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Abstract

The quadrature rule of Hammer and Stroud [16] for cubic polynomials has been shown to be exact for a
larger space of functions, namely the C1 cubic Clough-Tocher spline space over a macro-triangle if and
only if the split-point is the barycentre of the macro-triangle [21]. We continue the study of quadrature
rules for spline spaces over macro-triangles, now focusing on the case of C1 quadratic Powell-Sabin 6-split
macro-triangles. We show that the 3-node Gaussian quadrature(s) for quadratics can be generalised to the
C1 quadratic Powell-Sabin 6-split spline space over a macro-triangle for a two-parameter family of inner
split-points, not just the barycentre as in [21]. The choice of the inner split-point uniquely determines the
positions of the edge split-points such that the whole spline space is integrated exactly by a corresponding
polynomial quadrature. Consequently, the number of quadrature points needed to exactly integrate this
special spline space reduces from twelve to three.

For the inner split-point at the barycentre, we prove that the two 3-node quadratic polynomial quadra-
tures of Hammer and Stroud exactly integrate also the C1 quadratic Powell-Sabin spline space if and only
if the edge split-points are at their respective edge midpoints. For other positions of the inner and edge
split-points we provide numerical examples showing that three nodes suffice to integrate the space exactly,
but a full classification and a closed-form solution in the generic case remain elusive.

Keywords: Numerical integration, Powell-Sabin spline space, Gaussian quadrature rules

1. Introduction

Quadrature rules offer an elegant and efficient way to numerically evaluate integrals of functions from
a linear space under consideration [18]. These rules typically require function evaluation at specific points,
called nodes, and these values are multiplied by constants, called weights, to give the final value of the
integral as a weighted sum. That is, one wishes to satisfy

ˆ
Ω

f(x) dx =

m∑
i=1

ωif(ti) +Rm(f), (1)

where Ω ⊂ Rn is the domain of interest, m is the number of nodes (quadrature points), f is a function of
n variables, i.e., f : Rn → R, and Rm(f) is the error term of the rule. Typically, the rule is required to be
exact, that is, Rm(f) ≡ 0 for each element of a predefined linear function space L. Moreover, the rule is
said to be Gaussian if m is the minimal number of nodes ti ∈ Rn at which f has to be evaluated.

There is an extensive number of various quadrature rules depending on n (f is univariate [15], bivari-
ate [28, 39], multivariate [16]), domain shape (disc, hypercube, simplex) [37], and the type of the linear
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space (polynomials [15], splines [4, 6, 29, 33], rational functions [38], smooth non-polynomial [7, 27]). For
polynomial multivariate integration, the field is well studied and the reader is referred to [37].

In the univariate case, a lot of research has been devoted to piecewise polynomials to address integration
for spline spaces arising in isogeometric analysis [10]. Hughes et al. [19] introduced so called half-point rule
for splines that needs the minimum number of quadrature points. However, this rule is in general exact only
over the whole real line (infinite domain). For finite domains, one may introduce additional quadrature points
[2] which make the rule non-Gaussian (slightly sub-optimal in terms of the number of quadrature points),
but more importantly, it yields quadrature weights that can be negative, unlike in Gaussian quadratures.
When computing Galerkin approximations, assembling mass and stiffness matrices is the bottleneck of the
whole computation and efficient quadrature rules for specific spline spaces are needed to efficiently evaluate
the matrix entries [5, 6, 8, 17, 20].

In the multivariate case where spline spaces possess a tensor-product structure, univariate quadrature
rules are typically used in each direction, resulting in tensor-product rules [17]. Recently, Calabrò et al.
[8] have changed the paradigm of the mass and stiffness matrix computation from the traditional element-
wise assembly to a row-wise concept. When building the mass matrix, one B-spline basis function of
the scalar product involved is considered as a positive measure (i.e., a weight function), and a weighted
quadrature with respect to that weight is computed for each matrix row. Such an approach brings significant
computational savings because the number of quadrature points in each parameter dimension is independent
on the polynomial degree and requires asymptotically (for a large number of elements) only two points
per element. For the multivariate case that is unstructured such as triangular meshes in 2D, however,
constructing efficient quadrature rules from tensor product counterparts is unnatural, resulting in rules that
are often not symmetric even though they act on a symmetric domain [28].

Our research focuses on bivariate functions over triangular domains where the spline space is piecewise
polynomial. Little attention has been given to this topic so far. The current state of the art of integration
for spline spaces of this type, such as C1 cubic Clough-Tocher macro-triangles [9] and various box-spline
constructions [13], is to apply simplex quadrature [36] over each (micro-)simplex separately. Such integration
is inefficient as it ignores the continuity of the spline functions across macro- and micro-elements. In a related
line of research, work has been done on integration schemes based on quasi-interpolants over (refined)
triangulations [12, 25, 31]; see also the survey [26]. Recently, we have shown that the quadrature rule of
Hammer and Stroud [16] for cubic polynomials is exact for a larger space of functions, namely the C1 cubic
Clough-Tocher spline space over a macro-triangle, if and only if the split-point is the barycentre of the
macro-triangle [21].

In the present paper, we continue the study of Gaussian quadrature rules for polynomial spline spaces
over triangulations. We study the case of C1 quadratic Powell-Sabin 6-split macro-triangles and show that
the choice of generalisation of a polynomial rule that is exact for quadratic polynomials is a lot broader than
its cubic counterpart studied in [21]. It is known that total-degree quadratic polynomials over triangles can
be integrated using three quadrature points [37] and this number of points is optimal. However, the nine
degrees of freedom (three nodes in 2D and three weights) admit a larger space for exact integration than the
six-dimensional space of quadratics. We formulate algebraic conditions for the inner and edge split-points
such that the underlying Powell-Sabin 6-split spline space is integrated exactly by the quadratic polynomial
quadrature. This result allows us to efficiently integrate quadratic C1 Powell-Sabin 6-split splines using only
three nodes per macro-triangle, in contrast to traditional schemes using twelve nodes. Further, we provide
numerical examples demonstrating that the generic case with arbitrary split-points is also covered by three
nodes. However, a close-form solution remains a topic for future research.

The rest of the paper is organised as follows. We start by recalling some basic concepts such as Bézier
triangles, the Powell-Sabin macro-triangle, and simplectic quadrature for quadratic polynomials in Section 2.
This is followed by Section 3, where we state and prove our main result regarding Gaussian quadrature for
C1 quadratic Powell-Sabin macro-triangles, and demonstrate it on numerical examples. Finally, we conclude
the paper in Section 4.
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Figure 1: Two quadratic Bernstein basis functions (transparent blue) over T = (V0V1V2) and their control nets (green) are
shown.
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Figure 2: The Powell-Sabin 6-split (left) and 12-split (right).

2. Preliminaries

We first introduce some basic concepts of Bézier triangles and the C1 quadratic Powell-Sabin 6-split,
and then recall Hammer-Stroud quadratures for quadratic triangular polynomials.

2.1. Bézier triangles

Consider a non-degenerate triangle T given by three vertices V0, V1, and V2 in R2. We assume that
the area of T is equal to one, otherwise one can scale it accordingly. Any point P in T can be uniquely
expressed in terms of its barycentric coordinates τ = (τ0, τ1, τ2) as

P =

2∑
i=0

τiVi; τ0 + τ1 + τ2 = 1, 0 ≤ τi ≤ 1, (2)

where τi, i = 0, 1, 2, is equal to the area of triangle (Vi+1, Vi+2, P ) with i being treated cyclically modulo 3.
With i = (i, j, k), |i| = i+ j + k, and i, j, k ≥ 0, let

Bd;i(τ ) :=
d!

i!j!k!
τ i1τ

j
2 τ

k
3 (3)

be the Bernstein polynomials of degree d on T . Then any polynomial p of total degree at most d on T can
be expressed in the Bernstein-Bézier form

p(τ ) =
∑
|i|=d

piBd;i(τ ). (4)
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Figure 3: Labelling of Bézier ordinates (see Section 2.1) over the macro-triangle. Ordinates are labelled only over T1 and T6,
others follow cyclically. The control net triangles involved in the C1 continuity conditions (8) between p1 and p6 are shown in
light grey, and those involved in the C2 condition (9) are in dark grey.

These polynomials span the linear space Πd := span{Bd;i}|i|=d. The Bézier ordinates pi, associated with
their abscissae i/d expressed in barycentric coordinates with respect to T , form a triangular control net of
the Bézier triangle (4). More details can be found in [14]. As we are dealing exclusively with quadratics
(d = 2), we omit the d and write simply Bi instead of the full Bd;i. Two examples of quadratic Bernstein
polynomials with their control nets are shown in Figure 1.

2.2. Powell-Sabin macro-triangle and continuity conditions

The Powell-Sabin split [30] was introduced to solve the problem of bivariate Hermite interpolation over
triangular meshes. Each triangle T of the original mesh is provided with an inner split-point S ∈ T and
three edge split-points Si, i = 0, 1, 2, one on each edge of T , that introduce a segmentation of T into six or
twelve micro-triangles; see Figure 2.

In this paper we focus on the 6-split macro-triangle. This split gives rise to six micro-edges emanating
from S, three to Vi and three to Si. The triangulation T ? of T consisting of Ti, i = 1, . . . , 6 (see Figure 2,
left) is called the Powell-Sabin macro-triangle (also known as macro-element) corresponding to T .

The Powell-Sabin spline space on T ? is the C1 quadratic spline space on T ?, i.e.,

S1
2 (T ?) := {s ∈ C1(T ?) : s|Ti ∈ Π2, i = 1, . . . , 6}. (5)

In other words, any s in S1
2 (T ?) consists of six quadratic Bézier triangles (one on each of the micro-

triangles Ti) joined with C1 continuity across their pair-wise shared micro-edges. The dimension of S1
2 (T ?)

is 9, which can be determined, for instance, using the concept of minimal determining sets [24]. A discussion
on choosing the split-point S can be found in [22, 32]. Although various options exist, the split-point is
typically placed at the barycentre of T .
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Figure 4: Two quadrature points t1 and t2 do not suffice to exactly integrate Π2. A quadratic function p ∈ Π2 over T
that vanishes along the line t1t2 is shown (transparent blue). p has a non-zero integral over T but the integration using the
quadrature rule returns zero.

We now recall C0, C1, and C2 continuity conditions between quadratic Bézier triangles [23, 34]. Let
pi be a quadratic Bézier triangle defined on Ti, i = 1, . . . , 6. Using the notation from Figure 3, the C0

continuity conditions between p1 and p6 at their shared micro-edge SV0 are simply

p6
0,j,2−j = p1

j,0,2−j for j = 0, 1, 2. (6)

Let the inner split-point and the edge split-points be expressed in terms of barycentric coordinates with
respect to T = (V0, V1, V2) as

S = (u, v, w); S0 = (0, v0, w0); S1 = (u1, 0, w1); S2 = (u2, v2, 0). (7)

We assume that S is internal to T and all Si are internal to their respective edges. Further, let

(α0, α1, α2) =
1

v2w
(u1v2w + u2w1v − v2w1u,−w1v, w1v2)

be the barycentric coordinates of S1 with respect to T1 = (V0, S2, S). Then the two C1 continuity conditions
between p1 and p6 read

p6
1,1−j,j = α0p

1
2−j,0,j + α1p

1
1−j,1,j + α2p

1
1−j,0,j+1 for j = 0, 1. (8)

Finally, the C2 continuity condition between p1 and p6 is

α0p
1
1,1,0 + α1p

1
0,2,0 + α2p

1
0,1,1 = β0p

6
1,1,0 + β1p

6
1,0,1 + β2p

6
2,0,0, (9)

where

(β0, β1, β2) =
1

w1v
(u1v2w + u2w1v − v2w1u, v2w1,−v2w)

are the barycentric coordinates of S2 with respect to T6 = (V0, S, S1). More information on continuity
conditions can be found e.g. in [1, 14, 23, 34].
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Figure 5: Two Gaussian quadrature rules for quadratic polynomials [37]. Both rules require the minimum number of quadrature
points to integrate Π2 exactly and are symmetric in terms of the barycentric coordinates defined on T .

2.3. Gaussian quadrature for bivariate quadratic polynomials

It is known that the quadratic bivariate polynomial space requires at least three quadrature points [37].
The lower bound on the number of quadrature points is stated in general for simplices in arbitrary dimension
in [37, Section 3.3]. For a two-dimensional simplex (a triangle) one can easily see that two quadrature points
are not sufficient for exact integration of Π2, see Remark 1 below. Therefore, one needs three quadrature
points ti ∈ T such that

Q[f ] :=

3∑
i=1

ωif(ti) =

ˆ
T
f(x) dx, (10)

is exact for any f ∈ Π2.

Remark 1. The difficulties with the existence of Gaussian quadratures for higher-dimensional simplexes can
be nicely demonstrated on the example of Π2 over triangles. Even though Π2 is a 6-dimensional linear space
over T , there does not exist a quadrature, unlike in the univariate case, that admits exact integration using
only two quadrature points, that is, the same number of degrees of freedom as the dimension of the space
(two nodes in 2D and two scalar weights). A proof by contradiction goes as follows: let t1, t2 ∈ T be two
nodes that exactly integrate Π2, see Fig. 4. Then the quadratic function p ∈ Π2 that arises by squaring
a non-vanishing linear function passing through the line t1t2 is not integrated exactly as Q[p] = 0 while´
T p > 0.

A quadrature for Π2 of type (10), requiring three nodes, is therefore not unique. Two variants are the
most common choices [37]: one prescribes the position of the nodes on the (macro-)edges, another fixes the
nodes on the micro-edges from the barycentre to the vertices of the simplex. It turns out that both options
lead to nodes exactly at the midpoints of their respective macro-/micro-edges. That is, the two quadratures,
both exact for quadratic polynomials, read

QE : tE
1 =

(
1

2
,

1

2
, 0

)
, tE

2 =

(
1

2
, 0,

1

2

)
, tE

3 =

(
0,

1

2
,

1

2

)
, ωE

1 = ωE
2 = ωE

3 =
1

3
, (11)

QM : tM
1 =

(
2

3
,

2

3
,

1

6

)
, tM

2 =

(
2

3
,

1

6
,

2

3

)
, tM

3 =

(
1

6
,

2

3
,

2

3

)
, ωM

1 = ωM
2 = ωM

3 =
1

3
, (12)

where the nodes are described by their barycentric coordinates and the weights with respect to a triangle
of unit area; see Figure 5. Regarding notation, QE stands for quadrature using nodes on (macro-)edges and
QM on micro-edges. In case of the traditional ‘unit’ triangle with vertices at (0, 0), (1, 0), and (0, 1), all the
weights in both quadratures QE and QM are equal to 1/6 due to the area being 1/2.
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Figure 6: Left: A schematic view of the Bernstein-Bézier form of the blend D0. The blend vanishes over the grey triangle (the
union of T3 and T4) and all its Bézier ordinates are zero, except those shown in red. Right: A 3D view for the symmetric case
where the split-point S (yellow) is the barycentre and the triplets Vi, S, Si are co-linear. Again, the blend D0 (transparent
blue) vanishes over the triangle SV1V2 and along the edge SV0.

3. Gaussian quadrature for C1 quadratic Powell-Sabin macro-triangles

We study Gaussian quadrature rules for C1 quadratic Powell-Sabin 6-split macro-triangles [30]. These
macro-triangles are used in interpolation problems over triangulations, see e.g. [3, 11], and recently also in
Isogeometric analysis [35]. Typically, Gaussian quadrature for quadratic polynomials (10) is used over every
micro-triangle. Such integration is inefficient as it does not take advantage of the higher continuity (raised
from C−1 to C1) between micro-triangles. Thus we aim to find conditions when one can safely use polynomial
rules also for C1 quadratic Powell-Sabin 6-split macro-triangles, or to find efficient computational tools to
numerically compute new Gaussian quadratures tailored specifically for Powell-Sabin macro-triangles.

Note that the two quadratures QE and QM, listed in (11) and (12), respectively, are micro-edge quadra-
tures as defined in [21, Definition 3.1], i.e., all the nodes lie on certain micro-edges. Since there are three
degrees of freedom in the polynomial quadrature rules for (total degree) quadratics using three quadrature
points (see Section 2.3), a natural question arises: When and how can the polynomial rules be used (or
modified) to integrate exactly also a larger space, namely the C1 quadratic Powell-Sabin spline space over
macro-triangles?

As we show below, it is the case and both rules are exact on C1 quadratic Powell-Sabin 6-split macro-
triangles when the inner split-point is the barycentre of the triangle and the edge split-points are mid-edge
points.

Let the split-points be defined as in (7). Since dim(S1
2 (T ?)) = 9 and dim(Π2) = 6, we first define three

spline basis functions that expand the basis of Π2 to a basis of S1
2 . We build these splines by blending

Bernstein quadratics in a C1 fashion.
For our purposes concerning numerical quadrature, we construct these C1 blends Di, i = 0, 1, 2 in a

particular way. We require that D0 is constant zero over T3 and T4 and that it vanishes also on micro-edge
SV0. The other two blends, D1 and D2, are constructed cyclically.

The case of D0 is shown in Figure 6. Based on our specification, it is created as a blend of six Bernstein
quadratics restricted to their original micro-triangles. We first define

D̃0 = p1
1,1,0B

1
1,1,0|T1 + p1

0,2,0B
1
0,2,0|T1 + p2

2,0,0B
2
2,0,0|T2 + p6

1,1,0B
6
1,1,0|T6 + p6

2,0,0B
6
2,0,0|T6 + p5

0,2,0B
5
0,2,0|T5 . (13)

From C0 conditions (cf. (6)) we obtain that p2
2,0,0 = p1

0,2,0 and p5
0,2,0 = p6

2,0,0. The remaining four coefficients
are bound by three C1 conditions (see (8)), and are thus defined up to a multiple, as expected. Fixing
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p1
0,2,0 = wv2u2 leads to p1

1,1,0 = wv2, p6
1,1,0 = −w1v, and p6

2,0,0 = −w1vu1.
Thus, we define

D0 = wv2B
1
1,1,0|T1 + wu2v2(B1

0,2,0|T1 +B2
2,0,0|T2)− vw1B

6
1,1,0|T6 − vu1w1(B6

2,0,0|T6 +B5
0,2,0|T5). (14)

D1 and D2 are defined in a similar fashion, cyclically. These three functions are C1 and piece-wise quadratic
by construction. The following lemma shows that they complement Π2 to form a basis over the Powell-Sabin
macro-element.

Lemma 3.1. It holds that
S1

2(T ?) = Π2 ⊕ span{D0, D1, D2}. (15)

Proof. As all three Di are, by construction, in S1
2(T ?), and dim(S1

2 (T ?)) = 9, it only remains to show linear
independence. Assume that there exists a non-trivial linear combination such that

c0D0 + c1D1 + c2D2 =
∑
|i|=2

ciBi. (16)

As the right-hand side of (16) is a polynomial over T and thus C∞, it suffices to show that the left-hand
side cannot be C2 (which is here equivalent to C∞ since we are dealing with quadratic splines) for any ci
with (c0, c1, c2) 6= (0, 0, 0).

To this end, we employ the C2 condition (9). We first apply it on micro-edge SS1 between D0 and D2.
As only two Bézier ordinates of D0 and D2 enter this C2 condition, it in full reads − c0

w1
w1v = c2

u1
vu1, from

which it follows that c0 = −c2. And the same argument applies to D0 and D1 on SS2, yielding c0 = −c1,
and also to D1 and D2 on SS0, resulting in c1 = −c2. All combined, we obtain that to achieve C2 continuity
at all SSi, it necessarily holds that c0 = c1 = c2 = 0, as we set out to show. Note that setting all ci to
zero also proves, following the same argument, that the Di are also mutually linearly independent. This
proves (15).

To proceed further with our investigation of Gaussian quadratures, we need to evaluate the integrals
of the blends Di over T . Referring back to Fig. 2, the area of T1 is equal to v2w, and similarly for other
micro-triangles, and the integrals of all Bernstein quadratics Bi over normalised (unit area) triangles is 1/6.
Combined together with the blending coefficients in (14), we obtain´

T D0 du = 1
6 (w2v2 − v2w1),´

T D1 du = 1
6 (u2w0 − w2u2),´

T D2 du = 1
6 (v2u1 − u2v0).

(17)

Since by construction all three blends vanish along SVi, i = 0, 1, 2, we now look for configurations of S,
S0, S1, and S2 such that the integrals of the blends vanish. Such configurations ensure that a micro-edge
quadrature exact for Π2 is also exact for S1

2 (T ?). Therefore, we inspect the system of equations

w2v2 − v2w1 = 0,
u2w0 − w2u2 = 0,
v2u1 − u2v0 = 0,

(18)

which contains nine variables, but only five are independent due to four linear constraints: u + v + w = 1,
v0 +w0 = 1, u1 +w1 = 1, u2 +w2 = 1. Consequently, the system (18) is underconstrained by two variables.
Due to the low degree of the system, one can solve it symbolically to get the two-parameter family of
solutions

u1 =
(2− 2u)v + 2u− 1

2v2
,

u2 =
2u2 + (2v − 2)u− 2v + 1

2(1− u− v)2
,

v0 =
(2− 2v)u+ 2v − 1

2u2
,

(19)
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depending on the two free parameters u and v, i.e., the position of the inner split-point S. One particular
solution of (19), when S is the barycentre of T , gives the following result.

Theorem 3.1. Let S be the barycentre of T . Then the quadrature rule QM (12) of Hammer and Stroud is
exact also for the Powell-Sabin spline space S1

2 (T ?) if and only if the edge split-points Si are the midpoints
of their respective edges of T .

Proof. The position of the inner split-point S uniquely determines the positions of Si such that the system
(18) vanishes. That is, (u, v, w) =

(
1
3 ,

1
3 ,

1
3

)
gives u1 = u2 = v0 = 1

2 via (19).
(⇐) If Si, i = 0, 1, 2 are edge midpoints, then from (17) we have that

´
T Di du = 0, i = 0, 1, 2 and, due

to the construction of the blends, we also have QM[Di] = 0, i = 0, 1, 2.
(⇒) We prove this indirectly. If one of the edge split-points is different from a midpoint, then their

corresponding barycentric coordinates are not roots of system (19), and therefore at least one
´
T Di du does

not vanish. However QM[Di] = 0, i = 0, 1, 2 and therefore (12) does not integrate S1
2 (T ?) exactly.

It also follows that there exists no micro-edge quadrature of type QM, i.e., with nodes on the micro-edges
SVi, i = 0, 1, 2, which is exact on S1

2 (T ?) when the split-point is the barycentre of T and at least one of the
edge split-points is not the midpoint of its corresponding edge. Indeed, in such a configuration at least one
of the integrals in (17) does not vanish, yet such micro-quadrature gives zero results for all the blends Di,
i = 0, 1, 2, due to the construction of the blends: they all vanish on the three micro-edges SVi, i = 0, 1, 2.

We now show an analogous result to Theorem 3.1 for QE.

Theorem 3.2. Let S be the barycentre of T . Then the quadrature rule QE (11) of Hammer and Stroud is
exact also for the Powell-Sabin spline space S1

2 (T ?) if and only if the edge split-points Si are midpoints of
their respective edges of T .

Proof. (⇐) Assume that Si, i = 0, 1, 2 are edge midpoints. Then D0(S0) = 0, D0(S1) = −1/12, and
D0(S2) = 1/12, and thus QE[D0] = 0. By cyclic symmetry, also QE[D1] and QE[D2] vanish. At the same
time,

´
T Di du = 0, i = 0, 1, 2, which shows exactness of QE on S1

2 (T ?) in the fully symmetric case.
(⇒) Assume that QE is exact on S1

2 (T ?) with S at the barycentre of T , i.e.,
´
T Di du = QE[Di] for

i = 0, 1, 2. From (14) it follows that

D0(S0) = 0, D0(S1) =
1

12
·

{
u1

u1−1 u1 ≤ 1
2

1−3u1

u1
u1 ≥ 1

2

, D0(S2) =
1

12
·

{
v2

1−v2 v2 ≤ 1
2

3v2−1
v2

v2 ≥ 1
2

.

This in turn, combined with the first equation in (17), leads to

QE[D0] =
1

12
·

{
u1

u1−1 u1 ≤ 1
2

1−3u1

u1
u1 ≥ 1

2

+
1

12
·

{
v2

1−v2 v2 ≤ 1
2

3v2−1
v2

v2 ≥ 1
2

=
1

6
(w2v2 − v2w1) =

ˆ
T
D0 du,

which expresses the exactness of QE on D0. Similar equations, again exploiting cyclic symmetry, are obtained
for D1 and D2. Thus, we obtain three piece-wise polynomial equations which are cubic in u1, v2, and w0;
cf. (7). Using a computer algebra system such as Maple, it can be shown that this system, in all its eight
polynomial variants based on the ranges of u1, v2, and w0, admits only one solution: u1 = v2 = w0 = 1/2,
as we set out to prove.

One could still ask whether it is possible to move the nodes of QE along the edges of T to integrate
S1

2 (T ?) exactly when the edge split-points are not midpoints. The answer is negative: QE is the only
three-node quadrature exact on Π2 over T having its nodes on the edges of T .

We now move on to the more challenging case of non-symmetric splits.
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RR

0
√

2− 1 11
2 u

v

2u−1
2(u−1) < v

Figure 7: Two visualisations of the region R of all admissible inner split-points S ensuring the existence of a micro-edge
quadrature of type QM for S12 (T ?). Left: The triangular domain shown in standard Cartesian coordinates, which allows for a
direct interpretation of the inequalities in (20) in order red, blue, and green. The bounding curves of R are hyperbolic arcs.
Right: R visualised (in grey) in the symmetric situation where the domain triangle of barycentric coordinates is equilateral.

3.1. Gaussian quadrature for non-symmetric Powell-Sabin splits

The choice of the barycentre as the inner split-point is very natural and is the typical choice in applications
[30, 32], and Theorems 3.1 and 3.2 address the special situation where the edge split-points are edge mid-
points. However, the theory of quadratic spline approximation works for arbitrary split-points [30] and we
are now interested in to what extent one can adapt the polynomial quadrature rules for the Powell-Sabin
splines with general split-points.

The symbolic solution in (19) corresponds to the exactness of some micro-edge quadrature rule of S1
2 (T ?)

and the solution triplet (u1, u2, v0) determines the positions of the edge split-points Si, i = 0, 1, 2. In order
to be well defined, the edge split-points have to lie on their corresponding edges. The solution in (19)
depends on two parameters, u and v, which in turn determine the position of S. And thus we ask: What is
the admissible region for S such that the edge split-points given by (19) are well defined? In other words,
we want to find the locus R of S for which 0 < u1, u2, v0 < 1. These constraints give rise to the following
inequalities

2u− 1

2(u− 1)
< v <

(2u2 − 2u+ 1)

2(1− u)
, u ∈ [0,

√
2− 1],

2u− 1

2(u− 1)
< v <

(1− u−
√
u2 + 2u− 1)

2
, u ∈ [

√
2− 1, 1

2 ],

(1− u+
√
u2 + 2u− 1)

2
< v <

2u− 2u2 − 1

2(u− 1)
, u ∈ [

√
2− 1, 1

2 ]

(20)

defining R; see Fig. 7. Choosing S ∈ R guarantees that there exist edge split-points Si inside Vi+1Vi+2 such
that (19) holds.

Let us consider (u, v) ∈ R. By construction, any micro-edge quadrature will exactly integrate the three
blends Di, because

´
T Di du = Q[Di] = 0. To construct a micro-edge quadrature rule that is exact for

S1
2 (T ?), it is therefore sufficient to find three nodes on micro-edges SVi, one on each, and the corresponding

weights that exactly integrate Π2. This leads to a well-constrained (6× 6) polynomial system

ˆ
T
Bi du = Q(t1, t2, t3, ω1, ω2, ω3)[Bi], |i| = 2, (21)
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S
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S1

(u, v, w) =
(

2
5 ,

2
5 ,

1
5

)
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V2

t2
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S
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(

9
24 ,

8
24 ,
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24

)

Figure 8: Two micro-edge Gaussian quadrature rules for S12 (T ?). The inner split-point (yellow) is chosen from the admissible
region R (see Fig. 7) and the boundary split-points (blue) are computed using (19). The nodes of the micro-edge (red) and
weights (visualised as the distances between green and red bullets) were computed numerically via (21) using (12) as the initial
guess.

where Bi are the quadratic Bernstein-Bézier basis functions of Π2 (see Section 2.1). The unknowns ti
represent the micro-edge quadrature nodes ti = (1− ti)S + tiVi and ωi are their associated weights.

While a symbolic solution of this system for an arbitrary split-point exists (parametrised by u and v), it
has an excessive number of terms and is thus impractical. (Although we can provide this to an interested
reader as a Maple worksheet.) So instead, we opted for the more practical numerical approach to compute
particular quadrature rules. Specifically, we used the Newton-Raphson method with the micro-edge Hammer
and Stroud rule (12) as the initial guess. This was implemented in Maple and numerical precision was set
to 20 digits.

Two particular Gaussian rules for S1
2 (T ?) are shown in Fig. 8. The rules are determined by the position

of the inner split-point S. While a median-symmetric position of S yields a rule that is symmetric, as
depicted in Fig. 8, left, the rule is in general non-symmetric, as shown in Fig. 8, right.

To numerically validate the results, we tested the two rules shown in Table 1 by computing the error

ε(f) = Q[f ]−
ˆ
T
f du (22)

for functions f ∈ S1
2 (T ?). Observe that, by construction, the rules are exact for the blends Di, i = 0, 1, 2.

Therefore, we sample only f ∈ Π2 and compute ε(f). The quadrature rules were computed with the precision
of 20 decimal digits. Three test functions and their errors are shown in Fig 9.

An example of evolution of the Gaussian rules for S1
2 (T ?) is shown in Fig. 10. The split-point S starts

from the barycentre of T (time t = 0) and moves straight towards a vertex until it reaches the boundary of

Table 1: The two micro-edge Gaussian quadrature rules for the Powell-Sabin micro-triangles shown in Fig. 8. The
barycentric coordinates of S, (u, v, w), define the boundary split-points via (19). The positions of the quadrature
points ti are determined by ti, the barycentric coordinate on the micro-edge SVi, i.e., ti = (1− ti)S + tiVi.

(u, v, w) i ti ωi

(
2
5
, 2
5
, 1
5

) 0 0.59910635852267947645 0.23217256322315208284

1 0.59910635852267947645 0.23217256322315208284

2 0.44098300562505257589 0.53565487355369583432

(
9
24
, 8
24
, 7
24

) 0 0.59012269252438973205 0.24784153484760864812

1 0.49095437891053568222 0.34024176149379593418

2 0.45598891682541458848 0.41191670365859541770
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V0

V2
V1

p2,0,0

p0,1,1

p0,0,2

f1 : (−0.2, 0.1, 0.2,−0.3,−0.2, 0.3)

ε(f1) = −5.9e−22

f2 : (0.3, 0.25,−0.1,−0.3,−0.25,−0.1)

ε(f2) = −4.4e−22

f3 : (0.2,−0.2, 0.2,−0.3, 0.6, 0.2)

ε(f3) = −3.7e−22

Figure 9: Three polynomials fi ∈ Π2, i = 1, 2, 3, with the corresponding vectors of Bernstein-Bézier control net coefficients
(p2,0,0, p0,2,0, p0,0,2, p0,1,1, p1,0,1, p1,1,0) are shown. The error values, see (22), between the exact integrals and the results of
the quadrature rule (red/green bullets; Table 1, top) are displayed.

V0

V2

V1 = St=1
2

St=0
2

St=0

tt=0
1

ωt=0
1

V2

St=1

St=0

Figure 10: Evolution of the Gaussian rules. Left: The split-point (yellow) is being moved from its original position at time
t = 0, St=0, towards the vertex V1 until it reaches the boundary of the admissible region (cf. Fig. 7) at time t = 1. The
trajectories of the nodes (red) and weights (green) are traced numerically. The position of the edge split-points Si are governed
by (19). The edge split-point opposite the target vertex remains constant at its edge midpoint. Right: Evolution of the rule as
S moves towards V2.

the admissible region R, see Fig. 7, at time t = 1. For each particular time instant, the edge split-points Si

are computed directly from (19), and the nodes ti and weights ωi, i = 1, 2, 3, are traced numerically.

3.2. Discussion and limitations

We have analysed Gaussian quadrature rules for C1 quadratic Powell-Sabin 6-split macro-elements,
focusing on the fully symmetric case. We have shown that in the fully symmetric configuration, the two
quadratures, QE in (11) and QM in (12), of Hammer and Stroud for quadratic polynomials also integrate
exactly the Powell-Sabin space S1

2 (T ?) over a macro-triangle T , and the number of nodes (three) is optimal.

Number of nodes needed for QE QM asympt. QE asympt. QM

micro-triangle integration 6T + 2E 18T 6E 12E
macro-triangle integration E 3T E 2E

Table 2: The number of nodes needed when using different quadrature rules on a triangulation with T triangles and E edges,
and when used per micro-triangle or per macro-triangle. The last two columns list the asymptotic node counts for 2E ≈ 3T .
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Consequently, the number of required nodes is only three, in contrast to the classical polynomial rules which
involve twelve nodes in the case of (11) or even eighteen for (12) when used per micro-triangle.

This result generalises to regular, fully symmetric triangulations, although the combined rule is no longer
optimal. Nevertheless, it still results in considerable quadrature node savings. Table 2 compares our results
on an input triangulation with T triangles and E edges. Asymptotically, a regular triangulation with a
large number of elements satisfies 2E ≈ 3T . Table 2 then clearly shows that the QE rule uses the minimal
number of nodes among all the investigated exact quadratures.

In Section 3.1, we attacked the problem of extending our results to non-symmetric macro-triangles, which
turned out to be a formidable problem. Solving the fully general system of polynomial equations to find a
quadrature for S1

2 (T ?) parametrised by the positions of S and Si, i = 0, 1, 2, is beyond the current capacity
of computer algebra systems. Our numerical tests, such as those shown in Figs. 8 and 10, and many other
tests we performed, indicate that three nodes suffice also in the general situation. However, a rigorous proof
of this fact is yet to be found, ideally combined with an efficient algorithm or even a closed-form formula
for computing the underlying quadrature nodes and weights on general triangulations and 6-splits.

Our quadrature rules are, up to machine precision, exact for S1
2 (T ?) and thus a natural question arises:

What is the integration error if f /∈ S1
2 (T ?)? We see such error analysis, even for a particular spline space

determined by a given split-point S, as rather complicated. However, as Π2 ⊂ S1
2 (T ?), one may use the error

estimates for polynomials [37, Chapter 5]. These estimates are mainly formulated over rectangular domains,
and therefore embedding T into a corresponding rectangle and using the bounds from [37, Section 5.3] over
each triangle gives conservative error estimates for our rules.

4. Conclusion

We have investigated Gaussian quadrature rules for C1 quadratic Powell-Sabin 6-split macro-triangles.
We have shown that for the inner split-point at the barycentre, the two 3-node micro-edge quadratures for
quadratic polynomials of Hammer and Stroud generalise to the Powell-Sabin 6-split macro-element space
if and only the edge split-points are the midpoints of their respective edges. Our result describes special
Powell-Sabin 6-splits that require only three quadrature points per macro-triangle, in contrast to classical
polynomial rules that require twelve nodes. The existence of other (micro-edge) quadratures as well as the
generalisation of the rules from the case of a single macro-triangle to a whole triangular mesh remain open
problems for future research.
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