1,322 research outputs found

    Game Specific Approaches to Monte Carlo Tree Search for Dots and Boxes

    Get PDF
    In this project, a Monte Carlo tree search player was designed and implemented for the child’s game dots and boxes, the computational burden of which has left traditional artificial intelligence approaches like minimax ineffective. Two potential improvements to this player were implemented using game-specific information about dots and boxes: the lack of information for decision-making provided by the net score and the inherent symmetry in many states. The results of these two approaches are presented, along with details about the design of the Monte Carlo tree search player. The first improvement, removing net score from the state information, was proven to be beneficial to both learning speed and memory requirements, while the second, accounting for symmetry in the state space, decreased memory requirements, but at the cost of learning speed

    Machine learning methods applied to the dots and boxes board game

    Get PDF
    Pontos e Quadrados (Dots and Boxes na versão anglo-saxónica) é um jogo clássico de tabuleiro no qual os jogadores unem quatro pontos próximos numa grelha para criar o maior número possível de quadrados. Este trabalho irá inverstigar técnicas de aprendizagem profunda e aprendizagem por reforço, que torna possível um programa de computador aprender como jogar o jogo, sem nenhuma interação humana, e aplicar o mesmo ao jogo Dots and Boxes; a abordagem usada no DeepMind AlphaZero será analisada. O AlphaZero combina uma rede neural convolucional e o algoritmo Monte Carlo Tree Search para alcançar um desempenho super humano, sem conhecimento prévio, em jogos como o Xadrez, Go, e Shogi. Os resultados obtidos permitem aferir sobre a adequação da abordagem ao jogo Pontos e Quadrados.Dots and Boxes is a classical board game in which players connect four nearest dots in a grid to create the maximum possible number of boxes. This work will investigate deep learning techniques with reinforcement learning to make possible a computer program to learn how to play the game, without human interaction, and apply it to the Dots and Boxes board game; the approach beyond DeepMind AlphaZero being taken as the approach to follow. AlphaZero makes a connection between a Convolutional Neural Network and the Monte Carlo Tree Search algorithm to achieve superhuman performance, starting from no a priori knowledge in games such as Chess, Go, and Shogi. The results obtained allow to measure the approach adequacy to the game Dots and Boxes

    Explainability in Deep Reinforcement Learning

    Get PDF
    A large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature relevance techniques to explain a deep neural network (DNN) output or explaining models that ingest image source data. However, assessing how XAI techniques can help understand models beyond classification tasks, e.g. for reinforcement learning (RL), has not been extensively studied. We review recent works in the direction to attain Explainable Reinforcement Learning (XRL), a relatively new subfield of Explainable Artificial Intelligence, intended to be used in general public applications, with diverse audiences, requiring ethical, responsible and trustable algorithms. In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box. We evaluate mainly studies directly linking explainability to RL, and split these into two categories according to the way the explanations are generated: transparent algorithms and post-hoc explainaility. We also review the most prominent XAI works from the lenses of how they could potentially enlighten the further deployment of the latest advances in RL, in the demanding present and future of everyday problems.Comment: Article accepted at Knowledge-Based System

    Spatial representation for planning and executing robot behaviors in complex environments

    Get PDF
    Robots are already improving our well-being and productivity in different applications such as industry, health-care and indoor service applications. However, we are still far from developing (and releasing) a fully functional robotic agent that can autonomously survive in tasks that require human-level cognitive capabilities. Robotic systems on the market, in fact, are designed to address specific applications, and can only run pre-defined behaviors to robustly repeat few tasks (e.g., assembling objects parts, vacuum cleaning). They internal representation of the world is usually constrained to the task they are performing, and does not allows for generalization to other scenarios. Unfortunately, such a paradigm only apply to a very limited set of domains, where the environment can be assumed to be static, and its dynamics can be handled before deployment. Additionally, robots configured in this way will eventually fail if their "handcrafted'' representation of the environment does not match the external world. Hence, to enable more sophisticated cognitive skills, we investigate how to design robots to properly represent the environment and behave accordingly. To this end, we formalize a representation of the environment that enhances the robot spatial knowledge to explicitly include a representation of its own actions. Spatial knowledge constitutes the core of the robot understanding of the environment, however it is not sufficient to represent what the robot is capable to do in it. To overcome such a limitation, we formalize SK4R, a spatial knowledge representation for robots which enhances spatial knowledge with a novel and "functional" point of view that explicitly models robot actions. To this end, we exploit the concept of affordances, introduced to express opportunities (actions) that objects offer to an agent. To encode affordances within SK4R, we define the "affordance semantics" of actions that is used to annotate an environment, and to represent to which extent robot actions support goal-oriented behaviors. We demonstrate the benefits of a functional representation of the environment in multiple robotic scenarios that traverse and contribute different research topics relating to: robot knowledge representations, social robotics, multi-robot systems and robot learning and planning. We show how a domain-specific representation, that explicitly encodes affordance semantics, provides the robot with a more concrete understanding of the environment and of the effects that its actions have on it. The goal of our work is to design an agent that will no longer execute an action, because of mere pre-defined routine, rather, it will execute an actions because it "knows'' that the resulting state leads one step closer to success in its task

    A Decade of Neural Networks: Practical Applications and Prospects

    Get PDF
    The Jet Propulsion Laboratory Neural Network Workshop, sponsored by NASA and DOD, brings together sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and application prospects. While the speed and computing power of microprocessors continue to grow at an ever-increasing pace, the demand to intelligently and adaptively deal with the complex, fuzzy, and often ill-defined world around us remains to a large extent unaddressed. Powerful, highly parallel computing paradigms such as neural networks promise to have a major impact in addressing these needs. Papers in the workshop proceedings highlight benefits of neural networks in real-world applications compared to conventional computing techniques. Topics include fault diagnosis, pattern recognition, and multiparameter optimization

    Machine Learning for High-entropy Alloys: Progress, Challenges and Opportunities

    Full text link
    High-entropy alloys (HEAs) have attracted extensive interest due to their exceptional mechanical properties and the vast compositional space for new HEAs. However, understanding their novel physical mechanisms and then using these mechanisms to design new HEAs are confronted with their high-dimensional chemical complexity, which presents unique challenges to (i) the theoretical modeling that needs accurate atomic interactions for atomistic simulations and (ii) constructing reliable macro-scale models for high-throughput screening of vast amounts of candidate alloys. Machine learning (ML) sheds light on these problems with its capability to represent extremely complex relations. This review highlights the success and promising future of utilizing ML to overcome these challenges. We first introduce the basics of ML algorithms and application scenarios. We then summarize the state-of-the-art ML models describing atomic interactions and atomistic simulations of thermodynamic and mechanical properties. Special attention is paid to phase predictions, planar-defect calculations, and plastic deformation simulations. Next, we review ML models for macro-scale properties, such as lattice structures, phase formations, and mechanical properties. Examples of machine-learned phase-formation rules and order parameters are used to illustrate the workflow. Finally, we discuss the remaining challenges and present an outlook of research directions, including uncertainty quantification and ML-guided inverse materials design.Comment: This review paper has been accepted by Progress in Materials Scienc

    Supervised deep learning in high energy phenomenology: a mini review

    Get PDF
    Deep learning, a branch of machine learning, have been recently applied to high energy experimental and phenomenological studies. In this note we give a brief review on those applications using supervised deep learning. We first describe various learning models and then recapitulate their applications to high energy phenomenological studies. Some detailed applications are delineated in details, including the machine learning scan in the analysis of new physics parameter space, the graph neural networks in the search of top-squark production and in the CPCP measurement of the top-Higgs coupling at the LHC.Comment: Invited review, 72 pages, 24 figure

    Explainability in Deep Reinforcement Learning

    Get PDF
    International audienceA large set of the explainable Artificial Intelligence (XAI) literature is emerging on feature relevance techniques to explain a deep neural network (DNN) output or explaining models that ingest image source data. However, assessing how XAI techniques can help understand models beyond classification tasks, e.g. for reinforcement learning (RL), has not been extensively studied. We review recent works in the direction to attain Explainable Reinforcement Learning (XRL), a relatively new subfield of Explainable Artificial Intelligence, intended to be used in general public applications, with diverse audiences, requiring ethical, responsible and trustable algorithms. In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box. We evaluate mainly studies directly linking explainability to RL, and split these into two categories according to the way the explanations are generated: transparent algorithms and post-hoc explainaility. We also review the most prominent XAI works from the lenses of how they could potentially enlighten the further deployment of the latest advances in RL, in the demanding present and future of everyday problems

    Modern applications of machine learning in quantum sciences

    Get PDF
    In these Lecture Notes, we provide a comprehensive introduction to the most recent advances in the application of machine learning methods in quantum sciences. We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms for phase classification, representation of many-body quantum states, quantum feedback control, and quantum circuits optimization. Moreover, we introduce and discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning
    • …
    corecore