22 research outputs found

    Arbitrary topology meshes in geometric design and vector graphics

    Get PDF
    Meshes are a powerful means to represent objects and shapes both in 2D and 3D, but the techniques based on meshes can only be used in certain regular settings and restrict their usage. Meshes with an arbitrary topology have many interesting applications in geometric design and (vector) graphics, and can give designers more freedom in designing complex objects. In the first part of the thesis we look at how these meshes can be used in computer aided design to represent objects that consist of multiple regular meshes that are constructed together. Then we extend the B-spline surface technique from the regular setting to work on extraordinary regions in meshes so that multisided B-spline patches are created. In addition, we show how to render multisided objects efficiently, through using the GPU and tessellation. In the second part of the thesis we look at how the gradient mesh vector graphics primitives can be combined with procedural noise functions to create expressive but sparsely defined vector graphic images. We also look at how the gradient mesh can be extended to arbitrary topology variants. Here, we compare existing work with two new formulations of a polygonal gradient mesh. Finally we show how we can turn any image into a vector graphics image in an efficient manner. This vectorisation process automatically extracts important image features and constructs a mesh around it. This automatic pipeline is very efficient and even facilitates interactive image vectorisation

    Using Least Squares to Construct Improved Clough-Tocher Interpolant

    Get PDF
    In this thesis, a quartic Clough-Tocher interpolation scheme is introduced, and additional modifications, to adjust the macro-boundary and the order of continuity across domain triangles, are provided to improve both the mathematical and the visual quality of the resulting surface. Furthermore, a proof is given to show the convergence of the interpolation scheme under some specific constraints

    On numerical quadrature for C1C^1 quadratic Powell-Sabin 6-split macro-triangles

    Get PDF
    The quadrature rule of Hammer and Stroud [16] for cubic polynomials has been shown to be exact for a larger space of functions, namely the C1C^1 cubic Clough-Tocher spline space over a macro-triangle if and only if the split-point is the barycentre of the macro-triangle [21]. We continue the study of quadrature rules for spline spaces over macro-triangles, now focusing on the case of C1C^1 quadratic Powell-Sabin 6-split macro-triangles. We show that the 33-node Gaussian quadrature(s) for quadratics can be generalised to the C1C^1 quadratic Powell-Sabin 6-split spline space over a macro-triangle for a two-parameter family of inner split-points, not just the barycentre as in [21]. The choice of the inner split-point uniquely determines the positions of the edge split-points such that the whole spline space is integrated exactly by a corresponding polynomial quadrature. Consequently, the number of quadrature points needed to exactly integrate this special spline space reduces from twelve to three. For the inner split-point at the barycentre, we prove that the two 3-node quadratic polynomial quadratures of Hammer and Stroud exactly integrate also the C1C^1 quadratic Powell-Sabin spline space if and only if the edge split-points are at their respective edge midpoints. For other positions of the inner and edge split-points we provide numerical examples showing that three nodes suffice to integrate the space exactly, but a full classification and a closed-form solution in the generic case remain elusive

    Watertight conversion of trimmed CAD surfaces to Clough-Tocher splines

    Get PDF
    The boundary representations (B-reps) that are used to represent shape in Computer-Aided Design systems create unavoidable gaps at the face boundaries of a model. Although these inconsistencies can be kept below the scale that is important for visualisation and manufacture, they cause problems for many downstream tasks, making it difficult to use CAD models directly for simulation or advanced geometric analysis, for example. Motivated by this need for watertight models, we address the problem of converting B-rep models to a collection of cubic C1C1 Clough–Tocher splines. These splines allow a watertight join between B-rep faces, provide a homogeneous representation of shape, and also support local adaptivity. We perform a comparative study of the most prominent Clough–Tocher constructions and include some novel variants. Our criteria include visual fairness, invariance to affine reparameterisations, polynomial precision and approximation error. The constructions are tested on both synthetic data and CAD models that have been triangulated. Our results show that no construction is optimal in every scenario, with surface quality depending heavily on the triangulation and parameterisation that are used.This research was supported by the Engineering and Physical Sciences Research Council through Grant EP/K503757/1.This is the final version. It was first published by Elsevier at http://www.sciencedirect.com/science/article/pii/S0167839615000795

    Designing aesthetically pleasing freeform surfaces in a computer environment

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Architecture, February 2001.Includes bibliographical references (p. 151-160).Statement: If computational tools are to be employed in the aesthetic design of freeform surfaces, these tools must better reflect the ways in which creative designers conceive of and develop such shapes. In this thesis, I studied the design of aesthetically constrained freeform surfaces in architecture and industrial design, formulated a requirements list for a computational system that would aid in the creative design of such surfaces, and implemented a subset of the tools that would comprise such a system. This work documents the clay modeling process at BMW AG., Munich. The study of that process has led to a list of tools that would make freeform surface modeling possible in a computer environment. And finally, three tools from this system specification have been developed into a proof-of-concept system. Two of these tools are sweep modification tools and the third allows a user to modify a surface by sketching a shading pattern desired for the surface. The proof-of-concept tools were necessary in order to test the validity of the tools being presented and they have been used to create a number of example objects. The underlying surface representation is a variational expression which is minimized using the finite element method over an irregular triangulated mesh.by Evan P. Smyth.Ph.D

    Numerical enclosures of solution manifolds at near singular points

    Get PDF
    Es wird eine Methode erarbeitet die Einschließungen von Lösungsmannigfaltigkeiten von nichtlinearen, reelen, parameter-abhängigen Gleichungen findet. Im Speziellen soll die Methoden auch Einschließungen von singulären Punkten finden, sogenannten Bifurkationen. Hierbei wird Intervallanalysis verwendet um die rigorosen Einschließungen zu bekommen. Weiters werden Bezier-Flächen verwendet um die Lösungsmannigfaltigkeit zu interpolieren

    Adaptive Sampling in Particle Image Velocimetry

    Get PDF

    An Adjectival Interface for procedural content generation

    Get PDF
    Includes abstract.Includes bibliographical references.In this thesis, a new interface for the generation of procedural content is proposed, in which the user describes the content that they wish to create by using adjectives. Procedural models are typically controlled by complex parameters and often require expert technical knowledge. Since people communicate with each other using language, an adjectival interface to the creation of procedural content is a natural step towards addressing the needs of non-technical and non-expert users. The key problem addressed is that of establishing a mapping between adjectival descriptors, and the parameters employed by procedural models. We show how this can be represented as a mapping between two multi-dimensional spaces, adjective space and parameter space, and approximate the mapping by applying novel function approximation techniques to points of correspondence between the two spaces. These corresponding point pairs are established through a training phase, in which random procedural content is generated and then described, allowing one to map from parameter space to adjective space. Since we ultimately seek a means of mapping from adjective space to parameter space, particle swarm optimisation is employed to select a point in parameter space that best matches any given point in adjective space. The overall result, is a system in which the user can specify adjectives that are then used to create appropriate procedural content, by mapping the adjectives to a suitable set of procedural parameters and employing the standard procedural technique using those parameters as inputs. In this way, none of the control offered by procedural modelling is sacrificed â although the adjectival interface is simpler, it can at any point be stripped away to reveal the standard procedural model and give users access to the full set of procedural parameters. As such, the adjectival interface can be used for rapid prototyping to create an approximation of the content desired, after which the procedural parameters can be used to fine-tune the result. The adjectival interface also serves as a means of intermediate bridging, affording users a more comfortable interface until they are fully conversant with the technicalities of the underlying procedural parameters. Finally, the adjectival interface is compared and contrasted to an interface that allows for direct specification of the procedural parameters. Through user experiments, it is found that the adjectival interface presented in this thesis is not only easier to use and understand, but also that it produces content which more accurately reflects usersâ intentions

    New Models for High-Quality Surface Reconstruction and Rendering

    Get PDF
    The efficient reconstruction and artifact-free visualization of surfaces from measured real-world data is an important issue in various applications, such as medical and scientific visualization, quality control, and the media-related industry. The main contribution of this thesis is the development of the first efficient GPU-based reconstruction and visualization methods using trivariate splines, i.e., splines defined on tetrahedral partitions. Our methods show that these models are very well-suited for real-time reconstruction and high-quality visualizations of surfaces from volume data. We create a new quasi-interpolating operator which for the first time solves the problem of finding a globally C1-smooth quadratic spline approximating data and where no tetrahedra need to be further subdivided. In addition, we devise a new projection method for point sets arising from a sufficiently dense sampling of objects. Compared with existing approaches, high-quality surface triangulations can be generated with guaranteed numerical stability. Keywords. Piecewise polynomials; trivariate splines; quasi-interpolation; volume data; GPU ray casting; surface reconstruction; point set surface
    corecore