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Abstract
This thesis addresses various aspects of monitoring water quality indicators
(WQIs) using optical remote sensing technologies. The dynamic nature of
aquatic systems necessitates frequent monitoring at high spatial resolution. Ma-
chine learning (ML)-based algorithms are becoming increasingly common for
these applications. ML algorithms are required to be trained by a significant
amount of training data, and their accuracy depends on the performance of
the atmospheric correction (AC) algorithm being used for correcting atmo-
spheric effects. AC over open oceanic waters generally performs reasonably
well; however, limitations still exist over inland and coastal waters. AC becomes
more challenging in the high north waters, such as the Barents Sea, due to the
unique in-water optical properties at high latitudes, long ray pathways, as well
as the scattering of light from neighboring sea ice into the sensors’ field of view
adjacent to ice-infested waters.

To address these challenges, we evaluated the performances of state-of-the-
art AC algorithms applied to the high-resolution satellite sensors Landsat-8
Operational Land Imager (OLI) and Sentinel-2 Multispectral Instrument (MSI),
both for high-north (Paper II) and for global inland and coastal waters (Paper
III). Using atmospherically corrected remote sensing reflectance (𝑅𝑟𝑠) products,
estimated after applying the top performing AC algorithm, we present a new
bandpass adjustment (BA) method for spectral harmonization of 𝑅𝑟𝑠 products
from OLI and MSI. This harmonization will enable an increased number of
ocean color (OC) observations and, hence, a larger amount of training data. The
BA model is based on neural networks (NNs), which perform a pixel-by-pixel
transformation of MSI-derived 𝑅𝑟𝑠 to that of OLI equivalent for their common
bands. In addition, to accurately retrieve concentrations of Chlorophyll-a (Chl-
a) and Color Dissolved Organic Matter (CDOM) from remotely sensed data,
we propose in the thesis (Paper 1) an NN-based WQI retrieval model dubbed
Ocean Color Net (OCN).

Our results indicate that 𝑅𝑟𝑠 retrieved via the Acolite Dark Spectrum Fitting
(DSF) method is in best agreement with in-situ 𝑅𝑟𝑠 observations in the Barents
Sea compared to the other methods. The median absolute percentage differ-
ence (MAPD) in the blue-green bands ranges from 9% to 25%. In the case
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of inland and coastal waters (globally), we found that OC-SMART is the top
performer, with MAPD <30% in the visible bands. It is also demonstrated that
the proposed BA method achieves better spectral consistency between OLI and
MSI-derived 𝑅𝑟𝑠 products for varying optical regimes than previously presented
methods.

Additionally, to improve the analysis of remote sensing spectral data, we intro-
duce a new spatial window-based match-up data set creation method which
increases the training data set and allows for better tuning of regression models.
Based on comparisons with in-water measured Chl-a profiles in the Barents
Sea, our analysis indicates that the MSI-derived 𝑅𝑟𝑠 products are more sensitive
to the depth-integrated Chl-a contents than near-surface Chl-a values (Paper I).
In the case of inland and coastal waters, our study shows that using combined
OLI and BA MSI-derived 𝑅𝑟𝑠 match-ups results in considerable improvement in
the retrieval of WQIs (Paper III).

The obtained results for the datasets used in this thesis illustrates that the
proposed OCN algorithm shows better performance in retrieving WQIs than
other semi-empirical algorithms such as the band ratio-based algorithm, the ML-
based Gaussian Process Regression (GPR), as well as the globally trained Case-2
Regional/Coast Colour (C2RCC) processing chain model C2RCC-networks, and
OC-SMART.

The work in this thesis contributes to ongoing research in developing new
methods for merging data products from multiple OC missions for increased
coverage and the number of optical observations. The developed algorithms are
validated in various environmental and aquatic conditions and have the poten-
tial to contribute to accurate and consistent retrievals of in-water constituents
from high-resolution satellite sensors.
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1
Introduction
This chapter presents the motivation, objectives, proposed methodologies, and
outline of the thesis.

1.1 Motivation

The Barents Sea is one of the largest pan-Arctic shelves, covering approximately
10% of the Arctic ocean [1]. It is one of the world’s most productive oceans and
supports up to 40% of the Arctic’s primary production [2]. Besides, it is the
home to Norway’s richest commercial fisheries [3] and an important region for
the exploration of petroleum and mineral resources [3].

In general, the northern Barents Sea is covered with sea ice during winter,
while the southern parts remain sea ice-free. This is due to the influx of warm,
salty, and nutrient-rich waters from the Atlantic ocean entering through the
Norwegian Sea [4]. At the same time, it imports sea ice and freshwater from the
Arctic Ocean in the northern Barents Sea [5]. Other freshwater enters primarily
from the south, along the Norwegian coast, while the less saline waters from
the Baltic Sea enter via the North Sea [6]. Due to its geographic location,
the Barents Sea’s northern region is characterized by an Arctic-dominated
ecosystem, whereas the southern region is known for its subarctic communities
due to an influence of Atlantic water [2, 7]. Recently, significant changes in
ecosystem function and net primary productivity (NPP) have been observed in

1



2 chapter 1 introduction

the transitional Barents Sea as a result of ongoing global warming [8,9]. On
average, a decrease in sea ice extent has been seen over time in the Arctic and
its surrounding waters [7]. Recently, an increase in phytoplankton seasonal
growth has been observed in the northern Barents Sea [9]. The effect of rapidly
changing physical and environmental conditions on primary productivitymakes
it vital to study the ecosystem of the transitional Barents Sea.

As a light-harvesting pigment in phytoplankton, Chlorophyll-a (Chl-a) concen-
tration can be considered a proxy for phytoplankton biomass in the water
columns [10]. An adequate amount of biomass is crucial for a healthy and pro-
ductive aquatic ecosystem. However, excessive concentration of phytoplankton
has a negative impact on fisheries, marine animals, the local economy, and
public health [11]. Thus, it is crucial to monitor the content of Chl-a. Phyto-
plankton forms the bases of aquatic food webs [12] and can grow rapidly in
a short period of time depending on the availability of solar radiation and
nutrients. While Chl-a is a crucial parameter in estimating primary production,
an excessive amount of Color Dissolved Organic Matter (CDOM) and Total Sus-
pended Matter (TSM), primarily found in coastal and inland waters, absorbs
and/or scatters incoming solar radiation and limits the penetration of photo-
synthetically available radiation. As a result, CDOM and TSM are important
parameters in the study of primary productivity. Chl-a, CDOM, and TSM are
considered significant water quality indicators (WQIs) as they provide useful
information about the health of an aquatic environment [13, 14].

Due to the dynamic nature of aquatic systems, especially inland and nearshore
coastal waters where high spatial and temporal variability in water constituents
may exist, understanding their ecosystems requires temporally frequent sam-
pling of these WQIs [15]. Traditional ship-based sampling is time-consuming,
expensive, and conducted infrequently. On the other hand, satellite-derived
remote sensing reflectance (𝑅𝑟𝑠) can be used to estimate WQIs based on the
diagnosed 𝑅𝑟𝑠 signatures. Satellite remote sensing offers wide spatial coverage,
repeated overpasses, and is relatively inexpensive.

Apart from known optical properties of water molecules, the optical properties
of open oceanic waters are primarily determined by Chl-a absorption, with
two major absorption peaks at 443 and 670nm determining the shape of the
𝑅𝑟𝑠 in the visible range of EM spectrum. In inland and coastal waters, these
spectral features are also modulated by absorption and/or scattering by CDOM
and TSM. Estimation of Chl-a is more challenging in the latter case [16] due to
absorption by CDOM which absorbs solar radiation more strongly in the blue
wavelengths and less in the green range, similar to Chl-a, and then decreases
almost exponentially towards the near-infrared (NIR) regions [17]. As a result,
waters with high CDOM concentrations alter the 𝑅𝑟𝑠 spectra, particularly in the
bluewavelength, causing an overestimation of Chl-a concentrations. TSMon the
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other hand influences the shape of 𝑅𝑟𝑠 via absorption and scattering, increases
turbidity and governs the magnitude of the 𝑅𝑟𝑠 spectrum in general [18]. High
concentrations of TSM may limit the availability of light to the lower water
columns, and trap heat in the upper columns, which may cause harmful algal
blooms (HABs) [19].

The most widely used algorithms to derive Chl-a from 𝑅𝑟𝑠 can be divided
into two approaches: semi-analytical and empirical [13]. The former approach
derives Inherent Optical Properties (IOPs) from 𝑅𝑟𝑠 followed by an estimation
of Chl-a. In the latter method, a combination of 𝑅𝑟𝑠 at several wavelengths is
explored to find some ratio that relates empirically to Chl-a concentrations.
Previous studies have reported that the ratio of 𝑅𝑟𝑠 in the blue-green region
(wavelength ≈ 443nm and 560nm) of EM spectrum, has a generally strong
correlation with Chl-a content in clear waters, however, in inland and coastal
waters, this frequently leads to an underestimation/overestimation [14, 20, 21].
An alternative approach to estimating Chl-a content inmoderately turbidwaters
is using the ratio of 𝑅𝑟𝑠 in the NIR to red (absorption peak of Chl-a) [22, 23].
More details on the Chl-a algorithms using the NIR and red wavelengths can
be found in [24]. These methods assume a negligible absorption by CDOM and
Non-Algal Particles (NAP) in the red and NIR regions. However, the estimates
are also affected by the backscattering by NAP,which affects the red-NIR region
of the EM spectrum [13]. Furthermore, these approaches are not recommended
for clearer waters where the 𝑅𝑟𝑠 in the red and NIR regions are not correlated
to variations in Chl-a. This is partly due to the low signal-to-noise ratio (SNR)
in the red and NIR region for oceanic waters.

In addition to the aforementioned challenges,Ocean Color (OC) remote sensing
requires a robust Atmospheric Correction (AC) method for accurate retrieval of
WQIs [25]. AlthoughAC schemes forwater applications have existed for decades,
there is still room for improvement [26]. In general,AC over open oceanicwaters
provides relatively accurate estimates; however, large uncertainties in the
estimation of atmospheric components e.g., aerosol types and concentrations,
still exist over inland and coastal waters [27]. These uncertainties are enlarged
in the high north due to larger atmospheric path radiance caused by higher solar
zenith angles and adjacency of sea ice [28]. In addition, due to a lack of studies
on the validation of existing AC methods in the high north, there is uncertainty
associated with the validity of these methods. The Barents Sea experiences
polar nights in the winter and is often covered by clouds in the summer. This
limits the intility of optical remote sensing in the high north.

Observing biological phenomena like algal blooms from space, which can be
highly dynamic in time and space, requires the acquisition of OC observations
with short time intervals (2–3 days) at a high spatial resolution (< 60m) [29].
The similar band design of Landsat-8 Operational Land Imager (OLI) and
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Sentinel-2 Multispectral Instrument (MSI), allows to combine images from
these sensors and may provide repeat observations in ∼2.9 days at a spatial
resolution of 10-60m [29,30]. It should be noted that such a merging should
take into account the differences in the sensor’s specificity, including spec-
tral and spatial characteristics, sun-sensor geometries, illumination conditions,
differences in instrument calibrations, and different atmospheric states [31].
To address these empirical differences, correction factors between OLI and
MSI-data products must be developed [32,33].

The research presented in this thesis addresses questions related to the lim-
itations of the Chl-a retrieval algorithms, the uncertainties in AC methods,
low frequency revisit time for high-resolution satellite data for monitoring
dynamic aquatic systems, especially in the high north, and consistent retrieval
of downstream science products from multi-sensors (e.g., OLI and MSI). The
main objectives of this study are outlined below.

1.2 Research Objectives and Contributions

1.2.1 Main Objectives

This thesis aimed at the accurate retrieval ofWQIs from high-resolution satellite
sensors, i.e., OLI and MSI, while considering the Barents Sea and global inland
and coastal waters as study sites. Because of their low temporal resolution,
16 days for OLI and 5 days for MSI, our second objective was to increase the
frequency of OC observations by merging the data products from these sensors.
Considering the differences in OLI andMSI band characteristics and acquisition
geometry, the third objective was to provide consistent retrieval of WQ products
(e.g., Chl-a and CDOM) from OLI and MSI-derived 𝑅𝑟𝑠 images using a single
retrieval algorithm.

In order to achieve the main objectives, the specific tasks are listed below:

• to develop robust ML-based WQ retrieval algorithms using these high-
resolution satellite sensors for both high latitude waters, the Barents Sea
as well as global and coastal, inland waters.

• to determine which algorithm(s) can deliver more reliable 𝑅𝑟𝑠 products
using high-resolution satellite sensors, OLI and MSI, in the high north
(hereinafter the Barents dataset), and global inland and coastal waters
(hereinafter the global dataset) under diverse aquatic and environmental
conditions.
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Figure 1.1: The Flow diagram of the proposed methodology.

• to spectrally harmonize 𝑅𝑟𝑠 products from OLI and MSI for consistent
retrieval of aquatic data products, hence increasing the frequency of OC
observations.

• to investigate the feasibility of in-water retrieval algorithms in estimating
Ch-a and CDOM concentrations from harmonized OLI-MSI 𝑅𝑟𝑠 data from
global waters using the retrieval models.

1.2.2 Proposed Approaches

Most of the OC algorithms (WQI retrieval algorithms) map atmospherically
corrected 𝑅𝑟𝑠 into the concentrations of WQIs. Therefore, robust AC is essential
for the estimation of downstream products such as 𝑅𝑟𝑠 and concentrations of
WQIs from remotely sensed data. To achieve the main objectives listed above,
we evaluated the performance of state-of-the-art AC algorithms to find the
AC algorithm that estimates 𝑅𝑟𝑠 in agreement with in-situ 𝑅𝑟𝑠 data (the top-
performing AC processor). To increase the frequency of OC observations from
OLI and MSI, we proposed a neural network (NN)-based spectral bandpass
adjustment (BA) method to harmonize OLI and MSI-derived 𝑅𝑟𝑠 products esti-
mated via top-performing AC processor. Using the combined OLI and bandpass
adjusted MSI-derived 𝑅𝑟𝑠 (MSI∗𝑅𝑟𝑠) products, we propose an ML-based model,
dubbed Ocean Color Net (OCN), to estimate concentrations of Chl-a and CDOM
from combined OLI and MSI images. Fig. 1.1 illustrates the flow diagram of the
proposed methodology in this thesis. Below are the approaches proposed in
papers I-III to achieve the overall objective of this thesis.

To achieve the first objective, an NN-basedWQ retrieval algorithmwas proposed
for the Barents Sea (Paper I). The proposed OCN is based on a fully connected
feed-forward Multi-Layer Perceptron (MLP). We investigated the architecture
and capabilities of MLP-based deep artificial neural networks (ANNs) for ocean
color monitoring applications in depth. The OCN model proposed in Paper I
for the Barents dataset was tuned and validated on a global dataset in Paper
III.

To investigate the source of uncertainties in the estimates of Chl-a concen-
trations in Paper I (mapping of 𝑅𝑟𝑠 to Chl-a) and due to the lack of in-situ
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observations and studies on the validity of present AC methods in the Barents
Sea, we collected ship-based above-water 𝑅𝑟𝑠 measurements using above water
radiometers covering a large part of the Barents Sea (Paper II). Considering
in-situ 𝑅𝑟𝑠 as ground truth, we evaluated the performance of state-of-the-art
AC processors, Acolite, C2RCC, OC-SMART, ICOR, and Polymer to find the
top-performing AC processor for the study region. The performance of these
algorithms is validated on global inland and coastal waters (Paper III). The
performance evaluation was carried out under diverse atmospheric and aquatic
conditions.

To achieve the second objective, we assessed the spectral consistency between
near-simultaneous OLI and MSI overpasses with a time difference of less than
30 minutes in terms of top of atmospheric (TOA) reflectance (𝜌𝑡 ), and 𝑅𝑟𝑠
estimated via top performing AC processor, over the Barents Sea region. To
harmonize OLI-MSI 𝑅𝑟𝑠 products, an NN-based spectral bandpass adjustment
(BA) model was developed to spectrally adjust the MSI radiometry to replicate
the spectral bandpasses of OLI for the common bands. The proposed algorithm
is validated in different aquatic and environmental conditions covering a wide
region of the Barents Sea (Paper II).

To achieve the third objective,we acquired near-simultaneous OLI andMSI TOA
𝜌𝑡 products over coastal and inland waters globally. This data was corrected
for atmospheric effects via the top-performing AC algorithm. The BA model
developed in Paper II was used to harmonize OLI and MSI-derived 𝜌𝑤 (𝜋 ×
𝑅𝑟𝑠) products to acquire more match-ups (by combining OLI and BA MSI
(MSI∗ data), and thus better tune the retrieval models to estimate Chl-a and
CDOM.

1.2.3 Contributions

The main contributions in this thesis are listed below:

• We collected ship-based above-water radiometric observations covering
a wide region of the Barents Sea that had not been explored before.

• We evaluated the performance of five state-of-the-art AC methods against
in-situ data using OLI and MSI images acquired over different optical
regimes, the Barents dataset, and the Global datset.

• We developed an NN-based retrieval model, the OCN, for estimating
WQIs from these high-resolution satellite sensors.

• To increase the frequency of OC observations and hence the number
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of training examples for better tuning of the retrieval algorithms, an
NN-based BA method is proposed for spectral harmonization of OLI and
MSI-derived 𝑅𝑟𝑠 products.

• Utilizing the global dataset we demonstrated that by merging OLI-MSI
derived 𝜌𝑤 products using the proposed BA approach, all the retrieval
algorithms exhibit improved performances in estimating Ch-a and CDOM
compared to using OLI and MSI images alone.

1.2.4 Significance of the study

The significance of the study is based on the development of ML models for
spectral harmonization of data products from high-resolution satellite sensors
and retrieval of Chl-a and CDOM concentrations in different optical regimes,
i.e., Arctic, inland, and coastal waters. In particular, to estimate Chl-a with
considerably higher accuracy in the Arctic waters. The methods developed
in this research are also beneficial for studying primary productivity in the
Arctic ocean. The results from this research could potentially help policymakers
make new policies and revise regulations regarding Arctic and coastal water
quality monitoring. Additionally, this study details the applicability of various
AC algorithms in the high north. Furthermore, the BA model developed in this
study can be used to merge data products from multiple satellite sensors to
increase the temporal frequency of OC observations.

1.3 Thesis Overview

This thesis comprises seven chapters.

Chapter 1 is an introductory chapter, which outlines the importance of water
quality monitoring using remotely sensed data and highlights the associated
challenges. It includes the objectives, proposedmethodologies, and significance
of the study.

Chapter 2 provides an overview of OC remote sensing, including optically
activate WQIs and different satellite sensors that can be used for WQ monitor-
ing.

Chapter 3 discusses AC methods, WQIs retrieval algorithms, including their
significance and limitations, as well as the spectral harmonization of aquatic
products derived from multiple satellite sensors.
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Chapter 4 introduces ANN’s theory relevant to this thesis, and introduces impor-
tant concepts such as regularization and optimization of the NN model.

Chapter 5 provides brief information about the study regions and the in-situ
data collection.

Chapter 6 provides a summary of the publications that contain the research
contribution of this thesis.

Chapters 7–9 present the full papers.

Chapter 10 presents the conclusion, the general implications of this study in the
Barents Sea, coastal and inland water quality monitoring, and future directions
for research.



2
Ocean color remote
sensing

OC remote sensing refers to the process of using sensors on satellites, air-
craft, and ships, to measure the radiance originating from the water surface
at multiple wavelengths. It is an effective tool for estimating near-surface
concentrations of WQIs such as Chl-a in the open ocean [20, 34], coastal wa-
ters [12,35], as well as inland waters [36,37]. Nonetheless, OC remote sensing
can be used for a variety of applications, e.g., primary productivity, phytoplank-
ton absorption, and functional types, particle size distribution, climate change,
as well as studying ocean biology and biogeochemistry from space, to name a
few [38].

OC observations yield information on the amount and distribution of water
constituents, which can provide useful information about the environmental
state of the water body [12,39,40]. This measurement is related to the color of
the water in the visible spectrum,which is affected by water constituents. These
constituents include water molecules themselves, phytoplankton pigments,
NAP, and fraction of dissolved organic carbon (DOC) [41]. Being able to extract
these variables efficiently reinforces the ability of researchers to retrieve the
quality and state of water bodies more effectively.

9
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2.1 Overview of remote sensing of water quality

When incoming solar radiation, whose spectral properties are known, interacts
with water molecules and constituents, two main processes take place: scat-
tering and absorption [13] (see Fig. 2.1). The spectral properties of the solar
radiation are altered depending on the scattering and absorption properties of
the water body, which includes water molecules themselves as well as organic
and inorganic dissolved matter present across the water columns [42]. OC
remote sensing refers to the measurement of the variations in the spectral
signature of solar radiation after interaction with optically significant water
constituents, also called water leaving radiance (𝐿𝑤). The magnitude and spec-
tral shape of 𝐿𝑤 normalized by solar irradiance (𝐸𝑑) define the color of water,
which in turn depends on the type and concentration of optically significant
water constituents residing across the water columns. Thus, retrieving optically
significant constituents from 𝐿𝑤 (or reflectance signal), which is the backscat-
tered light from the water body as a result of sunlight interaction with water
molecules and constituents [27], is the goal of OC remote sensing.

Several algorithms have been developed to retrieve the concentration of opti-
cally significant WQ constituents from OC data, depending on the character-
istics of the 𝐿𝑤 signal and the property of interest. These algorithms can be
classified into empirical [12, 21, 43, 44] or semi-analytical approaches [45, 46].
However, because of the scattering of light by the atmosphere in the satellite
field of view (FOV), the total signal received by a satellite-borne sensor at the
top of the atmosphere (TOA) (hereinafter referred to as 𝐿𝑡 ) contains a relatively
small part of (<10%) of the 𝐿𝑤 [26]. The remaining are the components of
radiance from the atmosphere and the air-water interface. Fig. 2.1 shows the
total received signal 𝐿𝑡 at the TOA after interaction with water constituents
and atmosphere. 𝐿𝑤 , the useful signal which is used to estimate concentrations
of WQIs, is retrieved from the satellite-received signal through a process called
AC ( [47]).

The goal for space-borne radiometers is to estimate 𝐿𝑤 within 5% of the ground
truth (true water leaving signal) and to derive biogeochemical variables within
an acceptable uncertainty (e.g., Chla ≤ 35%) [49]. Hence, a well-calibrated
sensor is required to prevent any lingering errors from propagating to the water-
leaving signal [50]. This is possible through system vicarious calibrations [51].
Satellite OC sensors have been providing spatially and temporally compre-
hensive data for large-scale monitoring of oceanic, coastal, and inland waters.
Along with various satellite sensors, some studies have used aerial and drone
technologies for retrieving optically significant water constituents [52,52]. How-
ever, this thesis limits the literature review to satellite-based remote sensing.
The literature review is summarized as follows: i) Earth observation sensors,
including their applicability, advantages, and limitations; ii) AC approaches
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Figure 2.1: Principles of OC remote sensing [33, 48]. Here 𝐿𝑔 is the radiance due to
sun-glint and 𝐿𝐴 represents radiance from atmospheric components.
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for estimating 𝐿𝑤 from the satellite received signal; iii) properties of optically
active WQ constituents, followed by iv) retrieval approaches, and v) spectral
harmonization of multi-sensor satellite products.

2.2 Optical satellite sensors

The first satellite sensor to measure OC was the Coastal Zone Color Scan-
ner (CZCS), launched by the National Aeronautics and Space Administration
(NASA) on the Nimbus-7 mission launched in 1978 [43]. The CZCS had bands
centered at 443, 520, and 550nm to monitor the changes occurring in water-
color with alterations in pigment concentration. After the launch, methods to
remove atmospheric effects (Rayleigh and aerosol radiance) were refined. It
was illustrated that open ocean reflectance could be accurately quantified [43].
With the success of the CZCS, several other missions were approved by different
space agencies with additional bands in order to enhance performance and
coverage, increase data accessibility, and develop better AC (aerosol estima-
tion) algorithms. These sensors include the Sea Viewing Wide Field-of-view
sensor (SeaWiFS) with mission life from 1997–2010, the Moderate Resolution
Imaging Spectroradiometer (MODIS) 2002–present, the Geostationary Ocean
Color Imager (GOCI) 2010–present, the Visible and Infrared Imager Radiome-
ter Suite (VIIRS) 2012–present, the OLI onboard Landsat-8 2013-present, the
Multispectral Imager (MSI) aboard Sentinel-2A 2015-present and Sentinel-2B
2017-present, Ocean and Land Color Imager (OLCI) onboard Sentinel-3A 2016-
present and Sentinel-3B 2018-present [53, 54]. Some of the most well-known
and widely referred sensors for global ocean color monitoring are shown
in Table. 2.1. Using these sensors, various algorithms have been developed
for estimating the concentration of WQ indicators from the open ocean to
coastal waters depending on their spectral characteristics. In the following
subsections, the suitability and limitations of satellite sensors used for OC are
discussed.

2.2.1 Applicability

The most widely used operational satellite sensors used for OC monitoring
are listed in Table. 2.1. The applicability of these sensors for water monitoring
applications primarily depends on their radiometric design which includes,
spectral coverage, band selection, spatial resolution and revisit time [51]. For
instance, a spatial resolution of 300-1000m,with a higher spectral and temporal
resolution, is adequate for open oceanic waters or large coastal areas. A sensor
with such specifications can detect small changes in water leaving signals
due to their higher number of bands, enabling the monitoring of dynamic



2.2 optical satell ite sensors 13

Table 2.1: Ocean Color Sensors.

Sensor Spectral Bands Spatial Resolution Bands Revisit Time
[nm] [m] [days]

SeaWiFS 402-885 4000 8 1
MODIS-Terra 405-14385 250/500/1000 36 1-2
MODIS-AQUA 405-14385 250/500/1000 36 1-2
GOCI 400-865 500 8 1
Landsat-8 441-1384 15/30/100 9 16
Sentinel-2A 442-2202 10/20/60 13 10
Sentinel-2B 442-2202 10/20/60 13 10
Sentinel-3A 300-1200 400-1020 21 2.5
Sentinel-3B 400-1020 300/1200 21 2.5

processes that occur and vary over a short period of time. However, due to their
coarse spatial resolution, these sensors are not suitable for studying changes
occurring at a smaller spatial scale. For coastal and terrestrial applications, a
higher resolution sensor such as OLI and MSI with spatial resolution ≤60m, is
required especially for HABs detection and monitoring [51].

2.2.2 Limitations

Remote sensing of water quality by retrieving in-water constituents requires
frequent revisits (e.g., daily) at a high spatial resolution (10-60m) [29, 32].
However, most of the existing ocean color satellites with high temporal res-
olution have coarse spatial resolution such as OLCI, MODIS, GOCI, VIIRS,
Second generation global imager (SGLI), and the upcoming PACE Ocean Color
Instrument (PACE-OCI). These satellite sensors have a spatial resolution of
250-1000m, which makes them unsuitable for detecting fine features in natu-
ral waters [55, 56]. In Contrast, high spatial resolution satellite sensors such
as OLI with a spatial resolution of 30m and the MSI with 10-20-60m spatial
resolution, have considerable potential for mapping Chl-a images with more
spatial-detailed information not feasible with otherOC satellites, however, these
sensors have low-frequency revisit times of 16 and 5 days [30], not sufficient
for near-daily monitoring of water surface [55]. The need for higher temporal
resolution data to better monitor water resources is documented in several
studies [29,32, 57].
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2.3 Optically Active Water Constituents

The most common optically significant WQIs are Chl-a, TSM, and CDOM [13].
The goal of OC remote sensing is to accurately retrieve the concentrations of
these constituents from variations in the spectral shape and magnitude of the
OC signal 𝑅𝑟𝑠 .

2.3.1 Optical properties of Chl-a

Phytoplankton biomass is a valuable indicator of the marine ecosystem’s
health [58]. A healthy and productive aquatic ecosystem requires an adequate
amount of biomass. Depending on the availability of nutrients, the phytoplank-
ton can grow rapidly in a short period of time in the presence of adequate
sunlight [59]. The growth is also influenced by anthropogenic activities due
to the runoff of nutrients such as nitrate and organic nitrogen, from urban
and agricultural practices in water bodies, making estuaries, lakes, and reser-
voirs highly phytoplankton dominant [60]. The abnormally high growth of
algae can reflect the state of eutrophication and has a negative impact on the
aquatic ecosystem [11]. Dense algal blooms prevent sunlight from reaching
organisms beneath, resulting in a decrease in dissolved oxygen across the water
columns and, as a result, the suffocation of marine species living in the water
body. [19,61]. As a photosynthetic active pigment present in all algal species,
the concentration of Chl-a is considered as a proxy for total phytoplankton
biomass or primary productivity [62], therefore, it is critical to evaluate the
exact concentrations of Chl-a.

The spectral shape and the magnitude of the Chl-a are mainly determined by
light conditions, availability of nutrients, phytoplankton phenotypes and their
concentrations in relation to other optically significant in-water constituents,
for instance CDOM and TSM [63]. In oligotrophic to mesotrophic waters, Chl-
a shifts watercolor from blue to dark green depending on its concentration.
This is due to the strong absorption peak in the blue (around 443nm) and
red 665nm regions of the spectrum by Chl-a and other pigments such as
carotenoids and phycobiliproteins, compared to weak absorption in the green-
yellow region (550-580nm) [64]. Thus, the Chl-a signature is described by
the reflectance peak in the green region (560nm) or red edge region (around
680nm), also known as the sun-induced fluorescence peak of Chl-a which is due
to photosynthetic processes [65]. In contrast, in eutrophic waters with excessive
algal biomass, the fluorescence signal is altered by substantial absorption in
the red region (670nm wavelength), and reflectance peaks around 710nm
[45,66,67]. The 710nm band is found to be significantly correlated with Chl-a
in high-biomass waters [68].
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Figure 2.2: Change in the spectral response of water with varying concentrations of
Chl-a [69].

In general, the optical properties of oceanic waters are primarily governed by
Chl-a and its accessory pigments. CDOM and non-algal particles can all be
present in open oceanic waters; however, their concentrations co-vary with
phytoplankton concentrations [70,71]. In inland and coastal waters, also called
Case II waters, the color is modulated by the presence of other constituents
such as organic and inorganic particles. In highly turbid waters, the variation
in concentration of Chl-a has a negligible effect on water reflectance spectra as
the optical properties are dominated by CDOM or TSM [68]. In such cases, the
changes in CDOM and/or TSM concentrations are interpreted as changes in
Chl-a. The optical properties of these aquatic systems are more complex, and
Chl-a retrievals are more challenging [39,72].

2.3.2 Optical properties of CDOM

CDOM is a colored and photo-active component present in natural waters, and
is predominantly produced by anthropogenic activities as well as autochthonous
and allochthonous causes [73]. It may be considered a proxy for DOC, which
is the largest organic carbon pool in terrestrial and aquatic ecosystems [74].
In addition, it plays a significant role in the biogeochemical cycling of carbon
in aquatic systems [13] and can be used as an indicator for the sustainability
of aquatic systems for human use [73]. CDOM absorbs solar radiations in the
ultraviolet (UV) and blue part of the EM spectrum (see Fig. 2.3), and tends to
mask the Chl-a absorption peak at 443𝑛𝑚. An excessive CDOM concentration
can restrict light availability in the water column and hence the aquatic biomass
[75]. Besides, CDOM absorption protects aquatic ecosystems from exposure to
harmful UV solar radiation [76]. It affects the bio-optical properties of surface
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Figure 2.3: Generic CDOM absorption spectrum for mixed composition. [77].

water and is considered a useful indicator of water quality in complex aquatic
systems.

High CDOM content can make it challenging to accurately estimate Chl-a
and other constituents such as TSM. Due to its optical properties, CDOM
concentrations can be estimated by remote sensing. In practice, the absorption
coefficient of CDOM at 440nm, i.e., aCDOM (440), is used as a proxy to estimate
CDOM content through inversions algorithms [73,78].

2.3.3 Optical properties of TSM

TSM in general consists of organic matter, such as phytoplankton, and inor-
ganic matter, like clay and suspended particles, which reside in the water
columns and influence turbidity. The main sources of TSM in coastal and
inland waters are river runoffs, coastal erosion, dredging activities, polluting
substances including heavy metals and nutrients, re-suspension events, and
tidal currents [13, 79].

TSM absorbs and scatters sun light and governs the overall magnitude of 𝑅𝑟𝑠
spectrum. The optical properties of TSM depend on the particle size distribution
and mineral composition [18]. The reflectance from sediment suspended in
water increases with a decrease in particle size. In organic-dominated aquatic
systems, the 𝑅𝑟𝑠 peak shifts from green (550nm) to red (665nm) or NIR region
(865nm) of spectra depending on the concentrations of TSM and/ Chl-a and
CDOM [80]. In contrast, 𝑅𝑟𝑠 in waters with an excessive amount of organic
suspended solids is governed by the amount of algal biomass and share the
pronounced absorption and scattering characteristic peaks as in phytoplankton
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Figure 2.4: Averaged 𝑅𝑟𝑠 spectra for various TSM concentrations [80].

dominated waters [33,81]. The variations in spectral shape and magnitude of
𝑅𝑟𝑠 with the increase in the TSM amount is illustrated in Fig. 2.4.
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Algorithms
Chapter 2 provided an overview of OC remote sensing, optically significantWQIs
as well as different satellite sensors that can be used for WQ monitoring. This
chapter discusses AC of satellite images, Chl-a, and CDOM retrieval algorithms,
including their significance and limitations, and the spectral harmonization of
aquatic products derived from multi-sensors.

3.1 Atmospheric Correction

Ocean color remote sensing requires accurate AC for the retrieval of reliable
WQIs such as Chl-a. Errors in AC lead to significant uncertainties in estimates of
WQIs [29]. In addition, AC plays a critical role in the consistent retrieval of data
products from multi-sensors (e.g., OLI and MSI) [12, 82]. This section briefly
describes the theoretical background of AC, followed by a brief introduction
to the AC schemes used in this study and the challenges associated with the
correction of atmospheric effects.

The satellite received signal at the TOA contains ≤ 10% of 𝐿𝑤 , and the
remaining signal is contributed by different atmospheric factors [16]. The
purpose of AC is therefore to remove the contribution of the photons that
do not originate from the water column [27]. This includes radiance for
sun-glint (the specular reflection of sunlight from the surface of the wa-
ter), diffuse transmittances due to gases, Rayleigh (light scattering due to
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air molecules), and aerosols (radiance due to small particles solid or liquid
in suspension form). Other factors that may affect the received signal in-
clude cloud-adjacent stray light, large/low solar and viewing angles, and other
non-ideal observing conditions such as cloud coverage [12, 53]. Observations
under such conditions are considered defective and discarded by using quality
flags https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-
3-olci/level-2/quality-and-science-flags-op described by the European
Space Agency (ESA).

The remotely sensed aquatic signal recorded at the TOA reflectance is formu-
lated following the methodology developed in [83].

𝜌𝑡 = 𝜌𝑟 (𝜆) + 𝜌𝑎 (𝜆) + 𝜌𝑟𝑎 (𝜆) + 𝑡𝜌𝑤 (𝜆) (3.1)

where, 𝜌𝑡 is the total reflectance measured by a satellite sensor at the TOA, 𝜌𝑟
represents reflectance caused by scattering by air molecules in the atmosphere,
also known as Rayleigh scattering in the absence of aerosols, 𝜌𝑎 is the re-
flectance from aerosols in the air, 𝜌𝑟𝑎 is the interaction between molecular and
aerosol scattering, 𝑡 is the diffuse transmission, and 𝜌𝑤 is the water leaving re-
flectance just above the ocean surface. Note that, for simplicity, reflectance due
to sunglint and whitecaps is excluded from Eq. 3.1. Depending on the method-
ology adopted for AC, some studies have considered [𝜌𝑟 (𝜆) +𝜌𝑎 (𝜆) +𝜌𝑟𝑎 (𝜆)] as
one unknown parameter, i.e., 𝜌𝑝𝑎𝑡ℎ, whereas other studies have treated 𝜌𝑟 and
𝜌𝑎 separately [27,84]. Among the unknowns in Eq. 3.1, the most challenging
task is to estimate the aerosol contribution. Small errors in the aerosols’ size
and type, may introduce errors in the retrieved 𝜌𝑤 signal [27, 83]. Once 𝜌𝑤
is accurately retrieved, it can be converted into 𝑅𝑟𝑠 using the methodology
outlined in [85].

The AC in the open ocean, free of land and anthropogenic sources, is carried
out with reasonable accuracy [86]. However, over inland and coastal waters,
significant uncertainties exist in atmospherically corrected satellite products
[26], especially in the strongly absorbing waters, the atmospheric path radiance
ranges from >60% in sediment-rich waters to >94% in very dark waters [86].
These challenges are further escalated in the Arctic region due to long ray
pathways caused by increased solar zenith angles and the scattering of light
from neighboring sea ice into the sensor’s FOV [87]. Errors in AC lead to
significant uncertainties in the satellite-derived data products (Chla, CDOM,
TSM) which limit its ability to detect subtle variations in aquatic ecosystems
[12].

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-2/quality-and-science-flags-op
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-2/quality-and-science-flags-op
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3.1.1 AC over Coastal and inland water

Several methods have been proposed for AC over open oceans for different
satellite missions [86]. These approaches primarily differ in the methodology
used in the estimation and removal of aerosols from the satellite-received
signal [84,88,89]. Algorithms that utilize the black pixel assumption, assuming
negligible 𝐿𝑤 in the NIR band, and maritime (non- or weakly absorbing)
aerosols as the dominant aerosol type, in general, work well over clear oceanic
waters [26]. In inland and coastal waters with high concentrations of TSM, the
black pixel assumption is often not valid due to non-zero water-leaving radiance
in the NIR. AC over inland and coastal waters is made further complicated
by other factors, such as i) scattering of light radiance from the neighboring
terrestrial terrain that can also contribute to 𝜌𝑝𝑎𝑡ℎ [90], ii) the presence of
aerosols from terrestrial sources, which causes an optically heterogeneous
atmosphere and iii) aerosols from both terrestrial and marine sources, have the
potential to create spatially variable and mixed conditions that are not always
accurately reflected in current aerosol models [27,91,92].

Recent AC methods that use SWIR bands for aerosol retrieval have shown
improved performance in sediment-dominated waters [26, 56]. However, to
retrieve higher-quality downstream data products, further improvement in all
the AC methods that are under development is expected over inland, coastal,
and Arctic waters.

3.1.2 AC over Arctic water

OC remote sensing in the Polar seas is challenging due to a number of difficulties
and intrinsic limitations which include i) the persistence of cloud coverage and
fog which limits the use of OC remote sensing, ii) high solar zenith angles, often
larger than the maximum (generally 70◦) for which AC methods have been
developed using radiative transfer modeling, iii) polar nights during the winter
season, iv) the adjacency effect of the sea ice, which tends to increase 𝜌𝑡 at
shorter wavelength and of sub-pixel ice contamination, which increases overall
spectra, and v) optical complexity of seawater due to high concentrations of
CDOM and sub-surface chlorophyll maximum [87,93].

The necessity of a precise ACmethod and the difficulties and intrinsic limitations
of validating AC algorithms in the Polar seas are discussed in [94,95].
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3.1.3 AC algorithms

Several AC algorithms have been proposed to remove the atmospheric effects,
however, the most widely used in oceanography are the Case-2 Regional Coast
Color (C2RCC) processor [96], Ocean Color-Simultaneous Marine and Aerosol
Retrieval Tool (OC-SMART) [97], Polymer from HYGEOS [98], Sen2Cor [99],
Atmospheric Correction for OLI ‘lite’ (Acolite) [100, 101], ICOR [102] and l2gen
from NASA [50]. Excluding Polymer, these processors are broadly divided into
two categories, i.e., the two-step and ML-based methods [27]. In the two-step
methods, images are corrected for Rayleigh and gaseous absorption followed by
the aerosol contribution. The main difference between the two-step approaches
is the methodology adopted for removing the aerosol contribution. The two
ML approaches, C2RCC and OC-SMART, are based on multi-layer NNs. These
networks are trained on large synthetic datasets generated using in-water
and atmospheric radiative transfer models. The ML methods do not depend
explicitly on the evaluation of aerosol information [97].

In the present study, we have compared the performance of five publicly avail-
able state-of-the-art AC processors. Polymer v4.13 [98], Acolite python ver-
sion 20211124.0 [101, 103], C2RCC v1.0 [96], ICOR validated in [27] and OC-
SMART [97].

The C2RCC processor is built upon previous AC algorithms, Case2Regional
and CoastColour, and is based on the per-pixel ANN method. The network is
composed of six hidden layers with 77 neurons each and a sigmoid activation
function [96]. The C2RCC processor is assessed from the Sentinel Application
Platform (SNAP) v6.0 processing toolbox provided by the European Space
Agency (ESA) and run in its default settings except for salinity and temperature
values.

Polymer is a polynomial-based AC algorithm that uses a polynomial function to
decouple the reflected signal associated with the water body from atmospheric
and sun glint contributions. This scheme uses a spectral matching method
to simultaneously estimate both atmospheric and water components. After
correcting for Rayleigh scattering, it decomposes the received signal into a
water reflectance spectrum and an atmospheric reflectance spectrum. The
Polymer scheme works well in areas affected by sun-glint.

The Acolite scheme is developed for processing high-spatial-resolution sensors
such as Landsat-8 OLI and Sentinel-2 MSI [100]. Currently, it has two aerosol
correction methods suitable for clear, mixed clear, and turbid waters, which
are applicable to most OC sensors. In this work, we have used the recently
developed dark spectrum fitting (DSF) scheme of Acolite [101, 103]. The DSF
method is exclusively an image based approach that corrects for the gas and
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air-water interface reflectance followed by estimation of atmospheric path
reflectance (𝜌𝑝𝑎𝑡ℎ). The (𝜌𝑝𝑎𝑡ℎ) is estimated within a targeted (sub)scene
following two assumptions. i) the 𝜌𝑝𝑎𝑡ℎ is homogeneous over a scene or sub-
scene, and ii) the scene contains pixels where reflectance is zero for at least
one of the bands. Based on these two assumptions, the 𝜌𝑝𝑎𝑡ℎ is then estimated
from those dark targets within the (sub)scene. These dark targets are chosen
based on the lowest values of 𝜌𝑡 across all bands. To account for the variations
in the atmospheric effects over the scene, the satellite image is divided into
several tiles with a size of 6𝑘𝑚 × 6𝑘𝑚. Based on the assumption that (𝜌𝑝𝑎𝑡ℎ) is
constant over the tile, the (𝜌𝑤) is estimated from each tile after removing the
spatially constant (𝜌𝑝𝑎𝑡ℎ). Finally, a linear interpolation is used for smoothing
the parameters retrieved from different tiles [25, 103].

OC-SMART is an empirical scheme that is built upon multilayer NNs. It es-
timates 𝑅𝑟𝑠 and aerosol optical depth (thickness) (AOD) after correction for
Rayleigh contributions. This scheme can be applied from fresh waters to highly
turbid waters [25, 97]. However, the targeted area must have similar atmo-
spheric and aquatic properties to those included in the training data [97].

Image correction for atmospheric effects (iCOR) is an image-based AC scheme
that is primarily developed to process images collected over coastal, inland or
transitional waters. The method uses the Moderate-Resolution Atmospheric
Radiance and Transmittance Model-5 (MODTRAN5) to remove contributions
from the atmosphere. This scheme divides the image into macro-pixels of 15 ×
15km and in each tile and exploits the spectral variation within a subset [102].
In the first retrieval step, it searches for the lowest radiance value within the
tile for each spectral band. Based on the selected value, the lowest radiance,
it estimates the corresponding path radiance from the approximated dark
target spectrum using the pre-calculated MODTRAN5 look-up table (LUT).
The path radiance closest to the dark spectrum is selected as the tile’s upper
AOT boundary. In the second step, the initial estimated AOT value is improved
through a multi-parameter end-member inversion technique. To retrieve the
surface reflectance, it selects five pixels with high spectral contrast depending
on the values of the Normalized Difference Vegetation Index (NDVI) from TOA
reflectance. These pixels are then represented by a linear combination of three
spectra: two vegetation spectra and one soil spectra [102].

In this study, the performances of these AC processors are evaluated on inland,
coastal and Arctic waters from open oceanic to inland and coastal waters.
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3.2 Water constituents retrieval approaches

Estimating biogeochemical products such as Chl-a from OC measurements,
multi-spectral 𝑅𝑟𝑠 , is by definition an inversion problem, where the function
𝑓 −1 predicts the concentrations of these products using 𝑅𝑟𝑠 as an input, i.e.,
WQI=𝑓 −1(𝑅𝑟𝑠) [12]. The widely used Chl-a retrieval algorithms may be divided
into two categories: empirical and semi-analytical approaches respectively
[70].

The empirical approaches use simple or multiple regressions between Chl-a
and the ratio of 𝑅𝑟𝑠 at different wavelengths [104–107]. These algorithms do
not require a full understanding of the relationship between 𝑅𝑟𝑠 and Chl-a;
however, they generally perform well on waters with similar characteristics.
Thus, their applicability is limited and may result in significant errors if the
optical properties of water are different from those used in the algorithm’s
development. The main advantages of these algorithms are their simplicity
and computational efficiency, which can be used to retrieve Chl-a content from
larger datasets of satellite images [45].

The semi-analytic approaches derive the IOPs from 𝑅𝑟𝑠 followed by an esti-
mation of Chl-a concentrations [45, 46, 108]. These algorithms are based on
solutions to the radiative transfer equation and can be applied to different wa-
ter types [108]. The retrieval accuracy is often superior to empirical methods;
however, the performance of these algorithms rely on accurate spectral models
for absorption coefficients for each constituent present in water (e.g., pigments,
CDOM, suspended sediments) [45]. Furthermore, the optimization procedure
is time-consuming.

The below subsection covers empirical approaches, which include band-ratio
algorithms and ML-based algorithms.

3.2.1 Empirical Models

Empirical approaches use the estimates of phytoplankton absorption peaks in
the blue and red regions of the EM spectrum [109, 110]. These approaches
typically rely on 𝑅𝑟𝑠 band combinations in the blue-green or in the red and
NIR portions of the spectrum.

Chl-a in open oceanic waters can be estimated using the ratio of the blue to
the green band [110]. This approach assumes that the shape and magnitude of
𝑅𝑟𝑠 in the blue and green portions of the spectrum are primarily governed by
Chl-a. In addition, these algorithms make the assumption that the influence of
other organic and inorganic substances on 𝑅𝑟𝑠 is minimal or highly correlated
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with the concentration of Chl-a [70]. Previous studies have shown that the
blue-green ratio is sensitive to Chl-a concentrations in clear waters. However, in
inland and coastal waters,where the𝑅𝑟𝑠 spectrum is modulated by the presence
of other optically active water constituents, causes an under/overestimation
of Chl-a content [12, 40]. More recently, the OC algorithm which statistically
relates the blue-green band ratio of 𝑅𝑟𝑠(𝜆) spectrum to Chl-a concentrations
through a polynomial expression (hereafter OCx) is fine-tuned according to
the spectral configuration of various satellite sensors such as SeaWiFS, MERIS,
OLI [43].

Several other empirical formulations are also developed, which include the
band ratio of 𝑅𝑟𝑠 in the red and NIR regions [105–107], the Line Height (LH)
method [111], and hybrid methods [112].

The red-NIR band ratio methods assume negligible absorption by CDOM and
NAP in the red and NIR region [68,106]. These algorithms are used to retrieve
Chl-a concentrations in turbid and coastal waters using the ratio of the NIR
band (which is associated with Chl-a fluorescence), to the red band (associated
with Chl-a absorption). The fluorescence peak is usually related to sufficient
phytoplankton biomass [106]. This approach has shown promising results in
biomass retrieval in phytoplankton-dominant mesotrophic waters. However,
the red-edge methods are not intended for use in waters with low Chl-a,
where the reflectance in the red and NIR regions is not significant [113].
Some studies have reported improved performance using green-to-red band
ratios [107, 114].

The LH approach uses Chl-a fluorescence LH to determine its concentration
[111]. These methods typically utilize three bands, usually red or red-NIR
band(s) to compute distinctive peaks in the 𝑅𝑟𝑠 spectrum that is associated
with Chl-a [65,66,115]. Gower et al. reported a strong correlation of the height
of the radiance peak at 685nm with the amount of Chl-a in the range from 1 to
20 mg/m3 [116]. This approach was modified for different sensors, including
SeaWiFS [117]. LH methods have shown good performance in the open ocean;
however, their performance degrades in optically complex waters due to the
presence of TSM and CDOM, which dominate the optical properties of these
waters [117].

Hybrid methods combine two band-ratio algorithms i.e., blue-green and red-
NIR bands depending on the optical complexity of water. These methods are
based upon red or NIR bands, LH and band ratios [118]. These algorithms offer
the ability to select appropriate algorithms depending on the water-type to
ensure an optimal retrieval of Chl-a over vast biomass ranges. For example,
switching between the green-blue ratio algorithm, which retrieves low Chl-a,
and the red-NIR algorithm, which retrieves high Chl-a, is based on the 708 and
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665nm reflectance ratio. However, these algorithms require regional tuning
depending on the optical properties of water. Therefore, the performance of
these algorithms degrades in other waters, especially coastal and complicated
waters. In addition, the performance of these algorithms is also dependent on
the spectral bands of the sensor. For instance, due to the limited number of
spectral bands of OLI, the band ratio methods are not ideal for estimating Chl-a
in highly turbid waters using data from this sensor [62].

3.2.2 Machine learning models

Recently, with the increasing popularity of ML techniques in remote sensing,
several studies have used ML-based models for the retrieval of WQIs [21,39,44].
The most widely explored empirical methods based on ML include ANNs [119],
Support Vector Regression (SVR) [120], Relevance Vector Regression (RVR)
[121], Random Forests (RF) [122] and Gaussian Process Regression (GPR) [123].
A review on ocean color monitoring using these algorithms is given in recent
studies [39, 124, 125].

Several studies have reported superior performance of ML methods in estimat-
ing WQIs from a variety of water conditions, ranging from open oceanic to
turbid waters. For example, Pahvalan et al. demonstrated that the Mixture Den-
sity Networks (MDN) model outperformed band ratio-based algorithms and
other empirical approaches for different water types using remotely sensed data
from Landsat-8 OLI, Sentinel-2 MSI, Sentinel-3 OLCI [12]. The NNs developed
for optically complicated water types have overcome some of the issues en-
countered with the band ratio and semi-analytical approaches when evaluated
over large Chl-a ranges [12, 13, 126].

3.2.3 Thesis Approach: Deep Neural Networks

ANNs have previously been used in various applications, such as computer
vision and medical image processing [127–129] as well as remote sensing of
WQIs [12, 39, 130]; however, to the best of our knowledge, limited studies
have been conducted to explore the efficiency of ANNs in the domain of OC
monitoring in the high north.

3.3 Spectral Harmonization

Continuous fine-scale monitoring of WQ from space requires the acquisition
of OC imagery with short time intervals (2-3 days) at a high spatial resolution
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(<60m). However, the majority of the current Earth observation satellites
with high temporal resolution have a coarse spatial resolution of ≥300-1000m,
making them unsuitable for detecting fine features in natural waters, especially
in small-sized lakes, rivers, and inland waters. On the other hand, satellite
sensors with high spatial resolution, like the OLI on Landsat-8 and the MSI on
Sentinel-2A/2B, have a considerably better potential to detect and characterize
the spatial structures on the water surface relative to low-resolution satellite
sensors. However, the low revisit frequency of OLI and MSI, 16 and 5 days,
respectively, make them individually insufficient for nearly daily monitoring
of the ocean surface [55]. In addition, the presence of clouds, shadows, and
atmospheric effects limits ocean color observations; thus, the actual revisit time
is sometimes longer than 16 and 5 days respectively. The infrequent temporal
sampling can limit their applicability in applications that require near-daily
observations [57].

The similar band designs of the OLI and MSI sensors allow combining their
imagery at a spatial resolution of 10-60m which may provide a global median
average return period of ∼2.9 days. Considering cloud coverage, such small
return intervals are necessary to capture the dynamics of nearshore coastal
and inland seas [29].

3.3.1 Bandpass Adjustment

Although Landsat-8 OLI and Sentinel-2 MSI have the same band design and
characteristics, they still have certain differences. These sensors have a differ-
ent spatial resolution, spectral bandwidth, FOV, and spectral response function
(SRF) [32, 131]. The differences in OLI-MSI data products induced by different
spatial resolutions and FOV can be reduced by minimizing the bidirectional
reflectance distribution factors (BRDF) [132]; however, the differences intro-
duced by the SRF and the spectral bandwidth still pose a challenge for creating
seamless OLI-MSI data products. The aforementioned differences cause incon-
sistencies in OLI-MSI 𝑅𝑟𝑠 and hence downstream data products such as Chl-a
maps [31]. These inconsistencies may be further amplified by varying illumi-
nation, different acquisition geometries, as well as atmospheric and aquatic
conditions due to the time-gap between the sensors’ overpasses.

To harmonize OLI and MSI-derived data products into a single data set, correc-
tion factors must be introduced to mitigate the spectral discrepancies in their
respective 𝑅𝑟𝑠 products [30].
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3.3.1.1 Linear Bandpass Adjustment

To account for the disparities in the SRFs of MSI and OLI, most studies have
used fixed per-band regression coefficients, generated using linear regression
or least squares regression models, to bandpass adjust (BA) MSI radiometry
to match the spectral bands of Landsat-8 OLI [32,55, 131, 133, 134]. The linear
transformation methods can reduce the reflectance differences to only some
degree [135]. Some recent studies have presented non-linear transformation
models, which are shown to perform well [82, 135].

3.3.1.2 Proposed Bandpass Adjustment

The proposed spectral BA method transforms the MSI-derived 𝑅𝑟𝑠 products
to that of OLI. Since the 𝑅𝑟𝑠 products are given as an input to the BA model
(see Fig. 3.1), the AC is a crucial step before the spectral harmonization of
their products. To ensure realistic 𝑅𝑟𝑠 estimates from satellite images, we first
compared the atmospherically corrected 𝑅𝑟𝑠 with in-situ observations using
state-of-the-art AC processors. The AC algorithm which provides 𝑅𝑟𝑠 values in
agreement with in-situ 𝑅𝑟𝑠 observations was then used to estimate 𝑅𝑟𝑠 products
from near-simultaneous OLI and MSI images from the study region. Instead
of using a linear adjustment to the MSI-derived 𝑅𝑟𝑠 products, we propose an
ML-based BA model for spectral alignment of OLI andMSI-derived 𝑅𝑟𝑠 products.
The flow chart of the proposed spectral harmonization method is shown in
Fig. 3.1.

3.4 Summary of proposed NNmodels

In this thesis, we explored the efficiency of a fully connected MLP for two
different applications of OC remote sensing: bandpass adjustment of MSI 𝑅𝑟𝑠
products (MSI∗𝑅𝑟𝑠) to combine OLI-MSI data products (Paper II and III) and
the retrieval of WQIs (Paper I and III), as shown in Fig. 3.2. These applications
differ in terms of input and output data, the number of input features, and
the number of training examples. Therefore, the proposed models for these
two applications are different in terms of architecture and the optimization of
hyperparameters.

To estimate any measurable function between the input and output vectors,
the choice of an appropriate set of connecting weights, the network’s depth,
the number of neurons in each hidden layer, the activation function, learning
rates, the batch size, and regularization all play a critical role [44, 137]. In the
current work, the architecture of MLP is explored for spectral harmonization of
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Figure 3.1: Flow chart of the proposed spectral harmonization approach [136].𝑊 and
𝐵 represents weights and biases of the BA model.

data products from multi-mission satellite sensors and retrieval of WQIs from
open oceanic, coastal, and inland waters. The NN-based models are developed
in TensorFlow in a Python environment. The following chapter is dedicated to
basic ANN concepts.

Figure 3.2: The NN-based models proposed in this thesis, the OCN and the BA model.





4
Artificial Neural Networks
The previous chapter provided an overview of state-of-the-art OC algorithms
used for the retrieval of WQIs and spectral harmonization of multi-sensor data
products, including their applicability and limitations. This chapter introduces
ANN’s theory, which forms the foundation of this thesis. In addition, it intro-
duces important concepts such as the regularization and optimization of NN
models.

4.1 Multilayer perceptrons

MLPs are a feed-forward NNs that are fully connected (FC). They form the
foundation of deep learning algorithms. Formally, an MLP is a function 𝐹 ,
that maps input data 𝑥 to the output 𝑦 = 𝐹 (𝑥). Basically, the MLP learns the
value of a parameter 𝜃 for mapping the input 𝑥 to the output 𝑦 = 𝐹 (𝑥 ;𝜃 ).
The parameter 𝜃 is adjusted to minimize the loss function 𝐿 that quantifies
the disagreement between the ground truth (𝑦) and the estimated output
(𝑦) [128, 137].

Mathematically, an MLP with one hidden layer can approximate the mapping
of any continuous non-linear function [138]. NN learning algorithms that
are built upon NNs with more than one layer between input and output are
called deep neural networks (DNNs) [139]. In DNNs, in contrast to shallow
learning, the majority of the model’s parameters are learned from the outputs

31
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of the preceding layers rather than directly from the input features of the
training samples [139]. In the design of a NN, performance and computational
complexity of the model play a crucial role [137, 139].

4.1.1 Architecture

The MLP is composed of a number of interconnected processing elements called
nodes. In an MLP, the data flow in the forward direction, i.e., from the input
layer to the output layer, and is trained using a back-propagation algorithm
using forward and backward processes based on Eqs. 4.1-4.4. The input layer
passes the input vector to the network, where each input value is weighted
depending on its relative importance prior to entering the hidden layer [140].
The hidden layer receives the weighted input value from the input layer. It
contains a varying number of neurons. The outputs of the neurons in the
hidden layer are based on the linear sum of their inputs times their weights
and biases. An activation function is then applied to the weighted sum of the
outputs of each hidden layer. The activation of a neuron and its output are
given by Eqs. (4.1) and (4.2).

𝑎𝑙𝑖 (𝑥) = 𝑏𝑙𝑖 +
𝑛∑︁
𝑗

𝑤𝑙
𝑖, 𝑗𝑥 𝑗 (4.1)

where 𝑎𝑙𝑖 (𝑥) represents the total weighted sum of input 𝑥 𝑗 and weights 𝑤𝑙
𝑖, 𝑗

of neuron 𝑖 in layer 𝑙 , including the bias term 𝑏𝑙𝑖 . The neural network has pa-
rameters (𝑊,𝑏) = (𝑊 1, 𝑏1,𝑊 2, 𝑏2), where𝑊 𝑙

𝑖, 𝑗 denote the weights associated
with the connection between neuron 𝑗 in layer 𝑙 − 1 and neuron 𝑖 in the layer
𝑙 .

𝑦𝑙𝑖 (𝑥) = tanh(𝑎𝑙𝑖 (𝑥)) (4.2)

here tanh(·) is an activation function. Depending on the type, the activation
function maps each neuron’s output between 0 and 1 or -1 and 1. It introduces
a non-linearity into the output of a neuron, and that causes each neuron to
either fire or not. Similarly, the output of the neurons in the hidden layer is
then given as an input to the next hidden layer, which does a similar linear
summation followed by a nonlinear activation function, or to the output layer
to get the results. The output layer in our case performs regression; therefore,
we keep it as a linear function.
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4.1.2 Optimization

The optimization algorithmminimizes the loss function, which is the difference
between the expected values (𝑦𝑖) and the predicted values (𝑦𝑖). The most
commonly used loss function in regression is the root mean square error
(RMSE). However, in this thesis, we used the root mean square log error
(RMSLE) along with 𝑙2 norm on the weights and the biases.

𝐿 =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(log10(𝑦𝑖) − log10(𝑦𝑖))2 + 𝜆1ℓ2(𝑊,𝑏), (4.3)

where 𝑁 is the total number of training examples, and 𝜆1 is a hyperparameter
that assigns relative importance to the second term in Eq. 4.3. Here log(·)
denotes the logarithmic function. The back-propagation algorithm typically
employs the mini-batch gradient descent method to compute the gradients (𝑔𝑡 )
of the cost function with respect to the network’s weights and biases. The mini-
batch gradient descent algorithm finds the model weights and coefficients that
minimize the loss over a mini-batch while training, i.e. the hyper-parameters
of the network are updated using 𝑛 training samples (𝑥𝑛, 𝑦𝑛), instead of a
single or the complete training set [44]. The cost function at each time step 𝑡 ,
is minimized as follows.

𝑤𝑡,𝑛 = 𝑤𝑡−1,𝑛 − 𝜂𝑔𝑡,𝑛, (4.4)

where 𝑔𝑡,𝑛 = ∇𝑤𝐿, and ∇𝑤 is the gradient of the loss function 𝐿 defined by Eq.
4.3. The loss function is differentiable with respect to weights. The parameter
𝜂 is the learning rate, which represents the amount of change that is induced
in the weights during each training iteration.

4.1.3 Regularization

The NN model may overfit the data and lose its ability to generalize if the
network’s capacity is sufficiently huge in comparison to the dataset. As a
result, regularizing the model is frequently used to address over-fitting. The
most commonly used regularization techniques are discussed in this section. A
thorough overview of different regularization methods used in deep learning
is provided in [137].
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Figure 4.1: Early stopping based on cross-validation [141].

4.1.3.1 Early Stopping

Early stopping is a regularization technique used to stop the model’s training
before over-fitting occurs without compromising themodel’s accuracy. Themost
commonly used approach is to use a validation set strategy. In this approach,
the change in training and validation errors is monitored as a function of
the number of epochs. When the training error no longer changes with the
increasing number of echoes and the validation error starts increasing (see Fig.
4.1), the model training is stopped. Beyond this point, the model will start to
overfit.

4.1.3.2 Dropout

Dropout is a regularization technique that simulates the concurrent training
of multiple sub-networks with shared weights [142]. During training, some
fraction of the layers are temporarily removed along with all their incoming
and outgoing connections during the forward pass, and weight updates are not
applied to the neurons in the backward pass, as shown in Fig. 4.2. The fraction
of neurons that are ignored is known as the dropout rate. This technique aids
in reducing interdependent learning among neurons, thereby reducing model
overfitting.

4.1.3.3 Data Augmentation

Data augmentation is a straightforward regularization method that artificially
expands the amount of data by producing modified copies of the training
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Figure 4.2: (a) A standard NN with 2 hidden layers, (b) After applying dropout to the
original network [142].

examples [137]. Depending on the type of data, different transformation tech-
niques can be applied to introduce slight variations in the original data [128].
This makes ML models more robust against variations in the test data. Data
augmentation techniques can be grouped into two main categories: DL ap-
proaches and image manipulation methods [143]. The most commonly used
methods in DL-based approaches are generative adversarial networks (GAN)
and neural style transfer [144]. Image manipulation approaches include ge-
ometric transformations (such as Scaling, rotation, translation, and flipping)
and color-space transformations (such as changing contrast and saturation,
blurring, or adding a different color to an image), which are frequently used
in computer vision [143].

4.1.3.4 Batch Normalization

The distribution of input data to the later layers continuously change as a
result of updates to the parameters being learned during the training of the
network. Such a change in the data distribution after each iteration causes
early saturation of the nonlinear activation function. The batch-normalization
(BN) is an adaptive normalization technique that is applied to the activations
of each layer in the network to standardize the data to a layer for each mini-
batch. This technique reduces the internal covariance shift between layers by
controlling the mean and variance of the input distributions. In addition, it
also stabilizes and speeds up the learning process [145]. For an𝑚-dimensional
input-batch 𝑥 = 𝑥𝑖 ...𝑚, the BN is performed as follows:

𝑥𝑖 =
𝑥𝑖 − 𝐸 [𝑥𝑖]√︁
𝑣𝑎𝑟 [𝑥𝑖]

, (4.5)
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where 𝑥𝑖 is the normalized input data, 𝐸 (𝑥𝑖) and 𝑣𝑎𝑟 (𝑥𝑖) are the mean the
variance of the mini-batch samples. The normalized data is then scaled and
shifted:

𝑦𝑖 = 𝛼𝑥𝑖 + 𝛽, (4.6)

here 𝛼 and 𝛽 represent the scaling and shifting parameters learned during the
training of model.

4.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are multilayer trainable architectures
that are built upon the same principle as MLPs. However, unlike MLPs, which
take flattened vectors as input, the CNNs process data that have a grid-like
pattern, such as an image [128]. As opposed to FC layers connecting all input
and output activations, a CNN consists of a series of convolutional layers where
the input data is filtered by small-sized learnable kernels that share weights
across the image space [128, 137]. A CNN’s architecture typically consists
of a series of convolutional layers followed by pooling and fully connected
layers.



5
Data Acquisition
The need for monitoring global aquatic systems as well as the rapid progress in
oceanographic measurement capabilities have resulted in an enormous amount
of ever-increasing remotely sensed data. The acquired data is becoming acces-
sible with high temporal and spatial resolution. A large number of space-borne
sensors have been continuously monitoring and collecting information on OC
variables. As more data becomes available, it becomes more important to
validate remotely sensed data and develop robust and novel OC models and
algorithms. Lack of ground truth information on in-water constituents or ra-
diometric data such as 𝑅𝑟𝑠 , can lead to uncertainties and misinterpretations
of satellite-derived data. This is a major challenge for the OC community.
Therefore, in-situ data collection is a prerequisite and provides unique opportu-
nities to understand the optical signatures of WQ variables in different optical
regimes.

This chapter describes the in-situ data collected and used in this study. The
data is collected from i) the Barents Sea and ii) coastal, inland, and open
waters around the globe.
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Figure 5.1: Geographic locations of Chl-a observations (black dots) and match-ups
(red color) with satellite overpasses from year a) 2016, b) 2017 and c) 2018.

5.1 The Barents Sea

5.1.0.1 Chlorophyll-a

The Conductivity-Temperature-Depth (CTD) fluorescence of Chl-a was sampled
between the years 2016 to 2018 as part of the Norwegian Institute of Marine
Research’s (IMR) Ecosystem Program. The Chl-a CTD data were gathered
from a vast area in the Barents Sea and covered a wide range of various
aquatic and environmental conditions. Themeasurements weremade at various
discrete depth intervals up to 100m in addition to surface measurements. The
geographic locations of the in-situ data are presented in Fig. 5.1.

The Chl-a samples were collected at various CTD stations; 232 in 2016, 405 in
2017, and 424 in 2018, respectively. The Chl-a concentrations range from 0.014
to 10.81 mg/m3. Although in-situ measurements were taken all year-round,
this study only used data from April to October. The remaining months are
dark or have extremely high solar zenith angles (> 75◦) unsuitable for ocean
color remote monitoring.

The Chl-a dataset represented in this chapter was used in Paper I.

5.1.0.2 Above water Radiometric data

The in-situ radiometric observations were compiled from multiple field cam-
paigns in the year 2021 aboard the Norwegian ice-going research vessel Kron-
prins Haakon. The in-situ data were collected autonomously when the ship was
at sea; however, to avoid higher solar zenith angles (> 70◦), measurements
from April to September were only used in this study. The spatial locations
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Figure 5.2: Geographic location of (a) the filtered in-situ radiometric data near-
coincident with S-2A/B MSI overpasses, represented by different legends.
b) closeup showing a matching transect [136]).

of near coincident Sentinel-2 MSI overpasses with in-situ data are shown in
Fig. 5.2. The in-situ radiometric data were collected using TRIOS hyper-spectral
radiometric sensors (see Fig. 5.3) in a spectral range from 320 to 950nm at
∼3nm resolution and an integration time of 30 seconds. During each campaign
over the Barents Sea, in addition to the predefined sampling stations where the
Boat was stationary for field measurements, in-situ observations were collected
along the intersect, as shown in Fig. 5.2 (b). However, for clarity, only Sentinel-2
cloud-free images with a time gap of ±3 hours with the in-situ observations
for the period April-September in the year 2021, are shown in Fig. 5.2.

5.1.0.3 In-situ data processing

The radiometric quantity utilized in Paper II is the remote sensing reflectance,
𝑅𝑟𝑠=𝜌𝑤/𝜋 which assumes an isotropic upwelling radiance field [146], and is
defined as:

𝑅𝑟𝑠 (𝜃, 𝜙) =
𝐿𝑤 (0+) (𝜃, 𝜙) − 𝜌𝑠𝑘𝑦 ∗ 𝐿𝑠𝑘𝑦 (0+) (𝜃, 𝜙)

𝐸𝑑 (0+)
− 𝜖 (5.1)

where 𝐿𝑤 (0+) (Watt m−2 nm−1 sr−1), 𝐿𝑠𝑘𝑦 (0+) (Watt m−2 nm−1 sr−1) and
𝐸𝑑 (0+) (W m−2 nm−1) are water leaving radiance, Sky radiance, and down-
welling solar irradiance measured just above the water surface, respectively.
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The terms (𝜃 ,𝜙) are the zenith and azimuth angles for the viewing direction, re-
spectively. Here 𝜌𝑠𝑘𝑦 refers to the fraction of 𝐿𝑠𝑘𝑦 that is reflected specularly on
the water surface and determined using the method developed in [147].

𝜌𝑠𝑘𝑦 = 0.0256 + 0.00039𝑊 + 0.000034𝑊 2 (5.2)

for 𝐿𝑠𝑘𝑦 (0+)
𝐸𝑑 (0+) < 0.05

𝜌𝑠𝑘𝑦 = 0.0256 (5.3)

for 𝐿𝑠𝑘𝑦 (0+)
𝐸𝑑 (0+) ≥ 0.05

where𝑊 represents the wind speed extracted from the ship log data. The 𝐿𝑠𝑘𝑦
and 𝐿𝑤 make a zenith angle of 400 and 1400 with the vertical [147]. The term
𝜖 corrects for the residual sky glint and is computed using the method devel-
oped in [148]. The developed algorithm in [148] assumes zero water-leaving
reflectance at two suitably chosen near-infrared (NIR) wavelengths (720nm
and 780nm). The choice of wavelength to estimate 𝜖 is made intuitively to
cover distinct parts of the NIR spectrum that are not affected by the absorption
of pure water, atmospheric oxygen or Color dissolved organic carbon (CDOM).
𝜖 is defined as:

𝜖 =
𝛼1,2𝜌

𝑚
𝑤 (780𝑛𝑚) − 𝜌𝑚𝑤 (720𝑛𝑚)

𝛼1,2 − 1
(5.4)

where 𝜌𝑤 (𝑅𝑟𝑠 × 𝜋) is the true water leaving reflectance and 𝜌𝑚𝑤 = 𝜌𝑤 + 𝜖

deonates the measured water leaving reflectance. The term 𝛼1,2 = 2.35 is
taken from the tabulated similarity spectrum [147]. This procedure minimizes
the presence of features in 𝑅𝑟𝑠 that are affected by the air-water interface
and removes spectra that do not converge on a solution. Thus, it is suitable to
process large amounts of ship-based observations.

The processed in-situ 𝑅𝑟𝑠 spectra were then filtered to remove the remaining
erroneous or suspicious observations using the criteria defined in [26,147] with
minor modifications.

The in-situ radiometric dataset covers a broad range of environmental and
aquatic conditions from open oceanic to coastal and inland waters. Some
examples of in-situ 𝑅𝑟𝑠 are shown in Fig. 5.4.
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Figure 5.3: TRIOS Ramses Hyperspectral sensors mounted on Norwegian ice-going
research vessel Kronprins Haakon.
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Figure 5.4: Examples of concurrent in-situ 𝑅𝑟𝑠 observations and Sentinel-2 A/B over-
passes over the Barents Sea region, (a) inland waters, (b) Algal bloom
in the open oceanic waters. Top-row: RGB satellite images, bottom-row:
corresponding 𝑅𝑟𝑠 spectra.
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Figure 5.5: Sampling stations covering environments from oceanic to inland waters
[14].

5.2 Global waters

5.2.1 Radiometric data

The in-situ radiometric observations were acquired from different aquatic sys-
tems, from freshwater to highly turbid and absorbing waters, as demonstrated
by the frequency distributions illustrated in Fig. 5.6. The data were assem-
bled in different field campaigns in the years 2011 to 2017 (see Fig. 5.5). The
measurement protocols and quality control procedures are detailed in [149].
Briefly, the optical data were acquired systematically using a compact optical
profiling system (C-OPS). In inland waters, a significant part of the optical data,
including all profiles, was obtained using the Compact-Propulsion Option for
Profiling Systems (C-PrOPS) accessory combined with the C-OPS hydrobaric
buoyancy system [14,150]. During in-situ profiling,𝐿𝑢 (𝑧, 𝜆) and 𝐸𝑑 (𝑧, 𝜆), where
𝑧 and 𝜆 present depth and wavelength, were simultaneously measured at 19
wavebands between 320 and 875nm. More details are listed in [14].

The radiometric quantity considered in Paper III is 𝜌𝑤 and is defined as:

𝜌𝑤 (𝑧, 𝜆) = 𝜋 × 𝐿𝑢 (𝑧, 𝜆)
𝐸𝑑 (𝑧, 𝜆)

= 𝜋 × 𝑅𝑟𝑠 (5.5)

5.2.2 Chlorophyll-a and CDOM

In addition to the radiometric data, Chl-a (mg m3) and the CDOM absorption
coefficient (𝑎𝑐𝑑𝑜𝑚 (𝜆),𝑚−1) were also obtained simultaneously. The Chl-a data



44 chapter 5 data acquis it ion

Figure 5.6: Frequency distribution of in-situ (a) concentration of Chl-a, (b) light
absorption coefficient of CDOM at 443nm, (c) bidirectionally corrected
water reflectance at 555nm, and (d) first optical depth (𝑧90). [14].

were obtained using the high-performance liquid chromatography (HPLC)
method, following SeaHARRE protocols [151]. The 𝑎𝑐𝑑𝑜𝑚 (440) measurements
were estimated with a spectrophotometer or UltraPathliquid waveguide [149].
The global dataset represented in this chapter was used in Paper III.

5.3 Remote Sensing Data Collection

In this thesis, S2-A/B MSI and L8 OLI imagery are used. Table. 5.1 provides
details on their band characteristics.

Briefly, MSI Sentinel-2A and Sentinel-2B are identical polar-orbiting satellites,
launched on June 23, 2015, and March 7, 2017, respectively, as part of the
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Table 5.1: Sentinel-2A/B MSI and Landsat-8 OLI spectral bands and spatial character-
istics [32, 131, 153–156].

Landsat-8 Sentinel-2A/B

Bands Wavelength Spatial Wavelength Spatial
[nm] resolution [m] [nm] resolution [m]

Coastal aerosol 435–451 30 433–453 60
Blue 452–512 30 458–523 10
Green 525–600 30 543–578 10
Red 636–673 10 650–679 10
Red edge 698–793 20

733–748 20
773–793 20

NIR 851–879 30 785–900 10
855–875 20

SWIR 1566–1651 30 1565–1655 20
SWIR 2107–2294 30 2100–2280 20

European Space Agency’s (ESA) Copernicus program. The two twin satellites,
with a 20.6◦ FOV, have a swath of 290km each and are placed in the same sun-
synchronous orbit, 180◦ apart from each other [97]. The MSI onboard Sentinel-
2A/2B provides a 10-day revisit time at the equator with 5 days each. It provides
13 spectral bands with a spatial resolution from 10 to 60m from visible to NIR
to short wave near infrared (SWIR) as shown in Table. 5.1. Sentinel-2 MSI data
are level-1C, calibrated TOA reflectance (𝜌𝑡 ), and level-2C, surface reflectance
(𝑅𝑟𝑠). The level-1C data are corrected for viewing geometry and are framed into
tiles or granules sensing 109.8km by 109.8km of Earth’s surface, geo-corrected
in the Universal Transverse Mercator (UTM) projection [26, 152].

The Landsat-8 satellite carries the OLI and Thermal Infrared Sensor (TIRS) and
was launched in February 2013 in a sun-synchronous polar orbit. Landsat-8
OLI has a 16-day repeat cycle and senses a 185-km-wide swath with a 15◦
FOV. As shown in Table. 5.1, OLI detects the Earth’s surface at nine reflective
wavelength bands. The data are provided in the Worldwide Reference System
(WRS-2) path (ground track parallel) and row (latitude parallel) coordinate in
185 × 185km images [131].

Sentine-2 MSI data is used in Papers I, II and III while Landsat-8 OLI data is
used in papers I and II. Note that both these sensors are operational.
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Overview of Publications
6.1 Paper Summaries

6.1.1 Paper I

M. Asim, C. Brekke, A. Mahmood, T. Eltoft, and M. Reigstad, “Improving
chlorophyll-a estimation from sentinel-2 (MSI) in the barents sea using
machine learning,” IEEE Journal of Selected Topics in Applied Earth Obser-
vations and Remote Sensing, 2021.

Several studies have been conducted on studying the primary production and
Chl-a in the Barents Sea. Most of them are solely based on in-situ observations.
Some studies have integrated in-situ data with satellite-based observations.
However, the Chl-a retrievalmethods are either based on semi-empirical or semi-
analytical approaches and validated on either low spatial resolution satellite
sensors or limited to validation on a few images. The main objective of Paper
I was to develop a robust ML-based algorithm to accurately retrieve Chl-a
from the Barents Sea using observations from a high-resolution satellite sensor,
Sentinel-2 MSI.

To do this, we propose to match depth-integrated Chl-a concentrations with
C2RCC retrieved 𝑅𝑟𝑠 products. To better tune the regression models, a new spa-
tial window-based match-up dataset creation method was proposed to increase
the number of match-ups. We demonstrated that the proposed match-up cre-
ation scheme has improved the performance of the Chl-a retrieval algorithms. In

47
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addition to that, a NN based model was proposed, the OCN, that outperformed
existing ML-based techniques including the Gaussian Process Regression (GPR),
the regionally tuned empirical techniques, including the Ocean Color (OC3)
algorithm, and the spectral band ratios, as well as the globally trained C2RCC
processing chain model C2RCC-nets.

It was manifested that the proposed spatial window and depth-integrated
match-up creation techniques improved the performance of the proposed OCN
and the other retrieval algorithms compared to the conventional match-up
selection approach. Our results indicate that the proposed approach produces
realistic Chl-a products in the study region by accurately capturing the fine
details and abrupt changes in Chl-a distribution.

Author’s contribution
Themethodologywas developed in collaborationwith Camilla Brekke,Torbjorn
Eltoft, and Arif Mahmood. I prepared the dataset, performed the analysis and
implementations, and wrote the manuscript. Marit Reigstad contributed to
data collection and reviewed the manuscript.

6.1.2 Paper II

M. Asim, A. Matsuoka, P. G. Ellingsen, C. Brekke, T. Eltoft, and K. Blix, “A new
spectral harmonization algorithm for landsat-8 and sentinel-2 remote sensing
reflectance products using machine learning: a case study for the barents
sea (european arctic),” IEEE Transactions on Geoscience and Remote Sensing,
2022.

Water quality monitoring from space requires the acquisition of ocean color
imagery with short time intervals (2-3 days) at a moderate spatial resolution
(< 60𝑚). OC remote sensing of the Barents Seawaters is associatedwith several
challenges. During the summer months, it is frequently covered by clouds and
experiences polar nights in the winter season, which limits the availability of
cloud-free imagery. Furthermore, there are uncertainties associated with the
existing AC methods due to the longer ray pathways caused by higher solar
zenith angles and the proximity of sea ice.

In this study, an ML-based model was proposed to combine satellite observa-
tions from multi-satellite missions to increase the frequency of monitoring the
dynamics of sensitive high-latitude aquatic systems. To maximize the avail-
ability of ocean color observations for regular monitoring of the Barents Sea
waters, this study investigates the merging of MSI and OLI observations by
addressing two key aspects: i) performance evaluation of standard AC algo-
rithms to estimate realistic 𝑅𝑟𝑠 values over the study region. ii) an ML-based
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band adjustment (BA) method is developed to reduce OLI-MSI derived 𝑅𝑟𝑠
products.

To achieve our objective, i.e., the spectral harmonization of OLI-MSI 𝑅𝑟𝑠 prod-
ucts, we first compared the 𝑅𝑟𝑠 retrieved via three state-of-the-art AC models,
i.e., C2RCC, Acolite (DSF), and Polymer, against in-situ 𝑅𝑟𝑠 measurements. Our
analysis demonstrates that Acolite is the top performer. Following that, the Aco-
lite scheme was then selected to estimate 𝑅𝑟𝑠 products from near-simultaneous
OLI and MSI images limiting the difference to <30 minutes. To reduce the
differences in OLI-MSI 𝑅𝑟𝑠 products, a new ML-based spectral BA method
was developed to spectrally adjust MSI radiometry to replicate the spectral
bandpasses of OLI for the common bands on both sensors.

Results indicate that the proposed BA model can accurately reconstruct the
spectral properties of OLI from MSI-derived 𝑅𝑟𝑠 products, demonstrating how
MSI observations can be used to supplement OLI-derived 𝑅𝑟𝑠 products.

Author’s contribution
Themethodologywas developed in collaboration with Katalin Blix, Atsushi Mat-
suoka, Torbjorn Eltoft, and Camilla Brekke. I prepared the dataset, performed
the analysis and implementations, and wrote the manuscript. Pal Gunnar
Ellingsen contributed to data collection and review of the article.

6.1.3 Paper III

M. Asim, A. Matsuoka, S. Hafeez, T. Eltoft, and K. Blix, “Spectral harmo-
nization of Landsat-8 and Sentinel-2 remote sensing reflectance products
for mapping Chlorophyll-a in coastal, lakes and inland waters (in submis-
sion).

The integration of data products from Sentinel-2 MSI and Landsat-8 OLI can
improve the temporal resolution of time series, increase match-ups with in-situ
observations, and provide a possibility to monitor the dynamics of sensitive
aquatic systems.

In Paper II, a spectral harmonization method was developed to merge OLI and
MSI images in terms of 𝑅𝑟𝑠 products for the Barents Sea region. In Paper III,
we used the proposed method developed in Paper II to combine OLI-MSI 𝑅𝑟𝑠
products over global waters in order to increase the number of match-ups with
in-situ observations and thus better tune the WQ retrieval algorithms. The
main objective of Paper III was the accurate and consistent retrieval of Chl-a
and CDOM from combined OLI and MSI images.
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The proposed methodology combines the OLI and MSI data into a single
dataset using a three-step approach: i) performance evaluation of AC methods
against in-situ observations; ii) the top performing AC scheme was selected
to estimate 𝜌𝑤 products from near-simultaneous OLI and MSI images. The
BA method developed in Paper II was then used to bandpass adjust MSI-𝜌𝑤
products (MSI∗𝜌𝑤) to harmonize OLI-MSI images and iii) the weights and bias
terms optimized during the conversion of MSI-derived 𝜌𝑤 to that of OLI-derived
𝜌𝑤 are applied to the MSI-𝜌𝑤 products. The OCN model was then tuned to
retrieve Chl-a and CDOM from the combined OLI and MSI∗ dataset.

Our analysis demonstrates that OC-SMART showed consistent performance
over different water types with MAPD <30% across the visible bands. The
OLI-MSI 𝜌𝑤 products retrieved from OC-SMART are estimated to range from
13 to 3% in the common visible bands. After applying the proposed BA model,
the spectral difference in their respective 𝜌𝑤 products were found in the range
from 3 to <8%. Our results indicate that, using combined OLI and MSI∗ data,
considerable improvements in Chl-a and CDOM estimation were observed in
all methods compared to using OLI match-ups alone.

Author’s contribution
The methodology was developed in collaboration with Katalin Blix, Sidrah
Hafeez, Atsushi Matsuoka, and Torbjorn Eltoft. I processed the in-situ data,
performed the analysis and implementations, and wrote the manuscript.

6.2 Other Publications and Contributions

1. M. Asim, S. Hafeez, A. Matsuoka, M. S. Wong, S. Abbas, T. Eltoft, K. Blix,
“Atmospheric Correction of Landsat 8 Operational Land Imager (OLI),
Sentinel-2 MultiSpectral Imager (MSI) over Asian, European and U.S
Inland and Coastal waters”, submitted to IGARRS, 2023.

2. S. Hafeez, M. Asim, M. S. Wong, and S. Abbas, “Atmospheric Correction
of the Landsat 8 Operational Land Imager (OLI), Sentinel-2 MultiSpectral
Imager (MSI) and Sen-tinel-3 Ocean and Land Colour Instrument (OLCI)
over Low to High Turbid Coastal Waters of Hong Kong,” in submission
to Frontiers in Remote Sensing.

3. S. Hafeez, M. S. Wong, S. Abbas, andM. Asim, “Evaluating landsat-8 and
sentinel-2 data consistency for high spatiotemporal inland and coastal
water quality monitoring,” Remote Sensing, vol. 14, no. 13, p. 3155, 2022.

4. M. Asim, C. Brekke, T. Eltoft and K. Blix, “Preliminary analysis of com-
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improved monitoring of Chlorophyll-a over the Barents Sea”, Ocean from
Space, Venice, 2022 (poster presentation).

5. M. Asim, K. Blix, P. Ellingsen, C. Brekke, T. Eltoft, “Evaluation of spec-
tral consistency between Landsat-8 (OLI) and Sentinel-2 (MSI) remote
sensing reflectance product over the Barents Sea”, 2021 Center for Inte-
grated Remote Sensing and Forecasting for Operations (CIRFA) annual
conference, Sommarøy, 2021 (poster presentation)

6. M. Asim, C. Brekke, T. Eltoft and K. Blix, “Optical Remote Sensing and
Machine Learning for Water Quality Parameter Retrieval in the Barents
Sea”, 2021 Frontiers, Tromsø, 2021 (poster presentation).

7. M. Asim, C. Brekke, A. Mahmood, T. Eltoft, andM. Reigstad, “Ocean color
net (ocn) for the barents sea,” in IGARSS 2020-2020 IEEE International
Geoscience and Remote Sensing Symposium. IEEE, 2020, pp. 5881–5884.
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Improving Chlorophyll-A Estimation From
Sentinel-2 (MSI) in the Barents Sea Using

Machine Learning
Muhammad Asim , Camilla Brekke , Member, IEEE, Arif Mahmood, Torbjørn Eltoft , Member, IEEE,

and Marit Reigstad

Abstract—This article addresses methodologies for remote sens-
ing of ocean Chlorophyll-a (Chl-a), with emphasis on the Barents
Sea. We aim at improving the monitoring capacity by integrating
in situ Chl-a observations and optical remote sensing to locally
train machine learning (ML) models. For this purpose, in situ
measurements of Chl-a ranging from 0.014–10.81 mg/m3, collected
for the years 2016–2018, were used to train and validate models. To
accurately estimate Chl-a, we propose to use additional information
on pigment content within the productive column by matching the
depth-integrated Chl-a concentrations with the satellite data. Using
the optical images captured by the multispectral imager instrument
on Sentinel-2 and the in situ measurements, a new spatial window-
based match-up dataset creation method is proposed to increase
the number of match-ups and hence improve the training of the
ML models. The match-ups are then filtered to eliminate erroneous
samples based on the spectral distribution of the remotely sensed
reflectance. In addition, we design and implement a neural network
model dubbed as the ocean color net (OCN), that has performed
better than existing ML-based techniques, including the Gaussian
process Regression (GPR), regionally tuned empirical techniques,
including the ocean color (OC3) algorithm and the spectral band
ratios, as well as the globally trained Case-2 regional/coast colour
(C2RCC) processing chain model C2RCC-networks. The proposed
OCN model achieved reduced mean absolute error compared to
the GPR by 5.2%, C2RCC by 51.7%, OC3 by 22.6%, and spectral
band ratios by 29%. Moreover, the proposed spatial window and
depth-integrated match-up creation techniques improved the per-
formance of the proposed OCN by 57%, GPR by 41.9%, OC3 by
5.3%, and spectral band ratio method by 24% in terms of RMSE
compared to the conventional match-up selection approach.

Index Terms—Barents sea, Chlorophyll-a (Chl-a) monitoring,
ocean color (OC).
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I. INTRODUCTION

THE Barents sea is a large Arctic shelf that covers about
10% of the Arctic Ocean [1]. The northern part of the

Barents Sea is seasonally ice-covered while the southern part is
sea-ice-free due to the inflow of salty, warm, and nutrient-rich
waters from the Atlantic Ocean through the Nordic Seas [2].
Almost 40% of the total Arctic primary production occurs in the
Barents Sea and hosts Norway’s richest commercial fisheries [3].
However, the Barents Sea is experiencing significant changes
due to the result of global warming. The increased inflow of
Atlantic water has caused up to a 50% reduction in sea-ice
covered region in the last decade [4]. Due to sea-ice loss and
weaker stratification of the water column, the sea under the
melting ice in the Barents Sea is exposed to prolonged exposure
of sunlight during summer and fall, which has increased the
production and seasonal growth of phytoplankton [5], [6]. The
effect of altered physical conditions in different seasons on
the primary productivity is therefore crucial to investigate the
ecosystem of the lately changing Barents Sea. It is within this
context, the current study is aimed at developing new methods
that can more accurately track phytoplankton biomass variability
in the Barents Sea.

Phytoplankton are recognized as valuable indicators of marine
ecosystem health, quality of water, and are sensitive to climate
changes [7]. As a light-harvesting pigment in phytoplankton,
Chlorophyll-a (Chl-a) is regarded as a proxy for biomass in the
water column [8]. Phytoplankton form the bases of aquatic food
webs and can grow rapidly in a short period depending on the
availability of nutrients, sunlight, nitrogen, or phosphorus con-
centration [6], [9]. An excessive concentration of phytoplankton
harms the fishery, local economy, marine animals, and public
health [10], therefore, making it critical to carefully evaluate the
exact concentration of Chl-a.

Several studies have been conducted on modeling the net
primary production and Chl-a content in the Barents Sea, though,
many are solely based on in situ measurements [6], [11]–[15].
Several methods integrating in situ with satellite-based observa-
tions have also been proposed [1], [16]–[23]. These studies on
Chl-a retrieval are either based on empirical or semianalytical
approaches and confined to relatively small spatial and temporal
scales. Some of the existing methods are applied to in situ
remote sensing reflectance (Rrs) data and validated on either
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low spatial resolution satellite sensors or limited to validation
on a few images [23]. For example, Le et al. [1] used a 3-D
sea-ice plankton ecosystem model to study primary production
in the northern Barents Sea for only summer months. Engelsen
et al. proposed an empirical method to estimate Chl-a content
across the water columns using sea-viewing wide field-of-view
sensor (SeaWiFS) data confined to the early bloom season [17].
Kogeler et al. used an empirical model based on blue/green ratio
to estimate Chl-a using only 35 images acquired from CZCS
sensor [18]. Dalpadado et al. divided the Barents Sea region into
15 polygons and computed correlation between the mean of in
situ Chl-a samples and all valid Chl-a pixels from SeaWiFS and
MODIS Aqua, within a polygon [6]. More recently, a bio-optical
model was developed from a set of in situ observations of Chl-a
and inherit optical properties (IOP’s) collected only in the bloom
season. Due to cloud cover and longer time-gaps, the estimated
Rrs spectra derived from IOP’s were validated with an eight-day
average MODIS-A observation [23]. Thus, most of the existing
methods are not validated independently on high-resolution
satellite data such as Sentinel-2 multi spectral instrument (MSI)
covering a wide area of Barents Sea. Considering the importance
of a long-term monitoring of water quality, the need to develop a
reliable algorithm to accurately estimate Chl-a in the transitional
Barents Sea is needed.

Recently, with the increasing popularity of ML in the field
of remote sensing, several ML-based methods have been proven
effective in retrieving Chl-a from water bodies. However, for the
Barents Sea, to the best of our knowledge, no thorough study
has been reported on Chl-a estimation using ML techniques
integrated with remotely sensing data.

The most widely explored ML methods include artifi-
cial neural networks (ANNs) [24], support vector regression
(SVR) [25], relevance vector regression (RVR) [26], random
forests (RF) [27], Gaussian process regression (GPR) [28],
[29], and mixture density networks (MDN) [8]. The ANNs
due to their ability to learn highly, nonlinear relationships
have attracted many researchers [24], [30]–[32]. However, in
most of these existing studies, built-in software ANN mod-
ules have been utilized; therefore, the architecture of ANNs
has not been well explored despite their potential effective-
ness in estimating nonlinear functions. The current study ex-
plores the architecture and ability of MLP-based deep ANNs
in detail to accurately map water leaving Rrs to Chl-a con-
centrations for the Barents Sea, which is a novel application
area.

In most of the existing studies [8], [24], [30], researchers
have associated surface or near-surface Chl-a concentration
([Chl-a]surf) at some discrete depths with the water leaving Rrs.
This approach restricts Chl-a estimation to the upper layer of
the water column while the solar radiation is not restricted only
to the near-surface. Depending on the IOP’s of the water body,
scattering and absorption, radiation can penetrate deeper, and
a satellite will capture the integrated effect across the water
column. Moreover, in the biogeochemical applications such
as primary production estimation or investigating the vertical
distribution of algal species, the near-surface Chl-a content
estimated by ocean color (OC) sensors is insufficient to track

the algal biomass in the entire depth range, where algae can live
and grow [33]. Therefore, in the current work, we propose to
integrate Chl-a across water columns depending on the light pen-
etration depth (Zpd) in order to accurately estimate the primary
production.

In some of the previous studies, a median or mean Rrs value
over a spatial window has been associated with the in situ Chl-a
samples [34]–[36]. Warren et al. resampled all the spectral bands
to a common spatial resolution and used the central pixel in
the window [37]. In contrast to the existing approaches, we
propose to use all valid pixels in a spatial window without taking
mean or median of the Rrs values. Our approach increases the
match-up dataset size and improves the overall performance of
the proposed model. Besides, it also improves the performance
of existing empirical and ML methods in estimating Chl-a in
open ocean waters such as the Barents Sea. Matching each in
situ measurement of Chl-a to all valid pixels in a window results
in estimating multiple values of Chl-a. The median over these
estimated values is then computed, which is a more robust esti-
mate of Chl-a. In addition, we also propose a filtering criterion
based on the spectral distribution of Rrs. After applying the rec-
ommended atmospheric correction (AC) quality flags [37], [38],
the match-ups are further processed to remove the nonphysical
and unrealistic measurements in-terms of spectral distribution
and amplitude that arise due to the time-gap or uncertainty in
the AC algorithm. The systematic system diagram illustrating
the main components of the proposed methodology is given
in Fig. 1. The major contributions of the present study are as
follows.

1) In the current work, we analyze various techniques for
match-up selection and Chl-a retrieval from the Barents
sea.

2) To account for the uncertainty in the remotely sensed data,
we also propose a match-up dataset filtering method based
on the concentration of Chl-a and spectral distribution of
Rrs.

3) We propose to retrieve depth-integrated Chl-a to track the
phytoplankton bloom appearing down the water column
for a more accurate estimation of the biomass.

4) By combining the proposed data augmentation technique
with the depth-integrated-average Chl-a, we formulate a
novel Chl-a estimation framework that enhances the per-
formance of the proposed as well as compared methods.

5) To improve the Chl-a estimation accuracy in the sub-
Arctic waters, we propose a neural network-based algo-
rithm dubbed as OCN.

6) The proposed match-up dataset creation, data augmenta-
tion, and depth integration techniques have improved the
Chl-a retrieval performance of all the methods considered
in this study. The proposed OCN model has outperformed
all the compared methods.

The remaining of the article is organized as follows. Section II
presents related work, whereas Section III is devoted to material
and satellite data acquisition. The match-up selection and ML
methodologies are presented in Section IV and V, and the exper-
imental results are discussed in Section VI. Finally, Section VII
concludes the article.
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Fig. 1. Proposed OCN framework for estimating Chl-a. (a) Input top-of-atmospheric reflectance (ρrs) (Section III-B). (b) (ρrs) is corrected for atmospheric
effects to extract surface Rrs (Section IV-A). (c) Window over Rrs pixels centered around the in situ location (Section IV-C). (d) Filtering block to get valid Rrs

pixels (Section IV-B). (e) Features extraction block over the valid Rrs pixels (Section V-A). (f) Input layer of the FC neural network. (g) First fully connected block
consisting of an FC and batch normalization (BN) layers (Section V-A2). (h) Second FC block with FC and BN layers. (i) In situ Chl-a sampling (Section III-A).
(j) In situ depth integration block (Section IV-D). (k) Network loss computation (3). (l) Output of the network over the window on the test dataset. (m) Information
fusion block (Section IV-C). (n) Output of the proposed framework, Chl-a. (o) Chl-a maps.

II. RELATED WORK

OC remote sensing is a practical and powerful tool in the
monitoring of aquatic environments and providing estimates of
near surface concentration of water quality parameters such as
Chl-a in open ocean [39], [40], coastal waters [41], as well as
inland waters [42]. Existing Chl-a retrieval algorithms may be
divided into two categories, analytical approaches and empirical
methods [7]. Most analytic approaches consist of two steps,
derivation of the IOPs that determine the color of water, followed
by estimation of Chl-a content. In the empirical approaches,
Chl-a concentration is estimated directly from Rrs, also known
as the inversion approach. The empirical methods rely on the
estimates of phytoplankton absorption peaks within the blue and
red portions of the spectrum [43], [44].

Chl-a in the open ocean waters has been estimated using
the ratio of blue to green bands, which assumes that the shape
and magnitude of Rrs spectrum between blue and green bands
is primarily driven by the concentration of Chl-a with mini-
mum effect from other organic and inorganic substances [7].
Previous studies have shown that the blue-to-green ratio has a
strong correlation with Chl-a in clear waters. The polynomial
coefficients in the ocean color (OC) algorithm [45], where

the blue-to-green ratio of Rrs(λ) statistically relates to Chl-a
through a polynomial expression, have been tuned according
to the spectral configuration of various satellite sensors. More
recently, 65 polynomial expressions were developed for 25 satel-
lites utilizing 2720 pairs of coincident Chl-a and corresponding
Rrs [45]. The Rrs spectrum in coastal and inland waters is
affected by the presence of other constituents, which often
leads to an overestimation of Chl-a [8], [46]. Therefore, several
other empirical formulations have also been proposed, including
the red-edge ratio methods [47]–[49], the line height (LH)
method [50], hybrid methods [51], and ML-based methods [24],
[30]–[32].

Level-2 products from Sentinel-2 MSI, ocean and land color
imager (OCLI) onboard Sentinel-3, and AC processors such as
Acolite, C2RCC, and Seadas estimate Chl-a using band ratios,
semianalytical methods, or ML methods such as NNs, which are
trained globally on a large amount of simulated data. Efficient
retrieval of Chl-a across all water types using a single method
is quite challenging. Smith et al. suggested that an algorithm
should be locally trained to learn the nonlinearity of the func-
tional dependence between the reflected water leaving radi-
ance and Chl-a concentrations [52]. More recently, ML-based



5532 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

TABLE I
DESCRIPTIVE STATISTICS OF IN SITU CHL-A CONCENTRATIONS AT VARYING DEPTHS DURING YEARS 2016–2018 IN THE BARENTS SEA

The in situ data are collected as part of the ecosystem monitoring program, IMR

methods trained locally on the area under observation have
attracted researchers due to the improved performance [27], [29],
[32], [53].

Most of the abovementioned methods associate in situ mea-
surements with satellite observation of 3×3 [34], [35], [54] or
5×5 pixels window [36], centered around the in situ location.
A mean or median of cloud-free and valid pixels is computed
to extract a single value of Rrs for each in situ sample. Pu
et al. utilized convolutional neural network (CNNs) to model the
relationship between Landsat-8 images and in situ water-quality
levels by considering a spatial window of 1 km2 (7×7 pixels)
at each monitoring station [55]. Pyo et al. [56] also developed a
CNN-based regression model to estimate Chl-a concentrations
using hyperspectral images acquired from an airborne sensor.
They used a window of 8 × 8 pixels for extracting the nonlinear
spatial features of the algal pigment.

These regression models based on CNN require a large
amount of cloud-free dataset with minimum time-difference
between the in situ and remote sensing data. To address this issue
Pyo et al. [56] used airborne hyperspectral imagery to train the
CNN, which is much more costly than using freely available
satellite image data. Moreover, these approaches are based on a
fixed window size, which may include invalid pixels depending
on the observation conditions. In contrast, in the current work,
we propose an NN-based on multi layer perceptron (MLP), with
the flexibility to remove invalid pixels from each window, that
can work efficiently for smaller datasets.

III. DATASET ACQUISITION

In this section, we discuss the collection of in situ Chl-a data
and the overlapping satellite observations.

A. In Situ Observations

The Barents Sea is one of the most productive oceanic areas
in the world, and it has an average depth of 230 m with a
total area of 1.5 million km2 [6]. A sampling of conductivity-
temperature-depth (CTD) fluorescence of Chl-a were carried
out in the years 2016–2018, as part of the Ecosystem Program
of the Institute of Marine Research (IMR), Norway. The Chl-a
CTD data were collected from a vast region in the Barents
Sea, covering various oceanographic conditions. In addition to
the samples from the surface, Chl-a measurements were also
collected at different discrete depth intervals up to 100 m. Data
were collected from various CTD stations; 232 in year 2006,
405 in year 2017, and 424 in the year 2018, respectively. The
Chl-a concentration varies from 0.014 to 10.81 mg/m3. The in
situ measurements were collected throughout the year; however,
measurements from April to October are used in this study. The
remaining months remain dark with insufficient and extremely
low solar elevations, making remote sensing unsuitable for OC
monitoring. The monthly and yearly variation in Chl-a content
across water columns is shown in Table I. The spatial locations
of in situ data are shown in Fig. 2(a)–(c).

B. Satellite Image Data Acquisition

Sentinel 2 A/2B on-board MSI from the European Space
Agency (ESA) with a swath of 290 km each, are in the same
orbit and 180° apart from each other. The revisit time of Sentinel-
2 A/2B is 10 days (of each satellite) at the equator, meaning that
the twin satellites revisit the same area every five days, with a
wide field of view, covering land and coastal areas [57], [58].
In order to reacquire a cloud-free image of a specific area, it
may take significantly more time, depending on the weather
conditions. Note that a cloud cover is much more persistent in
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Fig. 2. Study region and locations of in situ observations of Chl-a (black dots) and match-ups (red color) from year (a) 2016, (b) 2017, and (c) 2018.

TABLE II
SENTINEL-2 SPECTRAL BANDS WITH SNR AT THE REFERENCE RADIANCE L_REF

the high-Latitude areas such as the Barents Sea. The Sentinel-
2 A/2B mission provides the reflected solar spectral radiances
in 13 spectral bands in the visible, infrared, and short-wave
infrared part of the electromagnetic spectrum. As shown in
Table II, among the 13 spectral bands, the four bands centered
at 493 nm (blue), 560 nm (green), 665 nm (red), and 842 nm
(NIR) have a spatial resolution of 10 m. These four bands are
suitable for the retrieval of biogeochemical products and IOP’s
of the water column. The six bands centered at 705, 740, 783,
864 nm, [covering the visible and near infrared (VNIR) region]
1610, and 2190 nm [covering short wave infra-red (SWIR)
region] have a spatial resolution of 20 m. These six bands are
suitable for applications such as snow, ice, and cloud masking.
The remaining three bands centered at 443, 945, and 1375 nm,
have a spatial resolution of 60 m and suitable for AC and cloud
screening. These bands are also used for aerosols retrieval, water
vapor correction, and cirrus detection [59].

Sentinel-2 acquire spectral observations from −56° to 84°
latitude [59], therefore, suitable for OC monitoring in the Bar-
ents Sea. Sentinel-2 A/2B Level1-C (L_1 C) data, colocated
in space and with a time gap within ±1 d of the in situ ob-
servations for the period 2016–2018 (April–October) having a
cloud coverage of ≤30%, is acquired from.1 The L_1 C product
provides geocoded top-of-atmospheric (TOA) reflectance, with
associated cloud, land/water mask, and quality flags. To ensure

1Online. [Available]: https://scihub.copernicus.eu/dhus

cloud-free pixels in a window of 3 × 3 pixels, centered at the
in situ observation location, the Sentinel-2 L_1 C built-in cloud
mask was applied in the sentinel application platform (SNAP)
v6.0 processing toolbox, prior to applying AC. The cloud mask
enables to identify both cirrus and dense clouds. The dense
clouds have a high reflectance in the blue wavelength (493 nm).
If the reflectance in the blue band is greater than a threshold,
that pixel is identified as covered by dense clouds, also known
as opaque clouds [60]. Cirrus clouds are thin and semitransparent
and usually formed approximately at 6–7-km above the Earth’s
surface. The high-atmospheric absorption in band-10 (1375 nm)
makes the detection of cirrus clouds possible.

A time window of ±1 d between in situ and satellite mea-
surements was used to find match-ups. For comparison, Warren
et al. [37] allowed a window of ± 1 d for inland waters, Kuhn
et al. [61] allowed a time window of≤ ±1 day for three different
rivers while Le et al. [49] and Pan et al. [62] allowed a window
of ±24 h and ±8–32 h, respectively, for coastal waters to obtain
a sufficient number of valid match-up pairs for algorithmic
validation. More recently, a larger time-window of± 2 days was
used by Liu et al. [46] for 36 different water bodies, including
coastal waters, inland lakes, reservoirs, and rivers in the United
States and China. If the pixels of interest in the acquired scene
corresponding to the in situ location are identified as invalid or
defective, then the next scene within the specified time window
is analyzed. If none of these masks or quality flags are true,
the pixel is considered water and processed through the AC
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algorithm. If the pixels of interest are found cloudy or defective
in all available scenes, then that in situ observation is discarded.

IV. MATCHUP SELECTION METHODOLOGIES

In this section we present different proposed match-up selec-
tion methodologies. Before using the proposed matchup selec-
tion, AC is applied to convert the TOA signal to above water
Rrs.

A. Atmospheric Correction (AC) Algorithm

AC is a crucial step in OC monitoring algorithms. The
retrieved signal by satellite sensors contain < 10% of wa-
ter leaving radiances, the remaining is the contribution from
atmosphere [63]. The water leaving radiance is then con-
verted to Rrs, the ratio of water-leaving radiance to the to-
tal downwelling irradiance measured just above the water
surface, which carries information about the water-column
and can be used to derive OC products such as Chl-a
concentration [54].

Prior to applying AC, Sentinel-2 L-1 C data were resam-
pled to a spatial resolution of 60m [37]. This spatial resolu-
tion is selected to improve the signal-to-noise ratio and en-
able the application of AC. The resampled TOA reflectances
Rrs were then atmospherically corrected into the water-leaving
Rrs (sr −1) using the C2RCC AC processor. The choice of
C2RCC is motivated due to its good performances in [37] and
[38]. The C2RCC processor is based on the ANN method, where
the ANNs are trained on a large database of simulated water-
leaving reflectances and related TOA radiances. The trained
ANN is then used to perform the inversion of TOA radiances to
water-leaving radiance. Moreover, it also generates Chl-a maps
and estimates the IOP’s of the water body. The C2RCC is a
modified form of previous Case2Regional and CoastColour AC
algorithms. In this study, compared to the other AC processors
such as Acolite and Sen2Cor, it has better preserved the spectral
shape in both bloom and nonbloom Barents Sea waters in the
blue, green, and NIR bands. The C2RCC processor is provided
in the SNAP processing toolbox from ESA. In addition to cal-
ibrated TOA reflectances, the C2RCC requires salinity, ozone,
air pressure, and temperature as input parameters. The average
temperature and salinity were set to 8◦ C and 34.5 PSU following
Climate Explorer.2 The remaining parameters were set to default
values [37].

Any pixel corresponding to the in situ measurements that
passed the recommended quality flags [37] is considered a
potentially valid pixel and selected for further processing. The
quality flags used in the current study include Cloud_risk,
Rtosa_OOS, Rhow_OOS, and VALID_PE. The Cloud_risk flag
indicates cloudy conditions, and any pixel affected by clouds
was excluded. The Rtosa_OOS flag is true when the input
spectrum to the C2RCC-net algorithm is out of the training
range; therefore, the inversion of TOA Rrs to surface Rrs is
most likely to be incorrect. The Rhow_OOS flag is true when
the input spectrum to the IOP neural net is not within the

2Online. [Available]: https://climexp.knmi.nl/

training range of the neural net. The inversion is likely to be
wrong in this case as well. The VALID_PE is the operator’s
valid pixel expression, which is true for valid pixels and false
otherwise [38].

B. Proposed One-to-One Match-Up Selection

The in situ measurements of Chl-a are matched with the
corresponding Rrs pixels using a baseline setting of one-to-one
matching. In this matching scheme, each in situ measurement
is matched to the nearest pixel in the satellite image [37]. The
baseline scheme is then extended to one-to-window matching,
where each in situ measurement is matched to all the valid pixels
in a window of size 3×3, centered at the in situ location. The
valid pixels correspond to the water leaving Rrs that pass the
quality flags as well as the filtering criterion defined below. The
one-to-window matching can also be considered as a data aug-
mentation technique and it has resulted in improved performance
of the proposed as well as the compared algorithms.

Since the satellite data have already been resampled from
10 and 20 to 60-m resolution, instead of associating the in situ
samples with a mean or median of a window of 3×3 pixels [34],
[38], each Chl-a measurement was matched to the spatially clos-
est pixel [37]. Only water pixels that passed the aforementioned
quality flags were included in the match-up dataset.

The time window between the in situ and satellite data sig-
nificantly affects the size and quality of the match-up dataset.
Allowing a longer time gap produces more match-ups but risk
the reliability of the system due to the dynamic nature of water
body especially in the coastal waters [37]. Considering the
ocean dynamics and the larger training data requirement of ML
algorithms to learn the mapping between Rrs and Chl-a concen-
trations, we have proposed a new match-up selection criterion
based on the spectral distribution of Rrs. After applying the
quality flags, potentially valid pixels are processed to remove the
nonphysical and unrealistic measurements in-terms of spectral
distribution and amplitude that arise due to the time-gap between
the in situ and satellite data or errors in the AC algorithm. The
filtering operation is performed using the shape characteristics
of the spectral distribution. By carefully analyzing the samples,
i.e., the in situ Chl-a and the correspondingRrs spectra, when the
time-gap between the in situ observations and satellite images
is small, we observe that the Rrs spectra corresponds to the
same spectral distribution as reported in previous studies [34],
[64]. The data samples not following the spectral ratio cri-
terion are outliers and therefore removed from the match-up
dataset

{
If Chl-a < 1 mg/m3 then Rrs(λ560nm)

Rrs(λ492nm) < 1

If Chl-a ≥ 1 mg/m3 then Rrs(λ560nm)
Rrs(λ492nm) ≥ 1.

Increasing Chl-a generally result in higher reflectance across the
green and NIR region of the spectrum [7], [44], [45]. CDOM,
on the other hand, tends to reduce the reflectance, especially
below 500 nm [37]. By carefully observing the match-ups, with
an increase in the time-gap (within ±1 day), in some cases, we
observe high reflectance at 492 nm instead at 560 nm despite high
Chl-a concentration, which we consider as outliers. It should be
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Fig. 3. Match-up Rrs spectra of Chl-a concentrations after filtering when (a) Chl-a < 1 and (b) Chl-a ≥ 1. Erroneous Rrs spectra when (c) Chl-a < 1 and (d)
Chl-a ≥ 1. The black curves represent mean concentration of Chl-a. The time-gap between in situ and satellite data is ≤ ±1 day.

TABLE III
OCN MODEL PARAMETERS FOR CHL-A RETRIEVAL

noted that these abnormal Rrs spectra are not due to CDOM;
otherwise, the Rrs spectra, irrespective of Chl-a concentration,
would have shown low reflectance in the blue wavelength mainly
below 500 nm. The observed spectral behavior for Chl-a ≤ 1.0
and Chl-a >1.0 are quite different as shown in Fig. 3(a) and (b).
In Fig. 3(c), it can be seen that the erroneous Rrs spectra (peaks
in the green wavelength) for low concentrations of Chl-a has
almost the same order of magnitude as the Rrs spectra that are
physically correct and included in the match-ups [Fig. 3(b)]. We
also observe that the green or NIR to red band ratios showed no
significant relationship with Chl-a concentrations in match-ups
or outliers. Moreover, Rrs in the NIR band is low compared
to the green band and do not show significant variations. This
means that the Rrs spectra are not effected by suspended solid
matter. These erroneous Rrs spectra may have aroused due to
the time difference between the in situ and satellite data or
uncertainties in the AC algorithm. We experimentally observe

that if these abnormal measurements are not removed from the
training data, all the methods show degraded performance, as
shown in Fig. 4 and Table V (Case iv). The proposed match-up
selection technique makes the remaining set of observations
consistent with the spectral behavior of Chl-a, as reported in the
previous studies [7], [34]. It allows to use a larger time window to
increase the match-up dataset while reducing the adverse effect
caused by the temporal mismatch between the in situ and the
satellite data and errors in the AC algorithm [37].

C. Proposed One-to-Window Match-Up Selection

Instead of associating the in situ samples with a single nearest
pixel in the satellite image, we consider associating it with all
potentially valid Rrs that pass the quality flags in a window of
3×3 pixels, centered at the in situ location. Within the window,
if a pixel is identified as invalid, then the mean of the remaining
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Fig. 4. Performance evaluation of [Chl-a]Zpd retrievals using OCN, C2RCC-net, GPR, band ratios, and OC3 algorithms using one-to-window approach without
applying filtering operation. The total number of test samples are 109. The overall and range-specific performances are included in Table V (Case iv), respectively.

water leavingRrs that pass the quality flags, is used as a replace-
ment of that pixel. Also, if more than one pixels fail to pass the
quality flags then one of them is replaced by the mean of valid
pixels but the remaining pixels are removed from the window
to avoid leakage of data during the training of ML methods.
After that, the filtering operation discussed in the last section is
applied to remove the erroneous spectra. In the remaining text,
the term valid pixels means the Rrs pixels that have passed the
quality flags and the proposed filtering operation discussed in
Sections IV-A and IV-B. The terms invalid and erroneous are
considered as the same.

Matching in situ Chl-a to all valid pixels in a window of
3×3 pixels increases the training and validation samples and
improves the learning performance of ML methods. During
testing, estimating Chl-a over a window may predict different
values depending on the variability in Rrs values. To obtain
final Chl-a value corresponding to the in situ measurement,
fusion is performed by computing median over the predicted
values. Thus our approach results in an increase in the number
of match-ups and have shown improved performance of all the
compared algorithms.

D. Proposed Depth-Integrated Match-Up Creation

In the previous sections, the one-to-one and one-to-window
match-up datasets were created using the surface Chl-a in
situ concentrations. The Chl-a profiles indicate that in most
cases, the water samples collected at certain depths have higher
concentrations of Chl-a than the surface, as illustrated in Fig. 5.
Therefore, in this section, we extend both the one-to-one
and one-to-window match-ups to one-to-one-depth-integrated
and one-to-window-depth-integrated match-ups selection

techniques. Meaning that the depth-integrated-weighted-
averaged Chl-a concentration is first matched to a single
pixel and then to a window of 3×3 pixels as described in the
previous sections. These match-ups were made by computing
depth-integrated-weighted-averaged Chl-a concentrations
which turned out to be more accurate than the surface Chl-a
values in estimating phytoplankton biomass.

To compute the depth-integrated-weighted-averaged-Chl-a
from the Chl-a concentrations measured at discrete depths z,
we have followed the approach developed in Uitz et al. [33]
which is based on the work [65]. Let [Chl-a]Zpd be the Chl-a
concentrations presumably seen by a satellite. It may be com-
puted over the first optical depth Zpd also known as penetration
depth, as follows:

[Chl-a]Zpd =

∫ Zpd

0 C(z)exp(−2kdz)dz∫ Zpd

0 exp(−2kdz)dz
(1)

whereC(z) represents Chl-a concentrations collected at discrete
depths, exp(−2kdz) is an exponentially decreasing function
which assigns higher weight to the surface Chl-a and lower
weights to the samples collected at increasing depths. The
attenuation coefficient of the down-welling solar irradiance is
given by kd = 4.6/Zeu, where Zeu is the euphotic-depth which
may be computed for the open oceans [65]

Zeu = 568.2[Ctot]
−0.746 (2)

where Ctot =
∫ z

0 C(z)dz. We observed that, the penetration
depth Zpd varies from 2.5–17 m with a mean of 7±2.5 m in the
bloom season (April–May), as shown in Fig. 5. In the remaining
months which are less productive (June–October), Zpd varies
from 4–22 m with a mean 9±3.14 m. As illustrated in Fig. 5(a),
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TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED OCN ALGORITHM WITH EXISTING STATE-OF-THE-ART METHODS IN THREE DIFFERENT MATCH-UPS, EACH

ESTIMATING SURFACE CHL-A [CHL-A]SURF AND DEPTH-INTEGRATED CHL-A [CHL-A]Zpd

The best results are shown in bold.

the maxima of Chl-a occurs in the upper column (1–12 m) in the
bloom season and lies within the penetration depth. The Chl-a
concentration deceases in the remaining months, however, the
mean pigment profile almost show a similar trend, as depicted in
Fig. 5(b). Due to the deceased concentrations of Chl-a the mean
penetration depth also shows an increment of 2 m, compared to
the bloom season.

To create depth-integrated Chl-a concentration match-ups, we
first compute [Chl-a]Zpd

using (1). In order to filter out the

outliers and uncertainties in the remotely sensed data we have
proposed conditions based on the Chl-a spectral distributions
in Section III(d). Previously we have used surface Chl-a ([Chl-
a]surf) in these filters, while now we use the depth-integrated
averaged Chl-a, denoted by [Chl-a]Zpd. Following the match-up
selection and the filtering process, 78 matched pairs are finally
selected for the one-to-one scheme and 514 match-ups for
one-to-window settings, which are then used to develop Chl-a
concentration retrieval algorithms.
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TABLE V
PERFORMANCE COMPARISON BETWEEN THE OCN, GPR, OC3, AND SPECTRAL BAND RATIO METHODS IN RETRIEVING [CHL-A]Zpd IN ONE-TO-WINDOW

CONFIGURATION USING FOUR DIFFERENT FILTERING CASES (I-IV) AS DEFINED IN SECTION VI-B

The best results are shown in bold.

Fig. 5. Chl-a profiles plotted as function of geometrical depth for the year 2016–2018 in the Barents Sea (a) April–May (bloom season) and (b) June–October.
The dotted lines represent some examples of Chl-a vertical distribution while the thick black lines represent the averaged Chl-a profiles over the complete dataset.

V. PROPOSED MACHINE LEARNING METHODOLOGY

ANNs have been proven to be efficient tools in studying
nonlinear dynamic systems in various fields, including remote
sensing, medicine, environmental studies, machine vision, and
surveillance [66], [67]. ANNs have previously been used for Chl-
a estimation [30]–[32]; however, to the best of our knowledge,

no thorough study has been conducted to explore the efficiency
of ANNs, in the domain of O monitoring in the Barents sea
and Norwegian Coastal areas. This may be partially due to the
unavailability of match-up datasets for the given area of ob-
servation and uncertainties associated with the remotely sensed
data. In the current work, the architecture of fully connected
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feed-forward MLP is explored for OC monitoring (Table III). It
is applied to different types of match-up datasets discussed in the
last section and compared with the existing state-of-the-art Chl-a
retrieval techniques. In the following subsections, we explain
the proposed OCN and its training process using the match-up
datasets proposed in the last section.

A. Chlorophyll Estimation Using OCN

The proposed OCN model is trained using 10 input features
utilizing the eight bands centered at 443, 492, 560, 665, 704,
740, 782, 865 nm, and the two ratios of green (560 nm) to blue
bands (443 and 492 nm) due to their high sensitivity for changes
in Chl-a concentrations. Each input Rrs feature is normalized
between 0.00 and 1.00 before input to the OCN. The Chl-a con-
tent in mg/m3) is converted into log-scale before using it as target
values, as proposed in the previous studies [8], [37]. It follows
a normal or near-normal distribution and reduces skewness in
the data. There are a number of hyperparameters to tune in this
network, including the number of hidden layers, loss function,
activation function, learning rates, and regularization. These
choices must be carefully opted to get a more accurate output of
the model. In this study, different designs of ANN with various
weight initialization techniques, number of hidden layers, vary-
ing number of neurons in each hidden layer, different activation
functions, regularization techniques, optimization algorithms
with varying learning rate and batch-size were implemented, and
the one with two hidden layers having 25 neurons each and tanh
activation function is found to be the best performer based on
the validation loss. We experimentally observed that the network
with higher number of hidden layers and neurons is effected by
overfitting. After the activation function, the batch normalization
was applied after each hidden layer for regularization [68]. The
output of OCN is a single value of Chl-a, which is fed into the
loss function. The optimization process minimizes the difference
between the estimated and the in situ Chl-a concentrations using
the backpropagation algorithm. The loss function is based on the
root mean square log error (RMSLE) along with �2 norm on the
weights and the biases, w and b

L =

√√√√ 1

N

N∑

i=1

(log10(yi)− log10(ŷi))
2 + λ1�2(W, b) (3)

where ŷi is the predicted and yi is the corresponding ground-
truth value, N is the total number of samples, and λ1 is a
hyperparameter used to assign relative importance to the second
term.

1) Optimization Process: The backpropagation algorithm
uses a minibatch gradient descent method to compute the gradi-
ents (gt) of the cost function w.r.t. to the weights w and biases
b of the network. This algorithm aims to find model weights
and coefficients that minimize the loss over a minibatch during
training. The training parameters are updated using n training
examples (xn, yn) instead of a single example or whole training
dataset. At each time step t the cost function is minimized as
follows:

wt,n = wt−1,n − ηgt,n (4)

where gt,n = ∇wL,∇w is the gradient of the loss function
L defined by (3) which is differentiable w.r.t. weights. The
parameter η is the learning rate which represents the amount
of change induced in the weights during each minibatch iter-
ation. In the current work, Adam optimizer is used for faster
convergence of the model. The batch size is fixed to 64 samples
in all experiments. The initial learning rate η0 was set 0.0075
which decreases by 2% after every 100 epochs. These two
hyperparameters are tuned based on the training and validation
error during the training process. In our model, the weights
and biases were initialized using the Xavier method [69]. An
improvement in the convergence rate and accuracy of the model
was observed by initializing network weights using the Xavier
method.

2) Batch Normalization: Updates in the parameters being
learned in the preceding layers cause a continuous change in
the distribution of inputs to the later layers, which then need
to readjust according to the changed distribution, slowing down
the convergence of the network. In order to avoid the internal
covariance shift, batch-normalization has been applied. This
is achieved by controlling the mean and variance of the input
distributions. This technique reduces the internal covariance
shift between layers, stabilizes, and speeds up the learning
process [68]. The Chl-a performance estimation improved by
>5% after the implementation of batch-normalization. For an
n-dimensional input-batch x = xi...n, the batch normalized is
performed as follows:

x̂i =
xi − E[xi]√

var[xi]
(5)

where xi is a particular input to the layer, x̂i represents the
normalized input, E(xi) is the batch mean, and var(xi) is the
variance of the batch. The output of the layer is then scaled and
shifted

yi = αx̂i + β (6)

where α and β are scaling and shifting parameters which are
learned during the training.

B. Experimental Setup

To evaluate the proposed OCN and the other ML methods,
the match-ups are randomly split into 90% training and 10%
testing samples. Experiments are repeated with tenfold cross-
validation. The training data in each split are further divided into
training and validation (90% and 10%) splits for the one-to-one
configuration and (70% and 30%) for one-to-window match-up
configuration due to higher number of match-ups. Using the
training data only, the proposed OCN model is trained for
5000 epochs. In order to properly tune the hyperparameters and
avoid overfitting, the OCN model with weights and bias terms
having minimum validation loss during the training iterations is
utilized to estimate Chl-a on unseen test data. The OCN model
is developed in tensor flow.

The GPR is implemented in Python using Scikit-learn Ma-
chine Learning Toolkit [70] and is trained using the same training
splits. Radial basis function (RBF) is used with GPR since



5540 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

it performs better than the linear kernel. The kernel hyperpa-
rameters are optimized on the validation split by maximizing
the log-marginal-likelihood (LML) using the limited memory
Broyden–Fletcher–Goldfarb–Shanno algorithm. As the LML
may have multiple local minima, the optimizer is randomly
initialized 10 times, and the best performer is selected. The noise
level in the targets which is a value added to the diagonal of
the kernel matrix during fitting is also fine-tuned. The RMSLE
is computed N times during each cross-validation step and
based on it, alpha is selected for the test split. A significant
improvement in the GPR model is observed after fine-tuning
alpha compared to the default values.

In this work, two versions of the OC3 algorithm are compared,
a globally trained version and a locally trained version, OC3LT .
The OC3LT is trained by combining training and validation
splits, as explained in Appendix A.

C. Performance Indicators

To compare the performance of different methods, a number
of linear and log-transformed metrics are used. These metrics in-
clude the RMSLE, MSLE, MSE, mean absolute log error (MAE)
computed in log-space, bias, and coefficient of determination,
R2. The metrics computed in log-space provide a better assess-
ment of the algorithmic performance as the log-transformed data
follows a normal or near-normal distribution. In addition to the
above metrics, we have also included linear regression slopes to
facilitate comparison between different methods

RMSE =

√√√√ 1

Nt

Nt∑

i=1

((yi)− (ŷi))2 (7)

RMSLE =

√√√√ 1

Nt

Nt∑

i=1

(log10(yi)− log10(ŷi))
2 (8)

MSE =
1

Nt

Nt∑

i=1

((yi)− (ŷi))
2 (9)

MSLE =
1

Nt

Nt∑

i=1

(log10(yi)− log10(ŷi))
2 (10)

Bias = 10
1

Nt

∑Nt
i=1(log10(yi)−log10(ŷi)) (11)

MAE = 10
1

Nt

∑Nt
i=1 | log10(yi)−log10(ŷi)| (12)

R2 = 1−

√∑Nt

i=1(log10(yi)− log10(ŷi))
2

√∑Nt

i=1(log10(yi)− log10(ȳi))
2

(13)

where ŷi is the predicted and yi is the corresponding ground-
truth Chl-a concentration, Nt is the number of test samples, and
ȳi =

1
N

∑N
i=1 yi is the mean Chl-a value in the test dataset. A

bias of 1.5 implies that Chl-a estimations are, on average, 50%
larger than the actual measurements [71].

VI. RESULTS AND DISCUSSION

The performance statistics on Chl-a estimation are com-
puted for three different configurations each including surface
chlorophyll, [Chl-a]surf, and depth-integrated chlorophyll, [Chl-
a]Zpd, estimation. These three configurations include one-to-
one match-ups, one-to-window match-ups, and one-to-median
match-ups. The median Rrs value for each band is computed by
taking median over all the valid pixels in a 3 × 3 window [8],
[34], [38].

A. Performance Evaluation

In most of these experiments, the proposed OCN has consis-
tently shown best performance over all indicators compared to
the band ratio, the modified OC3 [45], OC3LT , and the other
ML methods as illustrated in Table IV.

For the estimation of [Chl-a]surf in one-to-one configuration,
OC3LT has achieved minimum MSE and RMSE (Table IV).
However, the remaining performance indicators, which are in
log scale, indicate that OCN performs better than GPR,OC3LT ,
and band ratio methods. Also, in estimating [Chl-a]Zpd, MSE
and RMSE show that the OC3LT algorithm is the second
best performer; however, the remaining indicators do not show
favorable results for OC3LT . In the one-to-window configura-
tion, the locally trained ML methods, OCN and GPR, are top
performers in estimating both [Chl-a]surf and [Chl-a]Zpd, due to
the increased number of match-ups.

The scatter-plots in Figs. 6 and B.1–B.5 (Appendix B), further
indicate that the globally trained OC3 and C2RCC-net lead
to significant overestimation. It should be noted that in these
methods Chl-a estimation exceeds 25 mg/m3 while the in situ
Chl-a does not exceed 10.81 mg/m3. In contrast, the band ratio
algorithms have shown underestimation. The ML-based models,
OCN and GPR, and the locally trained OC3LT , are the leading
performers in all the configurations. Though, OCN has outper-
formed GPR and OC3LT by significant margin. Furthermore,
the slope between the in situ Chl-a and predicted Chl-a in
log-scale indicates that the relationship is close to unity (>90)
compared with the other empirical and ML-based methods.
In our experiments, the proposed OCN has achieved the best
fit across the entire range of Chl-a concentration. The other
performance indicators as listed in Table IV also show the same
trend .

It should be noted that the performance of most of the com-
pared methods has improved by the proposed depth integration,
compared to the surface Chl-a estimations. For the case of
one-to-one match-ups using OCN, the R2 value increased from
0.579 to 0.65, while MSE decreased from 2.36 to 1.42. For GPR,
the R2 value increased from 0.50 to 0.56, while MSE decreased
from 2.296 to 2.115. A similar trend can be observed in most
of the compared methods that demonstrates the significance of
using the depth integration approach. Also, we observed that
OCN’s performance improvement is more significant than the
other compared methods because of its capability to learn the
nonlinear mapping of Rrs into [Chl-a]Zpd.

Significant enhancement can also be observed in most of
the compared methods by using the proposed one-to-window
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Fig. 6. Performance evaluation of [Chl-a]Zpd retrievals by the one-to-window approach using the OCN, C2RCC-net, GPR, band ratios, and OC3 algorithms.
The total number of test samples are 78.

match-ups configuration. A comparison of one-to-one matchup
with one-to-window match-up depicts a decrease in MSLE of
OCN from 0.070 to 0.025 for [Chl-a]surf. In case of OC3LT ,
MSLE decreased from 0.078 to 0.065. A similar trend can be
observed in most of the other compared methods because the
window approach has leveraged from more data compared to
the one-to-one configuration. The one-to-window approach also
compensates for the location estimation errors between the in
situ measurements and the satellite data. It may also handle
the Chl-a transport due to the time gap between the in situ
measurements and the satellite data to some extent.

The combination of depth integration approach with one-to-
window configuration yields the benefits of both approaches.
In this case, all the compared methods have achieved their best
performance compared to the previous experiments as reported
in Table IV. In this configuration, OCN’s performance with R2

= 0.88, MAE < 28%, and MSLE = 0.018, which is not only
better than its performance in previous configurations but also
better than all of the compared methods. The nearest competitor
GPR has obtainedR2 and MSLE of 0.82 and 0.026. These results
demonstrate that not only the depth integration and the window-
based estimation have individually improved Chl-a estimation
but also their combination yields a more significant performance
boost to all the compared methods. Thus one may conclude that
the proposed improvements are generic and would help enhance
the Chl-a estimation methods.

We have also included an additional configuration in our
experiments: One-to-median match-ups, which has been pre-
viously used in [8], [34], and [38]. We observe that the per-
formance in this configuration is similar to the one-to-one con-
figuration. Compared to the one-to-window configuration, the

one-to-median results are lower both in case of [Chl-a]surf and
[Chl-a]Zpd. These experiments demonstrate that our proposed
window approach is better than the previously used match-up
approaches due to the higher number of training and validation
samples. In case if there is adequate training data, the proposed
one-to-window approach is still expected to perform better than
one-to-one configuration in open ocean waters, however, it needs
to be analyzed on different water types. In the current study we
have observed that the erroneousRrs spectra with in a window of
3 × 3 pixels are due to higher time-gaps between the in situ and
satellite data and ambiguities in the Rrs product in the blue and
green bands caused by uncertainties in the AC [37]. However, in
highly dynamic inland and coastal waters, where large temporal
and spatial variability in Chl-a concentrations may exist [45],
the window approach is recommended with modified filtering
criterion, for example [36], so that the realistic Rrs spectra are
not filtered.

B. Analyzing the Filtering Criterion

To further explore the filtering criterion discussed in Sec-
tion IV-B, we have changed the ratio threshold and computed
the performance indicators for the comparison between the
compared methods. We experimentally observe that in many
cases when Chl-a content is <1 mg/m3, the Rrs spectrum peaks
at the blue wavelength ant it tends to shift toward the green region
of spectrum for Chl-a concentration 1 mg/m3. However, in some
cases peak of Rrs spectra may vary from this observation when
Chl-a ranges from 1–1.5 mg/m3. Therefore, in Table V, we have
made a comparison between different methods by varying the
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Fig. 7. MSI-derived Chl-a products estimated using OCN, C2RCC-net, OC3, Ratio-1 and Ratio-2 algorithms for near-coincident overpasses of Sentinel-2 A on
May 5th, 2017.The marked location (circle) represents in situ measurement of Chl-a, and reported as as 4.27 mg/m3).

threshold in Section IV-B. The four different cases are shown
below:

Case i{
If Chl-a < 1.25 mg/m3 then Rrs(λ560nm)

Rrs(λ492nm) < 1.25

If Chl-a ≥ 1.25 mg/m3 then Rrs(λ560nm)
Rrs(λ492nm) ≥ 1.25

Case ii{
If Chl-a < 1.5 mg/m3 then Rrs(λ560nm)

Rrs(λ492nm) < 1.5

If Chl-a ≥ 1.5 mg/m3 then Rrs(λ560nm)
Rrs(λ492nm) ≥ 1.5

Case iii{
If Chl-a < 1.5 mg/m3 then Rrs(λ560nm)

Rrs(λ492nm) < 1.5

If Chl-a ≥ 1 mg/m3 then Rrs(λ560nm)
Rrs(λ492nm) ≥ 1

Case iv
{ No Filtering .

As evidenced by Table V, the performance of all the methods,
including OCN, degrades after changing the filtering threshold;
however, OCN degrades more gracefully compared to other
methods and maintains its top position. It may be noted that in
Case iv, without filtering, the performance of all methods have
observed maximum degradation, for example, R2 reduces from
0.88 to 0.51 in OCN. In Case i –Case iii, the size of match-ups
increases by varying the threshold; however, a gradual decrease
has been seen in the performance of all compared methods.
For OCN, the MSLE and RMSE increased from 0.018 and
0.134 (Table IV) to 0.023 and 0.150 in Case i (Table V). Most

performance indicators show almost the same results in Case
i and Case ii. However, an increment of 38% and 18% is seen
in the RMSLE and MSLE in Case iiiwhich indicate degraded
performance in this experiment. These experiments confirm the
effectiveness of the proposed threshold of 1.00 in the filtering
criterion in Section IV-B.

C. Spatial Maps

To confirm the reliability of the OCN model, the proposed
approach is demonstrated for producing Chl-a maps in the Bar-
ents Sea. The Sentinel-2 A TOA Rrs images were compensated
for atmospheric effects using C2RCC-net. For demonstration
purposes, visual intercomparisons of Chl-a maps produced by
OCN are done with the maps retrieved via C2RCC-net, band
ratio methods, and OC3.

Fig. 7 illustrates MSI-derived Chl-a products in the bloom
season on May 5th, 2017 generated from the nearest avail-
able cloud-free observation made by Sentinel-2 A to the in
situ measurement. All the algorithms have captured the spatial
variability of Chl-a, however, they provide different Chl-a re-
trievals. For example, OCN produces Chl-a products ranging
from 0.3 to 7 mg/m3, whereas, C2RCC-net and OC3 have
overestimated Chl-a, and the band-ratio algorithms estimation
does not exceed 3 mg/m3. The in situ measurement at the
marked location has reported Chl-a = 4.27 mg/m3. Amongst
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Fig. 8. MSI-derived Chl-a products estimated using OCN, C2RCC-net, OC3, Ratio-1 and Ratio-2 algorithms for near-coincident overpasses of Sentinel-2B on
April 5th, 2018. The marked locations (circle and triangle) represents in situ measurements reported as 4.9 and 6.14 mg/m3). The pixels with no-data and flagged
as Cloudy are represented by white color. The TOA MSI image was processed to Rrs using C2RCC-net.

the mentioned algorithms, OCN estimates are closest to the in
situ concentration reported as 3.48 mg/m3 followed by OC3,
where estimated Chl-a = 3.02 mg/m3. The band ratio-1 and
ratio-2 algorithms retrieval is underestimated and indicated by
1.62 and 1.15 mg/m3. The C2RCC-net also underestimates by
400% and reports 1.02 mg/m3.

Besides, we examine the performance of the proposed OCN
on another Sentinel-2B observation generated on April 5th,
2018, in the bloom season, as shown in Fig. 8. From the OCN
map, it can be inferred that the proposed model has accurately
captured the fine details and abrupt changes in Chl-a distribution.
It can be seen that the OCN model successfully produces Chl-a
products ranging from 1 to 14 mg/m3. The estimated Chl-a
content by C2RCC-net and OC3 exceeds 30 mg/m3, which is
significantly above the in situ observations, indicating overesti-
mation of Chl-a concentrations. The two band-ratio algorithms
underestimate the Chl-a concentrations, where the maximum
estimated Chl-a is <5 mg/m3. The Chl-a product produced
by the OCN model within the Chl-a ≤ 14 mg/m3) range and
shows a better correlation with the in situ Chl-a concentration.
For example, the in situ observations of Chl-a reported as 4.9
and 6.14 mg/m3 at the marked locations, are closely estimated
by OCN, i.e., 4.74 and 4.89 mg/m3 and OC3, i.e., 4.72 and
7.57 mg/m3, respectively. The OCN and OC3 estimates are quite
close to each other, however, OCN predictions are slightly better.

While these are underestimated by C2RCC-net and band-ratio
algorithms. The C2RCC-net predicts 1.41 and 5.64 and the
band-ratio algorithms estimates are quite close to each other.
The ratio-1 estimates 1.64 and 1.97 and the ratio-2 estimates
1.31 and 1.53 mg/m3. These experiments demonstrate that the
OCN model has generated reliable Chl-a products.

D. Limitations of the Proposed Approach

The performance of an ML-based model depends on the repre-
sentativeness of the training dataset. The proposed OCN model
is regionally tuned for the Barents Sea. Compared to other Chl-a
datasets collected in lakes, inland, and coastal waters [8], [72]
covering different water types, the current dataset is limited to
Chl-a measurements from the Barents Sea and some region of the
Norwegian Sea. Like other ML algorithms, the accuracy of OCN
depends on the distribution and uncertainties in the field data.
In addition, considering the revisit time of Sentinel-2 MSI and
cloud coverage in the high north, our current match-up dataset
does not contain adequate training samples from the coastal
areas of Svalbard region. However, the training dataset may
be extended by using the Landsat-8 and Sentinel-2 MSI virtual
constellation product which can achieve improved coverage with
reduced revisit time [73].
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The proposed one-to-window match-up approach has signifi-
cantly improved the estimation of OCN, however, if the variation
of Rrs within a window is large, it may adversely effect the
learning and the estimation process. To handle this issue, we have
restrained the window size to 3 × 3 pixels in our experiments.

The proposed match-up criterion is based on the C2RCC
derived Rrs. The performance of the proposed algorithm in
estimating Chl-a is effected by the uncertainties in the AC
process [8]. Although we experimentally proved that the pro-
posed filtering and window approaches have improved the per-
formance of OCN and the compared algorithms in open ocean
waters, the uncertainties shown in Table IV indicate the need
for further improvement in OCN estimation performance. This
may be achieved by extending the dataset and simultaneously
estimating other in-water parameters such as total suspended
matter (TSM) and color dissolved organic matter (CDOM).
Learning simultaneous mapping of Rrs to these quantities will
improve Chl-a estimation and will further straighten the pro-
posed filtering approach.

VII. CONCLUSION AND FUTURE WORK

This work aims at improving the estimation of phytoplank-
ton biomass using optical remote sensing integrated with ML
techniques over the lately changing Barents Sea. In situ Chl-a
measurements were collected from the year 2016 to 2018 over
a wide area of the Barents Sea and Norwegian Coast. Different
match-up dataset creation methods are proposed that exploit the
pigment content information at surface as well as within the pro-
ductive column. Surface and depth-integrated Chl-a concentra-
tions are matched with the nearest pixel/window in the satellite
image. A filtering criterion based on Rrs spectral distribution is
also proposed that allows a larger time-gap between in situ and
satellite observations and removes outliers.

A NN dubbed as OCN is applied to the inverse problem
of estimating Chl-a from Rrs extracted from C2RCC-net for
Sentinel-2 (MSI) observations. Using the coincident in situ and
Rrs observations, the proposed OCN model is trained, validated,
and compared against state-of-the-art approaches, including lo-
cally trained GPR and OC3LT , globally trained C2RCC, and
the empirical methods OC3 and spectral band ratios. Our exper-
iments demonstrate that the proposed OCN is a promising Chl-a
retrieval method, and it has performed favorably compared to
the existing state-of-the-art methods. The blue and green bands
are found more sensitive compared to the red and NIR bands for
predicting Chl-a in the Barents Sea. The proposed match-up
dataset creation algorithm is generic and it has significantly
improved the performance of the OCN and other compared
techniques. The R-score and R2 between in situ measurements
and the estimated Chl-a using the proposed OCN are highest
while the MSE and RMSE are the lowest among the compared
methods. Moreover, the proposed OCN model exhibits the best
performance in different match-ups configurations.

The obtained results demonstrate the potential of the proposed
approach in producing reliable Chl-a products. As evidenced
through the spatial maps, the proposed OCN produces more
realistic Chl-a map products by accurately capturing the fine

details and abrupt changes in Chl-a distribution. Future direc-
tions include validation and expansion of OCN on Rrs products
by various AC algorithms from different satellites as well as
collection of in situ Chl-a data, including the in situ Rrs from
the northern Barents Sea in the marginal ice zone. Moreover,
the in situ Chl-a dataset will also be extended through collabo-
ration with IMR, Norway. The OCN implementation will also
be extended to simultaneously estimate other various in-water
parameters of interest, such as TSM and CDOM.
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APPENDIX A

The OC3LT Chl-a retrieval algorithm [45] is given by (A.1).
The value of x is configured with respect to the MSI sensor

x = log10[(max[Rrs(443), Rrs(493)]) ∗Rrs(560)
−1]

y = a0 + a1x+ a2x
2 + a3x

3 + a4x
4

OC3LT = 10y. (A.1)

The values of coefficients of the polynomial expression are
computed by minimization of sum of Least Error Squares for
each split (k-fold) using the training data only

Y = Xa

a = (XTX)−1XTY.

The globally trained OC3 Chl-a retrieval algorithm [45] is
given by (A.1). The coefficients are adopted from the previous
study [8]

y = 0.3308− 2.6684x+ 1.599x2 + 0.5525x3 − 1.4876x4

OC3 = 10y.

APPENDIX B

This section contain results using different settings discussed
in Section IV.
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Fig. B.1. Performance evaluation of surface Chl-a retrievals using OCN, C2RCC-net, GPR, band ratios, and OC3 algorithms using one-to-one (central pixel)
configuration. The total number of test samples are 52. The overall and range-specific performances are included in Table IV, respectively.

Fig. B.2. Performance evaluation of [Chl-a]Zpd retrievals using OCN, C2RCC-net, GPR, band ratios, and OC3 algorithms using one-to-one (central pixel)
configuration. The total number of test samples are 53.
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Fig. B.3. Performance evaluation of surface Chl-a retrievals using OCN, C2RCC-net, GPR, band ratios, and OC3 algorithms using one-to-one (median of
3×3 pixels) configuration. The total number of test samples are 59.

Fig. B.4. Performance evaluation of [Chl-a]Zpd retrievals using OCN, C2RCC-net, GPR, band ratios, and OC3 algorithms using one-to-one ((median of
3×3 pixels) configuration. The number of test samples are 62.
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Fig. B.5. Performance evaluation of surface Chl-a retrievals using OCN, C2RCC-net, GPR, band ratios, and OC3 algorithms using one-to-window approach.
The number of test samples are 75.
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Spectral harmonization of Landsat-8 and
Sentinel-2 remote sensing reflectance products

for mapping Chlorophyll-a and CDOM in coastal
and inland waters

Muhammad Asim, Atsushi Matsuoka, Sidrah Hafeez, Torbjørn Eltoft, Member IEEE, and Katalin Blix

Abstract—Combining data products from Sentinel-2 Multi-
spectral Imager (MSI) and Landsat-8 Operational Land Im-
ager (OLI) can provide an excellent opportunity to improve
the temporal resolution of time series, increase match-ups
with in-situ observations, and thus improve the monitoring
of water quality over coastal and inland waters. The current
study aims to harmonize OLI and MSI aquatic remote sensing
reflectance (ρw ) products in order to obtain more match-ups
(OLI and MSI combined) and, as a result, better optimize the
regression models to accurately retrieve Chlorophyll-a (Chl-a)
and color dissolved organic matter (CDOM) concentrations in
global coastal, and inland waters. To harmonize OLI-MSI ρw
products, first, we evaluate the performance of atmospheric
correction (AC) models such as Acolite, Polymer, C2RCC, OC-
SMART, and ICOR against the in-situ ρw . Results suggest that
the OC-SMART-derived ρw products are in good agreement
with in-situ observations with a median absolute percentage
difference (MAPD) < 30% across all the visible bands of OLI
and MSI. To spectrally merge OLI and MSI, we apply a new
machine learning(ML)-based bandpass adjustment (BA) model
[1] to near-simultaneous OLI and MSI images acquired in the
year 2021. We demonstrate that after BA, the averaged spectral
differences are significantly reduced from 21% to < 5% in the
common bands of OLI and MSI. The weights and bias terms
optimized during the transformation from MSI to OLI-derived
ρw are then used to BA MSI-derived ρw products. The OLI
and BA MSI (MSI∗)-derived ρw products are then combined in
a single dataset for training and validation of the Chl-a and
CDOM retrieval algorithms including the previously developed
ocean color net (OCN) [2], Gaussian Process Regression (GPR)
and the three-band ratio based algorithm (OC3). Chl-a retrievals
indicate that using the proposed OLI-MSI∗ρw data improved
the performance of the OCN by 41%, GPR by 21% and the OC3
by 27% in terms of mean absolute error compared to the OLI
ρw data. Similarly, all the algorithms yielded a reduced root
mean square difference in CDOM retrievals using the purposed
OLI-MSI∗ data.

Index Terms—Ocean Color, Spectral harmonization, Band
adjustment, Machine Learning, Water quality.

I. INTRODUCTION

RELIABLE estimation of global water quality indicators
(WQIs) products plays a critical role in understanding

the dynamic nature of aquatic ecosystems. Due to climate

M. Asim, K. Blix, T. Eltoft are with the Department of Physics and
Technology, UiT The Arctic University of Norway (UiT), Tromsø, Norway,
e-mails: {muhammad.asim, camilla.brekke, torbjørn.eltoft}@uit.no.

A. Matsuoka is with the Institute for the Study of Earth, Oceans, and
Space, University of New Hampshire, Durham, NH, 03824, USA, e-mail:
{atsushi.matsuoka}@unh.edu.

change and ever-increasing human activities, coastal and
inland waters are facing significant changes [3]. These
alterations are evident in the form of periodic occurrences
of harmful algal blooms (HABs) that pose major threats
to global water security [4]. Therefore, effective and con-
tinuous monitoring of these natural resources is of sig-
nificant importance to ensuring the environmental health
and sustainability of aquatic ecosystems [5]. Traditional
point-based or section-based sampling methods of mon-
itoring these resources are expensive and time-consuming.
Alternatively, remote sensing techniques can be used to
monitor the WQ from space. However, due to the dynamic
nature of aquatic systems especially, inland and coastal
waters, where high spatial and temporal variability may
exists in concentrations of in-water constituents such as
Chlorophyll-a (Chl-a), remote sensing of these optically
complicated water resources require frequent observations
(e.g., daily) at a high spatial resolution [5], [6].

Most of the existing ocean color (OC) satellites with
high temporal resolution have a coarse spatial resolution
of ≥ 300 m, not suitable for detecting fine features in
natural waters, especially in small lakes, rivers, and inland
waters [7], [8]. Contrarily, high spatial resolution satellite
sensors, such as the Operational Land Imager (OLI) on-
board Landsat-8/9 with a spatial resolution of 30 m and
the Multispectral Imager (MSI) aboard Sentinel-2A/2B with
10-20-60 m spatial resolution, have considerable potential
for monitoring optically significant water quality indicators
(WQIs) with more spatial-detailed information not feasible
with other OC satellites. These sensors, however, have low-
frequency revisit times of 16 and 5 days. In addition,
frequent cloud coverage may mask the desired information
which further reduces the frequency of OC observations.
Thus, the longer revisit time makes them insufficient for
near-daily monitoring of water surface [7]. The similar
band design of OLI and MSI sensors makes it possible
to combine their imagery with a global median average
revisit interval of ∼2.9 days at a spatial resolution of 10-60 m
[9]. Considering cloud coverage, such frequent revisit times
are essential to capture the biogeochemical variations in
dynamic coastal and inland waters [5]. This work is focused
on harmonizing OLI and MSI radiometric data to increase
the frequency of OC observations, increase the number of
training examples, and, hence, improve the performance of
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WQ retrieval algorithms.
Several studies have demonstrated the utility of these

sensors for WQ monitoring utilizing OLI or MSI images
alone [2], [10]–[13], but quite a few have used combined
OLI-MSI data products for a similar application [4], [5],
[9], [14]–[19]. Using combined OLI-MSI imagery, the lit-
erature studies can be classified into two categories, i)
comparing the performance of OLI and MSI in retrieving
optically significant WQIs [4], [14], [15] and ii) evaluating the
consistency in OLI-MSI derived data products to generate
harmonized OLI-MSI products [5], [9], [16]–[19]. The studies
found in the first category have evaluated the performance
of OLI and MSI-derived remote sensing reflectance (Rr s ) or
aquatic remote sensing reflectance (r how ) individually in
estimating WQIs, whereas the latter demonstrate the utility
of these sensors for improved temporal coverage by their
combined use.

In the first category, Watanabe et al. evaluated the perfor-
mance of OLI and MSI sensors using empirical algorithms
for retrieving Chl-a concentrations in a hyper-eutrophic
reservoir in Brazil [14]. Due to the presence of additional
NIR bands in MSI, they achieved better results compared
to OLI. A machine learning (ML)-based algorithm, Mixture
Density Network (MDN), was demonstrated to outperform
band ratio algorithms in retrieving Chl-a using images from
different sensors acquired over inland and coastal waters
around the globe [4]. Similarly, with a goal of producing
consistent multi-mission global WQIs, the authors in [15]
demonstrated the effectiveness of MDN for simultaneous
retrieval of Chl-a, color dissolved organic matter (CDOM)
and total suspended matter (TSM) from the OLI, MSI,
and Sentinel-3 Ocean and Land Colour Instrument (OLCI)
images.

In the second category, Kuhn et al. examined the in-
fluence of uncertainties in atmospheric correction (AC) on
the performance of standard bio-optical algorithms for Chl-
a and turbidity from OLI and MSI images [18]. Similarly,
Page et al. used MSI and OLI images for mapping water
clarity in several optically variable lake systems around
the USA [16]. They concluded that the uncertainties in
AC play a crucial role in the data consistency between
these sensors. Chen et al. reported good consistency in
estimating dissolved organic carbon (DOC) concentrations
from OLI and MSI using empirical methods based on the
band ratio of red and green bands. Their results illustrate
that the combined use of these sensors can improve the
OC observation frequency. OLI-MSI time series data were
used for several terrestrial-monitoring applications in [9].
Similarly, Pahlavan et al. evaluated the spectral consistency
between near-simultaneous OLI-MSI derived downstream
OC products [5]. They concluded that OLI-MSI Rr s prod-
ucts are consistent within 6% and emphasized generating
seamless data products record from combined OLI and MSI
images.

In the aforementioned studies, researchers have either
retrieved the WQIs from OLI and MSI-derived ρw prod-
ucts alone or compared their respective data products
from near-simultaneous OLI-MSI images. In regards to

harmonized OLI-MSI data products, despite their high data
consistency reported in previous studies [1], [5], [20], as
per our knowledge, no effort has been made on demon-
strating the suitability of combined OLI-MSI ρw data for
the simultaneous retrieval of downstream data products
such as Chl-a and CDOM. As per our knowledge, this study
is the first attempt to develop a single model based on
neural networks (NNs) to estimate WQIs from combined
MSI and OLI imagery. Combining OLI-MSI ρw products into
a single dataset increases the number of training examples
and improves the optimization of the retrieval models. The
WQIs considered in this study include Chl-a, a proxy for
phytoplankton biomass, and CDOM, measured as CDOM
absorption at 440 nm (acdom(440)).

OC remote sensing algorithms require robust AC for
the accurate retrieval of WQIs [21]. While AC schemes for
water applications have existed for decades, yet they are
not perfect. Currently, there is no AC algorithm that can
generate seamless estimates of WQIs from OLI and MSI im-
ages [4]. Although Landsat-8 OLI and Sentinel-2 MSI have
similar band designs, they are not strictly identical. These
sensors have a different spatial resolution, the field of view,
spectral bandwidth, and spectral response functions (SRFs)
[6], [22]. In addition, different illumination and acquisition
conditions as well as variations in the atmospheric condi-
tions further increase the differences in the atmospherically
corrected OLI-MSI ρw products. These differences in ρw

estimates lead to inconsistencies in downstream products
such as Chl-a and CDOM [23]. Therefore, AC plays a critical
role in the combined use of these sensors.

To account for the differences in the atmospherically
corrected OLI-MSI derived ρw products, most of the studies
have either used linear regression and least squares regres-
sion models for spectral bandpass adjustment [6], [7], [20],
[22]. Some studies have evaluated the spectral differences
between their respective ρw products without validating
against the in-situ ρw data [20], [24]–[27]. Lack of validation
against the ground truth leads to uncertainties in satellite-
derived ρw estimates, which in turn affect the retrieval of
WQIs [28].

Different from the previous studies, the present study
combined the OLI and MSI data into a single dataset using a
three-step approach: i) we evaluate the performance of five
state-of-the-art AC models, C2RCC [29], Acolite [30], Poly-
mer [31], ICOR validated in [28] and OC-SMART [32] against
above water in-situ ρw observations. The aforementioned
step ensures realistic ρw estimates from satellite images for
the study sites, ii) the top-performing AC scheme was then
selected to estimate ρw products from near-simultaneous
OLI and MSI images. Instead of fitting the transformation
coefficients of a linear regression model, we applied the
ML-based bandpass adjustment (BA) model proposed in
[1] for spectral alignment of OLI-MSI ρw products for Arctic
waters , iii) the wights and bias terms optimized during the
transformation of MSI-derived ρw to that of OLI-derived
ρw products were applied to the MSI-ρw products. This
step transforms MSI-ρw data to the spectral domain of
OLI and serves as the correction factor for merging OLI-
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MSI w products. After integration of OLI-ρw and MSI∗ρw

products, the OCN model [2] was trained to estimate
Chl-a and CDOM concentrations from combined OLI-MSI
dataset. As per our knowledge, no such study has been
conducted to estimate Chl-a and CDOM from combined
OLI-MSI∗ images using a single retrieval model for different
aquatic environments. A flowchart of the work is shown in
Fig. 1.

The major contributions of the present study are as
follow.

• Performance evaluation of five state-of-the-art AC
methods against in-situ ρw using OLI and MSI images
acquired over different optical regimes.

• We evaluate the performance of the BA model de-
veloped for Arctic waters in [1] for merging OLI and
MSI ρw data products over different optically complex
water types.

• We evaluate the performance of different WQ retrieval
algorithms for estimating Chl-a and CDOM from OLI-
ρw and MSI∗ρw data.

This paper is organized as follows: Section II presents
information on the material and satellite data acquisitions.
Section III is devoted to the main methodology, the pro-
posed spectral BA method, whereas the experimental results
are discussed in section IV. Finally, conclusions are drawn
in section V.

II. DATA AND PRE-PROCESSING

A. Satellite data

In this study, imagery from Operational Land Imager
(OLI) onboard Landsat-8 (L8) satellite and Multispectral
Instrument (MSI) onboard Sentinel-2 A/B is used in three
major experiments, as illustrated in Fig. 1. i) comparison
of atmospherically corrected OLI-MSI ρ products with in-
situ observations (match-ups; see Section III-B for de-
tails); ii) spectral harmonization of OLI-MSI data (inter-
comparisons; see Section III-C for details); and iii) optimiza-
tion of the WQ retrieval algorithms using the same match-
up dataset described in Section III-B. Note that the OLI-MSI
match-ups (matching in-situ data to satellite-derived data)
obtained in Section III-B are used for the estimation of Chl-
a and CDOM.

B. In-situ data

1) Radiometric observations: The in-situ radiometric
measurements were acquired in a various water types,
from oceanic to very turbid and absorbing environments
from the year 2011 to 2017 (see Fig. 2). The measurement
protocols and quality control procedures to collect the
radiometric data are documented in [33]. Briefly, the in-
situ data were collected using a compact optical profiling
system (C-OPS) [34]. The optical data and all profiles in
inland waters (the majority of the data) were measured
using the Compact-Propulsion Option for profiling Sys-
tems (C-PrOPS) accessory in conjunction with the C-OPS
hydrobaric buoyancy system. In total, 25 field campaigns

were conducted, spanning the years 2013–2017, covering
318 stations with at least three consecutive castings at each
station [33], [35].

The radiometric quantity utilized in this study is the in-
situ aquatic reflectance (ρw ) defined as:

ρw (z,λ) =π× Lu(z,λ)

Ed (z,λ)
=π×Rr s (1)

where Lu(z,λ) and Ed (z,λ) represent the up-welling radi-
ance and downwelling irradiance measured simultaneously
at 19 wavebands between 320 and 875 nm. Here, z and λ

represent depth and wavelength respectively. More details
are listed in [35].

2) Chl-a and CDOM: Along with the radiometric ob-
servations, the Chl-a (mg m3) and the CDOM absorption
coefficient (acdom(λ), m−1) from near water surface were
also obtained simultaneously. Duplicate or triplicate water
samples were collected at each station as explained in
detail by [33]. The Chl-a data were obtained systemati-
cally using the high-performance liquid chromatography
(HPLC) method following SeaHARRE protocols ( [36]). The
acdom(440) measurements were estimated with a spec-
trophotometer or UltraPathliquid waveguide [33].

III. METHODS

A. AC methods

The total received signal at TOA received by satellite
sensor (Lt ) can be partitioned linearly into contributions
from different radiometric components [37].

Lt = Lr (λ)+La(λ)+Lr a(λ)+ tLw (λ) (2)

These components include Lr which represents Rayleigh
scattering by air molecules in the absence of aerosols, La is
the radiance from the result of scattering due to aerosols in
the absence of air molecules, Lr a is the interaction between
molecules and aerosols, t is diffuse transmission; and Lw is
the water leaving radiance which can be converted in ρw

using methodology defined in [38].
The purpose of AC is to accurately retrieve ρw from Lt .

Once accurately retrieved, ρw can be mapped into WQIs
using the retrieval models [39].

In this study we have evaluated the performance of five
state-of-the-art AC processors, i.e., C2RCC v1.0 [29], Poly-
mer v4.13 [31], Acolite python version version 20211124.0
[30], [40], ICOR validated in [28] and OC-SMART [32] for
comparison of satellite derived ρw with in-situ ρw obser-
vations (section III-B). Several studies have used these AC
schemes for processing OLI and MSI imagery and achieved
reasonable success over different water types [3], [18], [28],
[41], [42]. Yet their performances have not been evaluated
for spectral harmonization of OLI-MSI ρw products and
estimation of WQI using the harmonized ρw products.
Notably, despite years of study in the field of OC remote
sensing, there is yet no optimal AC approach that can
provide seamless Chl-a from these sensors.

Note that, in this study, bidirectional water correction was
applied to in-situ and satellite-derived ρw data retrieved
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Fig. 1: Flow chart of the proposed methodology. a) Acquisition of OLI-MSI scenes corresponding to in-situ data (match-
ups). Validation of AC schemes against the in-situ ρw . b) The AC scheme in agreement with in-situ ρw is selected to
process near-simultaneous OLI-MSI images acquired at TOA with the spatially overlapping regions of interest. The MSI
ρw products are bandpass adjusted to that of OLI ρw products. c) The optimized weights and biases, W and B , during
step (b) serve as a correction factor to transform MSI-derived ρw to that of OLI-derived ρw . d) The match-up dataset
(in-situ WQIs and OLI-MSI∗ρw products) are used to train the OCN model. The trained OCN model is then demonstrated
to map OLI and MSI∗ρw products to concentrations of Chl-a and CDOM.

Fig. 2: Geographic locations of the sampling stations [35].
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via Polymer, OC-SMART, and C2RCC. The present versions
of the Acolite DSF and ICOR schemes do not correct for
bidirectional effects.

B. Match-up selection

For match-up selection, matching in-situ data products
with satellite-derived products, we permitted a time window
of ±3 hours for coastal waters [28] and same-day overpasses
(both OLI and MSI) for inland waters [3], [15], [28], of the
in-situ observations. Note that these match-ups were used
to validate the performance of AC followed by the retrieval
of WQIs (see section III-D).

The ρw data were computed over a 3×3 pixels window
centered around the in-situ location [39]. A median ρw

estimate that passed the quality flags of the AC scheme was
used as a match-up value. To remove the pixels affected by
cloud cover, land, and sun glint, we used AC pixel quality
flags in their default settings. The ρw pixels within the
window were discarded if pixel values were ≥ 1 or negative
at any wavelength [3]. In addition, a window was excluded if
the number of non-masked ρw pixels were < 5 or coefficient
of variation (CV) > 0.15 [39].

As each individual AC scheme has different masking
criteria, after matching in-situ ρw measurements with
satellite-derived ρw data, we extracted 25 match-up pixels
for Acolite, 26 for C2RCC, 47 for Polymer, 40 for OC-SMART
and 34 for ICOR, respectively. Note that a large portion of
our in-situ observations were collected from narrow lakes
and nearshore coastal waters, making it challenging to ob-
tain enough match-ups. More than half of the overlapping
satellite images, both OLI and MSI were discarded due to
high adjacency due to land and sun-glint.

C. Spectral harmonization of OLI-MSI ρw

This section is dedicated to the spectral harmonization of
OLI-MSI ρw products. In the following section, we explain
the criteria for inter-comparisons, followed by BA of MSI-
derived ρw products to combine OLI and MSI-ρw products
into a single match-up dataset that will be used to tune the
retrieval models to estimate Chl-a and CDOM in section
III-D. Note that, as illustrated in Fig. 1, the main purpose
of spectral harmonization (the transformation of MSI into
OLI-derived ρw ) is to optimize the weights and bias terms
of the BA model (see Fig. 1 (c)) on a larger dataset to
transform MSI-ρw data into those of OLI.

1) Inter-comparisons selection: For the OLI and MSI
inter-comparisons, we permit a time difference of ±30
minutes with low to no cloud cover. In addition, scenes with
low aerosol loading are considered in this study. Limiting
the spectral inter-comparisons to ±30 minutes difference
ensures similar atmospheric and aquatic conditions, while
low aerosol loading indicates near-ideal environmental
conditions. Under these conditions, discrepancies in data
products can, to a large extent, be attributed to differences
in the absolute radiometric responses of OLI and MSI [5].
Our analysis covers different environmental and aquatic

conditions, covering both bloom and non-bloom conditions
in open oceanic, coastal, and inland waters.

The n-SNO overpasses were selected automatically using
the metadata files, allowing a time difference of ±30 mins
between the overpasses with low or no cloud cover. To
ensure low aerosol loading, spectral pixels were excluded
from inter-comparison if the median value over the OC-
SMART estimated aerosol optical thickness (AOT) product,
i.e., AOT-550 in a window of 6×6 and 3×3 pixels for OLI
and MSI images, exceeds 0.5. A median ρw value over non-
masked 6×6 and 3×3 pixels window was estimated from
30m OLI, and 60m re-sampled MSI images respectively,
to eliminate outliers and artifacts from our analysis [1]. To
ensure spatial homogeneity, ρw window was excluded from
inter-comparisons if the CV across the window (OLI or MSI)
was greater than 50%. Note that our dataset covers different
water types, oceanic or highly absorbing waters, therefore,
we did not apply any restriction of the magnitude of ρw

values. However, to avoid over-correction by AC processors,
the negative ρw retrievals across the window were excluded.
Similar to studies [5], [6], we have considered the common
bands in both sensors, i.e., coastal aerosol, blue, green, and
red bands. In the absence of global in-situ data for valida-
tion of remotely sensed data products, one of the sensors
has to be considered a reference for performance evaluation
[25]. Due to the improved radiometric calibration [43] and
high signal-to-noise ratio (SNR) of OLI [44], in this study the
OLI-derived ρw products are considered as the reference to
adjust MSI-derived ρw products [6].

2) MSI reflectance adjustment: The MSI-derived ρw are
adjusted to that of OLI using the BA model proposed in
[2] for Arctic waters. Briefly, the BA model is based on NNs
and tuned to transform MSI-derived ρw products to that of
OLI-derived ρw products. The transformation from MSI to
OLI-derived ρw products is done pixel by pixel. The tuned
weight and bias terms obtained during the training process
are then used to adjust MSI-derived ρw data (see Fig. 1 (c)).
The architecture and experimental setup for validating the
BA model are detailed in [1]. Briefly, the inter-comparisons
were randomly split into 80% training and 20% test data
using 5-fold cross-validation.

D. Water constituent retrieval

1) Retrieval models: For the estimation of Chl-a and
CDOM, in this study, we have compared the performance of
two sets of algorithms, namely the ML and band ratio-based
algorithms. In the ML-based models, we have employed
the recently developed OCN [2] based on NNs and the
Gaussian process Regression (GPR) [10], [45]. Note that
the OC-SMART does not retrieve ρw in the NIR band,
therefore, we have only used the type-1 OC algorithm (OC3)
[46] that utilizes the visible bands for retrievals) for Chl-a
retrievals. Type-II algorithms (that require both visible and
NIR bands) are only applicable for Chl-a retrievals from
MSI matchups. Due to the small number of MSI match-
ups (N=10), we have used the bands common in OLI and
MSI. For CDOM retrievals, we have implemented the band
ratio-based exponential algorithm proposed in [47].
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2) Chl-a and CDOM match-ups with satellite data:
The performance of these algorithms is evaluated in three
different settings, i.e., the algorithms are trained and tested
on Chl-a and CDOM match-ups with i) OLI ρw products
alone (setting I), ii) combined OLI-MSI ρw (setting II) and
ii) combined OLI-MSI∗ρw (setting III).

3) Experimental setup: The match-ups were randomly
divided into 90% training and 10% test samples using 10-
fold cross-validation in order to assess the performance of
the OCN. Each split’s training samples were further split
into training (80%) and validation (20%) samples. The OCN
model was trained for 3000 epochs in each split using
the training data only. In order to prevent over-fitting and
better tuning of the hyper-parameters, during the training
phase, the OCN model with weights and bias terms with
a minimum validation error was used to estimate Chl-a
and CDOM on the unseen data. The GPR and band ratio-
based models are trained and validated using the same
samples. More details about optimizing the parameters of
the GPR model are provided in [2], [45]. The band ratio-
based algorithms for Chl-a (OC3) and CDOM (exponential
model) retrievals were locally tuned by combining training
and validation splits. The formulations for the retrieval
algorithms are provided in Appendix A.

4) Evaluation Metrics: We used the median absolute
percentage difference (MAPD), the median relative percent-
age difference (MRPD), the root mean square difference
(RMSD), the root mean square difference in log scale (RM-
SLD), and the coefficient of determination (R2 ) to compute
the differences between the in-situ and OLI-MSI derived ρw

or WQIS. The evaluation metrics are represented by Eqs.(3),
(4),(5), (6), and (7), respectively.

M APD = 100%×medi an

( |Xi −Yi |
|Yi |

)
(3)

MRPD = 100%×medi an

(
Xi −Yi

Yi

)
(4)

RMSD =

√√√√ 1

Nt

Nt∑
i=1

(Xi −Yi )2 (5)

RMSLD =

√√√√ 1

Nt

Nt∑
i=1

(
log10(Xi )− log10(Yi )

)2 (6)

R2 = 1−

√∑Nt
i=1(Yi −Xi )2

√∑Nt
i=1(Yi − X̄ )2

(7)

where Xi represents satellite derived ρw (section IV-A),
MSI derived ρw products (sections IV-B) or estimated Chl-
a or CDOM concentrations (sections IV-C). Yi represents
in-situ ρw , Chl-a and CDOM, or OLI-derived ρw products
(IV-B). Here, Nt , indicates the number of test samples.

IV. RESULTS AND DISCUSSION

A. Match-up analysis

This section validates the performance of Acolite, C2RCC,
ICOR, Polymer, and OC-SMART against the in-situ ρw .
The performance analysis of AC processors is described in
two settings: i) performance evaluation of each processor
individually against the in-situ ρw using all the valid match-
ups; ii) an assessment of common valid match-ups between
processors. The latter offers a fair performance evaluation
using identical match-ups (valid water pixels), while the
former assesses their practicality, including the masking of
non-water pixels and erroneous non-water pixels.

The scatter plots in Fig. 3 and the statistical metrics in
Table. I provide a straightforward and qualitative assess-
ment of individual performance for combined OLI and MSI
data. Our analysis illustrates that all the processors have
shown band-dependent performance. For instance, Polymer
with MAPD=13.9% performed better in the blue band, while
Acolite in the green band with MAPD=10.5% and OC-
SMART with MAPD=13.8% in the red band. All the AC
processors have yielded over/underestimated ρw products
in the coastal aerosol band with MAPD > 28%. Overall, all
the processors have exhibited superior performance in the
green and red bands and worse in the coastal aerosol band.
This may be partially attributed to the higher signal level
in the green and red region of the ρw spectrum for the
majority of our data.

Although the AC processors yield different numbers of
match-ups (see Table. I), similarities and differences among
the AC processors can further be highlighted. For instance,
C2RCC, Polymer, ICOR, OC-SMART (except in the red band)
have underestimated the ρw products, whereas, Acolite has
shown positive bias irrespective of the wavelength. In the
443 nm band, Acolite overestimate (MRPD=22%); whereas,
C2RCC, Polymer and OC-SMART have underestimated the
ρw products. The highest negative bias is observed in the
C2RCC estimates with MRPD=-20% while the minimum is
in Polymer estimates, followed by ICOR. Similar distribu-
tions appear to exhibit in the 492 nm band; however, all the
processors have shown improved performances compared
to the 443 nm band except ICOR. In the green band, con-
siderable improvement is observed in the estimates of all
the processors. Acolite exhibits top performance with MAPD
and RMSLD of 10.5% and 0.10 sr−1, which is the minimum
error reported for our dataset. In the 665 nm band, OC-
SMART estimates have minimum difference from the in-
situ observations followed by ICOR. Acolite overestimates
with an MRPD=42.9%; almost all the estimates are above
the 1:1 line. C2RCC underestimate the high ρw values (∼>
0.025) with the highest RMSLD=0.60 sr−1 reported in our
dataset. Compared to the other bands, Polymer has shown
worse performance in the red band with MAPD> 35%;
whereas ICOR retrievals have shown minimum error with
MAPD=21.8%.

Overall, individual performance evaluation of the five
AC processors shows that OC-SMART is the top performer
with MAPD < 30% across all the visible bands. To answer
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Fig. 3: Overall performance comparison of AC processors using inland and lakes match-ups with MSI and OLI data
combined. Detailed statistical metrics and the number of match-ups per processor are reported in Table. I. The solid
black lines are the 1:1 match.

whether the AC schemes meet the currently defined 30%
threshold requirements (Global Climate Observing System;
GCOS [28]) across all the bands, it is noticeable that among
the five AC schemes validated in this study, only OC-SMART
appears to meet the < 30% retrieval accuracy across the
four visible bands. The number of match-ups (N=40) is
also considered adequate compared to C2RCC, Acolite, and
ICOR (see Table. I).

Using the common match-ups between the AC proces-
sors, on average no significant differences are observed and
our discussion remains the same as using all valid match-
ups. For example, the averaged MAPD remains the same for
OC-SMART and Polymer and <2% increase for Polymer. The
RMSLD reduces by 14% for OC-SMART, 19% for Polymer;
however, raised by 12% for ICOR retrieved ρw data.

B. Spectral bandpass adjustment for ρw

Our results in section IV-A indicate that the ρw products
retrieved via OC-SMART are in good agreement with the

in-situ observations compared to the other AC algorithms.
Therefore, the near-simultaneous OLI and MSI TOA images
were processed via OC-SMART to estimate ρw products,
also called inter-comparisons (section III-C ). As mentioned
in section I, the primary objective of this study is to
harmonize OLI-MSI ρw products to increase the number
of match-ups to better tune the retrieval models. The
relationships between the OLI and MSI-derived ρw prod-
ucts retrieved via OC-SMART are shown in Fig. 4 (a1-a4).
Whereas, the regression plots between OLI-ρw and the band
adjusted MSI-ρw products (MSI∗ρw ) using OLS regression,
and the proposed BA model, in the common visible bands,
are shown in Fig. 4.

From 30 concurrent OLI and MSI observations selected
over the study region, 4040 inter-comparisons were created
after the filtering criteria described in section III-C.

The average differences in ρw products retrieved via OC-
SMART (without spectral BA) are estimated to range from
13 to ∼ 35% (Table. II). Visual inspection of the scatter
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TABLE I: Performance comparison associated with match-ups acquired over inland and coastal waters for each processor.

Bands N RMSD (10−2) RMSLD MAPD MRPD
All match-ups

443 nm Acolite 25 0.93 0.20 32.2 22.1
492 nm Acolite 25 0.83 0.14 18.8 0.60
560 nm Acolite 25 0.92 0.10 10.5 2.1
665 nm Acolite 25 0.90 0.23 42.9 42.9
443 nm C2RCC 26 0.73 0.41 42.2 -20.1
492 nm C2RCC 26 0.88 0.397 29.3 -18.1
560 nm C2RCC 26 1.72 0.43 22.1 -19.2
665 nm C2RCC 26 2.06 0.60 49.1 -26.7
443 nm Polymer 47 0.81 0.28 30.9 -6.0
492 nm Polymer 47 0.74 0.21 13.9 -6.1
560 nm Polymer 47 1.09 0.19 25.4 -14.5
665 nm Polymer 47 0.79 0.40 35.1 -7.8
443 nm OC-SMART 40 1.03 0.33 28.9 -14.0
492 nm OC-SMART 40 1.15 0.278 20.3 -20.3
560 nm OC-SMART 40 0.89 0.13 21.5 -13.3
665 nm OC-SMART 40 0.70 0.18 13.8 8.6
443 nm ICOR 34 1.21 0.241 37.2 -7.1
492 nm ICOR 34 1.16 0.30 36.2 -18.9
560 nm ICOR 34 1.13 0.26 23.2 -8.9
665 nm ICOR 34 0.87 0.51 21.8 -5.9

Common match-ups
443 nm OC-SMART 26 0.98 0.29 26.72 -13.6
492 nm OC-SMART 26 0.91 0.19 25.3 -17.3
560 nm OC-SMART 26 0.08 0.14 21.8 -15.5
665 nm OC-SMART 26 0.72 0.17 12.1 7.3
443 nm Polymer 26 0.90 0.22 30.9 -28.8
492 nm Polymer 26 0.80 0.17 18.3 -13.2
560 nm Polymer 26 0.17 0.15 25.42 -20.4
665 nm Polymer 26 0.32 0.33 31.3 -7.3
443 nm ICOR 26 1.3 0.26 38.4 -0.6
492 nm ICOR 26 1.2 0.23 36.9 -16.4
560 nm ICOR 26 1.1 0.29 21.5 -8.4
665 nm ICOR 26 1.05 0.66 30.7 2.2

TABLE II: Inter-comparison of OLI-MSI ρw products for N=4040 pixel pairs.

Method RMSD (10−3 sr−1) RMSLD MAPD MRPD R2 Slope
Coastal aerosol (443 nm)

Proposed NN 1.95 0.055 7.266 0.9 0.949 1.001
OLS 3.72 0.07 10.878 -0.6 0.815 0.884
No Bandpass Adjustment 3.40 0.248 20.066 -11.154 0.844 0.784

Blue (482 nm)
Proposed NN 1.73 0.044 3.76 -1.009 0.972 1.017
OLS 4.76 0.052 4.951 -1.244 0.788 0.822
No Bandpass Adjustment 3.90 0.171 13.732 6.274 0.857 0.753

Green (561 nm)
Proposed NN 2.70 0.031 3.658 -0.818 0.985 1.018
OLS 7.09 0.096 14.301 -6.296 0.897 0.893
No Bandpass Adjustment 5.94 0.15 18.372 -17.276 0.928 1.134

Red (665 nm)
Proposed NN 2.75 0.057 7.646 0.079 0.981 1.004
OLS 3.29-03 0.094 14.356 -1.832 0.973 0.972
No Bandpass Adjustment 10.02 0.199 35.298 -35.284 0.752 1.521

plots in Fig. 4 (a1-a4) and the distributions of OLI-MSI
ρw products (Fig. 5) illustrate that MSI underestimates at
all wavebands except in the blue band. However, besides
over/underestimation, both sensors show either uni or
multi-modal distribution in all the bands, as shown in
Fig. 5. For instance, in the green band, a bi-modal distri-
bution is observed where the histograms are comparatively
more aligned especially for the first peak (lower values of
ρw ).

Comparing all the evaluation metrics, the minimum
spectral difference between the reflectance products is

achieved in the ρw (561 nm) products with RMSLD=0.15
and R2 =∼ 0.93%. The MAPD is higher than the ρw (482 nm);
however, comparable to ρw (443 nm) products. The highest
bias is observed in the ρw (665 nm) products with MRPD of
∼−35% and RMSLD=0.199. The worst performance in the
red band is likely due to the optical diversity of our dataset;
i.e., coastal and inland waters. In addition, it is partially due
to the minimum percentage of overlap in the SRF and larger
difference in the central wavelengths in the red band [48],
which also contributes to the higher bias.

After applying the proposed spectral BA, the average
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spectral difference was significantly reduced from < 21% to
< 6%. The histograms are much more aligned, demonstrat-
ing the effectiveness of the proposed approach (Fig. 5 (c1-
c4)). For instance, in the ρw (483 nm) products, significant
improvement is achieved in the alignment of the three
density curves compared to the linear adjustment (see
Fig. 5(c2)). The OLS method has improved the alignment in
the first peak; however, significant differences are observed
in the second and third peak positions (see Fig. 5(c2)).
Considering RMSLD and MAPD as performance measures
in Table. II, on average, the proposed BA approach reduced
the MAPD and RMSLD by ∼ 15% and ∼ 76%, compared
to the ∼ 11% and ∼ 59% improvement caused by OLS
regression model. The highest improvement is achieved in
the ρw (665 nm) products by the NN method, with 72%
reduction in the RMSD. Overall, our results indicate that
the proposed BA model has caused significant improvement
in the spectral consistency with %15 increase in the R2

score. As illustrated in Table. II, the spectral differences are
reduced in all the bands.

The average difference of MAPD=21% in the OLI-MSI
ρw products could be due to several factors including
the optical complexity of water (lakes and coastal areas),
adjacency effect from the neighboring pixels especially in
the smaller lakes, inaccurate removal of sky reflectance
or differences between the estimated optical depth (AOD)
between OLI and MSI [3], [28]. The difference between OLI-
MSI aod-560 and Chl-a products is illustrated in Fig. 6.
The differences in OLI-MSI aod-560 products may be due
to a change in atmospheric conditions such as aerosol
loads within the short (±30minutes) time-difference, while
the differences in OLI-MSI Chl-a products are likely to be
attributed to the differences in their respective aod-560 and
ρw products.

C. Estimation of biogeochemical variables

In this section, we have compared the performance
of OCN in the estimation of Chl-a and CDOM with an
ML-based model, GPR, and band ratio-based (OC3 for
Chl-a and exponential model for CDOM). A summary of
algorithms performances in terms of retrieval errors is
illustrated in Table. III and Table. IV.

1) Chl-a retrievals: Considering the Chl-a retrievals, us-
ing only OLI-ρw data (setting I), Table. III and scat-
ter plots in Fig. 7 (a1-a4) show that, all the algorithms
exhibit high bias. For instance, the RMSD> 2sr−1 and
R2 < 0.7 illustrating their degraded performance using OLI-
ρw match-ups only. Comparing all the evaluation met-
rics, the highest uncertainties are obtained in the OC-
SMART retrievals with MAPD=68.7% and MAE=138% show-
ing high over/underestimating of Chl-a content. The ML-
based algorithms, the OCN, and GPR retrievals also exhibit
high errors with MAE=73 and 78% illustrating significant
over/underestimation of Chl-a values. The degraded per-
formance of all the algorithms in setting I (using only OLI
math-ups) is may be due to the limited amount of training
data.

In setting II (using OLI-MSI ρw data), all the algorithms
are found to return more accurate products with RMSD<
1.2sr−1 and R2 > 0.78 (excluding OC-SMART). Comparing
all the evaluation metrics in Table. III and scatter plots in
Fig. 7 (b1-b4), the OCN has outperformed the ML and band
ratio-based algorithms with R2 ∼= 0.9 and MAE=42%. The
obtained results show that the combined OLI-MSI ρw data
have resulted in better training and optimization of the
retrieval algorithms.

In setting III (OLI-MSI∗ρw data), both GPR and OCN
achieved improved performances, for instance, the MAE is
reduced by 9% and 21% illustrating a decrease in the degree
of over/underestimation of Chl-a estimates (see Fig. 7 (c1-
c3)). The improved performances using OLI-MSI∗ρw data
are due to the spectral alignment of OLI-MSI ρw products.
In contrarily, no significant differences are observed in OC3
retrievals.

2) CDOM retrievals: Using only OLI-ρw data (setting I),
similar to Chl-a retrievals, the ML-based algorithms have
outperformed the band ratio-based model in estimating
CDOM. Table. IV and scatter plots in Fig. 8 (a1) and (a3)
illustrate that the OCN and GPR results are close to each
other. In setting II, a significant reduction in RMSD (50%
for GPR and 15% for band ratio) algorithms is observed.
In addition, R2 also shows considerable improvement, es-
pecially for the band ratio algorithm (increased from 0.58
to 0.77). However, significant overestimation is observed in
band ratio-based algorithm retrievals and data is spread
above the central line (see Fig. 8(b2) ). Comparing all the
evaluation metrics, the best results are obtained by using
combined OLI − MSI∗ρw data. The RMSD and RMSLD
are minimum and R2 is close to 1. Comparing the three
settings, the OCN and GPR are top performers in CDOM
retrievals.

It is noted that in all settings, the ML-based algorithms
have outperformed the band ratio-based models in esti-
mating in-water quantities illustrating their superior per-
formance in optically complex waters. A shown in Fig. 8
(c1-c3), the best results are obtained using the combined
OLI-MSI∗ρw match-ups which further encourage to use of
harmonized MSI and OLI data products.

D. Visual comparison of OLI-MSI∗ Chl-a and CDOM prod-
ucts

To further elaborate on the consistent retrieval of Chl-a
and CDOM using combined OLI and MSI∗ρw data, we have
used additional OLI and MSI image pairs that were not
included in the training of the BA model (Section III-C).
Fig. 9 shows the near-simultaneous OLI and MSI images
acquired on March 3, 2021, over the Green Salt Lake in the
US.

Fig. 10 illustrates the Chl-a and CDOM products retrieved
from OLI-ρw , MSI-ρw , and MSI∗ρw products shown in
Fig. 9. It can be seen that the spatial details and vari-
ations are preserved in the Chl-a and CDOM products
estimated from MSI∗ρw products with a decrease in the
difference between the pixel values. For example, Chl-a
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a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

Fig. 4: Inter-comparison of OLI-MSI ρw products in the common visible bands before spectral BA (a1-a4), and after
spectral BA using OLS regression (b1-b4) and the proposed BA model (c1-c4). Detailed statistical metrics are available in
Table. II.

products retrieved from MSI are higher in values than OLI
especially away from the coast. After bandpass adjustment,
the differences are significantly reduced. The Chl-a values
estimated from OLI and MSI∗ρw are below 5 mg/m3 away
from the shore. Nearshore, both OLI and MSI-derived Chl-a
products indicate higher values, which are retained in the
MSI∗ derived Chl-a products with a slight reduction.

Similarly, CDOM products retrieved from MSI-ρw are
higher in magnitude especially near shore compared to OLI.
Away from the shore, OLI-derived Chl-a products are higher
in magnitude than MSI. These differences are reduced
significantly in the MSI∗ derived Chl-a products.

The Chl-a and CDOM products are retrieved from ρw

products.Therefore, the consistency between OLI and MSI-
drived CDOM and Chl-a products are dependent on the
similarities and differences in their perspective ρw prod-
ucts. To further investigate the improvement in consistency
in OLI and MSI∗-derived Chl-a and CDOM products illus-
trated in Fig. 10, we have shown the ρw products retrieved
from OLI, MSI, and MSI∗ side by side in Fig. 9. The
differences between OLI and MSI-derived ρw products in
common bands are highlighted by ellipses. These discrep-
ancies are minimized after BA of MSI-derived products as
illustrated by the ellipses.

V. CONCLUSION AND FUTURE WORK

In this paper, we made an effort to retrieve Chl-a and
CDOM from combined Sentinel-2 MSI and Landsat-8 OLI
ρw products over global coastal and inland waters.

To achieve our objective, we processed Landsat-8 and
Sentinel-2 level-1 imagery via Acolite (DSF), C2RCC, ICOR,
OC-SMART and Polymer for atmospheric correction. The
atmospherically corrected ρw products were then com-
pared with the in-situ ρw measurements. Our analysis
demonstrates that overall, all the processors have degraded
performance in the coastal aerosol band center at 443nm
with MAPD ranges from 28 (OC-SMART) to 42% (C2RCC).
In the blue band, Polymer retrieved ρw products were
found in close agreement with in-situ ρw data followed
by OC-SMART. Acolite was top performer in the green
band with MAPD < 11% and REMSD=0.0092 sr−1 whereas,
the remaining AC processes underestimated the ρw values.
Comparatively, OC-SMART was found to be more reliable
in the red band with a MAPD=13.8% compared to 21 to
42 % errors in the retrieval of other AC schemes. Overall,
OC-SMART showed the minimum deviation from the ins-
situ ρw observations with MAPD < 30% across the visible
bands, indicating consistent performance over different
water types.

To generate harmonized ρw products from OLI and
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a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

Fig. 5: Distribution of of OLI-MSI ρw products before adjustment (a1-a4), and after adjustment using OLS regression
(b1-b4) and proposed BA model (c1-c4) in the common visible bands.

a1 b1

Fig. 6: Inter-comparison of a) AOD and b) Chl-a products for OLI and MSI estimated from OC-SMART.

TABLE III: Performance comparison between OCN, GPR, OC-SMART and OC3 in estimating Ch-a in three different
settings.

Method RMSD sr−1) RMSLD MAPD MRPD R2 MAE
setting I

Proposed NN 2.0539 0.3005 47.7834 1.2044 0.6783 1.7302
GPR 2.3974 0.3861 23.574 -1.226 0.469 1.7863
OC-SMART 2.45 0.439 68.77 -2.61 0.31 2.3813
OC3 2.3371 0.33324 49.438 -7.619 0.604691 1.8059

setting II
Proposed NN 0.7661 0.2147 26.66 -2.636 0.8951 1.4196
GPR 1.07255 0.29949 24.5182 -1.6029 0.7959 1.5728
OC-SMART 2.19 0.49 69.09 -0.911 0.42 2.54
OC3 1.1667 0.2635 24.456 -4.985 0.842 1.5373

setting III
Proposed NN 1.539 0.2054 10.7673 2.6292 0.9040 1.3265
GPR 1.74470 0.21841 13.33 -1.05 0.8915 1.3645
OC3 1.20594 0.289 28.168 -3.5849 0.809 1.6323
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a1 a1 a3 a4

b1 b2 b3 b4

c1 c2 c3

Fig. 7: Estimated Chl-a from OCx, GPR, OCN and OC-SMART using OLI (a1-a4), combined OLI-MSI (b1-b4) and combined
OLI-MSI∗ρw data (c1-c3).

MSI images for seamless retrieval of WQI, we processed
Landsat-8 and Sentinel-2 level-1 imaginary via OC-SMART
for atmospheric correction. Our results indicate that the ρw

products processed via OC-SMART are estimated to range
from 13 to 35% in the common visible bands. Landsat-
8 OLI-derived ρw products are higher in magnitude than
that of Sentinel-2 MSI-derived ρw products. The highest
bias is found in the ρw (665 nm) products with MAPD=
∼ 5%. The minimum spectral difference is achieved in the
blue band with MAPD and RMSD of 13% and 3.9× 10−3.
To merge OLI and MSI-derived ρw products for retrieval
of Chl-a and CDOM, an NN-based BA model is applied
for spectral alignment of OLI-MSI ρw products in the
common visible bands. After applying the NN-based BA
model, the spectral difference were found in the range
from 3 to < 8%, indicating relatively consistent products for
real-world Landsat-8 and Sentinel-2 imagery. The weights
and bias terms optimized during the transformation of
near-simultaneous MSI images to that of OLI images were
applied to MSI-derived ρw data.

The OLI and MSI-derived ρw data were then used in
three different settings to train and validate the perfor-
mance of retrieval models in estimating Chl-a and CDOM.
Our results show that using OLI data only, high bias is found

in the Chl-a estimates by all the algorithms. Using the OLI-
MSI dataset, considerable improvement was observed in all
the methods. For instance, MAE was reduced by 32% for
OCN, 20% for GRP and 27% for OC3. The MAE was further
reduced by 8% and 21% for OCN and GPR after using OLI-
MSI∗ data. Similarly, improved performances were observed
in CDOM estimation using OLI-MSI∗ data.The RMSD was
reduced by 9% for OCN, 62% for GPR, and 15% for the band
ratio-based algorithm.

Overall, our results indicate that using combined OLI
and MSI∗ data, remarkable improvement was observed in
the estimation of WQIs. Our approach to integrating real
word imagery of MSI-OLI demonstrates that MSI is an
ideal candidate to augment Landsat-8 for water monitoring
applications. The combined products will not only fill the
data gaps in future scientific applications but also beneficial
for Landsat data continuity [22]. However, as the results
are strongly dependent on the performance of AC, caution
should be used in the selection and optimization of the
AC algorithm. In addition, the additional NIR bands in MSI
which have been proven beneficial for Chl-a retrievals in
highly turbid waters, there must be a compromise in the
combined use of these sensors [5], [25]. For example, MSI-
derived WQIs can be produced independent of OLI over
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TABLE IV: Performance comparison between OCN, GPR, OC-SMART and band-ratio based method in estimating CDOM
in three different settings.

Method RMSD sr−1) RMSLD MAPD MRPD R2 MAE
setting I

Proposed NN 0.369 0.278 19.315 -6.0244 0.834 1.4337
GPR 0.872 0.3241 7.9697 1.484 0.7751 1.444
Band Ratio 0.5768 0.4418 53.231 1.934 0.5822 2.2490

setting II
Proposed NN 0.36684 0.2450 21.51 3.937 0.915 1.4534
GPR 0.440 0.352 13.291 0.84254 0.824 1.4335
Band Ratio 0.4983 0.3967 45.3911 -10.2 0.777 2.0792

setting III
Proposed NN 0.33531 0.2236 30.364 9.627 0.9292 1.4337
GPR 0.32949 0.2717 9.739 0.3007 0.89550 1.3208
Band Ratio 0.486548 0.39377 53.011 -10.2 0.780 2.0397

a1 a2 a3

b1 b2 b3

c1 c2 c3

Fig. 8: Estimated CDOM concentrations from GPR, band-ratio algorithm, and OCN using OLI (a1-a3), combined OLI-MSI
(b1-b3) and combined OLI-MSI∗ρw data (c1-c3) .
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Fig. 9: Comparison between near-simultaneous OLI-ρw , MSI-ρw and MSI∗ρw products. The ρw products from OLI and
MSI images are derived via OC-SMART for the common bands. The areas indicated by ellipses show differences in OLI
and MSI-derived ρw values. These differences are minimized after applying the proposed BA model. The OLI-ρw , MSI-ρw

and MSI∗ρw products are used in Fig. 10 to derive Chla and CDOM maps.
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Fig. 10: Comparison between Chl-a and CDOM maps derived from OLI, MSI and MSI∗.

highly turbid waters while the combined MSI and OLI data
can be used for moderately turbid waters.

Future directions include exploiting virtual constella-
tions for different water types from mesotrophic to hyper-
eutrophic waters. In addition, we intend to demonstrate
the capabilities of combining Landsat-8, Landsat-9, and
Sentinel-2 imagery for the estimation of Inherent op-
tical properties for continuous monitor the biogeochemical
changes occurring at a smaller spatial scale especially.

APPENDIX A

The OC3 Chl-a retrieval algorithm [46] is given by
Eq. (A.1). The value of x is configured with respect to both
OLI and MSI bands (B).

x = log10[(max[Rr s (B1),Rr s (B2)])∗Rr s (B3)−1] (A.1)

y = a0 +a1x +a2x2 +a3x3 +a4x4

OC 3LT = 10y

The values of coefficients of the polynomial expression
are computed by minimization of sum of Least Error
Squares for each split (k-fold) using the training data only.
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Y = X a
a = (X T X )−1X T Y

The CDOM retrieval algorithm [47] is given by Eq. (A.2).
The value of x is configured with respect to both OLI and
MSI bands (B).

x = Rr s (B3)/Rr s (B4)

aC DOM (440) = aebx (A.2)

The parameters a and b are tuned by fitting a polynomial
function to data using the polyfit function in Python.
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10
Conclusions
The main study area of this thesis is the Barents Sea, which is the northernmost
shelf sea in the world and supports 40% of its total primary productivity.
The Barents Sea is home to Norway’s most lucrative fishing industry and
is also an important region due to its reserves of petroleum and natural
gas. As a result of ongoing climate changes, the Barents Sea is experiencing
significant changes in its ecosystem function and net primary productivity.
Optical satellite sensors can be used to monitor these changes. However, it is
frequently coveredwith clouds and experiences polar nights in thewinter,which
hinders the application of OC remote sensing. This thesis proposes and analyzes
novel remote sensing methods to increase the frequency of high-resolution OC
observations allowing for better monitoring of ecosystem function and the
biogeochemical changes occurring in the Barents Sea. It presents novel, robust
OC methods, and algorithms to better estimate WQIs from remotely sensed
optical data compared to those in the literature. The algorithms presented
in this thesis are globally applicable and validated in different water types.
To achieve an increased frequency of high-resolution OC observations, we
combined data from the Landsat 8 OLI and the Sentinel 2A/B MSI sensors, by
developing a spectral harmonization method to allow for a consistent retrieval
of Chl-a and CDOM products from OLI and MSI-derived 𝑅𝑟𝑠 using a single
algorithm.

The Chl-a data used in this study was provided by the Norwegian Institute
of Marine Research (IMR). The data was collected over a wide area of the
Barents Sea and the Norwegian coast between the years 2016 and 2018 as part
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of the IMR Ecosystem Program. Different match-up dataset creation methods
were investigated for the retrieval of Chl-a from remotely sensed data. Our
analysis indicates that depth-integrated Chl-a is more sensitive to satellite-
derived 𝑅𝑟𝑠 products for the Barents Sea. To better tune the regression models,
a new spatial window-based match-up dataset creation method was proposed
to increase the number of match-ups. We demonstrated that the proposed
match-up creation scheme has improved the performance of the Chl-a retrieval
algorithms. In addition to that, an NN-basedmodel, the OCNwas also proposed.
Our results indicate that the proposed OCN produced realistic Chl-a products
in the study region compared to existing ML-based techniques, including the
GPR, the regionally tuned empirical techniques, including the OCx algorithm
and the spectral band ratios, as well as the globally trained C2RCC-nets. The
proposedmodelwas also validated on global inland, coastal and openwaters for
estimating Chl-a and CDOM concentrations using OLI and MSI images.

To find the top-performing AC processor for the Barents Sea, we collected ship-
based above-water𝑅𝑟𝑠 measurements using TRIOS RAMSES sensors, covering a
large part of the Barents Sea which has not been explored before. We compared
sentinel-2A/B and Landsat-8 derived𝑅𝑟𝑠 processed through Acolite, C2RCC,OC-
SMART, ICOR and Polymer against the in-situ 𝑅𝑟𝑠 , both in open ocean and the
coastal regions of the Barents Sea. Our analysis demonstrates that the Acolite
retrived 𝑅𝑟𝑠 are in good agreement with the in-situ 𝑅𝑟𝑠 observations, especially
in the blue-green bands. The MAPD was found < 14% compared to ∼ 23% and
∼ 25% using C2RCC and Polymer. The present version of OC-SMART masked
both OLI and MSI scenes at land pixels at latitudes > 75𝑁 ◦, therefor those
results are not included in this thesis. Similarly, ICOR was originally developed
for coastal waters, failed to estimate AOT from the match-up scenes (both OLI
and MSI) and was therefore not included in the AC analysis for the Barents Sea
region. Over global waters, OC-SMART showed the minimum deviation from
in-situ observations, with MAPD < 30% across the visible bands, indicating
consistent performance over different water types.

ML-based algorithms have previously been widely used for WQ retrieval, how-
ever, the ML-based algorithms need an extensive amount of training examples.
In this thesis, we attempt to harmonize OLI and MSI images to increase the
frequency of OC observations and, hence, increase the satellite match-ups
with in-situ observations to better tune the regression models. To do this, we
evaluated the spectral consistency between near-simultaneous OLI and MSI
overpasses with a time difference of less than 30 minutes in terms of TOA
reflectance (𝜌𝑡 ), and 𝑅𝑟𝑠 over the Barents Sea region. Our analysis suggests
that 𝜌𝑡 products of OLI and MSI are consistent in the visible as well as in the
NIR channel (< 4%). However, significant differences were observed in OLI-
MSI 𝑅𝑟𝑠 products retrieved via Acolite, C2RCC, and Polymer. Results indicate
that, OLI-MSI 𝑅𝑟𝑠 products via Acolite outperformed other methods and are
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estimated to range from 8 to 15% in the common visible bands. To further
minimize the spectral differences in the 𝑅𝑟𝑠 products, an NN-based model was
developed to spectrally adjust the S2-A/B radiometry to replicate the spectral
bandpasses of OLI for the common bands. After applying the proposed BA
model, the spectral difference was significantly reduced from <10% to 2% (rel-
ative to 6-12% without any spectral adjustment), indicating the effectiveness
of the BA for MSI imagery.

In Paper III, we harmonize OLI and MSI aquatic reflectance (𝜌𝑤) products
using the proposed BA model to acquire more match-ups (OLI and BA MSI
(MSI∗) combined), and hence better tune the retrieval models. The combined
OLI and MSI∗ 𝜌𝑤 products were combined in a single dataset and used for
training and validation of the Chl-a and CDOM retrieval algorithms, including
the OCN, GPR, and band ratio-based models. The performance of WQ retrieval
models was evaluated in three different settings, i) using OLI data alone, ii)
combined OLI-MSI data and iii) using combined OLI and MSI∗ data. The Chl-a
retrieval analysis indicates that using the proposed OLI-MSI∗ data, improved
the performance of the OCN by 41%, GPR by 21% and OCx by 27% in terms
of mean absolute error compared to the OLI match-ups. Similarly, all the
algorithms yielded a reduced root mean square difference in CDOM retrievals
using the purposed OLI-MSI∗ data. In addition, we demonstrated that the BA
model proposed in Paper II is generic and applicable to global waters. Our
results show that after BA, the averaged spectral difference was significantly
reduced from 21% to <5% in the common bands of OLI and MSI.

10.1 Future Work

In this work, five state-of-the-art AC processors, Acolite, Polymer, C2RCC, OC-
SMART, and ICOR are validated against the in-situ 𝑅𝑟𝑠 observations. Future
directions include validation of remaining AC processors, such as SeaDAS and
MEETC2 [27], in order to derive an AC approach suitable for the Barents Sea. In
Paper II, we evaluated the performance of AC processors using four MSI images;
however, more field campaigns are required to increase the number of match-
up scenes for a thorough performance comparison. Our AC validation results
in Papers II and III demonstrate that research in this area is highly relevant
and more effort is required to reduce uncertainties in the downstream data
products, such as IOPs and water constituents. In this thesis, the performance
of these processors is evaluated in terms of spectral consistency in the 𝑅𝑟𝑠
products between OLI and MSI only. Future research should compare the
spectral consistency of 𝑅𝑟𝑠 products derived from MSI-OLCI and MSI-Landsat-
9.
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For the Barents Sea, only Chl-a data was collected to train the OCN model. To
investigate the source of error in the retrieval of WQ indicators, other WQIs,
CDOM,and TSM, should be collected simultaneously alongwith the radiometric
data. The OCN implementation should be extended to simultaneously estimate
other WQIs, such as TSM and CDOM. Additionally, it is important to investigate
the correlation between optically active (such as Chl-a, CDOM, and TSM) and
non-optically active water components, as well as the use of OCN to extract
these in-active water constituents utilizing 𝑅𝑟𝑠 , WQIs as input features.

In this work, we have proposed an MLP-based model for spectral alignment
of OLI-MSI 𝑅𝑟𝑠 products. The MLP considers each pixel individually and does
not utilize the spatial relationship between the pixels in an image. In addition,
the entire image is vectorized, treating it as one long feature vector, thereby
retaining some spatial relations. However, this limits its applicability to small-
sized images. Future work will include exploring the capability of CNNs in
spectral harmonization of data products from multi-sensor missions. This may
reduce the dependency of a network on the performance of AC algorithms. In
addition, in Paper II and Paper III, we performed patch-wise training of the
BA model. The inter-comparison OLI-MSI pixels were randomly split into 80%
training samples and 20% test samples using 5-fold cross-validation. Future
work should explore image-based training and testing of the BA model, i.e.,
the BA will be trained and tested on inter-comparison OLI-MSI images instead
of patches.
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