2000,64557292 1,155 

PSO 1135,39 1809,85 2000,64555238 150 

Cplex2   1998,84249084  

*Cplex2 plus PSO  

 The version STD=2.5 (>=0), represents the hybrid method 
when all PSO particles start with a solution generated by a 
normal distribution with STD=2.5, and all variables in all 
solutions have some positive values. The Cplex1 and Cplex2 
only have a maximum number for objective function because 
these are deterministic methods and not population based. The 
other resolutions have different measurements because for each 
method 1000 simulations are executed. Table 2 shows the 
values of objective function for all implemented methods. As 
expected, the deterministic resolution (Cplex1) reached the best 
objective function value, followed by the Hybrid PSO where 
only one of the particles starts with the initial solution of 
Cplex2. Next, the hybrid versions appear, in which the initial 
solution of all the particles was created using the normal 
distribution. Finally appears the PSO where the initial solution 
was created by random values and finally appears the Cplex2.  

As one can see, the difference between Cplex1 and PSO in 
the objective function value for the maximum is 0.000023, it is 
a residual value. In the average parameter, there is already a 
larger difference, but the hybrid PSO has a value very close to 
Cplex1 (reference result) with a difference of 0.0155. The 
greater difference in results is observed in the STD of the 
methods including the PSO. Fig. 4 shows a representation of 
the convergence process of the different versions of the PSO, 
by showing the convergence in all the 1000 executions. This 
enables assessing how the STD stands for in the solution search 
using random methods.    

In Fig. 4, six different representations are presented, which 
refer to the results of the PSO algorithms. Since 1000 runs were 
performed for each, each algorithm obtains 1000 different 
results, and each line in the figure represents the evolution of 
the solution throughout the iterations. As one can see, the 
images of the Fig. 4 do not have the scales in the same 
magnitude, which may make it difficult to observe, but with the 
scales all the same, it was not possible to have the notion of 
what really happens in the convergence process. In Fig. 4 a) is 
represented the standard PSO, which has an STD of 150, as can 
be seen by Table 2. One can observe that this resolution 
presents the simulations with very different final results hence 
the existence of the large STD. Also, in Fig. 4 is represented the 
Hybrid PSO method, which results, from Table 2, in the lowest 
value of STD. Then the methods with initial solution based on 
the normal distributions follow in terms of STD. Within these 

we can see that the STD of the 1000 simulations decreases 
depending on the STD of the normal distribution applied for the 
creation of the initial solution. It is important to mention that 
the method where only one of the particles starts with the initial 
solution obtained through Cplex2 presents a better performance 
in terms of STD than the versions where all the particles receive 
a solution containing information from the solution of Cplex2. 

Table 3 shows the comparison of execution times between 
all the considered methods. The “Total mean values” column 
represents the mean value of execution times. As noted, Cplex1 
and Cplex2 only have one value – exact solution, which means 
that it was only executed once. In the other cases, the values 
refer to the 1000 simulations.  

Table 3.Time results for all methods in seconds 

Method Mean Max 
Total for all 

runs 

Total mean 

values 

Cplex1 43710,6809 - 

Hybrid PSO 0,0757 0,1613 75,7115 49,2461 

STD 2,5 0,0759 0,1329 75,8515 49,2463 

STD 1,5 0,0735 0,1191 73,4541 49,2439 

STD 2,5 

(>=0) 
0,1407 0,1902 140,6565 49,3111 

STD 0,5 0,0730 0,1234 72,9606 49,2434 

PSO 0,0613 0,1215 61,2705 22,6457 

Cplex2 26,5859698 - 

By the Table 3 it is possible to verify that PSO presents the 
smaller value of execution time. As expected, the Cplex1 
presents a high value but on the other hand guarantees the 
maximum value for the objective function. In this case the 
hybrid PSO methods and all other versions of the normal 
distribution have very similar values. It is worth noting that 
STD 2.5 (> = 0) takes twice the STD 2.5 due to the fact that the 
solutions are corrected to positive values. 

In the column of "Total for all runs" the total value of the 
1000 simulations is shown, which is proportional to the average 
value. In the last column, the total average value is displayed 
with all steps, from the data loads creation of the initial solution 
(Cplex2 time). The average value of the whole process is about 
50 seconds for the hybrid PSO method, which is much smaller 
when compared to the value of Cplex1; however, the objective 
function value is very close. Fig. 3 shows the results for the 
number of iterations. In the bar graph the average value for each 
method is shown. 

 

Fig. 3. Mean iteration results 
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Fig. 4. Algorithms performance, a). PSO, b). Hybrid-PSO, c). STD=2.5, d). STD=1.5, e). STD=0.5 and f). STD=0.5, (>=0)

As can be observed by Fig. 3, the average number of 
iterations in the methods where the initial solution contains 
information of the resolution of Cplex2 is between 80 and 90 
iterations and in the PSO with random solution is about 63. 
With the inclusion of the initial solution the average value of 
the iterations increases, this fact can be explained because in the 
PSO since the search has to start with random solution and often 
far away from the optimum, the search tends to fall in local 
points and the method does not have ability to get out of there, 
often converging to a bad solution. 

In Fig. 5 is represented the value of the different variables 
in the different resolution methods. In the yy axis, the negative 
values represent the electricity purchases and the amount 
electricity sold is represented by positive values. In this case as 
can be seen from the caption of the Fig. 5  the 5 different 

markets are considered. Each bar of each method corresponds 
to the value of each variable, so have two possible actions for 
each market that gives a total of ten variables and ten bars in 
each method. Table 4 shows the values corresponding to the 
scaling of the result of the method that obtained the maximum 
objective function value, Cplex1, and the results obtained by 
Cplex2. 



 

 

 

Fig. 5. Sale and purchase in the different markets 

Table 4. Scheduling of sale and purchase in the different 

markets 

Method Markets Sale (MW) Purchase (MW) 

Cplex1 

Spot 14,64660096 0 

Bilateral 11,5 4,729961937 

Balancing 1 0 10 

Balancing 2 0 10 

Smart Grid 8,583360976 0 

Cplex2 

Spot 14 0 

Bilateral 12 5 

Balancing 1 0 10 

Balancing 2 0 10 

Smart Grid 9 0 

The representation of Table 4 shows the difference in the 
deterministic resolutions from the full and simplified versions 
of the exact resolution method. As one can see, using Cplex2 
the variables only contain positive integer values, on the other 
hand in Cplex1 the variables are numbers with several decimal 
places. From the result of the objective function of the Table 2, 
one can see that there is difference in the solutions, and from 
the analysis of Table 3 the execution time is also different, with 
about 0.06% of the time of Cplex1, Cplex2 can obtain a solution 
0.09% inferior to Cplex1. 

Analyzing the Cplex1 scheduling results, it can be 
concluded that the method respected the imposed rules that 
were defined, as it can be observed in the Spot market the sale 
was not premised and as can see from the Table 4 the variable 
of this case is 0, another of the conditions was the fact that in 
the Balancing markets only one of the actions is allowed and 
thus it happens, and only the action (buy electricity) is realized, 
keeping the variable of sales to 0, in the other two markets the 
two actions are realized because as the price is variable with the 
quantity of purchase and can occur multiple opportunities 
which can resulted in positive profit. 

VI. CONCLUSIONS 

This paper presented a novel hybrid optimization model 
based on the combination between a PSO approach and a 
simplified resolution using an exact method, to solve the 
portfolio optimization problem for multiple electricity markets 
participation. Results enable concluding that the proposed 
hybrid resolution has advantages in solving the problem, as can 
be observed by comparing the proposed approach results with 
those of the standard PSO, in which the algorithm starts the 
search with a random solution. Using the standard PSO in this 
problem, a very high STD is obtained; while using the proposed 
approach the STD decreased. This represents a great advantage, 
since this measurement gives the indication of the dispersion 
solution of population around the mean. As can be seen there 
was also a large increase in the mean objective function value 
that is achieved, being located near the maximum reference 
value (Cplex1). 

Another of the advantageous conclusions refers to the 
execution time, because with this method the execution time 
decreases considerably compared to the time of the reference 
result using the exact method to solve the complete version of 
the problem. In this sense, since in electricity markets 
negotiations, decisions must be taken in short times, this 
methodology can bring high benefits for real world application. 

As future work, intend to expand this methodology by 
combining different methods such as genetic algorithms and 
simulated annealing, as well as by using simple metaheuristics 
to select the initial solution (e.g Vortex Search algorithm 
(VSA), [21]). In another phase, it is also envisaged to include a 
risk component in the model and thus obtaining a 
multiobjective problem so as to be solved with a variation of 
the proposed methodology. 
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