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Resumo

Pontos e Quadrados (Dots and Boxes na versão anglo-saxónica) é um jogo clássico

de tabuleiro no qual os jogadores unem quatro pontos próximos numa grelha para

criar o maior número possível de quadrados. Este trabalho irá inverstigar técnicas de

aprendizagem profunda e aprendizagem por reforço, que torna possível um programa

de computador aprender como jogar o jogo, sem nenhuma interação humana, e aplicar

o mesmo ao jogo Dots and Boxes; a abordagem usada no DeepMind AlphaZero será

analisada. O AlphaZero combina uma rede neural convolucional e o algoritmo Monte

Carlo Tree Search para alcançar um desempenho super humano, sem conhecimento

prévio, em jogos como o Xadrez, Go, e Shogi.

Os resultados obtidos permitem aferir sobre a adequação da abordagem ao jogo

Pontos e Quadrados.

Palavras Chave: adversarial search, machine learning, deep learning, reinforce-

ment learning, Dots and Boxes, rede neural artificial, rede neural convolucional, jogos,

AlphaZero, DeepMind, jogos de tabuleiro, auto aprendizado.
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Abstract

Dots and Boxes is a classical board game in which players connect four nearest dots

in a grid to create the maximum possible number of boxes. This work will investigate

deep learning techniques with reinforcement learning to make possible a computer

program to learn how to play the game, without human interaction, and apply it to the

Dots and Boxes board game; the approach beyond DeepMind AlphaZero being taken

as the approach to follow. AlphaZero makes a connection between a Convolutional

Neural Network and the Monte Carlo Tree Search algorithm to achieve superhuman

performance, starting from no a priori knowledge in games such as Chess, Go, and

Shogi.

The results obtained allow to measure the approach adequacy to the game Dots and

Boxes.

Keywords: adversarial search, machine learning, deep learning, reinforcement learn-

ing, Dots and Boxes, artificial neural network, convolutional neural network, game

playing, AlphaZero, DeepMind, board game, self-playing.
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1
Introduction

Board games are amazing in many ways. Great challenges are disputed all over the

world to promote the best-recognized players with their best strategies in many kinds

of board games like chess, go, backgammon, and many others. Not only in the world

arena those games are played, but also in small groups, family homes, and now, most

of the time, on a computer or on a cell phone.

The game migration from elegant boards to different computational platforms cre-

ates a variety of possibilities to train and develop new abilities in real players. Through

all kinds of competitive ways, and the improvement of the capabilities and difficulty in

games, it is possible to create the best real challenge for humans. Learning the moves

from the best players in the world and combining them with machine learning tech-

niques or through only from machine learning techniques, we can create the best ma-
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1.1. MOTIVATION

chine opponent, even for humans. However, in the new machine world, a machine

“fights” against a machine to become the new best player, without previous data. This

is what happens with AlphaZero which is able to achieve a superhuman performance,

winning all possible played games and smashing all of the opponents in games such

as Chess, GO, or Shogi (Silver D., 2017).

1.1 Motivation

When I was fourteen, my dad brought me a new machine, a recent 80286 PC (personal

computer)! I was only familiarized with video games, and now, that computer will

become my new best friend forever! My dad enrolled me in a programming course and

I started to learn how to program in the Clipper Summer ’86 version, an old language

for MS-DOS. I did some good things in that language and years later, I learned a new

language, an object programming oriented language, Object Pascal.

Delphi1 opened to me a new world for windows programming and I created my

first program in Delphi: The Dots and Boxes game. Dots and Boxes was my classical

game in school, for many times my friends and I were playing that game with a pencil

and a blank sheet, good times!

The game was created but with only one issue: my new PC could not play it! I could

not teach it to play the game at that moment. Now, in my Master, after some machine

learning classes, the curiosity of putting some piece of “intelligence” in that software

comes out and my old Delphi Dots and Boxes becomes a completely rewritten new

console mode game, written in C# Core. The new game was created with the intent to

be a smart game.

Monte Carlo Tree Search (MCTS) was the first algorithm implemented and attached

to the new game and the result was pretty good, the computer could play for him-

self without no instructions, only following the game rules. However, some mistakes

quickly appeared in a lot of games, in other words, it “learned” great moves but it

1"Delphi is a cross-plataform integrated development environment (IDE) [for object pascal] that sup-
ports rapid application development (RAD) for the most operating systems."(Gabrijelčič, 2019)
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1.2. DOTS AND BOXES

Figure 1.1: Dots and Boxes 3x3 - empty board

"forgot" all when the was ended.

The project could be smarter, other techniques could be explored, and that was the

main driving force of this current work.

My childhood’s personal motivation was not the only reason for starting this project.

Others reasons would be learning, in a practical way, how to use reinforcement learn-

ing through artificial neural networks, how could it be done in the learning process for

that game? This project is of great value to me in what concerns to know how things

work behind the scenes in a game learning process.

1.2 Dots and Boxes

Dots and Boxes is a board game that can be played at least by two players. The board

contains equidistant dots, horizontally and vertically positioned. The number of dots

on horizontal and vertical does not matter as along as the number of dots in all columns

have to be equals to the number of dots in all rows. However, in this implementation of

the game, it will be used only Dots and Boxes boards with the same number of dots for

the columns and rows, shaping a big square. The number of maximum boxes vertically

and horizontally would be represented by ’n’ (figures 1.1, 1.2).

By convention, in this work, lines, row, and column words are used to define the

line created by the user for a gameplay move and columns and rows are used to define

the position of that line in the board.

For example, the board 3 x 3 (n = 3) is formed by 4 small dots per row and 4 small

3



1.2. DOTS AND BOXES

Figure 1.2: Dots and Boxes 3x3 - full board

dots per column and the connection of those dots through horizontal and vertical lines

builds 9 squares (boxes). The number of lines connecting dots (or total moves of the

game) is 24 for the same configuration. There are 3 small vertical lines per column, 4

small vertical lines per row, 4 small horizontal lines per column and 3 small horizontal

lines per row. It could be represented by the following formulas 1.1:

Board n x n

n2 = total number of boxes

m = n + 1

total of horizontal moves = mn

total of vertical moves = nm

total of possible moves = 2mn (horizontal + vertical)

(1.1)

The game playing sequence consists of connecting two nearest dots, vertically or

horizontally, by a line. Diagonal lines are not permitted. It is not important or nec-

essary to keep any information about the player who drew the line. Each player can

draw only one line in any empty space between two dots in each turn. The exception

here is when a player creates a box after drawing the line, in this case, he or she writes

the name or a mark in the middle of the box, to identify the box owner (figure 1.3),

receives one point for box built, and plays again (mandatory). In his(her)(its) turn a

4



1.2. DOTS AND BOXES

Figure 1.3: John’s game point

Figure 1.4: Paths

line must be drawn, it is mandatory, so the player cannot pass or skip the turn and

continues while boxes are created.

The goal is to create the most number of boxes as possible connecting dots. It does

not matter the number of lines drawn for each player, but wins the game, the player

that could create the most number of boxes when no more lines can be drawn. The

game is draw when both players finished the game with the same number of points.

Some board configurations do not permit a draw game, like boards with odds N’s (3,

5, 7, 9,...); for even N’s (4, 6, 8,...), the game can be a draw game.

In this game, strategies can be used, and the creation of many boxes at the beginning

does not give “a won game” to the player at the end. Some strategies are to create a

path of boxes (figure 1.4), that so many points can be made in sequence. Many times,

giving a point or two to an adversary became a strategy to earn a path with many

points at the end. This game strategy is particularly important to defeat the opponent.

Others games like Checkers game have similar strategies, using the mandatory moves

to gain advantage (figure 1.5).

5



1.3. OBJECTIVES AND CONTRIBUTIONS

Figure 1.5: The next player to play has no possibility to win is forced to get less points
than it will give

1.3 Objectives and contributions

This work will contribute to demonstrate that the AlphaZero algorithm can handle

this game how efficient it can be that through deep learning techniques, whether it is

possible to computer learn how to play a board game with no previous human game

data and no human interaction, except following the general rules of the game.

This work will provide its own implementation of both the game and the algorithm,

using as reference the AlphaZero implementation, comparing and analysing some oth-

ers (described in related work section), and it will make them publicly available in the

code repository GitHub2. It will also provide a comparison of the available implemen-

tations and results, including the results of some disputes between different agents.

1.4 Thesis organization

The thesis is divided into 6 chapters.

This chapter contains my personal motivation and a brief explanation about the

game and its basic rules. It includes the objectives and contributions.

The second chapter contains the game playing and how the game works in a more

technical way, an explanation of the MCTS algorithm, artificial neural network, and

some other algorithms used.

2The source code was published in a Github repository https://github.com/gionnani/
dotsandboxes and all documentations can be found in the repository home page.

6
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1.4. THESIS ORGANIZATION

The third chapter contains the related works on Dots and Boxes game, with their

own implementations, the user interface (UI) of each one, the use of an ANN, other

approaches like chains recognition, and some comparisons between them.

The fourth and fifth chapter describe the work done, the ANN structure used, the

difficulties and restrictions found, and the results achieved at this moment.

The sixtieth chapter is the conclusion of the work and the future works proposed.
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2
Game playing

2.1 The game

From the descriptions provided until now, it is clear that Dots and Boxes is a multi-

agent, strategic-deterministic, turn-playing, zero-sum game1, of perfect information,

where we can define by the following components:

1. States

(a) A matrix M used to define the board state2 is composed of 0’s and 1’s and

only lines or connections are represented. The drawn line is represented

by the value 1, and the empty place by the value 0. The dimensions of the

1“These are games where the benefit of one player equals the loss of the other players” (Elkind E.,
2011)

2Board state is the graphical or textual representation of the the board.
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matrix M, [M]r,c are defined by equation 2.1, where r is number of rows, c is

the number of columns and n is the number of possible boxes in a row or a

column:

r = (2n + 1)

c = (n + 1)

(2.1)

This is an example for n = 3 boxes: r x c = (2 . 3 + 1) x (3 + 1) => 7 rows x 4

columns

All those elements will be flatten to be an input array for the neural network.

(b) Initial State

i. The initial state is composed by the matrix of zeros representing the

empty board.

(c) Expansion operator

i. An operator that receives the current state and returns the immediate

states which as achievable from the current one. This will be presented

in chapter 4. Each state has a representation of the board and the infor-

mation if the player won the game or not.

2. Number of agents, identifiers, and who’s playing first

(a) The game has only two agents, identified by the version of the Neural Net-

work in the configuration file.

(b) The neural network is defined by dotsandboxes(n)_xx, where "n" is the num-

ber of boxes and “xx” is the sequential number for the network version.

(c) The winner version of the neural network is the first player of the next game.

3. Board line positions
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Figure 2.1: “aA” horizontal and “Bc” vertical

(a) Each board position is composed of two letters, one capital letter and one

small letter as follow:

i. The letters represent the lines, not the dots.

ii. First letter starts in the left for capital letter or in the top for small letters.

iii. Second letter starts in the right for capital letter or in the bottom for

small letters.

iv. The first letter defines if the line should be written in vertical or hori-

zontal

A. If the first letter is capital (left), it means the line would be in vertical,

written in the space between the two vertical dots. The following

small letter in the bottom defines which column the line is going to

be written.

B. If the first letter is small (top), it means the line would be in hor-

izontal, written in the space between the two horizontal dots. The

following capital letter in the right define which row the line is going

to be written.

v. For example, the figure 2.1 has two marks in yellow, the line “Bc” de-

fined by the row “B” and the column “c” (left to right then up to down).

The line “aA” is defined by the column “a” and the row “A” (up to

down then left to right).
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Figure 2.2: 1 or 2 points payoff

4. Agents actions

(a) Each agent can choose any empty place (space with non-line) to write the

line between the two nearest dots.

(b) Each agent can only play once by turn and cannot skip without writing one

line.

i. If a box is created in the turn, the agent has necessarily to play again.

It’s mandatory! (see figure 2.2)

5. Payoff

(a) One point for one box created with one line drawn or two points for two

boxes created with the same line drawn (figure 2.2).

6. Termination condition

(a) The game ends when the board has no empty place left. The number of the

current playing is equal to the total of possible moves (equation 1.1). Wins

the game the agent with more points. A draw occurs when the point of both

players are the same in the end of the game.

The state diagram (figure 2.3) represents the complete game sequence. This game

has an especial characteristic, it does not matter whom did the line at the moment, the

only important information is who could complete the box/square, and consequently

who makes the game point or points.
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Figure 2.3: Gameplay State Diagram
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2.2 Game characterization

The game is classified by the kind of information provided and how the agents actions

affect the game state.

2.2.1 Information Provided

Games can be classified as games of perfect or imperfect information. Games of imper-

fect information have some core elements invisible to the player(Santos, 2017).

Chess, Checkers, Backgammon, and Boxes and Dots are examples of games of per-

fect information, while poker game is not.

2.2.2 Deterministic vs Stochastic

Deterministic games have the next state determined only by the current state and the

action taken in that current state. Differently from the stochastic games where random

elements affect the states. Examples of stochastic games are card games with shuffled

elements (Santos, 2017).

Boxes and dots is a deterministic game.

2.2.3 Comparing games

The comparison of possible distinct games from Chess to Go, after only two start

moves, is 1,225 (352) versus 62,500 (2502). Dots and Boxes 3 x 3 (n = 3) has a factor

of 24 (total of moves) that decreases after gameplay. In the middle game, with branch-

ing factor 15, there are 2,730 (15*14*13) different boards after only 3 moves (Aguayo,

2020).

That characteristic of the Dots and Boxes game is a game very hard to calculate all

possible moves in real time without the use of an heuristic function, so the use of the

AlphaZero algorithm for this game is really a very good choice.
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2.3 Background

2.3.1 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a search algorithm based on randomness that uses

a tree structure to simulate different gameplays (Santos, 2017).

No heuristic is needed in the original MCTS. The main role in the MCTS is to play

the most number of games and choose the best move based on some configurations.

MCTS is also part of the AlphaZero and can be used alone or associated with other

strategies.

The MCTS is composed of four distinct steps to find the best option to play: Those

steps are in order:

1. Selection: where the algorithm selects the state to be expanded.

The selection step uses an UCB – Upper Confidence Bound. This bound imple-

ments a score to games played, using pieces of information from won games

starting from node i (wi), the number of simulations performed in that node, (ni),

the total of visits in the parent of i (t), and a constant c used to balance the trade-

off between the exploitation and exploration components of UCB.

UCBi =
wi

ni
+ c

√
ln(t)

ni
(2.2)

The selection process gets the node which will be used in the following process

steps.

2. Expansion: the process that adds a new leaf into the tree after the selection and

adds a new children to the node (state).

3. Simulation: after expansion, one or more game simulation are generated until the

end of the game.

Many times, this step is referenced by the rollout step. All the tracks from this

step are kept for the next step.
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Figure 2.4: Selection and expansion phases (Baier, 2015)

4. Back-Propagation: propagation of results

The simulation results is backed propagated to the first node - the root node - and

the MCTS process starts again from the selection stage until the exhaustion of a

given computational resource; usually time. (Santos, 2017)

The algorithm complexity is proportional to the number of leaves. Each selected

leaf has a whole game process, generating more and more leaves.

The more leaves in a horizontal level, the more time is necessary to cover different

possibilities for a game. In a real-time game, it’s impossible to wait until all possibilities

are reached, so the use of learning techniques in this step could improve the quality of

choice.

2.3.2 MCTS Alphazero Adaptions

The original MCTS was adapted in some steps to fit the alphazero format. Those mod-

ifications were in the selection, rollout, and the choice of the final element steps.

MCTS for AlphaZero is based on probabilities instead of using the simulation pro-

cess (rollout) of complete gameplays to find what is the best move for the game. All

probabilities are generated based on previous MCTS common game simulations and

that data is used to train the neural network used in the algorithm.
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Figure 2.5: Simulation (rollout) and back-propagation phases (Baier, 2015)

Algorithm 1 MCTS Implementation (Baier, 2015)
Require: Start State

1: MCTS(startState)
2: for i = 1, 2, . . . , numberO f Iterations do
3: currentState <- startState
4: simulation <- () # selection
5: while currentState ∈ Tree do
6: currentState <- takeSelectionPolicyAction(currentState)
7: simulation <- simulation + currentState
8: end while # expansion

9: addToTree(currentState) # rollout
10: while currentState.notTerminalPosition do
11: currentState <- takeRolloutPolicyAction(currentState)
12: simulation <- simulation + currentState
13: end while # backpropagation
14: Score <- cumulativeReward(simulation)
15: for all state ∈ (simulation ∩ Tree) do
16: state.value <- backPropagate(state.value, score)
17: end for
18: end for
19: return finalMoveChoice(Tree)
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A most detailed explanation will be presented later in this section.

The pretrained neural network will provide the necessary prediction for each board

state provided in the game simulation process. The network’s output contains two sets

of values. The values for the policy network for the current board and the action value

for the prior value network contribute to find the best move.

The main point here is to use the MCTS to maximize the potential gains and to min-

imize potential losses. Classically other algorithms are used like minmax algorithm

and alphabeta pruning to reduce the number of calculations to find a good result in

the available time. The AlphaZero does not use any of them, what AlphaZero does is

a sophisticated solution for those games (Aguayo, 2020).

Selection

Selection uses an modified version of the upper confidence bound applied to trees

which is similar to upper confidence bound. It is composed of a constant C multiplied

by the division of the square root of the total visit counts by the visit count of the board.

The result is multiplied by the probability of an action a in the state s from the neural

policy network. That’s given more importance to nodes with high probability to be the

best move without discarding the count of visited nodes (2.3).

U(s, a) = CpuctP(s, a)
√

∑b N(s, b)
1+ N(s, a)

(2.3)

The second part is to sum the result from CPUCT to the mean of Q and choose the

best board (2.4).

at = argmax(Q(st, a) + U(st, a)) (2.4)

At the beginning, the preference for selection the action a with high probability and

low visit count but with the time it is more desirable to select boards with highest

action value. (Silver D., 2017)
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Probabilities and values

Four metrics are necessary to calculate the PUCT, those metrics values are initialized

to zero at the beginning of the search (Silver D., 2017):

1. N(s,a) - The accumulated visit count for the position s and move (action) a.

2. W(s,a) - The accumulated total of the action values (backup values).

3. Q(s,a) - The average of the action value, that is the total of action value over the

visit count for that position.

4. P(s,a) - The prior probability for select a edge.

Temperature

According to AlphaZero paper (Silver D., 2017), temperature value τ controls the deep

search in the tree on MCTS.

In that context, temperature value will be one of two values (2.5): 2.6)

τ = 1 (2.5)

or

τ → 0 (2.6)

When τ = 1, the best move will be chosen proportionally to their visit count of

MCTS and when τ → 0, the move will be chosen deterministically with the maximum

visit count of MCTS.(Silver D., 2017)

The equation 2.7 represents the expression used to chose the board and how the

temperature affects that. It’s the division of the number of visits of the board raised to

1 over temperature value by the total visits of all boards raised to 1 over temperature.

So, when the temperature is 1, it will be chosen the exact value of visits over total visits.

π(a|s0) =
N(s0, a)

1
τ

∑b N(s0, b)
1
τ

(2.7)
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Expansion

The metrics are initialized to zeros every time the MCTS search is expanded for each

leaf state sL (2.8) and the values are not accumulated between the search’s methods. In

the game method, while N, W, and Q are calculated and increased by the MCTS, the

probability value comes from the policy network for that board (Silver D., 2017). The

probability is calculated by the final N, W and Q. It is the same calculus used to find

the best move (see 2.7)

Those values are backpropagated to the priors nodes on the tree.

N(sL, a) = 0, W(sL, a) = 0, Q(sL, a) = 0, P(sL, a) = pa (2.8)

Rollout step

Rollout step is composed of the prediction for the board using a neural network. The

results from the network fill the W and P values for that specific board.

Back propagation

The backprogation has two steps (Aguayo, 2020):

1. Adds 1 to the visit count of the board and the parents boards.

2. Calculate the Q value for the board and the parents boards.

Selecting the playing position

The final action value of the board is defined by the division of the mean of the sum

of all action values of one board by the visit number v of the same board (2.9). The W

value is the total sum of the priors action values and the Q value is the mean.

W(st, at) = W(st, at) + v (2.9)

Q(st, at) =
W(st, at)

N(st, at)
(2.10)
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That defines what playing position is the best option according to the neural net-

work and MCTS (Silver D., 2017).

Continuous play

The game is played in two modes:

1. Competitive Mode

The game is played in competitive mode when two different neural networks

are playing against themselves. The champion neural network is going to be

the candidate to the best model. The neural network which wins most of the

games in the challenge is the best model and the neural network which goes to

the training mode (Silver D., 2017).

Competitive mode uses temperature value set to 1 that means the best move ever

is chosen from the neural network (Silver D., 2017).

2. Training Mode

The game is played in training mode with two of the same versions of the neural

network. After the challenge in the competitive mode, the winner neural network

competes with itself in training mode to generate all necessary data that will be

used to train the new version of the neural network (Silver D., 2017).

The model is trained continually in both competitive and training modes and the

new versions are evaluated to become the new version of the neural network to be

used (Silver D., 2017).

2.3.3 Artificial Neural Networks (ANN)

Artificial Neural Networks are inspired by biological neuron structures, which use a

number of neurons, interconnected by synapses, which transfer and process the signal

on the path. An artificial neuron is composed of functions that interconnect inputs to

output. That structure 2.6, represents a neuron in which all the inputs(i =[i1, i2, . . . ,

ip]) multiplied by the weights (W=[wi,1, wi,2, . . . , wi,p]), together with the bias value,
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Figure 2.6: Model of a typical neuron (Ruano, 2016)

θi, are connected to the summation block (S), and, through the activation function f(.)

produces the output (Ruano, 2016).

The structure of an Artificial Neural Network is formed by many neurons, spread

in many layers. According to figure 2.7, the network with inputs X1 to X7, uses the

hidden layers to process those inputs and generate the output (Krogh, 2008).

The goal is to minimize the errors in all classification process, as evaluated by a

loss, error or cost function. Many times the cost function used is the mean squared

error (MSE).

2.3.4 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a special kind of Artificial Neural Network

that utilizes convolutional operations in at least one of its layers. The CNN has a vast

application in the search of patterns (Goodfellow et al., 2016).

The convolution utilizes weighted averages of the inputs and kernel as described

in the figure 2.8.

Therefore, as the convolutional operation uses the real-time value, each measure

has its own value, and the weighted average of several measures is used to approxi-

mate to the best value (Goodfellow et al., 2016).
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Figure 2.7: ANN Structure (Krogh, 2008)

Figure 2.8: Example of convolution operation for two dimensions (Goodfellow et al.,
2016)
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s (t) = (x ∗ w) (t) =
∞

∑
a=−∞

x (a)w(t− a) (2.11)

The convolutional operation is realized most of the time over tensors, which means

multidimensional arrays. The two-dimensional Kernel over a two-dimensional image

could be represented by the formulae:

a) S (i, j) = (I ∗ K) (i, j) = ∑
m

∑
n

I (m, n)K(i−m, j− n) (2.12)

OR

b) S (i, j) = (K ∗ I) (i, j) = ∑
m

∑
n

I (i−m, j− n)K(m, n) (2.13)

OR

c) S (i, j) = (K ∗ I) (i, j) = ∑
m

∑
n

I (i + m, j + n)K(m, n) (2.14)

The formulas 2.12 and 2.13 are equivalent to the cumulative characteristic of con-

volution and 2.14 is a cross-correlation function, which works like a convolution but

flips the kernel and is used in some frameworks (Goodfellow et al., 2016).

2.3.5 Batch Normalization

Batch normalization was proposed by Sergey Ioffe and Christian Szegedy, both from

Google, in 2015, to resolve what they called “internal covariate shift” - the parameter

changing between layers on training, what required lower learning rates, and caution

on choosing the initialization parameters. The proposal was to make “normalization a

part of the model architecture and performing the normalization for each training mini-batch”

(Ioffe and Szegedy, 2015).

For convolutional layers, the normalization follows the convolutional property –

“so that different elements of the same feature map, at different locations, are normalized in the

same way” (?). All activations are normalized in mini-batchs in all locations.
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2.3.6 Rectifier

The rectified linear unit function (ReLU) performs an operation where the output is

always greater than 0. It rectifies negative values to 0 but preserves the positive ones.

“ReLU is a faster learning activation function” (Nwankpa C., 2018) and when it is "used in

hidden layers can improve the learning speed of various deep neural networks" (Ide H., 2017).

f (x) = max(0, x) (2.15)

2.3.7 Softmax

Softmax is an activation function that limits the output to a range of 0 and 1 like sig-

moid functions, but with more classes simultaneously involved. This function is com-

monly used in the final layer of the neural network (Mercioni and Holban, 2020).

so f tmax(x)i =
e(xi)

∑j e(xj)
(2.16)

2.3.8 Argmax

Argmax is a general statistic method to estimate which parameter maximizes some

function

Γn(θ) = Γn(θ; X1, ..., Xn)

of some unknown parameter; sometimes, it is known as M-Estimator.(Ferger, 2004)

θn = argmaxΓn(θ)⇒ θ ∈ Θ (2.17)

2.3.9 Dropout

Dropout is a technique to prevent overfitting during the training of the data. The

dropout consists in dropping out units of hidden layers during the training of the neu-

ral network to improve generalization (Sammut and Webb, 2017; Srivastava et al., 2014)

as seen in figure 2.9.
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Figure 2.9: Example of neural network of 2 hidden layers with dropout at right (Sri-
vastava et al., 2014)

2.3.10 Loss-Functions

Loss functions are functions that determine the loss or cost of a prediction y’, when y

is the correct value, in a training process (Sammut and Webb, 2017).

Two losses functions are used by training process of AlphaZero: Categorical Cross-

Entropy and Mean Squared Error.

Categorical Cross-Entropy

Categorical (qualitative) variables are that can distinguish categories by some charac-

teristics, link gender, colors, evaluation, etc. (Sammut and Webb, 2017).

Categorical cross-entropy is a multiclass loss function (Gulli and Pal, 2017) and it

can be defined by the difference of two probability distribution of a event to occur, the

summation of discrete states, and the log of the probability log p of a random event t

(2.18):

Li = −∑
j

ti,j. log (pi,j) (2.18)

Mean squared error

Mean squared error (MSE) is a metric evaluation function that calculates the squared

mean of the difference between actual value y and the prediction lambda(x) over all

instances of a set n (Sammut and Webb, 2017).
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The mean squared error can be represented by the equation 2.19.

mse = ∑n
i=1(yi − λ(xi))

2

n
(2.19)

2.3.11 Learning

Supervised Learning

Old versions of AlphaGoZero (version for the Go game for example) used supervised

learning for training and getting game data from expert players best plays.

Supervised learning is the learning with the support of a supervisor. The data is

provided in sets of inputs and expected outputs. The agent corrects the parameters to

minimize the loss improving the accuracy of the model (prediction - expected value

approximates to zero)(Bonaccorso, 2017).

The main point here is using new data to train - the data that never was seen be-

fore; the generalization of the model is the key to avoid the overfitting (overlearning)

(Bonaccorso, 2017).

Reinforcement Learning

Reinforcement learning is based on the evaluation of unsupervised learning and the

analyse of the feedback provided by the environment (see figure 2.10 (Bonaccorso,

2017)).

The feedback provided is called reward, that can be positive or negative. AlphaZero

has as reward the prediction from the value network. The policy is what the agent uses

to learn. The policy combined with the accumulated value/reward gives the highest

immediate and cumulative rewards - a highest total reward.

The other calculus involving that highest total rewards provided by the neural net-

work is used to chose the best move for a determined board.
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Figure 2.10: Reinforcement example for an Atari game (Bonaccorso, 2017)
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3
Related Work

3.1 AlphaGo to AlphaZero

AlphaGo is a program created to defeat a human player in a Go board game (Silver D.,

2017). The performance is obtained through the use of supervised learning, with tech-

niques of experts in Go games, predicting the moves from them and "refined by policy-

gradient reinforcement learning"(Silver D., 2017). After that, the network is retrained

playing against itself and, combined with MCTS, providing moves of high probability

for the game. That version was called AlphaGo Fan. The name was given in October

2015 because of Fan Hui, the opponent, an European champion. This version taked

176 GPUs distributed over many machines. (Silver D., 2017)

The next version was AlphaGo Lee, because this version defeated Lee Sedol, in-
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ternational winner, in March 2016. The Lee version defeated the opponent in 4 to 1.

This version taked two neural networks and was trained based in fast self-play games

from Alpha Go. The policy network was trained by supervised learning and refined

by policy gradient reinforcement learning. The objective is to predict human expert

moves. That was distributed using 48 TPU for faster results. (Silver D., 2017)

AlphaGo Master was the last version created before the AlphaGo Zero version,

defeating players in 60 to 0, in 2017. This version uses supervised learning from human

data in the beginning of the training combined with other techniques coming from

other versions. (Silver D., 2017)

The AlphaGo Zero version was the first version that did not use supervised learn-

ing anymore. That means that all process of training started with random weights and

learned from self-play games without human supervision or any kind of human data.

This was the first time that only one neural network was used in that process (previous

versions used more than one neural network). The MCTS is in the process too, like its

previous versions but, no rollout is made, and the network is capable to provide the

result quickly and precisely. (Silver D., 2017)

Considering this work is based on AlphaZero version, evoluation of AlphaGo Zero,

this version will be more detailed than the older ones.

AlphaGo Zero process is composed of three stages. The first stage is self-playing,

a stage where the AlphaGo Zero creates data to train from games against itself. The

number of games played defined was 25,000, always keeping the information of who

is winning (1) or losing (0) the game. The second stage is the training, a loop from a

small sample from the last 500,000 games randomly generated from the last step and,

at last, it plays more 400 games with the best CNN against the new trained CNN. The

winner from this dispute is defined as the new best CNN position if it is the one which

wins 55% of those 400 games and does the same operation again over and over.

The game state is the representation of the board data on time and it is composed

of the shadows of boards from the actual and 7 previous boards for the black, more

actual and 7 previous boards for the white stones plus the sheet that identifies the
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current player. This state turns a stack of 17 matrices of 19 x 19.

The model is composed of 19 or 39 residual blocks with that structure repeating a

convolution of 256 filters of kernel size 3 × 3 with stride 1, batch normalization, and a

rectifier nonlinearity, a fully connected linear layer to output a 362 size vector and at

the end, and a fully connected linear layer in the range of -1 and 1 (Silver D., 2017).

In that process, MCTS simulates 1,600 times beginning from the actual state (root

node) for the choice of each movement. The simulation phase is not a rollout but a

modified phase with predictions from the CNN.

The AlphaGo Zero could turn itself the best player, defeating humans after 40 days

of self-training. The computional power to train was only one machine with 4TPUs.

Alpha Go has the capability to be distributed too, but according to (Silver D., 2017),

they made the choice to use the simplest possible search algorithm.

3.1.1 AlphaZero

AlphaZero is the evolution of the AlphaGo Zero with improvements to work not only

for Go games but also to work with others board games and it is the chosen version for

this work.

Like the AlphaZero, this work will not have game data previously generated from

experts, starting only from random games. The MCTS will not perform simulations,

consulting always the neural network model to achieve the best movement for the

actual state.

3.2 Game implementations

3.2.1 Python and Javascript implementation

The first case studied was the implementation of a web app in Javascript of AlphaZero

for Dots and Boxes made by (Aguayo, 2020). The author, in his work, raised the ques-

tion about the classification of the board like we do with images of dogs and cats for

example.
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Figure 3.1: AlphaGo Zero process, state data, CNN and MCTS (Silver D., 2017)
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Like dogs and cats, is it possible to classify a board in a winning or losing board? (Aguayo,

2020) And he has show that it is possible to create a simple game, a dots and boxes

game 3 x 3 to demonstrate it.

The result generated was pretty good, so, and in all my tests, it was hard to de-

feat this game by myself (as human) but it was possible, both by myself and by my

implementation of the standard MCTS.

This work was created as an extended work from Surag Nair1, a PhD student in

Stanford University. Surag implemented an AlphaZero general project with possibility

of extending games to add to his project and Aguayo added his own implementation

of Dots and Boxes to there.

The Surag Nair implementation was coded in Python, so Aguayo make his imple-

mentation for training the neural network in Python and ported the game to Javascript.

Tensorflow.js library was used to make a connection with the pre-trained neural net-

work and to predict the moves from that network.

Aguayo also put some Jupiter Notebooks to help anyone understand how he did

the training and playing games, but at this time, the python notebooks raised some

errors based on old libraries so it is not possible to simulate all his work. It was a very

hard work to extract his version of the board state and understand it, but at the end

this project contributed a lot to mine.

However, the code he used to train did not work without some modification but,

the final version of the neural network present in his repository is already trained and

works very well.

State

Aguayo defines the state a little different from mine in positions but not in size of the

array. His state also has 28 positions to represent all 24 possible moves (n = 3). The

others 4 positions are divided by agent points and the game end flag (figure 3.3).

An example of a board representation state with positions 13 and 4 selected would

1https://github.com/suragnair
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Figure 3.2: Aguayo’s Javascript implementation (Aguayo, 2020)

Figure 3.3: Aguayo’s board numbering positions (Aguayo, 2020)

be: "0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0", and the board representation for

figure 3.2 would be: "1,1,1,3,0,1,1,2,1,1,1,0,1,1,1,0,0,1,1,1,1,0,0,0,1,1,1,1". This state can

be confirmed by the conversion of the board to string, injecting the JavaScript com-

mand board.toString() - in the browser console (F12).

The numbers 3 and 2 represent the points for the first and second agent, respec-

tively. This values are normalized in the training process.

Implementation Problems

The port of dots and boxes was based on the extension of Surag Nair, mentioned above,

but it does not consider games which players can repeat the move, the case of dots and

boxes.
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The MCTS simulation step changes the value of the value network from positive

to negative and vice versa for each player turn, continuously multiplying the value by

-1. It works pretty good in other games. Dots and boxes game has to consider who is

playing in that moment, and only invert if the player changes.

The performance of the network trained could be affected by this mistake, however

the final network generated was pretty good in the performance. The most of the

games finish with many player’s moves in sequence what can be the cause of success

in the neural network.

3.2.2 Peters’ Thesis

Another related work was did by Tom Peters in his master’s. He implemented the

AlphaZero and the game, training the neural network but in a different way (Peters,

2018). The author uses images instead of text board configurations as inputs to the

network in order to find the best boards through an CNN.

Peters’ objective in that work was to check if it is possible to create a good network

for this game with low computational power, not what was used to train the AlphaZero

and if it is possible to use the same trained CNN for different sizes of boards, and to

find new strategies for self-playing. Finally, he tested his game challenging a QDab

Dots and Boxes game and Dabble, both tagged with the best AI for Dots and Boxes,

and he could not defeat them in one hundred games played (Peters, 2018).

As the results, he found to be possible to train the network with small resources

and in his experiments it was possible to transfer the acquired learning to big boards

and could change some hiper-parameters to find better results in his training process.

The game implementation was in C++ language, divided in two softwares. The

first one is an image generator to create data and the second one is the game called

Ksquares. This game has a graphic interface and runs on Linux KDE.
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Figure 3.4: KSquares (Peters, 2018)

3.2.3 Zhang, Li, and Xiong’s work

More recently, Zhang, Li and Xiong, (Zhang et al., 2019) created a Dots and Boxes

AlphaZero game and compared it only to MTCS. The results was presented in a con-

ference paper and although the training and results were small, they defeat MCTS all

of 10 times played.

They used a CNN model with 5 layer, the first one with 32 filters and kernel 3x3,

ReLU, the second one with 64 filter (3x3 + ReLU), and the third and forth ones with 128

filters, 3x3 and ReLU. After the fourth layer, the network splits into the policy network

and value network for the fifth layer as the figure 3.6.

The MCTS simulates 400 steps for each movement chosen and the use of random

probabilities with Dirichlet Distribution (0.25). The training was made every time the

sample reaches 2000. In 500 games played the winner rate was 100 % with the pure

MCTS game (Zhang et al., 2019).

Details about implementation and the state format was not provide and work repli-

cation becomes impossible.
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Figure 3.5: Data Gerenerator (Peters, 2018)

Figure 3.6: Convolutional Neural Network Model (Zhang et al., 2019)
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3.2.4 Neural networks and Convolutional Neural Networks

All those games were written with different kinds of models to make the same work

based on AlphaZero paper. Some of them implemented more features and others less,

but all works have significant improvement from the pure/original MCTS. For ex-

ample, the Aguayo’s (Aguayo, 2020) implementation does not use the convolutional

neural network in his model but the others implement it like (Peters, 2018) and (Zhang

et al., 2019). Peters input images for training and Zhang are not clear about the state

format.

3.2.5 QDab Game

Qdab is cited by Peters in his master’s thesis (Peters, 2018) and this game was created

by Yimmon2 using goland and Python 2.7. and was compiled to linux.

The github contains the full source code, but without details about the implemen-

tation and resources used in this game(Zhuang, 2015).

3.2.6 Dabble Game

Dabble also was cited by Peters in his master’s thesis (Peters, 2018) and this game was

written in Microsoft C++ environment by J.P. Grossman. This game uses chains and

double-crosses internally to find patterns and follow the best possible way. The author

said sometimes it uses brute force to find the best move.

Dabble was introduced in the second Combinatorial Game Theory Research Work-

shop, held at the Mathematical Sciences Research Institute, July/2000 (Grossman.,

2000).

2https://github.com/yimmon
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Figure 3.7: Qdab interface (Zhuang, 2015)

Figure 3.8: Dabble interface (Grossman., 2000)
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4
Proposed approach

4.1 Language

The language of development used is C# and Python. The choice of C# was made

based on my background in .net. Python 3 was used for the neural network training.

4.2 CNTK e ML.Net Frameworks

Microsoft Cognitive Toolkit (CNTK) and Machine Learning for .net (ML.net) are two

libraries that work with convolutional neural networks. Both can use a CNN, but only

CNTK can train the network. Microsoft did not implement the training capabilities

to ML.net for tensorflow models and the GPU card is mandatory for the training pro-

cess of the own model. Both provide powerful tools to work with machine learning
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projects.

ML.net was preferred over CNTK because the CNTK requisite of GPU card and

CNTK incompatibility with Ubuntu Colab version. ML.net does not need the graphics

card to use the network pre-trained.

4.3 Google Colab

Google Colaboratory, in short Colab, is a tool that offers the use of a GPU card free of

charge. Colab has a Python notebook interface and runs over Ubuntu Linux, which

makes possible the .net core integration to this project. Unfortunately, the CNTK did

not work for incompatibility with the Ubuntu Colab’s version, so only the ML.Net

could be used, but need some integration by the fact the ML.Net does not train the

model.

The integration for the CNN was created and the training process was made in

Colab, with Tensorflow1 and Keras2, so the pre-trained neural network could be used

by the game for simulations.

Google Colab was used to train only in the first version of the neural network. All

the process takes a lot of time and Google Colab has a reduced time until restarting the

environment, many training cycles and much time was lost in preliminary tests for that

limitation; cloud virtual machines were used instead of Colab in the training process.

The training process in a virtual machine with tensorflow, GPU card does the train-

ing process quickly but CPU can emulate that, but takes more time to conclude.

4.4 Cloud Virtual Machines

Virtual machines were created in three cloud platforms: Microsoft Azure, Amazon

Web Services and Google Cloud. No differences between the implementation and per-

formance of those virtual machines were noticed in all of those platforms.

1“The core open source library to help you develop and train ML models.” from Tensorflow website.
2Keras is an API for make things easy in a deep learning environment. Keras and Tensorflow work

together.
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The only reason to use more than one platform is to balance the costs of in all of

them. The resources used were the same for all of them. All machines were created

with Linux, Ubuntu OS version 18.4.

4.4.1 Configuration

Two kinds of hardware were used in the process of generating initial data and training:

1. Generating initial data

This task didn’t require strong hardware to finish the work. The machine used

here was from the free tier in those platforms and represents a small machine

with only 1 vCpu and 1GByte of RAM.

2. Training process

Training process needs more from the hardware to execute. The minimal require-

ments for this tasks was machines with 2 vCPu’s and 8 GByte of RAM. That rep-

resents the D-tyer in Azure and e2-standard-2 in Google cloud.

The configuration for AWS was a machine CPU Intel(R) Xeon(R) CPU E5-2676

v3 @ 2.40GHz, for Azure was a machine CPUs Intel(R) Xeon(R) Platinum 8171M

CPU @ 2.60GHz (50654) and the Google machine was an Intel(R) Xeon(R) CPU @

2.30GHz.

Google cloud suggested a e2-custom (4 vCPUs, 8 GB memory) type instead of

e2-standard-2, reporting it was over utilized. Modification was done and new

neural networks were trained using that configuration.

The local machine used in some competitions was a Intel64(R) I7 Family 6 Model

58 3401 Mhz, 12 GBytes of RAM.

4.4.2 Packages

Google Colab has the packages configured by default, however virtual machines need

more configuration and more packages for installation. The packages list can be viewed

below:
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1. .Net packages for the game, aspnetcore-runtime-3.1 and dotnet-sdk-3.13

2. python3-distutils

3. python3-apt

4. pip

5. pip tensorflow

6. pip IPython

7. pip scikit-learn

8. python3-pandas

The AWS machine needs a special configuration for allocating a swapfile in the free

tier. See Appendices B - Configuration for more details.

4.5 State

The state is the representation of the board in the written form, it contains the player’s

movements for each board in that moment. For this game, the identification of which

player did that the movement is not represented, once that it is not relevant; other

games, like Tic Tac Toe, have the player information as mandatory.

The state is composed of ones and zeros; Each possible line move turns to a matrix

element, so if the line is not drawn, its value in the state is 0 else the value is 1. However,

this matrix does not have the same number of zeros and ones in lines and columns.

Positions that can never be played were represented by zeros. That occurs because the

height and width of each of those boxes has a line with x segments, but the column has

x + 1 segments, see the example in the figure (4.1).

The figure ?? is the representation of the 3 x 3 board, with the chance of 9 possible

boxes. “A” represents a matrix 7 x 4, corresponding to board 3 x 3, and the colored

3found in https://packages.microsoft.com/config/ubuntu/18.04/packages-microsoft-prod.deb
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numbers are represented by the same colored lines at the right side. “B” represents the

completed board after the finished game. The matrix has 0’s at the last position of each

row representation, but in the column representation, it fits correctly in size to the end.

At the end, this matrix is flatted to an array with all positions, even the positions

that can never be reached, see the figure 4.2. Note that B state has 4 zeros and its

represents the completed final board.

In this game, the state can be rotate and flipped. There are 8 possible equivalent

boards when it are rotated and flipped. Those boards represents the same board, but

seen in another perspective.

In that version of the alphazero, the symmetrical states are included in the training

for maximizing the number of generated data by the game.

The figure 4.3 contains all possible similar states created by the rotation and the flip

of the original state.

4.6 Neural Network

The neural network used in this work has the same structure as the one created by

Aguayo in his work (Aguayo, 2020), with one array of 28 elements as input, each of 28

items representing a position on the board with the value 1 if this position are marked

and otherwise with 0 value.

The outputs of the neural network are two arrays: the policy network array (28

items) and the value network array (1 item) (Silver D., 2017), as documented in Al-

phaZero. The value network returns only one value, between 1 and -1, which is the

prediction of the game to be a winner or loser board. The bigger the number, the

higher is the probability of being a winner board. The policy network predicts which
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Figure 4.1: Data representation for dots and boxes state

Figure 4.2: Array representation of the state A B from the figure 4.1
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Figure 4.3: Rotation and reflection for the 8 symmetrical states (Prince, 2017)

of the positions will be the best next option to play.

v :=


−1 if lose the game

0 if draw the game

1 if win the game

(4.1)

sx :=


0 if occupied position

1 if free position
(4.2)

The equation 4.1 represents the v values for the output file. This file is used to train

the neural network and the equation 4.2 represents each position (x) of the matrix for

the policy network.

4.6.1 Neural Network Structure

The structure of the neural network was defined with 4 hidden layers. Each layer with

the following functions:

1. Dropout

2. Activate functions: ReLu and Batch Normalization
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1 dropout = 0.3
2 state = layers.Input(shape=(7, 4), name="state_7_4")
3 size = 7 * 4
4 flat = layers.Flatten(name="flatten")(state)
5 s_fc1 = layers.Dropout(dropout, name="drop1")(layers.Activation(’relu’,

name="act1")(layers.BatchNormalization(axis=1, name="batch1")(layers.
Dense(1024, name="dense1")(flat))))

6 s_fc2 = layers.Dropout(dropout, name="drop2")(layers.Activation(’relu’,
name="act2")(layers.BatchNormalization(axis=1, name="batch2")(layers.
Dense(1024, name="dense2")(s_fc1))))

7 s_fc3 = layers.Dropout(dropout, name="drop3")(layers.Activation(’relu’,
name="act3")(layers.BatchNormalization(axis=1, name="batch3")(layers.
Dense(1024, name="dense3")(s_fc2))))

8 s_fc4 = layers.Dropout(dropout, name="drop4")(layers.Activation(’relu’,
name="act4")(layers.BatchNormalization(axis=1, name="batch4")(layers.
Dense(512, name="dense4")(s_fc3))))

9 pi = layers.Dense(size, activation=’softmax’, name=’policy_net’)(s_fc4)
10 v = layers.Dense(1, activation=’tanh’, name=’value\_net’)(s_fc4)
11 model = models.Model(inputs=state, outputs=[pi, v], name="noConv7x4")
12 model.summary()

Figure 4.4: Neural Network Model (Aguayo, 2020)

The network was compiled with loss functions as described on AlphaZero doc-

umentation (Silver D., 2017): categorical entropy for the policy network and mean

squared error for the policy network 3.1.

All configuration for the gameplay was defined by the JSON file (figure 4.6 example

of JSON file).

4.7 Related work integration

The integration between this game and Aguayo’s game needed a converter for dif-

ferent state configurations to provide a dispute between both games (see B in figure

4.1).

4.7.1 API

The interface has two components: an API for communication and Javascript code

with some new functions.

The Javascript code was injected in the Aguayo’s web page to overwrite the human

player who used the API to create a new challenge to this game. It was possible to
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Model : " noConv7x4 "
_____________________________________________________________________________________________
Layer ( type ) Output Shape Param # Connected to
=============================================================================================
s t a t e _ 7 _ 4 ( InputLayer ) [ ( None , 7 , 4 ) ] 0
_____________________________________________________________________________________________
f l a t t e n ( F l a t t e n ) ( None , 28) 0 s t a t e _ 7 _ 4 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
dense1 ( Dense ) ( None , 1024) 29696 f l a t t e n [ 0 ] [ 0 ]
_____________________________________________________________________________________________
batch1 ( BatchNormalization ) ( None , 1024) 4096 dense1 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
a c t 1 ( Act iva t ion ) ( None , 1024) 0 batch1 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
drop1 ( Dropout ) ( None , 1024) 0 a c t 1 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
dense2 ( Dense ) ( None , 1024) 1049600 drop1 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
batch2 ( BatchNormalization ) ( None , 1024) 4096 dense2 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
a c t 2 ( Act iva t ion ) ( None , 1024) 0 batch2 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
drop2 ( Dropout ) ( None , 1024) 0 a c t 2 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
dense3 ( Dense ) ( None , 1024) 1049600 drop2 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
batch3 ( BatchNormalization ) ( None , 1024) 4096 dense3 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
a c t 3 ( Act iva t ion ) ( None , 1024) 0 batch3 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
drop3 ( Dropout ) ( None , 1024) 0 a c t 3 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
dense4 ( Dense ) ( None , 512) 524800 drop3 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
batch4 ( BatchNormalization ) ( None , 512) 2048 dense4 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
a c t 4 ( Act iva t ion ) ( None , 512) 0 batch4 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
drop4 ( Dropout ) ( None , 512) 0 a c t 4 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
p o l i c y _ n e t ( Dense ) ( None , 28) 14364 drop4 [ 0 ] [ 0 ]
_____________________________________________________________________________________________
value_net ( Dense ) ( None , 1 ) 513 drop4 [ 0 ] [ 0 ]
=============================================================================================
Tota l params : 2 ,682 ,909
Tra inable params : 2 ,675 ,741
Non− t r a i n a b l e params : 7 ,168
_____________________________________________________________________________________________

Figure 4.5: Neural Network Summary
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1 settings = {
2 "Uct": 1.41, -> Standard MCTS UCT (UCB for trees)
3 "Ucb": 1, -> Puct for NN
4 "SimulationsP1": 100, -> MCTS simulation agent 1
5 "SimulationsP2": 100, -> MCTS simulation agent 2
6 "MillisecondsP1": 5000, -> Thinking time agent 1
7 "MillisecondsP2": 5000, -> Thinking time agent 2
8 "Bonus": 3, -> Bonus for standard MCTS
9 "Boxes": 3, -> Board configuration

10 "NumberOfGames": 50, -> Games to play
11 "Agent1Type": 4, -> Agent type: 3 = MCTS, 4 = Neural Network
12 "Agent1Cnn": 0, -> Network version
13 "Agent2Type": 4,
14 "Agent2Cnn": 1,
15 "OutputFolder": "Results",
16 "OutputFile": "settings-0",
17 "OutputId" : "false", -> Adds an Id to file
18 "Mode": 0 -> Game Mode: 0 Competitive, 1 Training
19 }

Figure 4.6: Configuration File

integrate both responses and requests, using the independent implementation of each

game.

That integration was done only to make possible the dispute proposed; it does not

change any original game component related to the game expertise.

API endpoints

The GET verb returns a GUID (Global Unique Identifier) which identifies the current

player.

The "Getplayerturn()" method of an specific "gameid" returns 1 for player 1 and 2

for player 2.

POST for the game turn has the following structure (figure 4.7).

The API will convert the format from Aguayo’s board to my board and plays that in

the board. The result, or next move of the game plays in the Javascript implementation

through JavaScript function play(<position>). The position will be converted again to

Aguayo’s format and it plays in the JavaScript game.

The game looping continue until all those free positions on the board have finished.
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1 {
2 "position":"7",
3 "board":"0000000000000000010000000000",
4 "fullBoard":"\r\n
5 a b c \r\n
6 o o o o A\r\n
7 A \r\n
8 o o o o B\r\n
9 B \r\n

10 o o---o o C\r\n
11 C \r\n
12 o o o o D\r\n
13 a b c d \r\n"
14 }

Figure 4.7: Json turn object to play in position 7 (Aguayo’s board version)

Internal

The gameplay through the API is slow so the new internal solution was developed.

This solution is simplest than API because uses the Aguayo’s pretrained network in-

side of my implementation in my own code, making possible the dispute between the

networks without the Javascript integration.
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5
Results and discussions

5.1 Execution pipeline

5.1.1 Data generation for training

The data was generated through gameplays between different versions of the model

and the standard MCTS. The first group of data was generated for the 3 x 3 board,

playing itself using only the standard Monte Carlo Tree Search algorithm, which does a

rollout of many games until the end to choose the best move. One set of 500 games was

generated by that algorithm in 16 hours of work in a cloud free-tier virtual machine; a

total of 192,000 boards were generated as the result of those 500 games as below:

The 192,000 initial boards were used as the first input to train the first version of

the network. The neural network was trained at the proportion of 80% of data for the
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500 Games\newline
24 Boards\newline

8 Symmetries\newline
2 S e t s \newline

000 Tota l Boards

Figure 5.1: Total Boards

training set and 20% of data for testing set.

This first CNN version was generated in Colab and the saved network was trans-

ported to the second step.

5.1.2 Competition and evolution

The second step began with the competition of the same version of the neural network

versions called 0 and 1. After 50 games played, the best network, or the network that

wins most of the time, become the new candidate for training.

The data generated for the new version was created in the training mode option of

the game with the winner from the previous step playing on itself. More 100 games

were generated, creating more 38,400 boards (100 x 24 x 8 x 2 = 38,400) for each version

with 100 MCTS simulations.

The new neural network was trained with the data coming from the last step, with

the configuration:

1. LR = 0.001

2. Batch size = 64

3. Epochs = 200

The training history is saved in pandas dataframe and the new neural network is

ready for the challenge with the neural network winner version from the last competi-

tion.

Again, both neural networks play more 50 games, the winner neural network gen-

erates more 100 games in training mode and trains it for more 200 epochs, and repeats

the same steps several times.
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Figure 5.2: Training diagram

5.2 Results and discussions

The results were divided in two subsets as follows:

5.2.1 Subset A

This set is related to the first execution of this game. Sixty versions of neural networks

were created in the training processing in this subset; each training step with 38,400

boards in the proportion of 80% for training and 20% for testing. The network evolu-

tion occurred as expected. Tables 5.1 and 5.2 have the details of all training processing,

including the network evolution and times elapsed.

The first column of the table contains the version of the each neural network used

in the dispute, followed by the points of the first neural network and the points of the

opponent neural network. The neural network winner version column contains which

version of the neural networks won the dispute of 50 games.

The last three columns contain the elapsed time to play 50 games (dispute), the

elapsed time to play more 100 games with the winner (data generation for training),

and the elapsed time to train the new neural network in 200 epochs.
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The total of training was 12000 epochs of training divided in 60 new neural net-

works. Figures 5.3 for policy network and 5.4 for the value networks shows the evolu-

tion of the neural networks. The x axis represents the neural network version.

5.2.2 Related work results

The tables 5.3 and 5.4 contain the results of 2 game competitions of 4 rounds each (20

games per round) between this neural network and Aguayo’s neural network.

The first game competition was between the 60th neural network version and Aguayo’s

neural network and achieved the percentage of 35% and 45% of the total of victories

over Aguayo’s neural network. Aguayo’s neural network demonstrates to be more

efficient in those games.

The second game competition was between the 60th neural network version and the

original MCTS. The improvement achieved was around of 68% of the total of victories

over MCTS, a great learning evolution from the original game.

However, the evolution of the network has occurred, the last version of the network

generated was not sufficiently good to defeat the Aguayo’s opponent 100% of time, but

it demonstrated a great progress faced the MCTS original (tables 5.1 and 5.2).

5.2.3 Subset B

The subset B was created with more games to find some relation between time, number

of games, and more training and a more efficient network.

One hundred versions of the neural networks were created in the training process-

ing in this subset, almost the double of the first subset; each training step with 76,800

boards (double of the first one) in the proportion of 80% for training and 20% for test-

ing.

The data generated for the new version was created in the training mode option of

the game as the first subset but with the double of the boards generated: 76,800 boards

generated for each version (200 x 24 x 8 x 2 = 76,800) with 160 MCTS simulations.
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Table 5.1: Network evolution results - 0 to 30 NN versions
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Table 5.2: Network evolution results - 31 to 60 NN versions

Neural Networks subsetA v60 20 Games 20 Games 20 Games 20 Games
P1 - DotsAndBoxes NN 9 7 7 9

P2 - Aguayo’s NN 11 13 13 11

Table 5.3: Victories in 4 rounds of 20 games each - NN subsetA v60 vs Aguayo’s NN
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Figure 5.3: Policy network evolutions (60 NN versions)

Figure 5.4: Value network evolutions (60 NN versions)

Neural Networks subsetA v60 20 Games 20 Games 20 Games 20 Games
P1 - DotsAndBoxes MCTS 5 6 5 9

P2 - DotsAndBoxes NN 15 14 15 11

Table 5.4: Victories in 4 rounds of 20 games each - MCTS vs NN subsetA v60

59



5.2. RESULTS AND DISCUSSIONS

Neural Networks subsetB v100 20 Games 20 Games 20 Games 20 Games
P1 - Aguayo’s NN 1 0 0 1

P2 - DotsAndBoxes NN 19 20 20 19

Table 5.5: Victories in 4 rounds of 20 games each - Aguayo’s NN vs NN subsetB v100

Neural Networks subsetB v100 20 Games 20 Games 20 Games 20 Games
P1 - DotsAndBoxes NN 15 11 12 14

P2 - Aguayo’s NN 5 9 8 6

Table 5.6: Victories in 4 rounds of 20 games each - NN subsetB v100 vs Aguayo’s NN

The new neural network was trained with the same parameters used before, only

changing the epoch number to 350, as below:

1. LR = 0.001

2. Batch size = 64

3. Epochs = 350

The results of training occurred as expected, and the network evolution from 1 to

100 versions took 42 days (figures 5.8, 5.6).

Results are presented sometimes in two ways. For example, tables 5.5 and 5.6 con-

tain results from the same agents, but, in the table 5.5, Aguayo’s NN was the first

player, and in the table 5.6, it was the second one.

Subset B demonstrates a little competitive advantage of player two over player one

in the same player’s game. Those can be confirmed with the results in the table 5.5 and

5.6, and 5.7 and 5.8. This behavior could not be observed in some other cases, so this

was not conclusive.

Neural Networks subsetB v100 20 Games 20 Games 20 Games 20 Games
P1 - DotsAndBoxes v100 16 17 16 15
P2 - DotsAndBoxes v60 4 3 4 5

Table 5.7: Victories in 4 rounds of 20 games each - NN subsetB v100 vs NN subsetB v60
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5.2. RESULTS AND DISCUSSIONS

Figure 5.5: Network evolution - first 30 versions

Neural Networks subsetB v100 20 Games 20 Games 20 Games 20 Games
P1 - DotsAndBoxes v60 1 2 1 1

P2 - DotsAndBoxes v100 19 18 19 19

Table 5.8: Victories in 4 rounds of 20 games each - NN subsetB v60 vs NN subsetB v100
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5.2. RESULTS AND DISCUSSIONS

Figure 5.6: Network evolution - 100 versions / 49,31 Days

Figure 5.7: Network 100v - Total Training
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5.2. RESULTS AND DISCUSSIONS

Neural Networks subsetC v40/24 20 Games 20 Games 20 Games 20 Games
P1 - DotsAndBoxes v24 15 15 16 18
P2 - DotsAndBoxes v60 5 5 4 2

Table 5.9: Victories in 4 rounds of 20 games each - NN subsetC v40/24 vs NN subsetB
v60

Neural Networks subsetC v40/24 20 Games 20 Games 20 Games 20 Games
P1 - DotsAndBoxes v60 3 0 3 1
P2 - DotsAndBoxes v24 17 20 17 19

Table 5.10: Victories in 4 rounds of 20 games each - NN subsetB v60 vs NN subsetC
v40/24

5.2.4 Other subsets

Others subsets were generated during this work, but no relevant changes were pre-

sented in any of them. The purpose of those subsets was to confirm if the random

initial weight makes some differences in training process or if only the time of training

is relevant; what was confirmed.

All subsets have demonstrated similar performance for the same training effort.

However, one special subset was trained for 5 days, generating 40 neural network

versions, with one modification that shows to be more powerful than subset B.

The original MCTS for Alphazero has one problem related to this game. This

problem is the fact of the player can play again if the point is made in the current

move. Therefore, the last modification in MCTS implemented with this modification,

the training process increases quality in the versions of this subset.

Subset C

The subset C was trained in 2 moments, one of 17 versions and another of 24. The 24th

version has as initial weights the weights from 17th version.

This subset demonstrates high performance comparatively to subset B as presented

bellow:

However, with the improvement, v40/24 could not defeat the stronger v100 in most

of the games. The total training time was 72 hours and that confirms one more time
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Figure 5.8: Network v40 - Total Training

Neural Networks subsetC v40/24 20 Games 20 Games 20 Games 20 Games
P1 - DotsAndBoxes v24 4 5 4 7

P2 - DotsAndBoxes v100 16 15 16 13

Table 5.11: Victories in 4 rounds of 20 games each - NN subsetC v40/24 vs NN subsetB
v100

that the training time has the most relevant influence over the learning process in the

Alphazero algorithm.

Neural Networks subsetC v40/24 20 Games 20 Games 20 Games 20 Games
P1 - DotsAndBoxes v100 8 5 11 3
P2- DotsAndBoxes v24 12 15 9 17

Table 5.12: Victories in 4 rounds of 20 games each - NN subsetC v40/24 vs NN subsetB
v100
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6
Conclusion and Future Work

That is an exciting work to me because I could improve my old program and it got

smarter through machine learning techniques.

Although the performance of the network did not achieve unbreakable results yet,

it demonstrates the process worked very well with time training the network. The pro-

cess of obtaining, training, generating and exporting data and using a neural network

is pretty good, but it has a strong dependency of finding the best hyper-parameters

which takes computational and time resources which were very limited for the thesis.

However, the two subsets exposed in the last chapter were generated with random

initial weights, demonstrating the only difference of those two subsets were the time

of training. Only more training time was able to improve the network quality.

The tests demonstrated that it is possible to work with the neural network and
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6.1. PROBLEMS FACED

ML.net framework, VM’s and Colab Python notebook for training, generating data

and make some predictions as the AlphaZero demonstrates to be possible.

Using the same network, a simple network proposed by Aguayo ((Aguayo, 2020)),

was demonstrated the only training time was sufficient to improve the neural network

to a level above the original one.

6.1 Problems faced

Some problems were faced in all the thesis process:

1. AlphaZero was created with more computational power than I have available. It

is possible to achieve good results, but this requires a large amount of training

time. For example the GPU computation is the fastest way to train the network

and despite being possible to train it using only the CPU card, it takes many

more hours to finish, and takes much more time to finish the tests. If something

is wrong with the software, or the VM, the time waste to verify, to correct and to

retrain is simply too much.

2. The Colab solution (free GPU card available) was a good option but only to tasks

that require few time and supervised execution. If the browser is closed for more

than 15 minutes or PC is idle or after 8 hours of continuous use (few days in the

paid version), the task stops and all progress is lost. Often, the training process

takes around a week or more, so Colab was not the option.

3. The VM cost was another great problem faced. The basic free VM from the

cloud is very slow to do this training process. The machine crashed after the

first hours. The costs for the most sophisticate machines is very high, forcing the

use of medium configuration machines, and the time was increased too.

4. As my neural network was not able to defeat the opponents (100% of time) only

more changes and retrain is necessary to better understand the problem cause, if
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other implementations were more efficient than mine, or if it was a matter of the

training time, computational power and network hiper-parameters.

5. No versions of the a convolutional network worked properly. More studies and

time will be necessary to implement this network type.

6.2 Future work

Three important steps could be used in the future to improve the quality of the network

and possibly achieve better results:

1. In order to defeat some others opponents, it will be necessary more time of train-

ing and more changes in the hyperparameters to train the network properly. Net-

work changes can be pleased too. The original AlphaGo Zero takes 40 days of

disputing and training until it become invincible, with a 4TPU machine, in the

Go game. So, more training and adjustments could improve the game quality.

2. The creation of the convolutional neural network model could help to achieve

better results instead the use of a neural network without convolutional layers.

Although ((Peters, 2018)) used convolutional neural network in his thesis, his

games was not able to defeat some opponents in some games. However, adjust-

ing the hiper-parameters and increasing training time could be a good attempt to

achieve better results with a CNN.

3. At least, the use of a GPU to make the whole process of dispute and training

could be a attempt to save time and get better results. For the dispute, the parallel

methods should be implemented in the game, so not only the training will be

improved, but the game dispute too. Using the paralleling techniques presented

in AlphaZero paper (Silver D., 2017), it is possible to distribute tasks between the

training and data generation, saving time in this process. It should be confirmed

if the performance of MCTS will be increase with use of one single PC instead of

a cluster of computers used in some version of AlphaGo.
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6.2. FUTURE WORK

4. Create an arena to dispute with QDab and Dabble games. The interface to make

a competition with those are a little more complex to implement because some

changes must be done in their own code to access a rest API or through sockets

for example. Those implementations are very old what makes this task more

difficult.
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P. Gabrijelčič. Mastering Delphi Programming: A Complete Reference Guide: Learn all
about building fast, scalable, and high performing applications with Delphi. Packt Pub-
lishing, 2019. ISBN 9781838983918. URL https://books.google.pt/books?id=
r4LADwAAQBAJ.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

J. P. Grossman. Dabble - ai for dots and boxes, 2000. presented on the second Com-
binatorial Game Theory Research Workshop, at the Mathematical Sciences Research
Institute, http://www.mathstat.dal.ca/ jpg/dabble/, Last accessed on 2021-02-04.

A. Gulli and S. Pal. Deep Learning with Keras. Packt Publishing, 2017.

K. T. Ide H. Improvement of learning for CNN with ReLU activation by sparse regularization.,
pages 2684–2691. 2017.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. Technical report, 2015.

A. Krogh. What are artificial neural networks? Nat Biotechnol, 26:195–197, 2008 2008.

M. A. Mercioni and S. Holban. The most used activation functions: Classic versus cur-
rent. In 2020 International Conference on Development and Application Systems (DAS),
pages 141–145, 2020. doi: 10.1109/DAS49615.2020.9108942.

69

https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=12010914&lang=pt-pt&site=ehost-live&scope=site
https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=12010914&lang=pt-pt&site=ehost-live&scope=site
https://books.google.pt/books?id=r4LADwAAQBAJ
https://books.google.pt/books?id=r4LADwAAQBAJ
http://www.deeplearningbook.org
http://www.deeplearningbook.org


6.2. FUTURE WORK

G. A. e. a. Nwankpa C., Ijomah W. Activation functions: Comparison of trends in
practice and research for deep learning. Technical report, 2018.

T. V. Peters. Mastering the game of dots and boxes with deep neural networks and tree
search. Master’s thesis, University of Bremen, Germany, 2018. Advisors: Drechsler,
Prof. Dr. Rolf; Meine, Dr. Hans.

J. Prince. Game specific approaches to monte carlo tree search for dots and boxes. 2017.

A. Ruano. Artificial Neural Network. Centre for Intelligent Systems, University of Al-
garve, Faro, Portugal, 2016.

C. Sammut and G. Webb. Encyclopedia of Machine Learning. 2017. ISBN 978-0-387-30768-
8. doi: 10.1007/978-1-4899-7687-1.

A. Santos. Monte carlo tree search experiments in hearthstone. Technical report, 2017.

S. K. e. a. Silver D., Schrittwieser J. Mastering the game of go without human knowl-
edge. Nature, pages 354–359, 2017 2017.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Y. Zhang, S. Li, and X. Xiong. A study on the game system of dots and boxes based on
reinforcement learning. pages 6319–6322, Nanchang, China, 2019.

Y. Zhuang. Dots-and-boxes. a simple dots and boxes ai., 2015. http://dotsandboxes.
tar.xyz/, Last accessed on 2021-02-04.

70

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://dotsandboxes.tar.xyz/
http://dotsandboxes.tar.xyz/


A
Samples

A.1 Gameplay Sample

This is a sample of the gameplay dump1 used in the training process with all metrics:

1-1 PC/17|Next: 2 PC/17|Pts: 0|Root(v2313/q-136.58878/w-287.718/p0)

Winner: cA(v183/q0/w0/p0.040288422) »

aA(v115/q0/w0/p0.040031295) bA(v47/q0/w0/p0.042764116)

cA(v183/q0/w0/p0.040288422) Aa(v92/q0/w0/p0.04184781)

Ab(v137/q0/w0/p0.04358654) Ac(v70/q0/w0/p0.042818278)

Ad(v93/q0/w0/p0.041306034) aB(v93/q0/w0/p0.0431126)

1All dump files can be found in a Github project repository https://github.com/gionnani/
dotsandboxes
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A.1. GAMEPLAY SAMPLE

bB(v93/q0/w0/p0.037944812) cB(v116/q0/w0/p0.04437638)

Ba(v24/q0/w0/p0.04160703) Bb(v70/q0/w0/p0.03836427)

Bc(v24/q0/w0/p0.038355287) Bd(v162/q0/w0/p0.04381453)

aC(v47/q0/w0/p0.043455698) bC(v93/q0/w0/p0.038355198)

cC(v161/q0/w0/p0.04249355) Ca(v115/q0/w0/p0.04167688)

Cb(v115/q0/w0/p0.043465793) Cc(v93/q0/w0/p0.04325168)

Cd(v91/q0/w0/p0.04131624) aD(v93/q0/w0/p0.041861136)

bD(v92/q0/w0/p0.04393054) cD(v93/q0/w0/p0.0399758)

a b c

o o o---o A

A

o o o o B

B

o o o o C

C

o o o o D

a b c d

2-2 PC/17|Next: 1 PC/17|Pts: 0|Root(v2194/q-110.494255/w-242.65576/p0)

Winner: aD(v261/q0/w0/p0.042993095) »

aA(v45/q0/w0/p0.046434067) bA(v45/q0/w0/p0.046149526)

Aa(v67/q0/w0/p0.04498107) Ab(v67/q0/w0/p0.04072039)

Ac(v111/q0/w0/p0.046871047) Ad(v111/q0/w0/p0.048296433)

aB(v89/q0/w0/p0.039480664) bB(v130/q0/w0/p0.042238094)

cB(v67/q0/w0/p0.043463137) Ba(v111/q0/w0/p0.046082843)

Bb(v67/q0/w0/p0.043011703) Bc(v67/q0/w0/p0.04036699)

Bd(v89/q0/w0/p0.04032224) aC(v23/q0/w0/p0.039025698)

bC(v89/q0/w0/p0.041102294) cC(v153/q0/w0/p0.038830735)

72



A.1. GAMEPLAY SAMPLE

Ca(v121/q0/w0/p0.04546082) Cb(v89/q0/w0/p0.041936103)

Cc(v65/q0/w0/p0.045346517) Cd(v196/q0/w0/p0.047058802)

aD(v261/q0/w0/p0.042993095) bD(v107/q0/w0/p0.045183625)

cD(v23/q0/w0/p0.044644102)

a b c

o o o---o A

A

o o o o B

B

o o o o C

C

o---o o o D

a b c d

3-1 PC/17|Next: 2 PC/17|Pts: 0|aD(v1916/q-120.39701/w-250.14388/p0.042993095)

Winner: Ad(v189/q0/w0/p0.050594784) »

aA(v88/q0/w0/p0.03533924) bA(v126/q0/w0/p0.04490071)

Aa(v124/q0/w0/p0.048420236) Ab(v0/q0/w0/p0.050569266)

Ac(v151/q0/w0/p0.048575755) Ad(v189/q0/w0/p0.050594784)

aB(v22/q0/w0/p0.041192673) bB(v158/q0/w0/p0.043849535)

cB(v141/q0/w0/p0.047411405) Ba(v62/q0/w0/p0.0458468)

Bb(v64/q0/w0/p0.045353036) Bc(v102/q0/w0/p0.046580978)

Bd(v57/q0/w0/p0.047312286) aC(v59/q0/w0/p0.040053766)

bC(v64/q0/w0/p0.045510218) cC(v77/q0/w0/p0.046656672)

Ca(v37/q0/w0/p0.048815463) Cb(v102/q0/w0/p0.05110715)

Cc(v80/q0/w0/p0.03856383) Cd(v43/q0/w0/p0.04445541)

bD(v59/q0/w0/p0.04863409) cD(v110/q0/w0/p0.04025667)
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A.1. GAMEPLAY SAMPLE

a b c

o o o---o A

A ¦

o o o o B

B

o o o o C

C

o---o o o D

a b c d

4-2 PC/17|Next: 1 PC/17|Pts: 0|Ad(v1780/q-82.8274/w-184.66017/p0.050594784)

Winner: Cb(v693/q0/w0/p0.52010405) »

aA(v21/q0/w0/p0.00047816857) bA(v578/q0/w0/p0.43556684)

Aa(v41/q0/w0/p0.009145977) Ab(v0/q0/w0/p0.00034903048)

Ac(v21/q0/w0/p0.00028601722) aB(v21/q0/w0/p0.00019030644)

bB(v21/q0/w0/p0.0019782844) cB(v21/q0/w0/p0.0005608395)

Ba(v41/q0/w0/p0.0123757105) Bb(v21/q0/w0/p0.0011595082)

Bc(v0/q0/w0/p0.00014016504) Bd(v21/q0/w0/p0.0009295938)

aC(v38/q0/w0/p0.0009972106) bC(v39/q0/w0/p0.0013121681)

cC(v39/q0/w0/p0.00025122944) Ca(v40/q0/w0/p0.0045590126)

Cb(v693/q0/w0/p0.52010405) Cc(v21/q0/w0/p0.0018852957)

Cd(v21/q0/w0/p0.0021438962) bD(v21/q0/w0/p0.0055246977)

cD(v60/q0/w0/p6.2033054E-05)

a b c

o o o---o A

A ¦

o o o o B

B
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o o o o C

C ¦

o---o o o D

a b c d

5-1 PC/17|Next: 2 PC/17|Pts: 0|Cb(v261/q-5.079575/w-21.408968/p0.52010405)

Winner: Bb(v180/q0/w0/p0.818083) »

aA(v0/q0/w0/p5.029458E-06) bA(v20/q0/w0/p9.73782E-07)

Aa(v0/q0/w0/p1.3419015E-07) Ab(v0/q0/w0/p4.10394E-05)

Ac(v0/q0/w0/p2.6158674E-05) aB(v0/q0/w0/p1.3179354E-08)

bB(v0/q0/w0/p6.94787E-08) cB(v0/q0/w0/p2.0305494E-07)

Ba(v40/q0/w0/p0.18163635) Bb(v180/q0/w0/p0.818083)

Bc(v0/q0/w0/p3.5405967E-06) Bd(v0/q0/w0/p0.00017574911)

aC(v0/q0/w0/p1.32263445E-08) bC(v0/q0/w0/p4.6476904E-07)

cC(v0/q0/w0/p5.160206E-08) Ca(v0/q0/w0/p3.532192E-06)

Cc(v0/q0/w0/p1.5519784E-07) Cd(v0/q0/w0/p2.6613277E-08)

bD(v20/q0/w0/p2.3484827E-05) cD(v0/q0/w0/p6.414831E-08)

a b c

o o o---o A

A ¦

o o o o B

B ¦

o o o o C

C ¦

o---o o o D

a b c d

6-2 PC/17|Next: 1 PC/17|Pts: 0|Bb(v450/q-2.3078866/w-20.565342/p0.818083)
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Winner: Aa(v411/q0/w0/p0.99999976) »

aA(v19/q0/w0/p7.240633E-09) bA(v0/q0/w0/p9.105264E-11)

Aa(v411/q0/w0/p0.99999976) Ab(v0/q0/w0/p4.2234902E-08)

Ac(v0/q0/w0/p7.6211853E-10) aB(v0/q0/w0/p2.4437006E-13)

bB(v0/q0/w0/p3.801159E-11) cB(v0/q0/w0/p3.740199E-12)

Ba(v0/q0/w0/p4.7529376E-12) Bc(v0/q0/w0/p2.7795996E-10)

Bd(v0/q0/w0/p2.3645731E-11) aC(v0/q0/w0/p2.8120197E-11)

bC(v0/q0/w0/p5.1175088E-14) cC(v0/q0/w0/p9.506224E-12)

Ca(v0/q0/w0/p2.1980591E-07) Cc(v0/q0/w0/p9.46709E-15)

Cd(v0/q0/w0/p6.126411E-10) bD(v19/q0/w0/p1.1322993E-11)

cD(v0/q0/w0/p8.0464975E-12)

a b c

o o o---o A

A ¦ ¦

o o o o B

B ¦

o o o o C

C ¦

o---o o o D

a b c d

7-1 PC/17|Next: 2 PC/17|Pts: 0|Aa(v260/q-3.9944196/w-20.565342/p0.99999976)

Winner: Ab(v241/q0/w0/p0.99999756) »

aA(v0/q0/w0/p7.365032E-08) bA(v0/q0/w0/p3.7739812E-07)

Ab(v241/q0/w0/p0.99999756) Ac(v0/q0/w0/p2.6850663E-10)

aB(v0/q0/w0/p3.9529393E-08) bB(v0/q0/w0/p8.7665717E-07)

cB(v0/q0/w0/p3.8890576E-08) Ba(v0/q0/w0/p9.951108E-10)

Bc(v18/q0/w0/p7.639772E-09) Bd(v0/q0/w0/p1.6229833E-07)

76



A.1. GAMEPLAY SAMPLE

aC(v0/q0/w0/p7.301555E-09) bC(v0/q0/w0/p3.1380093E-11)

cC(v0/q0/w0/p4.8960754E-07) Ca(v0/q0/w0/p3.0500388E-10)

Cc(v0/q0/w0/p2.016523E-09) Cd(v0/q0/w0/p2.8982626E-07)

bD(v0/q0/w0/p2.6941478E-09) cD(v0/q0/w0/p1.1615708E-09)

a b c

o o o---o A

A ¦ ¦ ¦

o o o o B

B ¦

o o o o C

C ¦

o---o o o D

a b c d

8-2 PC/17|Next: 1 PC/17|Pts: 0|Ab(v408/q-2.5454633/w-20.565342/p0.99999756)

Winner: Cd(v356/q0/w0/p0.999836) »

aA(v0/q0/w0/p1.2396176E-09) bA(v17/q0/w0/p5.642813E-08)

Ac(v0/q0/w0/p2.789358E-09) aB(v0/q0/w0/p7.3158024E-10)

bB(v17/q0/w0/p4.5015895E-08) cB(v17/q0/w0/p6.2172545E-10)

Ba(v0/q0/w0/p2.777997E-08) Bc(v0/q0/w0/p1.9575712E-09)

Bd(v0/q0/w0/p7.831977E-06) aC(v0/q0/w0/p3.341968E-08)

bC(v0/q0/w0/p4.0613104E-09) cC(v0/q0/w0/p0.00012336015)

Ca(v0/q0/w0/p5.3801625E-07) Cc(v0/q0/w0/p1.4502029E-05)

Cd(v356/q0/w0/p0.999836) bD(v0/q0/w0/p1.5899319E-05)

cD(v0/q0/w0/p1.6599654E-06)

a b c

o o o---o A
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A.1. GAMEPLAY SAMPLE

A ¦ ¦ ¦

o o o o B

B ¦

o o o o C

C ¦ ¦

o---o o o D

a b c d

9-1 PC/17|Next: 2 PC/17|Pts: 0|Cd(v340/q-3.0545557/w-20.565342/p0.999836)

Winner: cC(v323/q0/w0/p0.9999772) »

aA(v0/q0/w0/p1.6624644E-07) bA(v0/q0/w0/p5.8734565E-07)

Ac(v0/q0/w0/p8.2856066E-10) aB(v0/q0/w0/p7.343553E-10)

bB(v0/q0/w0/p3.1597033E-08) cB(v0/q0/w0/p2.621904E-09)

Ba(v16/q0/w0/p6.790776E-08) Bc(v0/q0/w0/p2.6440348E-06)

Bd(v0/q0/w0/p3.4889464E-07) aC(v0/q0/w0/p2.0485045E-07)

bC(v0/q0/w0/p5.5284072E-08) cC(v323/q0/w0/p0.9999772)

Ca(v0/q0/w0/p2.0730043E-10) Cc(v0/q0/w0/p1.7794679E-05)

bD(v0/q0/w0/p8.888527E-07) cD(v0/q0/w0/p2.2732263E-10)

a b c

o o o---o A

A ¦ ¦ ¦

o o o o B

B ¦

o o o---o C

C ¦ ¦

o---o o o D

a b c d
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A.1. GAMEPLAY SAMPLE

10-2 PC/17|Next: 1 PC/17|Pts: 0|cC(v392/q-2.6493592/w-20.565342/p0.9999772)

Winner: bD(v361/q0/w0/p0.9999086) »

aA(v0/q0/w0/p2.4602095E-10) bA(v0/q0/w0/p3.0610525E-05)

Ac(v0/q0/w0/p3.1596947E-10) aB(v0/q0/w0/p1.7262652E-10)

bB(v0/q0/w0/p1.5624471E-07) cB(v0/q0/w0/p2.1702247E-10)

Ba(v0/q0/w0/p4.579013E-06) Bc(v0/q0/w0/p1.8931365E-08)

Bd(v0/q0/w0/p3.270403E-05) aC(v0/q0/w0/p6.148302E-07)

bC(v0/q0/w0/p2.2702729E-05) Ca(v0/q0/w0/p5.0000355E-09)

Cc(v15/q0/w0/p9.358344E-09) bD(v361/q0/w0/p0.9999086)

cD(v15/q0/w0/p6.3429066E-09)

a b c

o o o---o A

A ¦ ¦ ¦

o o o o B

B ¦

o o o---o C

C ¦ ¦

o---o---o o D

a b c d

11-1 PC/17|Next: 2 PC/17|Pts: 0|bD(v422/q-2.461016/w-20.565342/p0.9999086)

Winner: Bd(v421/q0/w0/p0.9997443) »

aA(v0/q0/w0/p8.52246E-09) bA(v0/q0/w0/p2.0802614E-05)

Ac(v0/q0/w0/p1.2336277E-07) aB(v0/q0/w0/p3.173262E-08)

bB(v0/q0/w0/p1.0294211E-09) cB(v0/q0/w0/p2.3156488E-06)

Ba(v0/q0/w0/p0.00016246713) Bc(v0/q0/w0/p1.1153524E-08)

Bd(v421/q0/w0/p0.9997443) aC(v0/q0/w0/p5.5277866E-07)

bC(v0/q0/w0/p3.587992E-09) Ca(v0/q0/w0/p3.100275E-07)
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A.1. GAMEPLAY SAMPLE

Cc(v0/q0/w0/p2.0252822E-08) cD(v0/q0/w0/p6.907612E-05)

a b c

o o o---o A

A ¦ ¦ ¦

o o o o B

B ¦ ¦

o o o---o C

C ¦ ¦

o---o---o o D

a b c d

12-2 PC/17|Next: 1 PC/17|Pts: 0|Bd(v432/q-2.4040484/w-20.565342/p0.9997443)

Winner: aC(v431/q0/w0/p0.99999917) »

aA(v0/q0/w0/p4.0017394E-08) bA(v0/q0/w0/p5.4234714E-11)

Ac(v0/q0/w0/p1.9722721E-09) aB(v0/q0/w0/p1.7248205E-08)

bB(v0/q0/w0/p4.213653E-09) cB(v0/q0/w0/p2.282512E-11)

Ba(v0/q0/w0/p7.673732E-07) Bc(v0/q0/w0/p6.063707E-08)

aC(v431/q0/w0/p0.99999917) bC(v0/q0/w0/p3.9569847E-10)

Ca(v0/q0/w0/p9.493798E-10) Cc(v0/q0/w0/p2.409216E-09)

cD(v0/q0/w0/p4.1113657E-10)

a b c

o o o---o A

A ¦ ¦ ¦

o o o o B

B ¦ ¦

o---o o---o C

C ¦ ¦
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A.1. GAMEPLAY SAMPLE

o---o---o o D

a b c d

13-1 PC/17|Next: 1 PC/17|Pts: 1|aC(v520/q-1.9972095/w-20.565342/p0.99999917)

Winner: Ca(v507/q0/w0/p0.99999493) »

aA(v0/q0/w0/p5.073615E-06) bA(v12/q0/w0/p7.505881E-11)

Ac(v0/q0/w0/p1.8471106E-09) aB(v0/q0/w0/p1.4011581E-13)

bB(v0/q0/w0/p6.900005E-13) cB(v0/q0/w0/p3.3461076E-13)

Ba(v0/q0/w0/p1.6084748E-09) Bc(v0/q0/w0/p4.0513767E-10)

bC(v0/q0/w0/p3.017271E-09) Ca(v507/q0/w0/p0.99999493)

Cc(v0/q0/w0/p6.977939E-11) cD(v0/q0/w0/p5.40872E-10)

a b c

o o o---o A

A ¦ ¦ ¦

o o o o B

B ¦ ¦

o---o o---o C

C ¦ 1 ¦ ¦

o---o---o o D

a b c d

14-1 PC/17|Next: 2 PC/17|Pts: 1|Ca(v607/q-1.7109538/w-20.565342/p0.99999493)

Winner: aA(v606/q0/w0/p0.9999816) »

aA(v606/q0/w0/p0.9999816) bA(v0/q0/w0/p1.7691503E-09)

Ac(v0/q0/w0/p1.1431795E-06) aB(v0/q0/w0/p4.1319708E-09)

bB(v0/q0/w0/p4.6624393E-10) cB(v0/q0/w0/p5.0991095E-10)

Ba(v0/q0/w0/p1.3218675E-08) Bc(v0/q0/w0/p2.571412E-07)

bC(v0/q0/w0/p5.7619634E-08) Cc(v0/q0/w0/p8.880994E-10)

cD(v0/q0/w0/p1.6989336E-05)
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A.1. GAMEPLAY SAMPLE

a b c

o---o o---o A

A ¦ ¦ ¦

o o o o B

B ¦ ¦

o---o o---o C

C ¦ 1 ¦ ¦

o---o---o o D

a b c d

15-2 PC/17|Next: 2 PC/17|Pts: 1|aA(v518/q-2.0049207/w-20.565342/p0.9999816)

Winner: aB(v517/q0/w0/p1) » bA(v0/q0/w0/p5.135806E-10)

Ac(v0/q0/w0/p1.2679883E-13) aB(v517/q0/w0/p1)

bB(v0/q0/w0/p2.30424E-08) cB(v0/q0/w0/p3.049008E-12)

Ba(v0/q0/w0/p1.3169442E-08) Bc(v0/q0/w0/p4.970721E-08)

bC(v0/q0/w0/p8.4103724E-10) Cc(v0/q0/w0/p3.399076E-14)

cD(v0/q0/w0/p7.0642823E-15)

a b c

o---o o---o A

A ¦ 2 ¦ ¦

o---o o o B

B ¦ ¦

o---o o---o C

C ¦ 1 ¦ ¦

o---o---o o D

a b c d
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A.1. GAMEPLAY SAMPLE

16-2 PC/17|Next: 2 PC/17|Pts: 1|aB(v617/q-1.6832237/w-20.565342/p1)

Winner: Ba(v616/q0/w0/p1) »

bA(v0/q0/w0/p3.1568398E-13) Ac(v0/q0/w0/p1.724065E-16)

bB(v0/q0/w0/p1.1245699E-16) cB(v0/q0/w0/p9.375877E-15)

Ba(v616/q0/w0/p1) Bc(v0/q0/w0/p1.2977947E-14)

bC(v0/q0/w0/p2.1557784E-12) Cc(v0/q0/w0/p4.4112913E-18)

cD(v0/q0/w0/p2.6848992E-17)

a b c

o---o o---o A

A ¦ 2 ¦ ¦

o---o o o B

B ¦ 2 ¦ ¦

o---o o---o C

C ¦ 1 ¦ ¦

o---o---o o D

a b c d

17-2 PC/17|Next: 1 PC/17|Pts: 1|Ba(v716/q-1.4504875/w-20.565342/p1)

Winner: bC(v715/q0/w0/p0.9999896) »

bA(v0/q0/w0/p9.025953E-09) Ac(v0/q0/w0/p8.104956E-10)

bB(v0/q0/w0/p1.7033696E-09) cB(v0/q0/w0/p9.208377E-06)

Bc(v0/q0/w0/p1.1454061E-06) bC(v715/q0/w0/p0.9999896)

Cc(v0/q0/w0/p9.6154835E-09) cD(v0/q0/w0/p2.496784E-12)

a b c

o---o o---o A

A ¦ 2 ¦ ¦

o---o o o B
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A.1. GAMEPLAY SAMPLE

B ¦ 2 ¦ ¦

o---o---o---o C

C ¦ 1 ¦ ¦

o---o---o o D

a b c d

18-1 PC/17|Next: 1 PC/17|Pts: 1|bC(v703/q-1.4773095/w-20.565342/p0.9999896)

Winner: Cc(v702/q0/w0/p1) »

bA(v0/q0/w0/p5.1736443E-08) Ac(v0/q0/w0/p5.753286E-15)

bB(v0/q0/w0/p2.1771488E-13) cB(v0/q0/w0/p1.0163723E-14)

Bc(v0/q0/w0/p7.170426E-11) Cc(v702/q0/w0/p1)

cD(v0/q0/w0/p4.4959061E-13)

a b c

o---o o---o A

A ¦ 2 ¦ ¦

o---o o o B

B ¦ 2 ¦ ¦

o---o---o---o C

C ¦ 1 ¦ 1 ¦ ¦

o---o---o o D

a b c d

19-1 PC/17|Next: 1 PC/17|Pts: 1|Cc(v802/q-1.2949489/w-20.565342/p1)

Winner: cD(v801/q0/w0/p0.99999523) »

bA(v0/q0/w0/p1.31454385E-08) Ac(v0/q0/w0/p4.4900297E-10)

bB(v0/q0/w0/p2.611951E-07) cB(v0/q0/w0/p1.2191957E-08)

Bc(v0/q0/w0/p4.4894737E-06) cD(v801/q0/w0/p0.99999523)
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A.1. GAMEPLAY SAMPLE

a b c

o---o o---o A

A ¦ 2 ¦ ¦

o---o o o B

B ¦ 2 ¦ ¦

o---o---o---o C

C ¦ 1 ¦ 1 ¦ 1 ¦

o---o---o---o D

a b c d

20-1 PC/17|Next: 2 PC/17|Pts: 1|cD(v901/q-1.1526624/w-20.565342/p0.99999523)

Winner: Bc(v900/q0/w0/p0.999853) »

bA(v0/q0/w0/p3.1919097E-08) Ac(v0/q0/w0/p1.2025893E-07)

bB(v0/q0/w0/p0.00014633572) cB(v0/q0/w0/p4.9289844E-07)

Bc(v900/q0/w0/p0.999853)

a b c

o---o o---o A

A ¦ 2 ¦ ¦

o---o o o B

B ¦ 2 ¦ ¦ ¦

o---o---o---o C

C ¦ 1 ¦ 1 ¦ 1 ¦

o---o---o---o D

a b c d

21-2 PC/17|Next: 2 PC/17|Pts: 1|Bc(v806/q-1.2885224/w-20.565342/p0.999853)

Winner: bB(v805/q0/w0/p0.99999994) »

bA(v0/q0/w0/p8.1876685E-14) Ac(v0/q0/w0/p4.166678E-17)
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A.1. GAMEPLAY SAMPLE

bB(v805/q0/w0/p0.99999994) cB(v0/q0/w0/p5.990542E-08)

a b c

o---o o---o A

A ¦ 2 ¦ ¦

o---o---o o B

B ¦ 2 ¦ 2 ¦ ¦

o---o---o---o C

C ¦ 1 ¦ 1 ¦ 1 ¦

o---o---o---o D

a b c d

22-2 PC/17|Next: 2 PC/17|Pts: 1|bB(v905/q-1.147568/w-20.565342/p0.99999994)

Winner: cB(v904/q0/w0/p0.99999714) »

bA(v0/q0/w0/p3.3591622E-08) Ac(v0/q0/w0/p2.8563513E-06)

cB(v904/q0/w0/p0.99999714)

a b c

o---o o---o A

A ¦ 2 ¦ ¦

o---o---o---o B

B ¦ 2 ¦ 2 ¦ 2 ¦

o---o---o---o C

C ¦ 1 ¦ 1 ¦ 1 ¦

o---o---o---o D

a b c d

23-2 PC/17|Next: 2 PC/17|Pts: 1|cB(v1004/q-1.0344112/w-20.565342/p0.99999714)

Winner: Ac(v1003/q0/w0/p0.999997) »
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A.1. GAMEPLAY SAMPLE

bA(v0/q0/w0/p2.9815042E-06) Ac(v1003/q0/w0/p0.999997)

a b c

o---o o---o A

A ¦ 2 ¦ ¦ 2 ¦

o---o---o---o B

B ¦ 2 ¦ 2 ¦ 2 ¦

o---o---o---o C

C ¦ 1 ¦ 1 ¦ 1 ¦

o---o---o---o D

a b c d

24-2 PC/17|Next: 2 PC/17|Pts: 1|Ac(v1103/q-0.94156736/w-20.565342/p0.999997)

Winner: bA(v1102/q0/w0/p1) » bA(v1102/q0/w0/p1)

a b c

o---o---o---o A

A ¦ 2 ¦ 2 ¦ 2 ¦

o---o---o---o B

B ¦ 2 ¦ 2 ¦ 2 ¦

o---o---o---o C

C ¦ 1 ¦ 1 ¦ 1 ¦

o---o---o---o D

a b c d
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A.2. TRAINING MODE VISUALIZATION SAMPLE

A.2 Training mode visualization sample

INPUT-NET : [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

POINTS : [0]

VALUE-NET MULTI : [-1]

OUTPUT-VALUE-NET : [-0,6360114]

OUTPUT-POLICY-NET : [0,039366383 0,04268062 0,040236995 1,565611E-12 0,040688317

0,04277322 0,04351223 0,039834104 0,043835912 0,043203708 0,042056892 1,7453664E-12

0,04149754 0,042861585 0,044954855 0,043145053 0,040814146 0,04109886 0,044247154

1,7760877E-12 0,03862778 0,042480122 0,043054357 0,03961953 0,03911055 0,040412232

0,039887827 1,5102035E-12]

BOARD : [

a b c

o o o o A

A

o o o o B

B

o o o o C

C

o o o o D

a b c d

]

INPUT-NET : [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]

POINTS : [0]

VALUE-NET MULTI : [1]

OUTPUT-VALUE-NET : [0,5370412]

OUTPUT-POLICY-NET : [0,043005027 0,041829202 0,04188238 2,1807044E-10 0,045227394

0,039883986 0,044426523 0,044966318 0,042671796 0,043566685 0,043483388 1,9633647E-

10 0,04299262 0,044501323 0,0124434335 0,043732267 0,042574566 0,043026946 0,042477198

2,036505E-10 0,04327468 0,041617237 0,044327784 0,045350987 0,043824535 0,03878909
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A.2. TRAINING MODE VISUALIZATION SAMPLE

0,040124632 2,363185E-10]

BOARD : [

a b c

o o o o A

A

o o o o B

B ¦

o o o o C

C

o o o o D

a b c d

]

INPUT-NET : [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0]

POINTS : [0]

VALUE-NET MULTI : [-1]

OUTPUT-VALUE-NET : [-0,8084888]

OUTPUT-POLICY-NET : [0,042266477 0,04355092 0,04064793 1,0114992E-11 0,04793293

0,04059138 0,04445904 0,046527136 0,050207943 0,04617587 0,042867977 9,721724E-12

0,046019044 0,041657887 0,015198369 0,04686839 0,04631198 0,041191097 0,047224633

9,18528E-12 0,043765113 0,044670116 0,048742328 0,0074030184 0,0421364 0,04212585

0,04145807 1,0089635E-11]

BOARD : [

a b c

o o o o A

A

o o o o B

B ¦

o o o o C

C ¦
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A.2. TRAINING MODE VISUALIZATION SAMPLE

o o o o D

a b c d

]

INPUT-NET : [0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0]

POINTS : [0]

VALUE-NET MULTI : [1]

OUTPUT-VALUE-NET : [0,9957478]

OUTPUT-POLICY-NET : [1,0476485E-08 1,3749133E-07 0,00017224098 1,581842E-13 5,3201524E-

07 5,551553E-07 2,4128866E-07 3,240599E-05 1,9800034E-07 3,3383035E-06 0,00018384053

1,3643564E-13 3,5835267E-06 1,0273343E-06 2,435277E-10 6,838459E-07 1,0876386E-07

1,7414951E-06 5,684226E-06 1,4593753E-13 5,7221573E-06 2,6823545E-07 0,9995857 9,014911E-

09 6,1349866E-08 6,103544E-08 1,7416811E-06 1,5264046E-13]

BOARD : [

a b c

o o o o A

A

o---o o o B

B ¦

o o o o C

C ¦

o o o o D

a b c d

]

INPUT-NET : [0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0]

POINTS : [0]

VALUE-NET MULTI : [-1]

OUTPUT-VALUE-NET : [-0,9985361]

OUTPUT-POLICY-NET : [8,0823006E-13 8,298956E-09 4,4426386E-08 1,19268685E-14

1,7150503E-10 5,4317557E-11 2,4914993E-07 0,99999964 3,0165213E-12 1,6484466E-12 1,4528259E-
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A.2. TRAINING MODE VISUALIZATION SAMPLE

10 9,75156E-15 2,4191885E-11 8,742927E-11 2,715629E-14 1,2924723E-08 1,3941778E-09

8,392766E-12 4,6760246E-10 1,0595521E-14 7,57391E-11 3,4444777E-11 8,539928E-14 3,1611907E-

12 5,725883E-11 4,435348E-12 4,7908934E-11 8,526805E-15]

BOARD : [

a b c

o o o o A

A

o---o o o B

B ¦

o o o o C

C ¦ ¦

o o o o D

a b c d

]

INPUT-NET : [0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0]

POINTS : [0]

VALUE-NET MULTI : [1]

OUTPUT-VALUE-NET : [0,99997854]

OUTPUT-POLICY-NET : [1,053584E-12 2,7716263E-10 4,767173E-12 6,6667753E-15 6,747747E-

10 1,4339029E-09 0,99999964 6,0451406E-08 3,3044429E-12 1,1667864E-10 2,2414972E-07

4,99894E-15 4,41985E-09 1,5596362E-10 3,109877E-13 5,054501E-11 2,3764369E-11 1,02447835E-

10 2,1171824E-10 6,2243437E-15 1,40659645E-11 8,149709E-11 6,1869503E-12 1,0688343E-

10 1,725962E-13 7,860587E-10 2,9246078E-10 7,655314E-15]

BOARD : [

a b c

o o o o A

A ¦

o---o o o B

B ¦
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A.2. TRAINING MODE VISUALIZATION SAMPLE

o o o o C

C ¦ ¦

o o o o D

a b c d

]

INPUT-NET : [0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0]

POINTS : [0]

VALUE-NET MULTI : [-1]

OUTPUT-VALUE-NET : [-0,9999824]

OUTPUT-POLICY-NET : [5,6116377E-14 1,1090775E-12 2,6733688E-11 9,020266E-16 2,735451E-

11 1,5126646E-13 5,9155283E-14 1,4993193E-13 3,0122287E-15 2,6599182E-13 1,3907022E-

12 5,9842253E-16 1 1,2069219E-13 1,2160882E-10 5,207634E-11 1,7756709E-12 1,2835615E-

13 2,0549865E-13 6,6938123E-16 8,607675E-12 5,837618E-10 2,3837532E-13 4,3336376E-

16 4,9010004E-15 5,518372E-10 8,2405575E-11 5,3331497E-16]

BOARD : [

a b c

o o o o A

A ¦ ¦

o---o o o B

B ¦

o o o o C

C ¦ ¦

o o o o D

a b c d

]

INPUT-NET : [0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0]

POINTS : [0]

VALUE-NET MULTI : [1]

OUTPUT-VALUE-NET : [0,99938464]
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A.2. TRAINING MODE VISUALIZATION SAMPLE

OUTPUT-POLICY-NET : [5,6329198E-11 1,8308711E-10 1,2433406E-11 1,1767294E-14

5,9652755E-11 6,611386E-08 2,1023967E-11 3,7552387E-12 3,5162544E-15 2,5926608E-10

2,303628E-12 6,925425E-15 1,0062352E-11 3,5778156E-09 8,9141076E-11 1,9352514E-07

2,0717445E-12 8,0191714E-10 2,7462085E-11 8,0796415E-15 1,5062383E-07 0,99999964 7,925076E-

11 9,339762E-12 2,039836E-11 3,9917337E-11 2,948867E-14 8,428848E-15]

BOARD : [

a b c

o o o o A

A ¦ ¦

o---o o o B

B ¦ ¦

o o o o C

C ¦ ¦

o o o o D

a b c d

]

INPUT-NET : [0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0]

POINTS : [0]

VALUE-NET MULTI : [-1]

OUTPUT-VALUE-NET : [-0,99999005]

OUTPUT-POLICY-NET : [6,527558E-13 9,053948E-12 3,445535E-12 1,3503934E-15 1,6793983E-

13 5,523215E-14 5,623311E-16 8,920004E-13 1,4101131E-15 9,828609E-15 1,972771E-12

7,0783325E-16 1,0185382E-10 9,484408E-11 6,1192466E-16 1 1,1006676E-11 4,0677056E-

13 5,438981E-12 1,0905741E-15 1,320461E-11 1,5795937E-13 3,2154988E-18 6,013952E-16

1,7033108E-11 8,48993E-13 9,691368E-13 9,669252E-16]

BOARD : [

a b c

o o o o A

A ¦ ¦
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A.2. TRAINING MODE VISUALIZATION SAMPLE

o---o o o B

B ¦ ¦

o o o o C

C ¦ ¦ ¦

o o o o D

a b c d

]

INPUT-NET : [0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0]

POINTS : [0]

VALUE-NET MULTI : [1]

OUTPUT-VALUE-NET : [0,99997705]

OUTPUT-POLICY-NET : [4,412688E-11 3,989465E-12 1,7649548E-11 1,1092425E-16 0,0002191119

2,8933138E-12 3,0511695E-14 1,9545715E-13 2,1132185E-13 5,83087E-12 8,419067E-15 8,3462147E-

17 4,80522E-14 7,410497E-11 6,657691E-12 1,24403396E-11 9,494598E-15 6,5457023E-16

1,6832444E-12 8,235082E-17 0,99978083 4,074052E-12 2,6511952E-14 4,4096017E-14 1,7171617E-

07 1,1302158E-14 1,8276752E-11 7,201862E-17]

BOARD : [

a b c

o o o o A

A ¦ ¦

o---o o o B

B ¦ ¦ ¦

o o o o C

C ¦ ¦ ¦

o o o o D

a b c d

]

INPUT-NET : [0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0]

POINTS : [0]
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A.2. TRAINING MODE VISUALIZATION SAMPLE

VALUE-NET MULTI : [-1]

OUTPUT-VALUE-NET : [-0,99999464]

OUTPUT-POLICY-NET : [2,4381472E-09 2,0180986E-08 1,7817386E-10 7,047621E-15 1

6,3102643E-09 1,5078844E-11 2,0427382E-14 1,1712495E-12 1,6761735E-08 4,7550014E-

14 9,551321E-15 7,474873E-15 5,769533E-13 1,7366883E-13 5,8160845E-16 1,400015E-15

1,4465759E-12 9,250756E-14 9,586803E-15 6,022252E-12 9,12541E-16 5,1385786E-14 5,887029E-

14 4,1603583E-09 2,1741693E-13 2,7620317E-11 6,748684E-15]

BOARD : [

a b c

o o o o A

A ¦ ¦

o---o o o B

B ¦ ¦ ¦

o o o o C

C ¦ ¦ ¦ ¦

o o o o D

a b c d

]

INPUT-NET : [0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0]

POINTS : [0]

VALUE-NET MULTI : [1]

OUTPUT-VALUE-NET : [0,9989917]

OUTPUT-POLICY-NET : [9,232138E-08 0,99994314 2,2172846E-09 7,996063E-15 9,92237E-

09 1,709295E-07 2,5073519E-09 4,4869983E-13 3,5358333E-12 6,9390735E-06 7,334317E-

10 6,906408E-15 2,4167827E-11 7,2288106E-13 1,5081957E-11 2,3693148E-11 3,5124818E-

12 6,6696976E-10 5,346105E-09 7,031243E-15 2,9126634E-10 8,213316E-12 4,6935573E-11

4,5739614E-07 1,1441275E-05 3,7832244E-05 2,8757585E-08 7,075045E-15]

BOARD : [

a b c
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A.2. TRAINING MODE VISUALIZATION SAMPLE

o o o o A

A ¦ ¦ ¦

o---o o o B

B ¦ ¦ ¦

o o o o C

C ¦ ¦ ¦ ¦

o o o o D

a b c d

]

INPUT-NET : [0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0]

POINTS : [0]

VALUE-NET MULTI : [-1]

OUTPUT-VALUE-NET : [-0,99998426]

OUTPUT-POLICY-NET : [6,904619E-10 8,504095E-13 1,2392576E-10 1,0649046E-15 7,0746853E-

13 4,3410024E-15 7,148583E-17 4,764568E-15 1,6299833E-14 1,587539E-11 1,7022038E-

14 1,3798039E-15 5,5927E-15 1,0190755E-08 6,780802E-14 1,9807093E-14 9,189724E-12

1,6358331E-13 3,144441E-14 1,5083358E-15 4,505308E-12 1,6290791E-10 1,0106228E-11

3,7566348E-13 1 6,038323E-11 1,6870859E-11 1,1828681E-15]

BOARD : [

a b c

o o---o o A

A ¦ ¦ ¦

o---o o o B

B ¦ ¦ ¦

o o o o C

C ¦ ¦ ¦ ¦

o o o o D

a b c d

]
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A.2. TRAINING MODE VISUALIZATION SAMPLE

INPUT-NET : [0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0]

POINTS : [0]

VALUE-NET MULTI : [1]

OUTPUT-VALUE-NET : [1]

OUTPUT-POLICY-NET : [6,998049E-18 1,1769834E-18 8,432513E-16 3,5312347E-20 3,0327786E-

20 1,360284E-15 6,3907982E-21 3,4557176E-19 1,1317525E-16 2,2855367E-19 1,410739E-

20 2,0941675E-20 1,0753575E-18 9,977724E-13 1,06529825E-16 1,2479643E-19 1 1,36841E-

20 7,088509E-19 2,2798668E-20 7,2781706E-28 8,5972573E-23 9,270303E-19 1,4616775E-

16 1,0182547E-21 8,986265E-16 5,7659193E-15 1,883713E-20]

BOARD : [

a b c

o o---o o A

A ¦ ¦ ¦

o---o o o B

B ¦ ¦ ¦

o o o o C

C ¦ ¦ ¦ ¦

o---o o o D

a b c d

]

INPUT-NET : [0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0]

POINTS : [1]

VALUE-NET MULTI : [-1]

OUTPUT-VALUE-NET : [1]

OUTPUT-POLICY-NET : [1,3451935E-14 2,2835148E-19 8,898136E-20 3,8806406E-20 7,59372E-

21 2,0964327E-17 1,1380765E-18 1,4320212E-19 9,591258E-24 2,4831802E-19 5,423014E-

21 1,923535E-20 4,4177256E-25 1 4,993176E-19 2,2061514E-20 7,6217797E-22 4,311725E-

15 2,4937576E-17 2,1292728E-20 1,3425525E-19 2,2004574E-16 7,1856564E-17 5,0496564E-

22 3,9596035E-16 1,8829615E-17 2,400666E-18 1,8565898E-20]
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A.2. TRAINING MODE VISUALIZATION SAMPLE

BOARD : [

a b c

o o---o o A

A ¦ ¦ ¦

o---o o o B

B ¦ ¦ ¦

o---o o o C

C ¦ 2 ¦ ¦ ¦

o---o o o D

a b c d

]

INPUT-NET : [0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0]

POINTS : [1]

VALUE-NET MULTI : [-1]

OUTPUT-VALUE-NET : [1]

OUTPUT-POLICY-NET : [8,635348E-12 6,7278508E-18 3,5820594E-07 6,017432E-18 1,9116294E-

16 4,7172312E-14 2,7664115E-15 2,3652334E-13 1,8017598E-15 6,8937135E-12 8,8135575E-

13 3,5971227E-18 2,4996658E-10 6,425822E-15 5,7830524E-12 1,08988695E-16 6,75975E-

18 3,3825258E-17 4,5817347E-14 4,3265947E-18 6,3467655E-16 2,4222737E-14 2,643437E-

15 1,0112852E-16 5,3534086E-16 2,952431E-13 0,99999964 4,377996E-18]

BOARD : [

a b c

o o---o o A

A ¦ ¦ ¦

o---o o o B

B ¦ 2 ¦ ¦ ¦

o---o o o C

C ¦ 2 ¦ ¦ ¦

o---o o o D
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A.2. TRAINING MODE VISUALIZATION SAMPLE

a b c d

]

INPUT-NET : [0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0]

POINTS : [0]

VALUE-NET MULTI : [-1]

OUTPUT-VALUE-NET : [-0,9999997]

OUTPUT-POLICY-NET : [9,799462E-19 7,948355E-20 1,659042E-16 8,681776E-19 8,36042E-

22 7,317852E-18 3,9784515E-17 7,4991094E-18 9,5126234E-17 9,491663E-19 8,97321E-13

1,0495737E-18 7,874098E-17 6,7635188E-18 2,5365397E-16 5,888628E-20 7,4482406E-20

1,0374294E-17 1 8,483381E-19 3,2635625E-15 1,4617619E-15 7,425318E-20 9,138664E-20

7,494501E-19 1,897413E-15 1,2995954E-18 7,51007E-19]

BOARD : [

a b c

o o---o o A

A ¦ ¦ ¦

o---o o o B

B ¦ 2 ¦ ¦ ¦

o---o o o C

C ¦ 2 ¦ ¦ ¦

o---o o---o D

a b c d

]

INPUT-NET : [0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0]

POINTS : [1]

VALUE-NET MULTI : [1]

OUTPUT-VALUE-NET : [-0,99999964]

OUTPUT-POLICY-NET : [8,839558E-16 6,616707E-17 1,586338E-14 2,0852345E-17 1,5413374E-

17 4,0058064E-15 1,3503606E-14 3,960376E-15 5,5297712E-14 4,847074E-18 1 1,6455465E-

17 1,1370883E-16 2,8127228E-15 1,5928992E-14 7,377321E-20 1,0881331E-18 9,7643315E-
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A.2. TRAINING MODE VISUALIZATION SAMPLE

15 1,8183718E-13 1,5610657E-17 1,1406117E-12 7,1781496E-17 6,364221E-13 5,9880185E-

15 4,01668E-18 3,3871E-12 7,576438E-12 1,2125171E-17]

BOARD : [

a b c

o o---o o A

A ¦ ¦ ¦

o---o o o B

B ¦ 2 ¦ ¦ ¦

o---o o---o C

C ¦ 2 ¦ ¦ 1 ¦

o---o o---o D

a b c d

]

INPUT-NET : [0 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0]

POINTS : [1]

VALUE-NET MULTI : [1]

OUTPUT-VALUE-NET : [-0,9999932]

OUTPUT-POLICY-NET : [1,2287994E-11 5,067011E-19 1 7,445152E-18 9,814544E-18 3,2670336E-

10 7,1378773E-16 8,555385E-22 1,5769898E-13 1,3189224E-12 1,506031E-14 4,500716E-18

2,4632506E-22 5,5598756E-16 3,6272547E-13 7,0084485E-16 2,7408266E-21 4,4224814E-

17 2,0469347E-14 3,7907785E-18 8,968646E-12 8,487732E-16 2,0888899E-16 2,3082436E-

15 1,1041957E-15 9,773844E-13 3,3364376E-13 3,551583E-18]

BOARD : [

a b c

o o---o o A

A ¦ ¦ ¦

o---o o---o B

B ¦ 2 ¦ ¦ 1 ¦

o---o o---o C
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A.2. TRAINING MODE VISUALIZATION SAMPLE

C ¦ 2 ¦ ¦ 1 ¦

o---o o---o D

a b c d

]

INPUT-NET : [0 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0]

POINTS : [1]

VALUE-NET MULTI : [1]

OUTPUT-VALUE-NET : [-0,9999978]

OUTPUT-POLICY-NET : [1,9228615E-11 1,3833832E-14 2,9064928E-09 3,3207133E-16

1,0918609E-14 1 4,670647E-08 3,149195E-10 3,1629577E-09 8,7609835E-13 1,3082505E-10

3,0015597E-16 1,5495386E-16 2,803425E-15 4,5584066E-12 2,5011124E-17 3,5349078E-16

1,4145686E-15 5,175672E-10 2,2847033E-16 1,9635177E-12 4,3183486E-12 2,643587E-09

1,3826678E-11 7,723662E-15 8,976724E-12 6,5187467E-10 2,626239E-16]

BOARD : [

a b c

o o---o---o A

A ¦ ¦ 1 ¦

o---o o---o B

B ¦ 2 ¦ ¦ 1 ¦

o---o o---o C

C ¦ 2 ¦ ¦ 1 ¦

o---o o---o D

a b c d

]

INPUT-NET : [0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0]

POINTS : [0]

VALUE-NET MULTI : [1]

OUTPUT-VALUE-NET : [1]

OUTPUT-POLICY-NET : [2,2899207E-09 8,981994E-28 1,5131671E-20 3,1812675E-23 4,054043E-
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A.2. TRAINING MODE VISUALIZATION SAMPLE

24 7,805546E-26 8,9655336E-27 7,452049E-20 1,0685463E-23 1 3,0849463E-21 1,9563665E-

23 2,51261E-22 1,03280607E-16 3,463595E-20 4,4979634E-21 2,8760478E-27 8,062446E-12

5,5050763E-20 2,2152475E-23 1,173699E-22 4,1605802E-24 3,1369175E-25 1,2907784E-22

2,1231783E-23 9,759183E-17 7,2262936E-22 2,7382217E-23]

BOARD : [

a b c

o o---o---o A

A ¦ ¦ ¦ 1 ¦

o---o o---o B

B ¦ 2 ¦ ¦ 1 ¦

o---o o---o C

C ¦ 2 ¦ ¦ 1 ¦

o---o o---o D

a b c d

]

INPUT-NET : [0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0]

POINTS : [1]

VALUE-NET MULTI : [-1]

OUTPUT-VALUE-NET : [1]

OUTPUT-POLICY-NET : [9,248268E-14 6,341494E-23 1,180289E-24 4,525975E-25 5,0272468E-

29 2,148185E-27 1,2108389E-25 1,173671E-24 5,6348845E-31 2,9012622E-18 1,2681408E-

24 1,890886E-25 1,2904577E-23 5,907153E-17 2,5587705E-20 1,6483976E-26 1,6883347E-

30 1 4,6178882E-23 2,520584E-25 1,6923282E-20 6,75429E-25 2,975128E-21 2,638663E-22

3,0143022E-27 2,3027798E-13 1,2951243E-21 3,6693872E-25]

BOARD : [

a b c

o o---o---o A

A ¦ ¦ 2 ¦ 1 ¦

o---o---o---o B
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B ¦ 2 ¦ ¦ 1 ¦

o---o o---o C

C ¦ 2 ¦ ¦ 1 ¦

o---o o---o D

a b c d

]

INPUT-NET : [0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0]

POINTS : [1]

VALUE-NET MULTI : [-1]

OUTPUT-VALUE-NET : [1]

OUTPUT-POLICY-NET : [1,0075943E-13 2,0346759E-19 2,6086267E-23 2,5560592E-27

4,3410754E-27 2,8346484E-26 1,0037681E-23 4,5422185E-24 9,086841E-26 1,4359846E-15

6,630988E-23 1,5956405E-27 3,2732316E-26 7,466577E-23 4,7736556E-26 2,3846755E-25

9,849998E-31 1,5512676E-21 6,46232E-25 3,1210155E-27 3,6715556E-26 9,565004E-28 5,5438964E-

27 1,9165626E-27 2,9487018E-20 1 1,8655795E-18 3,538571E-27]

BOARD : [

a b c

o o---o---o A

A ¦ ¦ 2 ¦ 1 ¦

o---o---o---o B

B ¦ 2 ¦ 2 ¦ 1 ¦

o---o---o---o C

C ¦ 2 ¦ ¦ 1 ¦

o---o o---o D

a b c d

]

INPUT-NET : [0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0]

POINTS : [1]

VALUE-NET MULTI : [-1]
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A.2. TRAINING MODE VISUALIZATION SAMPLE

OUTPUT-VALUE-NET : [0,6784105]

OUTPUT-POLICY-NET : [1 3,0447478E-16 1,499222E-13 2,2792853E-19 3,1460427E-14

2,9742827E-17 1,8234609E-12 1,18519205E-11 4,0105617E-15 5,9342424E-14 3,3321622E-

14 1,3427831E-19 3,9181223E-14 6,3060885E-13 1,3320749E-18 5,9581184E-17 1,1832291E-

15 1,7729599E-16 1,8529163E-14 1,7121602E-19 6,4707616E-16 5,138554E-16 2,6463913E-

17 1,0880731E-14 9,099141E-14 9,714E-13 5,0948346E-15 1,2247138E-19]

BOARD : [

a b c

o o---o---o A

A ¦ ¦ 2 ¦ 1 ¦

o---o---o---o B

B ¦ 2 ¦ 2 ¦ 1 ¦

o---o---o---o C

C ¦ 2 ¦ 2 ¦ 1 ¦

o---o---o---o D

a b c d

]

INPUT-NET : [1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0]

POINTS : [1]

VALUE-NET MULTI : [-1]

OUTPUT-VALUE-NET : [0,48259243]

OUTPUT-POLICY-NET : [0,10809224 0,040538922 0,08000807 2,5188915E-09 0,05965983

0,042984888 0,0039687986 0,061079517 0,0027836615 2,147384E-05 0,022070961 1,9131166E-

09 0,24017887 0,001494113 9,801371E-06 0,041257426 0,005247985 0,009847539 0,0013811173

1,8350108E-09 0,0039976 0,001567072 0,020048786 0,0014219857 0,05115176 0,09612585

0,105061755 1,8307107E-09]

BOARD : [

a b c

o---o---o---o A
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A.3. HISTORY OF TRAINING

A ¦ 2 ¦ 2 ¦ 1 ¦

o---o---o---o B

B ¦ 2 ¦ 2 ¦ 1 ¦

o---o---o---o C

C ¦ 2 ¦ 2 ¦ 1 ¦

o---o---o---o D

a b c d

]

A.3 History of training

loss policy_net_loss value_net_loss val_loss val_policy_net_loss val_value_net_loss

0 1.2962737083435059 0.7126913666725159 0.5835815668106079 0.9627030491828918 0.493597149848938 0.4691062867641449

1 1.2720657587051392 0.6964056491851807 0.5756598114967346 0.9549358487129211 0.48871690034866333 0.46621939539909363

2 1.2538642883300781 0.6856260299682617 0.5682377219200134 0.9458531141281128 0.4857501983642578 0.46010321378707886

3 1.2406600713729858 0.6729955077171326 0.5676650404930115 0.9418566823005676 0.48502492904663086 0.45683160424232483

4 1.2351489067077637 0.6729058623313904 0.5622426867485046 0.9387000203132629 0.48236629366874695 0.4563336968421936

5 1.2159011363983154 0.6647782921791077 0.5511242151260376 0.9366114735603333 0.48317083716392517 0.45344093441963196

6 1.2148867845535278 0.6622486710548401 0.5526383519172668 0.9313719868659973 0.4807576537132263 0.4506140351295471

7 1.2098978757858276 0.6594310402870178 0.550466001033783 0.9329649209976196 0.4814899265766144 0.4514748752117157

8 1.2030268907546997 0.6541215181350708 0.5489054322242737 0.9282054305076599 0.4808324873447418 0.44737300276756287

9 1.1955543756484985 0.6479690074920654 0.5475850701332092 0.9258015751838684 0.48057782649993896 0.4452240765094757

10 1.1964987516403198 0.6505661606788635 0.5459321141242981 0.9240594506263733 0.4797249436378479 0.44433480501174927

11 1.18351149559021 0.6440975666046143 0.5394133925437927 0.9218652844429016 0.4793599545955658 0.4425053298473358

12 1.1795109510421753 0.6398640275001526 0.539647102355957 0.9200870394706726 0.4787817895412445 0.4413054287433624

13 1.166465401649475 0.6351719498634338 0.531293511390686 0.9203698039054871 0.4782571494579315 0.44211283326148987

14 1.1685081720352173 0.6359207034111023 0.5325880646705627 0.9180367588996887 0.4776262044906616 0.4404104948043823

15 1.1659979820251465 0.636169970035553 0.5298274755477905 0.9182522296905518 0.47940877079963684 0.43884286284446716

16 1.166198492050171 0.6332157850265503 0.5329834818840027 0.9177935719490051 0.47998616099357605 0.43780747056007385

17 1.1529303789138794 0.6282815933227539 0.5246487259864807 0.9174250960350037 0.47856253385543823 0.43886250257492065

18 1.1555564403533936 0.6301212310791016 0.5254356265068054 0.9175968170166016 0.47964397072792053 0.4379526972770691

19 1.1514440774917603 0.6269518136978149 0.5244923233985901 0.9160472750663757 0.4788055121898651 0.43724191188812256

20 1.1497238874435425 0.626339852809906 0.5233846306800842 0.9160000681877136 0.47954514622688293 0.43645524978637695

21 1.1476954221725464 0.6253617405891418 0.5223345160484314 0.9150757193565369 0.4786932170391083 0.43638256192207336

22 1.1458287239074707 0.6241925954818726 0.5216355323791504 0.9146838784217834 0.4794136881828308 0.4352695345878601

23 1.1361346244812012 0.619689404964447 0.5164459347724915 0.9128802418708801 0.47855594754219055 0.43432414531707764

24 1.140162706375122 0.6228122115135193 0.5173491835594177 0.9137775301933289 0.4789814054965973 0.4347960352897644

25 1.1303694248199463 0.6176456809043884 0.5127236247062683 0.9125849008560181 0.47851327061653137 0.4340716600418091

26 1.1297801733016968 0.6146266460418701 0.5151537656784058 0.9130997061729431 0.47966593503952026 0.43343353271484375

27 1.1371376514434814 0.622349202632904 0.5147880911827087 0.9100960493087769 0.47785624861717224 0.4322396516799927

28 1.1288318634033203 0.6156390905380249 0.5131924748420715 0.9097995162010193 0.47837188839912415 0.4314279854297638

29 1.1238816976547241 0.6121435761451721 0.5117378830909729 0.9088765382766724 0.47727715969085693 0.4315999448299408

30 1.1199767589569092 0.6103042364120483 0.5096724629402161 0.9100058674812317 0.47868576645851135 0.4313201308250427

31 1.124277949333191 0.6135554909706116 0.5107229351997375 0.9086301326751709 0.477970689535141 0.43065929412841797

32 1.1253876686096191 0.614254891872406 0.5111324787139893 0.9071482419967651 0.4761597216129303 0.4309886395931244

33 1.1235826015472412 0.6142008900642395 0.5093820691108704 0.9083123803138733 0.47742143273353577 0.43089109659194946

34 1.12030827999115 0.6117584109306335 0.5085496306419373 0.9074925184249878 0.4779779314994812 0.4295142889022827
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35 1.1164332628250122 0.6114710569381714 0.5049618482589722 0.90794438123703 0.47901612520217896 0.4289282262325287

36 1.1208815574645996 0.6096417903900146 0.511239767074585 0.9096197485923767 0.48033225536346436 0.4292873740196228

37 1.113873839378357 0.6072109937667847 0.5066633820533752 0.9080883264541626 0.47931572794914246 0.42877230048179626

38 1.1084223985671997 0.606953501701355 0.5014693140983582 0.9075406789779663 0.4779379963874817 0.42960259318351746

39 1.10933518409729 0.6071118116378784 0.5022229552268982 0.9079885482788086 0.480150043964386 0.4278383255004883

40 1.1043263673782349 0.6029844284057617 0.5013412833213806 0.9080638289451599 0.47946640849113464 0.42859750986099243

41 1.1076878309249878 0.6086129546165466 0.499074250459671 0.9088468551635742 0.4792303442955017 0.42961645126342773

42 1.1071513891220093 0.6056560277938843 0.5014961361885071 0.9088951945304871 0.4803631603717804 0.42853212356567383

43 1.1059744358062744 0.6047134399414062 0.5012620687484741 0.906801164150238 0.4794544279575348 0.4273470342159271

44 1.1010149717330933 0.6037341952323914 0.49728038907051086 0.9069405794143677 0.4797353744506836 0.4272053837776184

45 1.097078561782837 0.6012440919876099 0.4958341717720032 0.906846821308136 0.47913315892219543 0.42771321535110474

46 1.096753478050232 0.5995243191719055 0.4972282350063324 0.9077710509300232 0.48015955090522766 0.4276118278503418

47 1.0924795866012573 0.5974329113960266 0.4950462281703949 0.9068877696990967 0.4803031086921692 0.42658451199531555

48 1.0957859754562378 0.5974012017250061 0.49838492274284363 0.9099524021148682 0.48085716366767883 0.42909544706344604

49 1.095436930656433 0.6035935282707214 0.4918438792228699 0.9090133309364319 0.47984758019447327 0.4291655719280243

50 1.0884894132614136 0.5937326550483704 0.49475622177124023 0.9078619480133057 0.48144620656967163 0.42641589045524597

51 1.0921306610107422 0.5985012054443359 0.4936293959617615 0.9093038439750671 0.4822739362716675 0.42702993750572205

52 1.094101071357727 0.5995481610298157 0.4945524334907532 0.9101099371910095 0.48193007707595825 0.42817994952201843

53 1.0903629064559937 0.5975017547607422 0.4928607940673828 0.9075958728790283 0.48089027404785156 0.42670562863349915

54 1.0892523527145386 0.5990006327629089 0.4902515113353729 0.9084603786468506 0.48149073123931885 0.4269695580005646

55 1.085436224937439 0.5978575944900513 0.4875779449939728 0.9074952006340027 0.4805116653442383 0.42698317766189575

56 1.0826964378356934 0.5955331921577454 0.4871631860733032 0.9065156579017639 0.48167064785957336 0.4248445928096771

57 1.0900357961654663 0.5989152193069458 0.49112004041671753 0.9072303175926208 0.48204052448272705 0.425189346075058

58 1.0907628536224365 0.601088285446167 0.48967498540878296 0.9085162878036499 0.4828592538833618 0.42565682530403137

59 1.0880484580993652 0.5967121720314026 0.49133557081222534 0.906074583530426 0.48191410303115845 0.42416003346443176

60 1.0830940008163452 0.5941823124885559 0.48891201615333557 0.9052157998085022 0.4816218316555023 0.42359378933906555

61 1.0833497047424316 0.5955154299736023 0.4878346025943756 0.908991813659668 0.4841054379940033 0.4248865246772766

62 1.0768369436264038 0.5906621217727661 0.48617616295814514 0.9092456698417664 0.4834618866443634 0.42578402161598206

63 1.080619215965271 0.593582034111023 0.48703768849372864 0.9088274836540222 0.48364952206611633 0.425178200006485

64 1.0730377435684204 0.5899666547775269 0.483070969581604 0.9108629822731018 0.4831332266330719 0.4277297854423523

65 1.0712168216705322 0.5893895030021667 0.4818272292613983 0.9085461497306824 0.4827289879322052 0.42581671476364136

66 1.071825385093689 0.5904756784439087 0.4813513159751892 0.9089197516441345 0.48336559534072876 0.42555445432662964

67 1.0778446197509766 0.5937974452972412 0.48404693603515625 0.9116252064704895 0.48360732197761536 0.42801815271377563

68 1.073495864868164 0.5922418236732483 0.481253057718277 0.9103575944900513 0.4839676320552826 0.426390141248703

69 1.0685983896255493 0.5879715085029602 0.4806269407272339 0.9089112877845764 0.48291778564453125 0.4259937107563019

70 1.0679421424865723 0.5871715545654297 0.48076969385147095 0.9117333889007568 0.4852493107318878 0.4264843761920929

71 1.0681648254394531 0.5883936285972595 0.4797707498073578 0.9105769395828247 0.4852448105812073 0.42533236742019653

72 1.0673224925994873 0.5868881344795227 0.4804341197013855 0.9106056094169617 0.4852191209793091 0.4253864288330078

73 1.0709108114242554 0.588248074054718 0.482662558555603 0.9105302095413208 0.48491746187210083 0.42561256885528564

74 1.06876540184021 0.5893753170967102 0.4793897569179535 0.911074697971344 0.48462504148483276 0.42644959688186646

75 1.0646203756332397 0.5874272584915161 0.4771926701068878 0.9097803831100464 0.4846091568470001 0.4251709282398224

76 1.0650080442428589 0.5846458673477173 0.48036250472068787 0.9104455709457397 0.4847621023654938 0.4256831407546997

77 1.0706976652145386 0.5940353870391846 0.4766612648963928 0.9113103151321411 0.48427537083625793 0.4270351827144623

78 1.0706918239593506 0.5911555886268616 0.4795357584953308 0.9116398096084595 0.4854260981082916 0.4262135922908783

79 1.068267822265625 0.5896217823028564 0.47864583134651184 0.9129855632781982 0.48662349581718445 0.4263613820075989

80 1.0596383810043335 0.584480881690979 0.4751567542552948 0.9126961827278137 0.48651358485221863 0.4261822998523712

81 1.0611766576766968 0.5855056643486023 0.4756709337234497 0.9141902923583984 0.4880580008029938 0.4261325001716614

82 1.064165711402893 0.5860679745674133 0.47809723019599915 0.9117763638496399 0.48669517040252686 0.4250815510749817

83 1.0579874515533447 0.5842195749282837 0.4737682044506073 0.9121800065040588 0.4860581159591675 0.4261220097541809

84 1.0693812370300293 0.5886915922164917 0.4806903302669525 0.911811888217926 0.4866374731063843 0.42517387866973877

85 1.0616036653518677 0.5857316255569458 0.47587281465530396 0.9114907383918762 0.486906498670578 0.42458391189575195

86 1.059807538986206 0.581697404384613 0.47810932993888855 0.9115593433380127 0.4868186116218567 0.42474040389060974

87 1.053341031074524 0.5818563103675842 0.4714851975440979 0.9156926274299622 0.48692068457603455 0.4287720322608948

88 1.0494009256362915 0.5779415965080261 0.47145891189575195 0.9147000908851624 0.4871930778026581 0.4275069534778595

89 1.0547620058059692 0.5821491479873657 0.47261369228363037 0.9133653044700623 0.48639553785324097 0.4269697964191437

90 1.0551321506500244 0.5817152261734009 0.4734167158603668 0.9126080274581909 0.4868760406970978 0.42573240399360657

91 1.0507588386535645 0.5806647539138794 0.47009342908859253 0.9118577837944031 0.4858156740665436 0.4260425567626953

92 1.0506001710891724 0.5802425146102905 0.47035714983940125 0.9156368374824524 0.4875187873840332 0.4281177818775177
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93 1.0550062656402588 0.5816002488136292 0.4734061360359192 0.9136117696762085 0.48628953099250793 0.42732223868370056

94 1.0506869554519653 0.5822476744651794 0.4684392511844635 0.9131292700767517 0.4868021011352539 0.42632731795310974

95 1.0534636974334717 0.5823945999145508 0.47106894850730896 0.9118685126304626 0.48552435636520386 0.4263438880443573

96 1.051488995552063 0.5787398815155029 0.4727492332458496 0.9140998125076294 0.48723095655441284 0.42686888575553894

97 1.0541964769363403 0.5837090611457825 0.47048673033714294 0.9136505722999573 0.48726728558540344 0.4263833165168762

98 1.0489587783813477 0.5793518424034119 0.4696071445941925 0.915493369102478 0.48775455355644226 0.4277389645576477

99 1.0485482215881348 0.5801522731781006 0.4683953821659088 0.9148460030555725 0.4879043400287628 0.42694130539894104

100 1.0484449863433838 0.5809397101402283 0.4675055742263794 0.914793074131012 0.486907422542572 0.4278859794139862

101 1.0415087938308716 0.5736963748931885 0.4678126573562622 0.9141136407852173 0.48766419291496277 0.42644935846328735

102 1.0446159839630127 0.5766307711601257 0.4679860770702362 0.914655864238739 0.48699063062667847 0.4276654124259949

103 1.0438315868377686 0.5758964419364929 0.4679355323314667 0.9147354960441589 0.4875369966030121 0.4271984398365021

104 1.0468535423278809 0.5771142244338989 0.4697398841381073 0.9135618805885315 0.48709842562675476 0.4264633357524872

105 1.0472129583358765 0.5790421962738037 0.4681713879108429 0.9157275557518005 0.48751771450042725 0.42820975184440613

106 1.043917179107666 0.5765781998634338 0.46733957529067993 0.9156902432441711 0.48851484060287476 0.4271756410598755

107 1.0467501878738403 0.5786494016647339 0.46810171008110046 0.9152087569236755 0.48723962903022766 0.42796939611434937

108 1.0414888858795166 0.5737324953079224 0.4677572250366211 0.9147631525993347 0.48800477385520935 0.4267584979534149

109 1.0424185991287231 0.5763567686080933 0.4660622179508209 0.9157590866088867 0.488765150308609 0.426994264125824

110 1.0396802425384521 0.5788730382919312 0.4608072340488434 0.9149221777915955 0.48819711804389954 0.4267253577709198

111 1.0416349172592163 0.5768617391586304 0.46477317810058594 0.9167123436927795 0.4896557927131653 0.42705610394477844

112 1.0452015399932861 0.579807460308075 0.4653940796852112 0.9152839779853821 0.48890209197998047 0.4263821542263031

113 1.0454344749450684 0.5761081576347351 0.46932709217071533 0.9157934188842773 0.4891023635864258 0.42669111490249634

114 1.0453330278396606 0.5802265405654907 0.46510741114616394 0.9146770238876343 0.48844000697135925 0.426236629486084

115 1.0397019386291504 0.5738046765327454 0.4658971130847931 0.9152485132217407 0.48779013752937317 0.42745813727378845

116 1.036521553993225 0.5733945965766907 0.46312713623046875 0.9161445498466492 0.48887115716934204 0.4272737205028534

117 1.0385615825653076 0.5746519565582275 0.4639095664024353 0.9145588278770447 0.4876113533973694 0.42694753408432007

118 1.0379680395126343 0.5737359523773193 0.46423178911209106 0.9185482263565063 0.48836690187454224 0.4301815330982208

119 1.037366271018982 0.5756452679634094 0.46172043681144714 0.9180372357368469 0.48901861906051636 0.4290185272693634

120 1.0375959873199463 0.5756751894950867 0.4619206190109253 0.9166902899742126 0.48936301469802856 0.42732757329940796

121 1.037338376045227 0.5735152363777161 0.46382278203964233 0.9194186329841614 0.4904361069202423 0.428982138633728

122 1.035306692123413 0.5735089778900146 0.4617975652217865 0.9179779887199402 0.4890742599964142 0.4289037883281708

123 1.0371850728988647 0.5746508836746216 0.4625345766544342 0.9184318780899048 0.4893072247505188 0.42912501096725464

124 1.038512110710144 0.5782087445259094 0.46030357480049133 0.9188887476921082 0.4897102117538452 0.4291781485080719

125 1.0393937826156616 0.5764773488044739 0.4629170000553131 0.9184818267822266 0.4900767207145691 0.4284049868583679

126 1.0321053266525269 0.5736926198005676 0.4584123492240906 0.9234462976455688 0.4912366271018982 0.4322097599506378

127 1.0365201234817505 0.5752193927764893 0.4612996280193329 0.9181003570556641 0.4896663427352905 0.42843419313430786

128 1.0349746942520142 0.5748924016952515 0.4600813090801239 0.9176708459854126 0.4886893630027771 0.42898133397102356

129 1.039414644241333 0.5782459378242493 0.46116819977760315 0.9183905124664307 0.4896702170372009 0.42872050404548645

130 1.0358821153640747 0.5743698477745056 0.46151164174079895 0.9188072681427002 0.4900958240032196 0.4287116825580597

131 1.0328925848007202 0.5743647813796997 0.45852795243263245 0.9196730256080627 0.490904301404953 0.4287688136100769

132 1.03117036819458 0.572933554649353 0.4582371413707733 0.9208678603172302 0.4911212921142578 0.42974653840065

133 1.0241672992706299 0.5646216869354248 0.4595455825328827 0.9186878800392151 0.4897940754890442 0.42889365553855896

134 1.0339568853378296 0.5753937363624573 0.4585636258125305 0.91709303855896 0.48971083760261536 0.42738184332847595

135 1.0341204404830933 0.5771579146385193 0.45696231722831726 0.9225329160690308 0.49103009700775146 0.4315027594566345

136 1.0389569997787476 0.5764995813369751 0.4624571204185486 0.9217149615287781 0.4922162592411041 0.4294987916946411

137 1.0301624536514282 0.5722798705101013 0.45788225531578064 0.9213699698448181 0.4916285276412964 0.42974135279655457

138 1.0297857522964478 0.5729182958602905 0.4568670392036438 0.918720543384552 0.49095186591148376 0.42776840925216675

139 1.0304644107818604 0.5707088112831116 0.45975562930107117 0.9186868071556091 0.4908902943134308 0.4277960956096649

140 1.0296945571899414 0.5708745121955872 0.458819717168808 0.9205701947212219 0.4922104775905609 0.42835918068885803

141 1.028691053390503 0.5699555277824402 0.4587370455265045 0.9189446568489075 0.4906699061393738 0.42827481031417847

142 1.0288430452346802 0.5697249174118042 0.45911866426467896 0.9200631976127625 0.4908031225204468 0.4292598366737366

143 1.0295672416687012 0.5725052356719971 0.45706090331077576 0.9199578166007996 0.49033716320991516 0.42962121963500977

144 1.0281566381454468 0.5695267915725708 0.458630234003067 0.9233339428901672 0.49204710125923157 0.4312871992588043

145 1.0202418565750122 0.5705768465995789 0.44966527819633484 0.9228817820549011 0.4919230043888092 0.43095865845680237

146 1.0213282108306885 0.5671077370643616 0.45422160625457764 0.925342857837677 0.49183425307273865 0.43350866436958313

147 1.0279440879821777 0.5710896849632263 0.45685529708862305 0.921523928642273 0.491362065076828 0.4301616847515106

148 1.02877938747406 0.5712938904762268 0.45748385787010193 0.9239640831947327 0.49388375878334045 0.43007993698120117

149 1.018946647644043 0.5656929612159729 0.4532545208930969 0.9235441088676453 0.492768794298172 0.4307754933834076

150 1.029026746749878 0.5730605721473694 0.45596614480018616 0.9225621819496155 0.4931652843952179 0.42939695715904236
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151 1.0279549360275269 0.5697857737541199 0.45816951990127563 0.9230880737304688 0.4930129945278168 0.4300754964351654

152 1.0190073251724243 0.5678589940071106 0.4511486887931824 0.9244948029518127 0.4931899905204773 0.43130505084991455

153 1.0208439826965332 0.5674123764038086 0.4534316062927246 0.9236162304878235 0.4933023154735565 0.43031418323516846

154 1.0267013311386108 0.57041996717453 0.45628082752227783 0.9203795194625854 0.4914169907569885 0.428962379693985

155 1.0329920053482056 0.5732476115226746 0.4597453773021698 0.9213874936103821 0.4904536008834839 0.43093442916870117

156 1.0239657163619995 0.569423496723175 0.45454198122024536 0.9252133965492249 0.494259238243103 0.43095412850379944

157 1.0183627605438232 0.5692555904388428 0.4491077661514282 0.9256883859634399 0.4939640164375305 0.4317243695259094

158 1.0252586603164673 0.5686951279640198 0.4565640389919281 0.9249007105827332 0.4937219023704529 0.4311787188053131

159 1.0216888189315796 0.568889856338501 0.4527983069419861 0.9280418157577515 0.49447938799858093 0.4335622787475586

160 1.0248825550079346 0.5688242316246033 0.4560582935810089 0.9264236688613892 0.4950620234012604 0.43136173486709595

161 1.0221575498580933 0.5701010823249817 0.4520561397075653 0.9275827407836914 0.4937015771865845 0.43388137221336365

162 1.0206382274627686 0.5676759481430054 0.4529634118080139 0.9286792278289795 0.4941726326942444 0.4345066249370575

163 1.0130064487457275 0.5630710124969482 0.44993463158607483 0.9254297614097595 0.49322378635406494 0.4322056174278259

164 1.0194872617721558 0.5669772624969482 0.45251068472862244 0.9265595078468323 0.49401527643203735 0.4325442314147949

165 1.0177569389343262 0.5686390399932861 0.44911810755729675 0.9311113357543945 0.49449530243873596 0.4366162419319153

166 1.016827940940857 0.5683452486991882 0.44848334789276123 0.9282078146934509 0.49451935291290283 0.4336884617805481

167 1.0197747945785522 0.567004382610321 0.4527697265148163 0.9269810318946838 0.4931081235408783 0.4338729679584503

168 1.0193345546722412 0.5669732689857483 0.45236173272132874 0.9253555536270142 0.49359825253486633 0.43175753951072693

169 1.0195950269699097 0.5676289796829224 0.45196661353111267 0.9282181859016418 0.494236558675766 0.43398138880729675

170 1.0135962963104248 0.5660510659217834 0.4475460648536682 0.930051863193512 0.4949844181537628 0.4350672960281372

171 1.017537236213684 0.5675684809684753 0.44996875524520874 0.9253159761428833 0.4941534399986267 0.43116289377212524

172 1.0178053379058838 0.568099319934845 0.44970574975013733 0.9296265244483948 0.4958883821964264 0.4337385594844818

173 1.0152945518493652 0.5653136372566223 0.44998130202293396 0.931841254234314 0.49647727608680725 0.4353639781475067

174 1.016649842262268 0.5647755265235901 0.45187506079673767 0.928092896938324 0.49405020475387573 0.4340427815914154

175 1.0121790170669556 0.5655498504638672 0.4466291666030884 0.9291257262229919 0.4964318871498108 0.4326940178871155

176 1.0140070915222168 0.5647351741790771 0.44927263259887695 0.9292359948158264 0.4959457516670227 0.43329012393951416

177 1.0132330656051636 0.5624778866767883 0.45075491070747375 0.9316127896308899 0.49671265482902527 0.4349004626274109

178 1.015887975692749 0.5650520324707031 0.4508366584777832 0.9276146292686462 0.49556222558021545 0.4320524036884308

179 1.0149245262145996 0.5651141405105591 0.44981008768081665 0.9271402359008789 0.4948078691959381 0.43233194947242737

180 1.0152376890182495 0.5647070407867432 0.4505302608013153 0.9288027882575989 0.4958980977535248 0.43290454149246216

181 1.0115689039230347 0.5658024549484253 0.4457660913467407 0.9291466474533081 0.49635183811187744 0.4327942728996277

182 1.018610954284668 0.5666569471359253 0.45195475220680237 0.9311339855194092 0.4963396489620209 0.43479397892951965

183 1.0149869918823242 0.56406569480896 0.45092126727104187 0.9285990595817566 0.4953297972679138 0.43326887488365173

184 1.0141502618789673 0.5650578141212463 0.4490930438041687 0.9311828017234802 0.4968419075012207 0.4343404471874237

185 1.0113434791564941 0.5644071102142334 0.4469369649887085 0.9302657842636108 0.49569007754325867 0.43457549810409546

186 1.0084716081619263 0.5646283626556396 0.4438430368900299 0.9308502674102783 0.4956999719142914 0.435150146484375

187 1.0022629499435425 0.5589621067047119 0.443300724029541 0.9337139129638672 0.4974867105484009 0.4362274706363678

188 1.010462760925293 0.563588559627533 0.44687432050704956 0.93216872215271 0.4964750111103058 0.4356934130191803

189 1.0098745822906494 0.5669596791267395 0.442915141582489 0.9316402077674866 0.49689289927482605 0.43474724888801575

190 1.0072517395019531 0.5629821419715881 0.44427043199539185 0.9326554536819458 0.49698570370674133 0.4356696903705597

191 1.0109952688217163 0.5646440386772156 0.4463520646095276 0.9331636428833008 0.49680081009864807 0.4363626539707184

192 1.0179054737091064 0.5668085813522339 0.45109742879867554 0.929749608039856 0.4956516623497009 0.4340978264808655

193 1.0050342082977295 0.5620152354240417 0.44301944971084595 0.9339377880096436 0.4967551827430725 0.43718260526657104

194 1.011902093887329 0.5628689527511597 0.4490337669849396 0.9311550259590149 0.49691882729530334 0.4342365562915802

195 1.0149061679840088 0.5669757723808289 0.44793006777763367 0.9342151880264282 0.4976752996444702 0.4365396499633789

196 1.0118377208709717 0.5642898082733154 0.44754764437675476 0.9292335510253906 0.49610641598701477 0.43312767148017883

197 1.0059762001037598 0.5607737302780151 0.4452028274536133 0.933688223361969 0.4975859522819519 0.4361023008823395

198 1.0087275505065918 0.5613117814064026 0.4474164843559265 0.9331406950950623 0.49780598282814026 0.43533486127853394

199 1.0114206075668335 0.5626768469810486 0.4487435221672058 0.9366050958633423 0.4984317123889923 0.4381736218929291

200 1.0048301219940186 0.5593607425689697 0.4454685151576996 0.9334269762039185 0.49876877665519714 0.43465766310691833

201 1.0095527172088623 0.56533282995224 0.44422057271003723 0.9352532625198364 0.4979263246059418 0.43732738494873047

202 1.012204885482788 0.5634075403213501 0.44879743456840515 0.9331136345863342 0.4975895583629608 0.4355241656303406

203 1.0067756175994873 0.5617693066596985 0.44500675797462463 0.9322689175605774 0.49661508202552795 0.43565377593040466

204 1.0120153427124023 0.5632447004318237 0.448770135641098 0.9336621761322021 0.49776312708854675 0.4358990490436554

205 1.0040136575698853 0.5589050650596619 0.4451097548007965 0.9352455139160156 0.49871519207954407 0.436530739068985

206 1.009358525276184 0.5645768046379089 0.44478222727775574 0.9332889914512634 0.49693068861961365 0.43635818362236023

207 1.0095804929733276 0.5639387965202332 0.44564247131347656 0.9362379312515259 0.4985688030719757 0.43766945600509644

208 1.0096646547317505 0.5686319470405579 0.4410324692726135 0.9386622905731201 0.49899426102638245 0.4396677315235138
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209 1.0045340061187744 0.5613900423049927 0.4431437849998474 0.9365870356559753 0.49852699041366577 0.43806037306785583

210 1.005076289176941 0.5619632601737976 0.44311344623565674 0.9351778030395508 0.498038649559021 0.43713924288749695

211 1.0003092288970947 0.5593581795692444 0.4409516453742981 0.9379473924636841 0.49831607937812805 0.43963125348091125

212 1.002041220664978 0.5601845383644104 0.441855788230896 0.9333047270774841 0.49761953949928284 0.43568500876426697

213 1.0003490447998047 0.5617542862892151 0.43859419226646423 0.9348194003105164 0.4970645606517792 0.4377545416355133

214 1.0013240575790405 0.5609144568443298 0.44040998816490173 0.9351730346679688 0.4975537657737732 0.43761947751045227

215 1.0044969320297241 0.560567319393158 0.4439300298690796 0.9366010427474976 0.4986927807331085 0.43790820240974426

216 1.0043432712554932 0.5613779425621033 0.4429660439491272 0.9360083937644958 0.49693530797958374 0.43907299637794495

217 0.9994690418243408 0.5608779191970825 0.43859168887138367 0.9363541007041931 0.4991658329963684 0.43718820810317993

218 1.0060851573944092 0.5594073534011841 0.44667795300483704 0.9363306760787964 0.4996338486671448 0.43669694662094116

219 1.0051872730255127 0.5618908405303955 0.4432963728904724 0.9337584376335144 0.49741077423095703 0.43634727597236633

220 1.0067857503890991 0.5654515027999878 0.44133421778678894 0.9356008768081665 0.4987417459487915 0.43685922026634216

221 1.0048868656158447 0.5623752474784851 0.4425121247768402 0.9365498423576355 0.4983486533164978 0.4382012188434601

222 1.0034369230270386 0.559360921382904 0.44407540559768677 0.938368558883667 0.49979981780052185 0.4385690987110138

223 0.9978277683258057 0.5585823655128479 0.43924465775489807 0.9371516704559326 0.49985018372535706 0.4373011887073517

224 1.002355933189392 0.5602257251739502 0.4421303868293762 0.9348543286323547 0.4982748329639435 0.43657949566841125

225 1.0046554803848267 0.5613739490509033 0.4432810842990875 0.9363396763801575 0.4992222487926483 0.4371170699596405

226 1.0057168006896973 0.5607449412345886 0.4449719488620758 0.9399279952049255 0.5013396143913269 0.4385882616043091

227 1.0035626888275146 0.5614485144615173 0.44211456179618835 0.9386551380157471 0.5011641383171082 0.4374905228614807

228 1.0029493570327759 0.5620381832122803 0.44091179966926575 0.9386416077613831 0.4997248351573944 0.4389168322086334

229 1.0036870241165161 0.5619088411331177 0.44177791476249695 0.9383774399757385 0.4984394907951355 0.43993791937828064

230 1.0054925680160522 0.5634271502494812 0.44206610321998596 0.9382073879241943 0.49879080057144165 0.4394156336784363

231 1.0028622150421143 0.5626165270805359 0.4402454197406769 0.9373486638069153 0.49806302785873413 0.4392857253551483

232 0.9952123165130615 0.5562523603439331 0.4389595091342926 0.9386739134788513 0.5002731084823608 0.4384010136127472

233 1.0032204389572144 0.5599488615989685 0.4432721436023712 0.9412303566932678 0.5015033483505249 0.4397270977497101

234 0.9960607290267944 0.5583130717277527 0.43774718046188354 0.9416810870170593 0.5013591051101685 0.4403219223022461

235 1.0008268356323242 0.5592172145843506 0.4416103959083557 0.9401289820671082 0.5006250143051147 0.439503937959671

236 0.9968042969703674 0.5572798252105713 0.43952444195747375 0.9397736191749573 0.5009164810180664 0.4388572871685028

237 1.0033305883407593 0.5619306564331055 0.441398561000824 0.9384805560112 0.4989146590232849 0.43956610560417175

238 1.002616047859192 0.5609740614891052 0.44164136052131653 0.9385055303573608 0.5010517239570618 0.4374536871910095

239 0.9994375705718994 0.5602509379386902 0.439186692237854 0.9383321404457092 0.4995696246623993 0.4387625455856323

240 1.0034962892532349 0.5614157915115356 0.44208019971847534 0.9390134811401367 0.5000278949737549 0.43898528814315796

241 1.0002132654190063 0.5593069791793823 0.4409070611000061 0.9372215867042542 0.4978722035884857 0.4393496811389923

242 0.9975730776786804 0.561967670917511 0.4356050193309784 0.9390024542808533 0.5003935694694519 0.43860870599746704

243 1.0002202987670898 0.5581273436546326 0.4420938491821289 0.9397771954536438 0.5010464191436768 0.4387308359146118

244 0.9981772899627686 0.5611728429794312 0.4370042681694031 0.9433889389038086 0.5018019676208496 0.441586971282959

245 0.9986715912818909 0.5597946643829346 0.43887630105018616 0.9443122148513794 0.5004619359970093 0.44385018944740295

246 0.9953332543373108 0.5554688572883606 0.4398641586303711 0.9409132599830627 0.5015206933021545 0.43939265608787537

247 0.9931190013885498 0.5546157956123352 0.4385037124156952 0.9431121945381165 0.5025656819343567 0.44054603576660156

248 0.9946774244308472 0.5553562045097351 0.4393211305141449 0.9433215856552124 0.5017327070236206 0.44158926606178284

249 0.9933452010154724 0.5570454001426697 0.4362994432449341 0.9429627060890198 0.5016821026802063 0.44128090143203735

250 0.9914389848709106 0.5552685260772705 0.43617019057273865 0.9441039562225342 0.5022728443145752 0.4418310821056366

251 0.9937124252319336 0.5562232732772827 0.43748942017555237 0.9425495266914368 0.5017534494400024 0.4407960772514343

252 0.9990050196647644 0.5588817596435547 0.4401226341724396 0.943905234336853 0.503187358379364 0.4407179653644562

253 1.0003849267959595 0.5611705780029297 0.43921419978141785 0.9460873007774353 0.5046283602714539 0.441458523273468

254 0.9980008006095886 0.5578826069831848 0.4401186406612396 0.9433848857879639 0.5028365254402161 0.44054827094078064

255 0.9947952032089233 0.5560591816902161 0.43873608112335205 0.9449889063835144 0.5038674473762512 0.4411212205886841

256 0.9957295060157776 0.5601661801338196 0.4355625510215759 0.9440086483955383 0.50202876329422 0.441980242729187

257 0.9901061654090881 0.5566972494125366 0.43340909481048584 0.9456049203872681 0.5021912455558777 0.44341355562210083

258 0.989719569683075 0.5528366565704346 0.43688279390335083 0.9439164996147156 0.5023820400238037 0.4415345788002014

259 0.9905751943588257 0.5550554990768433 0.43551960587501526 0.9432510733604431 0.5029900670051575 0.4402613043785095

260 0.9939877390861511 0.5580857396125793 0.43590205907821655 0.9453449249267578 0.502878725528717 0.4424663484096527

261 0.9942054152488708 0.5577381253242493 0.4364667236804962 0.9430965185165405 0.5021150708198547 0.44098132848739624

262 0.9941205978393555 0.5574031472206116 0.4367174506187439 0.9484463930130005 0.5044525861740112 0.4439937472343445

263 0.9895194172859192 0.5547767281532288 0.434742271900177 0.947275698184967 0.5034597516059875 0.4438158869743347

264 0.9988983273506165 0.559112012386322 0.4397861063480377 0.9475221633911133 0.5032411217689514 0.44428110122680664

265 0.9952409863471985 0.5594831109046936 0.43575742840766907 0.9478034973144531 0.5043551921844482 0.4434480667114258

266 0.9945647120475769 0.5540851354598999 0.44047942757606506 0.950228750705719 0.5050081610679626 0.445220410823822
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267 0.9880883097648621 0.5543086528778076 0.4337801933288574 0.9475696682929993 0.5038408041000366 0.4437287151813507

268 0.9983953833580017 0.5597705245018005 0.4386249780654907 0.9469287395477295 0.5037143230438232 0.4432142972946167

269 0.9888975024223328 0.5537710785865784 0.4351261556148529 0.94930100440979 0.5032076835632324 0.4460936188697815

270 0.9918916821479797 0.5542848110198975 0.43760716915130615 0.9471441507339478 0.5038893222808838 0.44325506687164307

271 0.9969497323036194 0.5602486729621887 0.4367004632949829 0.9473037123680115 0.5040683150291443 0.44323498010635376

272 0.9898043870925903 0.5557802319526672 0.4340246915817261 0.9466174244880676 0.5038204789161682 0.44279715418815613

273 0.992627739906311 0.5544851422309875 0.43814197182655334 0.9485705494880676 0.5037086606025696 0.4448617994785309

274 0.9944506883621216 0.5587907433509827 0.4356597363948822 0.9494113326072693 0.5041213035583496 0.4452902674674988

275 0.9942619204521179 0.5582864284515381 0.4359748661518097 0.9536365270614624 0.5069758296012878 0.44666069746017456

276 0.9936226606369019 0.5582395792007446 0.4353833496570587 0.9503892064094543 0.504633367061615 0.4457562267780304

277 0.9886900186538696 0.5551004409790039 0.4335889220237732 0.9470466375350952 0.5041482448577881 0.44289812445640564

278 0.9889993667602539 0.5544964075088501 0.43450289964675903 0.9536550641059875 0.5055358409881592 0.44811880588531494

279 0.9922619462013245 0.5547406077384949 0.4375205636024475 0.9465362429618835 0.5039126873016357 0.4426231384277344

280 0.9857951998710632 0.5531835556030273 0.4326123595237732 0.9478769302368164 0.5050527453422546 0.4428243041038513

281 0.9911256432533264 0.5564438104629517 0.43468156456947327 0.9472343921661377 0.5055626034736633 0.441671758890152

282 0.9894036054611206 0.5568118691444397 0.4325915575027466 0.9470367431640625 0.504158079624176 0.4428790807723999

283 0.9908217787742615 0.5571851134300232 0.4336368441581726 0.949933648109436 0.5054536461830139 0.4444800913333893

284 0.9879868030548096 0.5549989342689514 0.43298789858818054 0.9531517028808594 0.5070666670799255 0.44608446955680847

285 0.9852899312973022 0.5551581978797913 0.4301310181617737 0.951856255531311 0.5077223181724548 0.4441337287425995

286 0.9922258257865906 0.5578976273536682 0.43432822823524475 0.9500274658203125 0.506120502948761 0.44390666484832764

287 0.9949134588241577 0.5588733553886414 0.4360400140285492 0.9485616683959961 0.5053067207336426 0.4432543218135834

288 0.9936727285385132 0.557328462600708 0.4363454282283783 0.9508365988731384 0.5058395862579346 0.4449976086616516

289 0.9837911128997803 0.5543424487113953 0.4294489622116089 0.9517180323600769 0.5062809586524963 0.44543713331222534

290 0.9844657182693481 0.5541254281997681 0.43033990263938904 0.9494717121124268 0.5061826109886169 0.4432887136936188

291 0.9838549494743347 0.5508860945701599 0.43296903371810913 0.9506162405014038 0.5063633918762207 0.4442530572414398

292 0.9863754510879517 0.5550476908683777 0.43132808804512024 0.9489202499389648 0.5051538944244385 0.443766713142395

293 0.9881338477134705 0.5544527173042297 0.43368083238601685 0.9479323029518127 0.5060405135154724 0.44189199805259705

294 0.9829780459403992 0.553572952747345 0.4294055104255676 0.9506534934043884 0.5057621598243713 0.44489097595214844

295 0.9879100918769836 0.5551950931549072 0.4327157437801361 0.9507713913917542 0.5065964460372925 0.444175124168396

296 0.9899653792381287 0.5554571151733398 0.4345085918903351 0.9512231945991516 0.5065385699272156 0.44468414783477783

297 0.9838765859603882 0.5536510944366455 0.4302251935005188 0.949711799621582 0.5061488151550293 0.44356271624565125

298 0.9877735376358032 0.5560689568519592 0.43170350790023804 0.950348973274231 0.5060612559318542 0.44428750872612

299 0.9902716875076294 0.5560818910598755 0.4341893196105957 0.948144793510437 0.5055281519889832 0.4426170885562897
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B
Configurations

B.1 Commands for VM configuration

wget -q https://packages.microsoft.com/config/ubuntu/18.04/packages-microsoft-prod.deb;

sudo dpkg -i packages-microsoft-prod.deb;

sudo apt-get -y install apt-transport-https;

sudo add-apt-repository universe;

sudo apt-get update;

sudo apt-get -y install p7zip-full p7zip-rar;

sudo apt-get -y install aspnetcore-runtime-3.1;

sudo apt-get -y install dotnet-sdk-3.1;
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B.2. SPECIAL CONFIGURATION AWS FREE TIER

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

sudo apt-get -y install python3-distutils

sudo apt-get -y install python3-apt

python3 get-pip.py

python3 -m pip install tensorflow

python3 -m pip install IPython

python3 -m pip install scikit-learn

sudo apt-get -y install python3-pandas

B.2 Special configuration AWS free tier

sudo fallocate -l 1G /swapfile

sudo dd if=/dev/zero of=/swapfile bs=1024 count=1048576

sudo chmod 600 /swapfile

sudo mkswap /swapfile

sudo swapon /swapfile
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