15,878 research outputs found

    Improving Inland Water Quality Monitoring through Remote Sensing Techniques

    Get PDF
    Chlorophyll-a (chl-a) levels in lake water could indicate the presence of cyanobacteria, which can be a concern for public health due to their potential to produce toxins. Monitoring of chl-a has been an important practice in aquatic systems, especially in those used for human services, as they imply an increased risk of exposure. Remote sensing technology is being increasingly used to monitor water quality, although its application in cases of small urban lakes is limited by the spatial resolution of the sensors. Lake Thonotosassa, FL, USA, a 3.45-km2 suburban lake with several uses for the local population, is being monitored monthly by traditional methods. We developed an empirical bio-optical algorithm for the Moderate Resolution Imaging Spectroradiometer (MODIS) daily surface reflectance product to monitor daily chl-a. We applied the same algorithm to four different periods of the year using 11 years of water quality data. Normalized root mean squared errors were lower during the first (0.27) and second (0.34) trimester and increased during the third (0.54) and fourth (1.85) trimesters of the year. Overall results showed that Earth-observing technologies and, particularly, MODIS products can also be applied to improve environmental health management through water quality monitoring of small lakes

    Remote Sensing For Water Resources And Hydrology. Recommended research emphasis for the 1980's

    Get PDF
    The problems and the areas of activity that the Panel believes should be emphasized in work on remote sensing for water resources and hydrology in the 1980's are set forth. The Panel deals only with those activities and problems in water resources and hydrology that the Panel considers important, and where, in the Panel's opinion, application of current remote sensing capability or advancements in remote sensing capability can help meet urgent problems and provide large returns in practical benefits

    NASA Earth Resources Survey Symposium. Volume 3: Summary reports

    Get PDF
    This document contains the proceedings and summaries of the earth resources survey symposium, sponsored by the NASA Headquarters Office of Applications and held in Houston, Texas, June 9 to 12, 1975. Topics include the use of remote sensing techniques in agriculture, in geology, for environmental monitoring, for land use planning, and for management of water resources and coastal zones. Details are provided about services available to various users. Significant applications, conclusions, and future needs are also discussed

    Mapping Mangrove Extent and Change: A Globally Applicable Approach

    Get PDF
    This study demonstrates a globally applicable method for monitoring mangrove forest extent at high spatial resolution. A 2010 mangrove baseline was classified for 16 study areas using a combination of ALOS PALSAR and Landsat composite imagery within a random forests classifier. A novel map-to-image change method was used to detect annual and decadal changes in extent using ALOS PALSAR/JERS-1 imagery. The map-to-image method presented makes fewer assumptions of the data than existing methods, is less sensitive to variation between scenes due to environmental factors (e.g., tide or soil moisture) and is able to automatically identify a change threshold. Change maps were derived from the 2010 baseline to 1996 using JERS-1 SAR and to 2007, 2008 and 2009 using ALOS PALSAR. This study demonstrated results for 16 known hotspots of mangrove change distributed globally, with a total mangrove area of 2,529,760 ha. The method was demonstrated to have accuracies consistently in excess of 90% (overall accuracy: 92.293.3%, kappa: 0.86) for mapping baseline extent. The accuracies of the change maps were more variable and were dependent upon the time period between images and number of change features. Total change from 1996 to 2010 was 204,850 ha (127,990 ha gain, 76,860 ha loss), with the highest gains observed in French Guiana (15,570 ha) and the highest losses observed in East Kalimantan, Indonesia (23,003 ha). Changes in mangrove extent were the consequence of both natural and anthropogenic drivers, yielding net increases or decreases in extent dependent upon the study site. These updated maps are of importance to the mangrove research community, particularly as the continual updating of the baseline with currently available and anticipated spaceborne sensors. It is recommended that mangrove baselines are updated on at least a 5-year interval to suit the requirements of policy makers

    Improving Chlorophyll-a Estimation from Sentinel-2 (MSI) in the Barents Sea using Machine Learning

    Get PDF
    This article addresses methodologies for remote sensing of ocean Chlorophyll-a (Chl-a), with emphasis on the Barents Sea. We aim at improving the monitoring capacity by integrating in situ Chl-a observations and optical remote sensing to locally train machine learning (ML) models. For this purpose, in situ measurements of Chl-a ranging from 0.014–10.81 mg/m 3 , collected for the years 2016–2018, were used to train and validate models. To accurately estimate Chl-a, we propose to use additional information on pigment content within the productive column by matching the depth-integrated Chl-a concentrations with the satellite data. Using the optical images captured by the multispectral imager instrument on Sentinel-2 and the in situ measurements, a new spatial window-based match-up dataset creation method is proposed to increase the number of match-ups and hence improve the training of the ML models. The match-ups are then filtered to eliminate erroneous samples based on the spectral distribution of the remotely sensed reflectance. In addition, we design and implement a neural network model dubbed as the ocean color net (OCN), that has performed better than existing ML-based techniques, including the Gaussian process Regression (GPR), regionally tuned empirical techniques, including the ocean color (OC3) algorithm and the spectral band ratios, as well as the globally trained Case-2 regional/coast colour (C2RCC) processing chain model C2RCC-networks. The proposed OCN model achieved reduced mean absolute error compared to the GPR by 5.2%, C2RCC by 51.7%, OC3 by 22.6%, and spectral band ratios by 29%. Moreover, the proposed spatial window and depth-integrated match-up creation techniques improved the performance of the proposed OCN by 57%, GPR by 41.9%, OC3 by 5.3%, and spectral band ratio method by 24% in terms of RMSE compared to the conventional match-up selection approach

    The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery

    Get PDF
    peer-reviewedIrish Journal of Agricultural and Food Research | Volume 58: Issue 1 The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery R. O’Haraemail , S. Green and T. McCarthy DOI: https://doi.org/10.2478/ijafr-2019-0006 | Published online: 11 Oct 2019 PDF Abstract Article PDF References Recommendations Abstract The capability of Sentinel 1 C-band (5 cm wavelength) synthetic aperture radio detection and ranging (RADAR) (abbreviated as SAR) for flood mapping is demonstrated, and this approach is used to map the extent of the extensive floods that occurred throughout the Republic of Ireland in the winter of 2015–2016. Thirty-three Sentinel 1 images were used to map the area and duration of floods over a 6-mo period from November 2015 to April 2016. Flood maps for 11 separate dates charted the development and persistence of floods nationally. The maximum flood extent during this period was estimated to be ~24,356 ha. The depth of rainfall influenced the magnitude of flood in the preceding 5 d and over more extended periods to a lesser degree. Reduced photosynthetic activity on farms affected by flooding was observed in Landsat 8 vegetation index difference images compared to the previous spring. The accuracy of the flood map was assessed against reports of flooding from affected farms, as well as other satellite-derived maps from Copernicus Emergency Management Service and Sentinel 2. Monte Carlo simulated elevation data (20 m resolution, 2.5 m root mean square error [RMSE]) were used to estimate the flood’s depth and volume. Although the modelled flood height showed a strong correlation with the measured river heights, differences of several metres were observed. Future mapping strategies are discussed, which include high–temporal-resolution soil moisture data, as part of an integrated multisensor approach to flood response over a range of spatial scales

    Searching for Hyperspectral Optical Proxies to Aid Chesapeake Bay Resource Managers in the Detection of Poor Water Quality

    Get PDF
    Shellfish aquaculture is a growing industry in the Chesapeake Bay. As population grows near the coast, extreme weather events cause a greater volume of pollutant runoff from impervious surfaces and agricultural lands. Resource managers who monitor shellfish beds need reliable information on a variety of water quality indicators at higher frequency than is possible through field monitoring programs and at a higher level of detail than current satellite products can provide. Although many factors causing degraded water quality that can impact human health are not currently discernable by traditional multispectral techniques, hyperspectral imagery offers a new opportunity to detect phytoplankton communities associated with harmful algal blooms and biotoxin production. Together with resource managers in their routine monitoring of sites around the bay from small boats, we have been exploring remotely sensed optical proxies for the detection of harmful algal blooms and sewage. Early warning by remote sensing could guide sampling and improve the efficiency of shellfish bed closures, ultimately improving health outcomes for humans and animals. An extensive network of routine sampling by Chesapeake Bay Program managers makes this is an ideal location to develop and test future satellite data products to support management decisions. Next generation hyperspectral measurements from the future Plankton Aerosol Cloud ocean Ecosystem (PACE) mission at nearly daily frequency, combined with the potential of higher spatial resolution from the Surface Biology and Geology (SBG) observing system recommended in the recent Decadal Survey, along with high frequency observations from the newly selected Geostationary Littoral Imaging and Monitoring Radiometer (GLIMR) Earth Venture Instrument make this a critical time for defining the needs of the aquaculture and resource management community to save lives, time, and money

    Optical remote sensing of water quality parameters retrieval in the Barents Sea

    Get PDF
    This thesis addresses various aspects of monitoring water quality indicators (WQIs) using optical remote sensing technologies. The dynamic nature of aquatic systems necessitate frequent monitoring at high spatial resolution. Machine learning (ML)-based algorithms are becoming increasingly common for these applications. ML algorithms are required to be trained by a significant amount of training data, and their accuracy depends on the performance of the atmospheric correction (AC) algorithm being used for correcting atmospheric effects. AC over open oceanic waters generally performs reasonably well; however, limitations still exist over inland and coastal waters. AC becomes more challenging in the high north waters, such as the Barents Sea, due to the unique in-water optical properties at high latitudes, long ray pathways, as well as the scattering of light from neighboring sea ice into the sensors’ field of view adjacent to ice-infested waters. To address these challenges, we evaluated the performances of state-of-the-art AC algorithms applied to the high-resolution satellite sensors Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multispectral Instrument (MSI), both for high-north (Paper II) and for global inland and coastal waters (Paper III). Using atmospherically corrected remote sensing reflectance (Rrs ) products, estimated after applying the top performing AC algorithm, we present a new bandpass adjustment (BA) method for spectral harmonization of Rrs products from OLI and MSI. This harmonization will enable an increased number of ocean color (OC) observations and, hence, a larger amount of training data. The BA model is based on neural networks (NNs), which perform a pixel-by-pixel transformation of MSI-derived Rrs to that of OLI equivalent for their common bands. In addition, to accurately retrieve concentrations of Chlorophyll-a (Chl-a) and Color Dissolved Organic Matter (CDOM) from remotely sensed data, we propose in the thesis (Paper 1) an NN-based WQI retrieval model dubbed Ocean Color Net (OCN). Our results indicate that Rrs retrieved via the Acolite Dark Spectrum Fitting (DSF) method is in best agreement with in-situ Rrs observations in the Barents Sea compared to the other methods. The median absolute percentage difference (MAPD) in the blue-green bands ranges from 9% to 25%. In the case of inland and coastal waters (globally), we found that OC-SMART is the top performer, with MAPD Rrs products for varying optical regimes than previously presented methods. Additionally, to improve the analysis of remote sensing spectral data, we introduce a new spatial window-based match-up data set creation method which increases the training data set and allows for better tuning of regression models. Based on comparisons with in-water measured Chl-a profiles in the Barents Sea, our analysis indicates that the MSI-derived Rrs products are more sensitive to the depth-integrated Chl-a contents than near-surface Chl-a values (Paper I). In the case of inland and coastal waters, our study shows that using combined OLI and BA MSI-derived Rrs match-ups results in considerable improvement in the retrieval of WQIs (Paper III). The obtained results for the datasets used in this thesis illustrates that the proposed OCN algorithm shows better performance in retrieving WQIs than other semi-empirical algorithms such as the band ratio-based algorithm, the ML-based Gaussian Process Regression (GPR), as well as the globally trained Case-2 Regional/Coast Colour (C2RCC) processing chain model C2RCC-networks, and OC-SMART. The work in this thesis contributes to ongoing research in developing new methods for merging data products from multiple OC missions for increased coverage and the number of optical observations. The developed algorithms are validated in various environmental and aquatic conditions and have the potential to contribute to accurate and consistent retrievals of in-water constituents from high-resolution satellite sensors

    HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    Get PDF
    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements
    • …
    corecore