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Abstract: - Particle swarm and simulated annealing optimization algorithms proved to be valid in finding a 
global optimum in the bound constrained optimization context. However, their original versions can only detect 
one global optimum even if the problem has more than one solution. In this paper we propose modifications to 
both algorithms. In the particle swarm optimization algorithm we introduce gradient infommtion to enable the 
computation of all the global and local optima. The simulated annealing algorithm is combined with a stretching 
technique to be able to compute all global optima. The numerical experiments carried out with a set of well­
known test problems illustrate the effectiveness of the proposed algorithms. 

Key-Words: -Multi-global optimization, particle swann ·optimization, simulated annealing. 

1 Introduction 
In this paper we address the following optimization 
problem 

minl(x) 
.te.\' ( I) 

where I: Rn -+ R is a given multi-modal objective 

function and X is a compact set defined by 
X = {x ERn: a

1 
:S x

1 
:S b

1
,j = l, ... ,n}. A multi-global 

optimization problem consists of finding all global 
solutions ofproblem (1). 

So, our purpose is to find all pointsx· EX such 

that '<ix E X, l(x · ) ::;; l(x). Here, we assume that 

the problem (I) has a finite number of global 
minimizers and the single function I is continuously 

differentiable. 
This type of problem appears, for example, in 

chemical engineering, neural networks and in 
reduction methods for solving semi-infinite 
programming problems [4], [7], [10], [11 ]. Due to the 
existence of multiple local and global optima, these 
problems cannot be efficiently solved by classical 
optimization techniques. Recently, Eberhart and 
Kennedy [3], [9] proposed the particle swarm 
optimization (PSO) algorithm which is a simple 
evolutionary algorithm motivated from the simulation 
of social behavior. Although this is an effective 
algorithm, when compared with other evolutionary 
methods, for computing a global solution, some 
problems can arise when the objective function has 
more than one global minimum, since the algorithm 
oscillates between the global minima. To be able to 

find all global solutions, Parsopoulos and Vrahatis 
[11 ] proposed a modification of the PSO algorithm 
that relies on a function stretching technique, which is 
used to escape from local minima and to separate the 
swann properly whenever a global minimizer is 
detected. 

In this paper, we propose another modification of 
the PSO algorithm that uses objective gradient 
infonnation. The ideas behind the stretching 
teclmique are also used in the context of a different 
stochastic method, namely the simulated annealing 
(SA) method. Although these strategies are quite 
different, we decided to report on their ability to 
detect all global solutions of a uni-objective problem. 

This paper is organized as follows. We introduce 
the new PSO and SA algorithms in Sections 2 and 3, 
respectively. In Section 4 we report some numerical 
results on a set of test problems to show their 
efficiency and robustness. Finally, the conclusions 
make up Section 5. 

2 Particle swarm optimization 
The particle swarm algorithm mimics a swarm 
behavior in looking for a certain objective. The PSO 
algorithm simulates the social behavior concept to 
compute the global optima of problem (I). In the 
simplest version, the PSO algorithm should only be 
applied to problems with at most a global minimum. 

To address the problem of computing all the 
global and local optima we describe in the next 
subsections the multi-local PSO algorithm which is 
able to compute aU the minima by making use of the 
objective derivatives. 



2.1 Particle swarm optimization algorithm 
The PSO algorithm uses a population (swarm) of 

individuals (particles). To each individual i, at time 
instant (or iteration) t, is assigned a position 

x; (t) E X , and a velocity / (t) E X that provides 

infonnation to where the individual is traveling to. 
The velocity at time instant t + 1 is computed by 

v~(t + 1) = t(t)v~(l) + f.1W11 (t)(y~(t) - x~(t)) 
(2) 

where t(t) is the inertial parameter, f.1 is the 

cognitive parameter, v is the social parameter, 

w11 (t) and w11 (t) are unifonnly random numbers 

drawn from (0,1), / (t) is the best ever position of 

particle i and y(t) is the best ever swann position. 

y ~ (t) - x ~ (t) is the direction to the particle 

previous best ever position (cognitive direction) and 

;) 1 (t)- x~ (t) is the direction to the swarm best ever 

position (social direction). The next velocity is 
composed by a random combination of the previous 
velocity with the cognitive and social directions. The 
new particle position is computed by 

x; (t + 1) = x ; (t) + v; (t + 1). 

2.2 Multi-local particle swarm optimization 
algorithm 

In order to avoid the concentration of all particles 
around the best swarm position (the global 
minimum), we propose a multi-local particle swann 
optimization (MLPSO) algorithm which differs from 
the original one, in such a way that the social 
direction is dropped from equation (2) and the 
gradient infonnation is used instead. The new 
equation for the velocity is then 

V~ (I+ 1) = t(l)v~ (I)+ j.JW11 (l)(y~ (t) - X~ (I)) 

+ vco21 (t)( - V 1/(/ (/))). 
(3) 

The inclusion of the steepest descent direction in 
the velocity equation (3) aims to drive each particle to 
a neighbor local minimum and since we have a 
population of particles, each one will be driven to a 
local minimum. Global minima are also detected, 
since they are local minima as well. 

In order for the algorithm to be completely 
described we need to define the stopping rule. The 
algorithm tenninates when either a specified 

maximum number of iterations, N,m""', is attained or 

all the particle have landed, i.e. , m~xjjv; (t +It :$; &
1
,. 

Including the gradient into the direction can pose 
some difficulties to the algorithm, since the computed 
velocity can make particles to get out of the feasible 
region. To prevent this behavior, the velocity is 
scaled to fit the maximum velocity allowed and 
whenever a particle gets out of the feasible region its 
position is projected onto it. 

3 The simulated annealing approach 
Usually, the SA method converges to just one global 
solution in each run. In order to be able to locate all 
global optima, the SA algorithm is combined with a 
strategy based on the stretching of the objective 
function. In the next subsections we briefly describe 
the main ideas behind a simulated annealing method, 
the function stretching technique and propose a 
stretched simulated annealing algorithm. 

3.1 Simulated annealing method 
The SA method is a stochastic method for global 
optimization. It can be easily characterized by four 
main phases: the generation of a new candidate point, 
the acceptance criterion, the reduction of the control 
parameters and the stopping rule. The scheme to 
generate the new candidate point is crucial as it 
should give a good exploration of the search region 
and provide a feasible point. Usually, a new point, y, 
is generated using the current approximation, x(t) , 
and a generating probability density function, 
F(x(t)) . 

The acceptance criterion allows the SA algorithm 
to avoid getting stuck in non-global minima, when 
searching for a global one. Let A(x(t), c, (t)) be the 

acceptance function which represents the probability 
of accepting the new point y when x(t) is the 

current point. The most used criterion in SA 
algorithms is the Metropolis criterion and is given by 

x(t + I)= l y if r < A(x(l),< ,(t))= mi+, /"·~~.':'" ) 
x(t) otherwise, 

where r is a uniformly random number drawn from 

( 0,1). This criterion accepts all new points y such 

that f(y) ~ f(x(t)). However, if f{y) > J(x(t)) , 
the point y might be accepted with some probability. 

The parameter eA (t) IS called the control 

parameter associated with the acceptance function 



and must define a positive decreasing sequence as 
t ---+ CJJ • For a good perfonnance, its initial value 
must be sufficiently high, so that a good search for 
promising regions to locate the global minimizer 
inside the feasible region is accomplished. However, 
extremely high values yield a slow convergence. 

As far as the stopping rule is concerned, the main 
idea is to stop the process when no further changes 
occur. Different tennination rules are proposed in [ 1 ], 
[2] and [8]. 

In this work we consider the adaptive simulated 
annealing (ASA) of lngber [8]. This variant considers 
different generating probability density functions for 
each variable, as in general the objective function 
behaves differently along different directions. Taking 
this into consideration, a new feasible candidate point 
is generated as follows: 

y1 = x1 (t) + J.)b1 - aJ j = l, ... ,n, 
where ii-1 E (-1,1) is detennined by 

ii-1 =sign(u-.!..J 1+-
1
- -1 cF1 (t) ( ( )

l2u-ll J 
2 C F (f) 

I 

and u is a unifonnly distributed random variable in 

(0,1). As the process develops, the control 

parameters cF (t) are reduced in order to obtain 
I 

better approximations to the minimum. Although 
ASA algorithm claims to converge very quickly, its 
efficiency depends heavily on a large set of control 
variables. We refer to [8] for further details on the 

control parameters c F (t) and c A (t) updating rules. 
I 

3.2 The function stretching technique 
The function stretching technique is a recently 
proposed technique [11] that transforms, in a two 

stage process, the objective function J(x) into a new 

function ](x). The transformation is carried out 

along the following lines. After a global minimizer x 
of J(x) has been detected, the first stage of the 

process elevates the function using 

](x)= J(x)+ i llx-xll(sign(.f(x) - J(x))+ 1)· (4) 

In the second stage, the neighborhood of x 1s 
stretched upwards, as follows 

]( ) _ ] ( ) sign(.f(x }- J(x))+ I 
x- x +r2 2 tanb(~(j(x)- ](.x)» (5) 

since higher function values are assigned to its 

neighbors. In equations (4) and (5), y 1 , y2 and ~ 

are positive constants and sign(.) denotes the well­

known sign function. 

3.3 Stretched simulated annealing algorithm 
We propose a stretched simulated annealing (SSA) 
approach, which combines the SA algorithm with the 
function stretching technique previously described. 
Thus, the SSA algorithm generates a sequence of 
optimization problems defined as 

mm <I> x = . () {f(x) ift=l 
xeX h(x) if t > 1 

where 

h(x)={](x) ifxEVc(x) 
J(x) othe1wise. 

x represents an already detected global minimizer 

and V<. (x) denotes a neighborhood £ of x . The 

sequence of optimization problems are solved by the 

SA algorithm. As previously shown, ](x) eliminates 

the already detected global minimum. However, all 
the minima that are located below and at the same 

level of J(x) are not altered, meaning that other 

global minima will be detected in subsequent 
iterations. The process stops when either no new 
global minimum is detected, in a ftxed number of 

successive iterations Nm"x , or a maximum number 

of function evaluations, N;nx , is reached. 

4 Computational experiments 
In this section, results from the implementation of the 
MLPSO and SSA approaches on 32 well-known uni­
objective global problems, are reported. The majority 
of the problems are multi-modal although some 
difficult uni-modal problems are also included in the 
test set. In Table I we enumerate the test functions 
and list the number of variables (n), the number of 

global minimizers (N_, ), and the known global 

minimum (!* ) . 
Both algorithms were implemented in the C 

programming language and connected with AMPL 
[5] to provide the coded problems. The second 
column of Table I provides the file names of the 
problems used in the numerical experiments. These 
problems are well-known in the literature of multi­
local and global optimization, and for the sake of 



brevity we do not fully describe the problems. The 
AMPL models can be requested from the first author. 

Table I · Test functions 
Test functions 11 N. 

" r 
I b2 2 I 0 
2 bohachevsk)' 2 I 0 
3 bran in 2 3 3.979E-Ol 
4 dejoung 3 I 0 
5 easom 2 I -I 
6 f1 30 I -1.257E+04 
7 goldprice 2 1 3 
8 griewank 6 I 0 
9 hartmann3 3 I -3.863E+OO 
10 hartmann6 6 I -3.322E+OO 
11 hump 2 2 0 
12 hump camel 2 2 -1.0316285 
13 levy) 2 18 -1.765E+02 
14 parsopoulos 2 12 0 
15 roscnbrock I 0 10 I 0 
16 rosenbrock2 2 I 0 
17 roscnbrock5 5 I 0 
18 shekel tO 4 I -1.054E+OI 
19 shekelS 4 1 -1.015E+OI 
20 shekel? 4 I -1.040E+Ol 
21 shubert 2 18 -1.867E+02 
22 stoml 2 2 -4.075E-OI 
23 stom2 2 2 -1.806E+OI 
24 stom3 2 2 -2.278E+02 
25 stom4 2 2 -2.429E+03 
26 slom5 2 2 -2.478E+04 
27 stom6 2 2 -2.493E+05 
28 zakharoviO 10 I 0 
29 zakharov2 2 I 0 
30 zakharov20 20 I 0 
31 zakharov4 4 I 0 
32 zakharov5 5 I 0 

Initial positions and velocities for the MLPSO and 
the initial approximation for the SSA algorithms were 
randomly generated. For each problem, 5 runs have 
been performed with each technique. 

The next two tables report on averaged numbers 
of: percentage of frequency of occurrence (J.o.), 
number of iterations (N, ), number of SA calls 

(N5, ) , number of function evaluations (N 1J, 
number of gradient evaluations {N ~~~ ), best function 

value {.r,,:), and the best function value attained in 

the 5 runs v·). 
For the SSA we set Nmax = 3 , Nmax = I 00000 

fc ' 

y1 =lOO, y2 =1 , ~ =10-3 and &=0.25. 

For the MLPSO the number of function 

evaluations is N fc = s x N, , where s is the swarm 

size given by min( 6" ,I 000) . In the stopping rule 

BP = 0.01 and N,m•• = 100000. 

In Table 2, we report the results obtained with the 
MLPSO algorithm. 

T bl 2 N a e umenca b . db resu ts o tame lVML PSO 
J.o. N, Ng" J; r 

1 100% 68851 1124 1.839E-IO 3.143E-II 
2 100% 26811 1546 3.808E-II 1.393E-14 
3 100% 16386 2425 3.979E-OI 3.979E-OI 
4 100% 14187 45659 5.668E-14 2.603E-16 
5 0% Flat oroblem 
6 0% Non differentiable 
7 0% 100000 56 1.206E+02 2.341E+01 
8 67% 29873 1217700 5.008E-03 9.745E-09 
9 80% 100000 913 -3.789E+OO -3.846E+OO 

10 0% 100000 3530 -2.90IE+OO -3.086E+OO 
11 100% 24600 996 4.653E-08 4.65E-08 
12 100% 22548 944 -1.032E+OO -1.032E+OO 
13 1% 100000 565 -1.47IE+02 -1.722E+02 
14 85% 46086 1520 5.144E-17 9.375E-21 
15 0% 100000 2126 1.182E+04 7.74E+03 
16 0% 100000 46 1.080E+OI 1.585E+OO 
17 0% 100000 3178 3.033E+02 8.516E+OI 
18 100% 100000 14977 -8.279E+OO -1.008E+OI 
19 100% 100000 19100 -7.634E+OO -I.OOIE+OI 
20 100% 100000 16596 -8.420E+OO -1.003E+OI 
21 7% 100000 253 -1.422E+02 -1.80IE+02 
22 100% 24297 3148 -4.075E-01 -4.075E-OI 
23 90% 68360 451 -1.806E+OI -1.806E+OI 
24 60% 84587 218 -1.999E+02 -2.278E+02 
25 60% 100000 161 -2.277E+03 -2.429E+03 
26 40% 100000 4222 -2.388E+04 -2.476E+04 
27 10% 100000 46 -1.175E+05 -2.36IE+05 
28 0% 100000 1829 6.249E+OI 4.626E+OI 
29 100% 21401 3820 1.391E-1 1 2.948E-14 
30 0% 100000 1901 2.016E+02 1.330E+02 
31 0% 100000 2362 4.698E+OO 2.397E+OO 
32 0% 100000 1454 9.394E+OO 3.132E+OO 

In Table 3, we report the obtained numerical 
results with the SSA algorithm. 

Both algorithm perfonnances depend on the 
problem dimension and on the size of the feasible 
region. In particular, for problems with n greater or 
equal to I 0 both methods failed to detected a global 
minimum in the specified maximum number of 
function evaluations, except for problem 28 with the 
SSA method. 

Due to the use of derivative information, the 
MLPSO algorithm is not able to detect a global 
minimum in problems with many local minima, as 
the used swarm size is not large enough. 

Although the main goal of this work was to 
address the multi-global optimization problem, the 
MLPSO detects global as well as local minima. The 
SSA algorithm only detects some local minima in 
particular problems. 



5 Conclusions 
In this paper, we consider t\vo different stochastic 
optimization methods for computing all global 

T bl 3 N a e . I umenca resu It bt . db SSA so a me JY 
f.o. 

NSA NI< /,,: f' 
I 100% 5 24066 2.045E-06 3.86E-II 
2 100% 6 34411 5.461 E-08 1.817E-09 
3 100% 6 10529 3.979E-01 3.979E-OI 
4 100% 4 10606 9.593E-07 9.373E-08 
5 100% 4 17422 -I.OOOE+OO -I .OOOE+OO 
6 0% 4 100000 -1.31 2E+04 -1.336E+04 
7 100% 4 26197 3.000E+OO 3.000E+OO 
8 0% 16 100000 1.183E-02 9.858E-03 
9 100% 4 13379 -3.863E+OO -3.863E+OO 

10 100% 5 78301 -3.322E+OO -3 .322E+OO 
11 100% 5 20200 1.349E-07 4.657E-08 
12 100% 5 17531 -1.032E+OO -1.032E+OO 
13 37% 11 182 17 -1 .765E+02 -1.765E+02 
14 100% 15 16542 3.210E-09 2.683E-10 
15 0% 4 100000 6.975E-OI 7.230E-02 
16 80% 10 66902 1.898E-02 1.169E-03 
17 60% 6 111073 1.023E-02 6.433E-03 
18 80% 7 32961 -1.054E+01 -1.054E+OI 
19 80% 6 29745 -1.015E+01 -1.015E+01 
20 80% 5 22206 -1.040E+01 -1.040E+01 
21 99% 32 51684 -1.867E+02 - 1.867E+02 
22 100% 5 5850 -4.075E-01 -4.075E-O I 
23 100% 5 39877 -1.806E+01 - 1.806E+O I 
24 100% 5 63510 -2.278E+02 -2.278E+02 
25 100% 5 59841 -2.429E+03 -2.429E+03 
26 100% 5 101864 -2.478E+04 -2.478E+04 
27 100% 5 103 191 -2.493E+05 -2.493E+05 
28 100% 4 80004 5.765E-03 3.900E-04 
29 100% 4 3775 3.368E-07 1.246E-IO 
30 0% 5 100000 2.567E+OO 2.2 16E+OO 
31 100% 4 24747 1.807E-06 2.336E-07 
32 100% 4 44203 6.72E-06 2.289E-06 

solutions of a single objective function problem (I). 
The experiments carried out on a set of test problems 
show that the simulated annealing algorithm when 
equipped with the function stretching technique is 
capable of avoiding local minima and locate the 
global minimizers with light computational costs and 
acceptable success rates. 

While the traditional gradient optimization 
techniques can be used to compute global and local 
minima, only one solution can be located in each 
optimization run. The PSO equipped with the 
gradient infonnation, as previously shown, is capable 
of detecting global as well as local minimizers. The 
heavier computational costs of the MLPSO are 
balanced by the ability to detect local minimizers. 

As future developments we propose to use a 
derivative-free procedure to generate an approximate 

descent direction, as proposed in [6], to replace -\If 
in the velocity equation of the MLPSO algorithm. 
This procedure will make the algorithm 
computationally lighter. In order to increase the 
robustness of the SSA algorithm, in the sense that, 
some local (non-global) minimizers are also surely 
detected, we propose to include a strategy that 
identifies local solutions that satisfy 

IJ(x · )- J(x;· ~ < 7], for 17 > 0 

where x;· are the desired non-global minimizers and 

x • is an already detected global solution. 
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