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Als nächstes möchte ich meiner Familie danken. Im Speziellen natürlich
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Abstract

In this work we consider reel parameter-dependent functions which are con-
tinuously differentiable and in general nonlinear. We aim to find enclosures
for paths of the corresponding roots dependent on this parameter. Especially
we are interested in enclosures of such solution paths near singularities. This
means near points where two different solution paths are bifurcating or al-
most bifurcating. There is a augmented problem considered which shall cor-
rect the singularities in the original problem and from which one can deduce
a low-dimensional problem. The solution of the low-dimensional problem
reflects the behaviour of the solution of the originally considered problem.
In particular the singular behaviour also is reflected.
First the form of problem we want to consider is introduced according to
Neumaier [19]. Then the most important concepts we need to apply the
method are provided. These concepts are mainly interval analysis and in-
terpolation with triangular cubic Bezier patches. We need interval analysis
because our method shall provide rigorously verified enclosures of the solu-
tion paths and in particular we often need good enclosures of the range of
reel functions. The Bezier patches are used to get a good interpolation of the
solution manifold. In particular a method first introduced by Clough and
Tocher and later modified by Farin is used. Further we give some existence
and uniqueness results on the solution of the considered problem as well as
a short discussion on weighted maximum norms.
Next the reduction process for the considered problem is summarized. Here
the main theorems are presented. Further the discussion on the choice of the
extension of the problem in detail is done. Moreover a predictor-corrector
method is provided for the considered form of problem. The the discussion
of the previous sections is applied and we give sketches of algorithms to find
rigorous enclosures of the considered solution path by using the provided
method. Further the existence and uniqueness of solution branches inside
enclosures of the solution manifold is discussed.
The fifth section is about the implementation of the results. The imple-
mentation of the results is done in MATLAB R2009a and in particular the
toolbox INTLAB is used to get rigorous results. For this toolbox we reference
to Rump [23]. Then my own implementation is presented and at least some
results of the implementation are presented.
Then a short outlook follows and at least the headers of my implementation
in MATLAB are completing the work.
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1 Overview

We consider F : Λ × D ⊆ R
p × R

n → R
m, a k0 ≥ 1 times continuously

differentiable nonlinear mapping. We want to study the solution manifold of

F (λ, u) = 0, (1)

especially nearby (near) singularities.
We work with interval analysis to find rigorously verified inclusions where
a (near) singularity appears. The method by Neumaier (see Neumaier [19])
aims to describe the solution manifold with a low-dimensional problem even
when the solution manifold gets singular or near singular. The method is a
generalisation of the Lyapunov-Schmidt reduction technique. However the
method does not need an exact point (λ0, u0) ∈ Λ × D on the solution
manifold and the method still works in the case of imperfect bifurcations.
Beside of interval analysis we discuss in this work Bezier patches to interpo-
late solution paths. Moreover some existence and uniqueness results like the
implicit function theorem are applied.
Now the considered problem is introduced for which the results of Neumaier
[19] are applicable.

1.1 A fixed point formulation

As a first step we expand the problem,

F̃ (λ, σ, u, ξ) :=

(

F (λ, u) + A1ξ
µ(λ, u)− σ

)

. (2)

Here the linear operator A1 : Rk → R
m and the functional µ : Λ ×D → R

l

shall be chosen such that a singularity which appears in the original prob-
lem at some point shall not appear in the expanded problem any more. In
practice, the so called unfolding functional µ : Λ×D → R

l is given and the
practitioner is interested on the behaviour of these unfolding functional on
the solution manifold. If p = l = 1 the plot of the unfolding functional µ
against λ is called the bifurcation diagram which may give a useful descrip-
tion of the solution manifold.
We assume that we know an approximate root (λ0, u0) ∈ Λ × D of
F : Λ × D ⊆ R

p × R
n → R

m and further we assume that we have linear
mappings A0 : Rn → R

m, A1 and A2 : Rn → R
l such that A0 approximates

the derivative of F with respect to u at the point (λ0, u0) ∈ Λ×D. We write
DuF (λ0, u0) for this derivative. The linear operator A2 is chosen such that
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A2 ≈ Duµ(λ0, u0). Further the linear operator A : Rn × R
k → R

m × R
l is

defined by

A :=

(

A0 A1

A2 0

)

(3)

shall be a bijection between R
n×R

k and R
m×R

l and shall have a bounded
inverse

‖A−1‖ ≤ α. (4)

Obviously the linear operator A approximates the derivative of (2) with
respect to (u, ξ) in a neighbourhood of its approximate root (λ0, σ0, u0, ξ0)
where ξ0 = 0 and σ0 = µ(λ0, u0).
We know that for the case of our interest, when there is a true or an imperfect
bifurcation near (λ0, u0) ∈ Λ ×D, there is a point (λ̄, ū) ∈ Λ × D near our
approximate root such that the linear operator Ā0 := DuF (λ̄, ū) is singular.
This means the dimension of the kernel of Ā0 is greater zero.
Now we assume that the linear operator A is chosen appropriately, that
means A has the form (3) and (4) holds. For fixed values λ ∈ R

p and σ ∈ R
l,

we consider the nonlinear mapping Φλ,σ : D × R
k → R

m × R
l defined by

Φλ,σ

(

u
ξ

)

:=

(

u
ξ

)

− A−1

(

F (λ, u) + A1ξ
µ(λ, u)− σ

)

. (5)

Obviously, any fixed point of the equation above satisfies

F (λ, u) + A1ξ = 0 and µ(λ, u) = σ. (6)

Obviously then a solution (λ, σ, u, ξ = 0) ∈ Λ×R
l×D×R

k of the expanded
problem implies that (λ, u) ∈ Λ×D is a solution of the original problem.
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2 Background

First we introduce the main concepts of interval arithmetic and interval anal-
ysis because we want to apply our results in a rigorous manner. Further in one
subsection triangular Bezier patches are considered. These Bezier patches we
use to interpolate the solution path. Moreover this section includes a short
discussion on the appropriate choice of norms as well as some existence and
uniqueness results for solution branches of the considered form of problems.

2.1 Interval analysis

To apply our method we need rigorous enclosures of the range of reel functions
we are considering. For this aim we introduce next the concept of interval
analysis. The following sections are mainly based on the book Neumaier [18].

Introduction and terminology of interval analysis

First we define an interval as a set

x = [x, x] :=
{

x ∈ R

∣

∣

∣ x ≤ x ≤ x
}

. (7)

For the set of all intervals we write by IR. In this work we denote intervals
with bold letters. The expressions x and x always mean the lower respectively
the upper bound of the interval x. Further we define

x := inf x x := sup x.

A real number x ∈ R is represented by the interval x = [x, x]. Such a interval
where x = x we call thin. If an interval is not thin we call it thick. Further
terms we introduce is the midpoint and the radius of an interval. They are
defined in the following way,

mid x :=
x + x

2
,

rad x :=
x− x

2
.

Next we define an extension of the absolute value of real numbers on intervals.
The magnitude and in similarly way the mignitude of a real interval are
defined by

|x| = mag x := max
{

|x|
∣

∣

∣ x ∈ x
}

,

〈x〉 = mig x := min
{

|x|
∣

∣

∣ x ∈ x
}

.
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Next we define the convex hull of a nonempty bounded subset of R,

2S := [inf S, sup S].

Further some order relations can be defined in interval analysis. We define

x < y⇔ x < y, x > y⇔ x > y,

x ≤ y⇔ x ≤ y, x ≥ y⇔ x ≥ y.

These order relations are antisymmetric, transitive and additionally the
order relation (≤,≥) is reflexive. However two intervals are not compara-
ble.
Next we define the elementary operations (+,−, ∗, /, ∗∗) where a ∗∗ b means
ab on the set of real intervals by

x ◦ y := 2

{

x ◦ y
∣

∣

∣ x ∈ x, y ∈ y
}

. (8)

where ◦ stands for one of the elementary operations. For the elementary op-
eration x/y we need the restriction that 0 /∈ y. For the elementary operation
∗∗ we also need some restrictions.
Next we define some elementary functions for intervals by

ϕ(x) := 2

{

ϕ(x)
∣

∣

∣ x ∈ x
}

, (9)

where ϕ stands for one function of the set Φ and the set Φ consist of the most
elementary functions, here listed: abs, sqr, sqrt, exp, ln, sin, cos, arctan.
For all of these elementary operations and functions explicit formulas depen-
dent on the endpoints of the intervals can be written down.

About the rounding

We want to use interval analysis to rigorously solve a system of equations.
So we must be aware that we do not loose rigour. We know that a computer
only uses a finite set of numbers, often called the machine-representable
numbers. This set is a subset of R, but the exact results of the computations
we want to do must not be in this subset. So we must care about rounding.
So if we have an interval x = [x, x] where at least one of the endpoints
is no machine-representable number and we want to use this interval in a
computer we have to take care of that the interval x̃ which the computer
uses is an enclosure of the exact interval, this means x ⊆ x̃ must hold.
Optimally x̃ = [x̃, x̃] where x̃ is the largest machine-representable number
which is less or equal than x and x̃ is the smallest machine-representable
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number which is greater or equal than x. This procedure is called optimal
outward rounding.
So we have use all the elementary operations and functions with optimal
outward rounding because otherwise we loose the rigour of our computations.
We define

x♦◦ y := ♦(x ◦ y) where ◦ means a elementary operation,

ϕ♦(x) := ♦ϕ(x) where ϕ is an elementary function,

where ♦ means the optimal outward rounding.

Extension to interval vectors and matrices

Here we define the set of interval vectors with length n, IRn, by the set of all
interval vectors x = (x1, . . . , xn) with xi ∈ IR for all i = 1, . . . , n. Geomet-
rically this can be seen as a rectangular box in R

n. The main terminology
from above can be adopted from above in a component-wise sense. We get
for the order relations,

x ω y :⇔ xi ω yi ∀i = 1, . . . n,

where ω means one of the previously defined order relations (<,≤, >,≥).
For the terms of infimum, supremum, midpoint, radius, magnitude, hull and
outward rounding the extension works in the same way component-wise.
The definition for elementary operations and elementary functions can be
applied in every component. The addition and subtraction of interval vectors
can be defined by a straightforward way component-wise. Also a ’scalar’
multiplication is fairly straightforward,

ax := 2

{

ax
∣

∣

∣ a ∈ a, x ∈ x
}

,

where a ∈ IR and x ∈ IR
n.

A m×n interval matrix A ∈ IR
m×n is defined such that every entry Aik ∈ IR.

Again the definitions for infimum, supremum, midpoint, radius, magnitude,
the hull and outward rounding we can adapt easily in a component-wise
sense. Hardly surprising the addition and subtraction is defined again in
a component-wise sense. Now we define the multiplication. We have A ∈
IR

m×n and B ∈ IR
n×p then we define matrix product AB ∈ IR

m×p by

AB := 2

{

AB
∣

∣

∣ A ∈ A, B ∈ B
}

.

We also define a ’scalar’ multiplication. We have a ∈ IR and A ∈ IR
n×n and

define
aA = 2

{

aA
∣

∣

∣ a ∈ a, A ∈ A
}

.

Again the order relations are understood component-wise.
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Interval expressions

Next we define some important terms in interval analysis.

Definition 2.1. An interval function f : IR
n → IR is called inclusion

isotone if, for x, y ∈ IR
n the property

x ⊆ y⇒ f(x) ⊆ f(y) (10)

holds.

Definition 2.2. An interval function f : IRn → IR is called an interval
enclosure of a real function f0 : D ⊆ R

n → R if the properties

f(x) = f0(x) x ∈ D, (11)

f0(x) ∈ f(x) ∀x ∈ x ∈ ID, (12)

hold. An interval enclosure provides

{f0(x) | x ∈ x} ⊆ f(x). (13)

Obviously the property from above is important for rigour enclosure of a real
function f. So one is interested in a class of functions which satisfies this
property. Luckily the class of functions which are composed arithmetically
through the most common elementary functions we mentioned above satisfies
this property. In a very similar way one can also find a class of functions
for which this property holds with outward rounding. So we see that the
most common functions are satisfying the property above and we have not
to care much about this property. For more details on this topic we refer to
Neumaier [18, section 1.4].

Comments and prospects

For more on interval evaluation, algebraic and topological properties in in-
terval arithmetic we refer mainly to Neumaier [18] as well as to Moore et al.
[16].
Further an important topic to optimize interval evaluation are centred forms.
The most common centred forms are mean value forms and slope forms. Here
we also refer to Neumaier [18], Moore et al. [16] and additionally to Kearfott
[12] and Baumann [2].
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2.2 Appropriate norms

Here we shortly discuss weighted maximum norms in vector spaces and the
induced matrix norm. We also discuss how to choose this weights. These
norms are useful for our method.
First we recall the extended problem which looks in the following way,

F̃λ,σ(u, ξ) =

(

F (λ, u) + A1ξ
µ(λ, u)− σ

)

, (14)

where F̃λ,σ : Rn ×R
k → R

m ×R
l. Usually there is n = m and l = k = 1. We

define the weighted maximum vector norm.

Definition 2.3. For x ∈ R
n we define its weighted maximum norm

‖x‖∞,w with weight w ∈ R
n where wi > 0 for all i = 1, . . . , n by

‖x‖∞,w := max
i

|xi|
wi

. (15)

If we have chosen an appropriate weight w ∈ R
n then ‖x‖∞,w ≈ 1 shall

hold when x ∈ R
n is in the expected range. So we must choose appropriate

weights w1, w2 ∈ R
n corresponding to the domain and co-domain of the

function F̃λ,σ : R
n × R

k → R
m × R

l. Furthermore we keep this notation
w1, w2 for the weights corresponding to the domain and co-domain of the
function F̃λ,σ.
Further we also need the induced compatible matrix norm.

Definition 2.4. Let A : Rn → R
m be a linear operator and (Rn, ‖·‖∞,w1),

(Rm, ‖·‖∞,w2) normed vector spaces then the corresponding induced norm is
defined by

‖A‖∞,w1,w2 := max
1≤i≤m

1

w2
i

n
∑

j=1

w1
j |aij | . (16)

We call this norm the weighted absolute row sum of the matrix.

Remarks. (i) It is easily to see that the choice of a weight w ∈ R
n such

that w ∈ R
n is one in each component leads to the common maximum

norm. Similarly the choice of the weights w1, w2 ∈ R
n such that each

component is one leads to the commonly by the maximum norm induced
matrix norm, the common absolute row sum of the matrix.

(ii) If w1 6= w2 then we have to take care between which domains the linear
operator A maps. In particular ‖A‖∞,w2,w1 6= ‖A‖∞,w1,w2 .

Now we define an important operator we use often later.
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Definition 2.5. The operator midrad : Rn × R+ → IR
n is defined by

(midrad(x, r))i = [xi − r, xi + r] i = 1, . . . , n.

The operator is also valid if r ∈ R
n
+. Then midrad : Rn×Rn

+ → IR
n is defined

by
(midrad(x, r))i = [xi − ri, xi + ri] i = 1, . . . , n.

Remark.
One can see that the midrad operator can be used to set an enclosure of
Bδ(u0) :=

{

u ∈ R
n
∣

∣

∣ ‖u− u0‖ ≤ δ
}

. If we are using the common maximum

norm then midrad(u0, δ) = Bδ(u0) holds. If we use a weighted maximum
norm then we must replace δ by δw1, where the vector w1 is a weight like
introduced above. Obviously then δw1 is a vector.

2.3 Bezier interpolation

Here initially the assumptions we make shall be the same like in the previous
section. We can use the discussion in the previous section to determine a
grid G to interpolate the solution in an area Λ̃ × Σ̃ ⊆ (λ, σ). Moreover we
assume for simplicity that p = l = 1.
Next we use the grid G to define a triangulation T in Λ̃ × Σ̃. We use a
Delaunay triangulation.

Definition 2.6. We define a Delaunay triangulation for a set of points
G in R

2 such that the triangulation has to satisfy the property that no point
in G is inside the circumcircle of any triangle of the triangulation.

Remarks. (i) The definition of the Delaunay triangulation can be extended
to higher dimensions. Then one has to consider circumscribed spheres
instead of circumcircles corresponding to the n-simplices.

(ii) The Delaunay triangulation is not necessarily unique and possibly does
not even exist. We do not have uniqueness for four or more points on
the same circle. This means the vertices determine a rectangle. The
Delaunay triangulation does not exist if all points are on the same line.

(iii) The Delaunay triangulation is dual to the Voronoi diagram.

For more on Delaunay triangulation we refer to Klein [14].
On this triangulation we want to interpolate the solution of the extended
problem using cubic Bezier-splines on the triangular patches defined with
T .
For each of the following introducing subsections we want to reference to
Prautzsch et al. [20].
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Bernstein polynomials

The basics for using Bezier splines to fit data are the Bernstein polynomials.
By looking on the binomial expansion

1 = (u + (1− u))n =
n
∑

i=0

(

n

i

)

ui(1− u)n−i

we can deduce the definition of the Bernstein polynomials.

Definition 2.7. We define the Bernstein polynomials of degree n
with

Bn
i (u) =

(

u

i

)

ui(1− u)n−i, (i = 0, . . . , n). (17)

Proposition 2.8. (i) The Bernstein polynomials are linear independent.

(ii) They satisfy the symmetry condition Bn
i (u) = Bn

n−i(1− u).

(iii) All the roots are either 0 or 1, in particular

Bn
i (0) =







1 i = 0,

0 i > 0.

(iv) They form a partition of unity for all u ∈ R.

(v) They are strictly positive for u ∈ [0, 1] in the interior of the interval
[0, 1].

(vi) They satisfy the recurrence relation

Bn+1
i (u) = uBn

i−1(u) + (1− u)Bn
i (u), (18)

where Bn
−1 = Bn

n+1 = 0 and B0
0 = 1.

These properties make the Bernstein polynomials appropriate for interpola-
tion of curves. Especially the linear independence property says in particular
that every polynomial p of degree ≤ n has also a unique representation us-
ing Bernstein polynomials as the basis of the space of these polynomials.
This representation is called the nth degree Bezier representation of a
polynomial. We write

p(u) =
n
∑

i=0

ciB
n
i (u).

14



With an affine coordinate transformation, u = (1−t)a+ tb, we get the Bezier
representation of a polynomial curve p over an arbitrary interval [a, b],

p(u(t)) =
n
∑

i=0

biB
n
i (t).

The coordinates bi we call Bezier points and they determine the so-named
Bezier polygon of the curve p over the interval.

Proposition 2.9. (i) For the end points of the curve over the interval
[a, b] hold p(a) = b0 and p(b) = bn.

(ii) Bezier representations are affine invariant.

(iii) For u ∈ [a, b] the point p(u) is a convex combination of its Bezier points.
In particular this means that the curve p over the interval [a, b] lies in
the convex hull determined by the corresponding Bezier points. This
property implies that p([a, b]) ⊆ [minn

i=0 bi, maxn
i=0 bi] holds.

Next we consider the recurrence relation mentioned above. This relation
leads us to a very important algorithm when using Bezier patches, named by
de Casteljau. We have

p(u) =
n
∑

i=0

b0
i Bn

i (t) =
n−1
∑

i=0

b1
i Bn−1

i (t) = · · · =
0
∑

i=0

bn
i B0

i (t) = bn
0 ,

where
bk+1

i = (1− t)bk
i + tbk

i+1.

With these relation we are easily able to evaluate a Bezier patch at a point
u represented by its local coordinate t. This scheme for evaluation is called
the De Casteljau algorithm.
For more information on Bernstein polynomials, Bezier techniques and inter-
polation of curves with Bezier splines we refer to the book Prautzsch et al.
[20]. Now we continue with introducing Bernstein polynomials over triangles
in a plane because we use them for interpolating the solution path.

Triangular Bezier-splines

First we introduce the concept of barycentric coordinates in R
2.

Definition 2.10. Let △ be a triangle in R
2 formed by the three vertices

a1, a2, a3 ∈ R
2. Then we define the normed barycentric coordinates

(u, v, w) for a point p ∈ R
2 with respect to (a1, a2, a3) with the properties,
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(i) u + v + w = 1,

(ii) (a1 + a2 + a3)p = a1u + a2v + a3w.

Remarks. (i) The point p ∈ R
2 lies in the interior of the triangle △ if and

only if u, v, w ≥ 0.

(ii) We can describe the triangle △ in the following way:

△ := {ua1 + va2 + wa3

∣

∣

∣u, v, w ≥ 0, u + v + w = 1}.

(iii) The vertices (a1, a2, a3) have the barycentric coordinates (1, 0, 0), (0, 1, 0)
and (0, 0, 1).

(iv) The definition of barycentric coordinates from above can easily be ex-
tended to higher dimensional simplices.

Now we need formulas for the barycentric coordinates with respect to

(a1, a2, a3) of a point p ∈ R
2. We write ai =

(

a1
i

a2
i

)

for i = 1, 2, 3 and p =

(

p1

p2

)

.

Then we get these coordinates by solving

T

(

u
v

)

= (p− a3),

w = 1− u− v,

where T =

(

a1
1 − a1

3 a1
2 − a1

3

a2
1 − a2

3 a2
2 − a2

3

)

. These system of linear equations is uniquely

solvable if the points (a1, a2, a3) define a triangle in R
2. Next we introduce

the Bernstein polynomials of degree on such a triangular patch, because
they build the basis of interpolation with triangular Bezier splines. Similarly
to the introduction of the common Bernstein polynomials we consider the
trinomial expansion

1 = (u + v + w)n =
∑

i,j,k

n!

i!j!k!
uivjwk,

where clearly i, j, k ≥ 0 and i+j +k = n. Again we can deduce the definition
of the Bernstein polynomials over a triangle.

Definition 2.11. Let△ be a triangle in R
2 defined with the vertices (a1, a2, a3)

and let (u, v, w) be the barycentric coordinate vector of a point x ∈ R
2 with

respect to (a1, a2, a3) and let n ∈ N be fixed. Then the Bernstein polyno-
mials of degree n over △ are defined by

Bn
ijk(u, v, w) =

n!

i!j!k!
uivjwk. (19)

16



With multiindex notation we can write

Bn
i (u) =

(

n

i

)

ui,

where i = (i, j, k), u = (u, v, w) and |i| = i + j + k = n.
Only in this section we use bold symbols for multiindex notation. Elsewhere
we mean interval vectors.
Below we use cubic Bernstein polynomials. These polynomials you can see
in figure 1 as a canonical listing.

u3

u2v u2w

uv2 uvw uw2

v3 v2w vw2 w3

Figure 1: Canonical listing of cubic Bernstein polynomials over a triangle.

Proposition 2.12. (i) There exist
1

2
(n + 1)(n + 2) Bernstein polynomials

of degree ≤ n. In particular, there are 10 cubic Bernstein polynomials.

(ii) The bivariate Bernstein polynomials of degree n are linearly independent
and build a basis of the space of bivariate polynomials from degree ≤ n.

(iii) They are symmetric with respect to any permutation. This means
Bn

i (u) = Bn
π(i)(π(u)) for any permutation π.

(iv) A zero of these bivariate Bernstein polynomials must be at the edge of
the triangle. In particular

Bn
i (ek) =







1 ik = n,

0 ik < n.
(20)

(v) They form a partition of unity,

∑

i=n

Bn
i (u) = 1.

(vi) If a point p ∈ R
2 is in the interior of the triangle △, i.e. if the barycen-

tric coordinates u from p ∈ R
2 are strictly positive then the Bernstein

polynomials are strictly positive too.
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(vii) The Bernstein polynomials satisfy the following recursion formula

Bn
i,j,k(u, v, w) = uBn−1

i−1,j,k + vBn−1
i,j−1,k + wBn−1

i,j,k−1, (21)

where B0
0,0,0 = 1 initialises this recursion.

(viii) The derivative of a Bernstein polynomial over a triangle satisfies

∂

∂uj

Bn
i = nBn−1

i−ej
, (22)

where Bj = 0 if j is negative in one coefficient.

Remarks. (i) All the properties from above are easily adaptable for multi-
variate polynomials over multivariate simplices.

(ii) The positivity property (vi) is the reason why the polynomials are mainly
useful for interpolation over the triangle △.

Now we can introduce the so-called Bezier representation of a polynomial
surface.

Definition 2.13. Every polynomial bivariate surface b(x, y) has a unique
Bezier representation with respect to a triangle △. The representation
is looking in the following way,

b(x, y) =
∑

i+j+k=n

bijkBn
ijk(u, v, w). (23)

These coefficients bijk are called the Bezier points of the surface b and they
are the vertices of the Bezier net of b over the triangle △.

Such a mapping b : △ → R
s we call a triangular Bezier patch over

the triangle △ where the points bijk are in R
s and s ∈ N. When we use

triangular Bezier patches to interpolate a surface the choice of the Bezier
points bijk ∈ R

s is not trivial especially if the surface should satisfy some
continuity conditions between various triangles.

Proposition 2.14. (i) For lower dimensional faces of the triangle △ the
Bezier points restricted to this face form a Bezier patch on this face. In
particular, this implies at the vertices (a1, a2, a3) of our triangle △ that
the Bezier patch touches the corresponding points in R

s of the vertices,
i.e.

b(a1) = bn00, b(a2) = b0n0, b(a3) = b00n.

Further this implies

Da2−a1
b(a1) = n(bn−1,1,0 − bn,0,0)

where Dv means Differential operator in direction v.
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(ii) The surface b(△) lies in the convex hull of its Bezier points.

Remarks. (i) Again these properties are generalisable for arbitrary sim-
plices.

(ii) The property (i) means for cubic triangular Bezier patches that if we
know the function values and the values of the derivatives at the vertices
of the triangle we get directly every Bezier point of the patch beside of
b111. This Bezier points we get are unique.

(iii) The property (ii) implies

b(△) ⊆
(

[min
i=n

b1
i , max

i=n
b1

i ], . . . , [min
i=n

bs
i , max

i=n
bs

i ]
)T

∈ IR
s,

where the superscript j means the jth coefficient of the Bezier points.

Next we need to think about an efficient algorithm to determine a Bezier
patch at some point x ∈ △. Here the well-known De Casteljau algorithm for
Bezier curves is generalisable for Bezier patches over a triangle. This algo-
rithm uses iteratively the recursion formula (21).

Algorithm 1 (De Casteljau algorithm)
Determine b(x, y) =

∑

i+j+k=n

bijkBn
ijk(u, v, w) Bezier patch over the triangle

△ where (u, v, w) are the barycentric coordinates with respect to △ and
(x, y) ∈ △.

The Algorithm

• Set b0
ijk ← bijk where i + j + k = n.

• For l = 1, . . . , n

bl
ijk ← ubl−1

i+1,j,k + vbl−1
i,j+1,k + wbl−1

i,j,k+1

where i + j + k = n− l and i, j, k ≥ 0.

• Set b(x, y)← bn
000.

This algorithm gives us additionally the Bezier net of at most three sub-
triangles formed by their vertices (a1, a2, x), (x, a2, a3) and (a1, x, a3). Here
x = (x, y) from above. This observation is useful later. If x is on an edge of

19



the initial triangle, we only get two subtriangles. If x is chosen as a vertex
point then the algorithm is useless. We see that iterative application of this
algorithm on every sub-triangle yields to a subdivision of the initial triangle.
This procedure is commonly named subdivision algorithm. The subdivision
algorithm always applied at appropriate points is useful if we want to plot
the Bezier patch. A good strategy of dividing the triangles is to choose the
middlepoint on the longest edge of the triangle.
Now we have to think about how to apply these cubic triangular Bezier
patches for our problem.

Joining two triangular cubic patches

We consider two triangles △ and △′ sharing an edge. These are determined
by its vertices (a1, a2, a3) respectively (a4, a2, a3). We know that all Bezier
points beside of the center Bezier points b111 respectively b′

111 are uniquely
determined by the function values and gradients given at the vertices. So we
have to think of how to choose the Bezier points such that the corresponding
patches b and b′ have a C1 joint along the sharing edge.
Due to Proposition 2.14 (i) we know that the patches b and b′ restricted to the
sharing edge must be Bezier patches again. Additionally we know that the
Bezier points of b and b′ corresponding to this edge are uniquely determined
by the function values and gradients at the vertices a2 and a3. So we can
conclude that the Bezier patches b and b′ restricted to the sharing edge must
agree. So we have a C0 joint between the triangles △ and △′. In particular
this means

b(0, s, 1− s) = b′(0, s, 1− s),

where s ∈ [0, 1]. Now we additionally know that all derivatives in direction
a2 − a3 of the Bezier patches b and b′ along the edge agree. So we have
to consider an arbitrary derivative with respect to a direction which is non-
tangential to the sharing edge of the Bezier patches b and b′ along the sharing
edge to find conditions for a C1 joint between the patches. We can write down
a formula for directional derivatives for Bezier patches. We consider a line
x(t) = p + tz where v = a1z1 + z2a2 + z3a3. Due to the construction of the
barycentric coordinates for a direction must hold z1 + z2 + z3 = 0. Then we
have

Dzb(p) =
d

dt
b(x(t))

∣

∣

∣

∣

t=0
= z1

∂

∂u
b + z2

∂

∂v
b + z3

∂

∂w
b =

=
∑

j=n−1

cjB
n−1
j ,
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where
cj = n(z1bj+e1

+ z2bj+e2
+ z3bj+e3

).

Now we can choose an arbitrary direction non-tangential to the sharing edge.
We choose the direction a2 − a1 or in barycentric coordinates (−1, 1, 0) and
insert this in our formula. We only need to compare the Bezier net ordinates
of Da1−a2

b and Da1−a2
b′ corresponding to Bernstein polynomials which are

not dependent of u respectively u′ because we are only interested in the
behaviour on the common edge. These Bezier net ordinates are c020, c011 and
c002 respectively c′

020, c′
011 and c′

002. By inserting in the formula we get

c020 = −b120 + b030,

c011 = −b111 + b021,

c002 = −b102 + b012.

In the next we have to determine the barycentric coordinates with respect
to △′ of the chosen direction a1 − a2. We say (u, v, w) are the barycentric
coordinates of a1 with respect to the triangle △′. This means a1 = ua4 +
va2 + wa3. Then we have to consider D−u,−v+1,−wb′ on the common edge.
Again inserting in the formula above gives

c′
020 = −ub′

120 + (−v + 1)b′
030 − wb′

021,

c′
011 = −ub′

111 + (−v + 1)b′
021 − wb′

012,

c′
002 = −ub′

102 + (−v + 1)b′
012 − wb′

003.

Now we compare c020 with c′
020, c002 with c′

002 and c011 with c′
011. Then we get

the conditions for a C1 joint on the sharing edge,

b120 − ub′
120 − vb′

030 − wb′
021 = 0, (24)

b111 − ub′
111 − vb′

021 − wb′
012 = 0, (25)

b102 − ub′
102 − vb′

012 − wb′
003 = 0. (26)

It is easy to show that beside of the equation (25) the conditions are always
true. This is not surprising because in these equations no unknown appears.
Geometrically the equations from above are conditions for coplanarity of
triangles. We see that we have restricted the choice of the inner Bezier
points with these conditions, although (25) does not imply a unique choice
for the inner Bezier point.
One possibility to restrict the choice of the inner Bezier points more is to
consider the second derivatives along the common edge. Farin gives in Farin
[9] and Farin [6] a formula for arbitrary Ck joints between triangular Bezier
patches.
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Theorem 2.15. Let b be a Bezier patch defined over the triangle △ de-
termined by its vertices a1, a2, a3 and c a Bezier patch over the triangle △′

determined by the vertices a4, a2, a3. Let a1 have the barycentric coordinates
(u, v, w) with respect to △′. Then a necessary and sufficient condition for a
Cr joint between b and c along the common edge is

bsjk = cs
0jk(u, v, w) (s = 0, 1, . . . , r), (27)

where cs
i (u) means the notation from the De Casteljau algorithm applied at

the point u.

By applying this theorem we see that our previous determinations are true
and we get two additional equations for a C2 joint between b and b′,

b210 − b′
210u2 − b′

030v2 − b′
012w2 − 2(b′

120uv + b′
111uw + b′

021vw) = 0, (28)

b201 − b′
201u2 − b′

021v2 − b′
003w2 − 2(b′

111uv + b′
102uw + b′

012vw) = 0. (29)

We see we get two additional equations and this yields to an overestimated
system of linear equations. The interpolation techniques often aim to satisfy
the C1 condition and try to minimize the C2-discontinuity.

The Clough-Tocher interpolation scheme

Now we are assuming that we have a given triangulation T based on a grid
G in the region Λ̃× Σ̃ we want to study. For every vertex p ∈ G in this tri-
angulation we assume that we know an approximate corresponding function
value (up, ξp) and approximate corresponding gradients. For the gradients
we write (up

λ, ξp
λ) and (up

σ, ξp
σ). We know already that for a single Bezier patch

on a triangle we only have to think about how to choose the correspond-
ing Bezier point b111, because all the other corresponding Bezier points are
uniquely determined by the function values and gradients at the vertices of
the triangle.
The Clough-Tocher method was introduced in Clough and Tocher [4]. In
this method a triangle, here called macro-triangle, is split into three mini-
triangles. The split is determined by a splitting point C(see figure 3). As
you see we changed the denotion for simplicity to describe the following
topics. For symmetry reasons we use always the barycenter of the macro-
triangle as the splitting point C, although all the other inner points of the
triangle would be appropriate too. Due to the construction of the barycentric

coordinates the barycenter always has the barycentric coordinates (
1

3
,
1

3
,
1

3
)

over the corresponding triangle. This choice is reasonable because the x
and y coordinates of the Bezier points over a triangle △ determined by its
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vertices (a1, a2, a3) reference to bijk[x, y] =
1

n
(ia1 + ja2 + ka3) where n means

the degree of the applied Bezier patch (see figure 11). This means the data
values we get over C agree with b111.

b

b

b

b

b

b

b

b

b

bb300

b210

b120

b021

b012

b201

b102

b111

b030

b003

Figure 2: Bezier net in the triangular and cubic case

Now we present shortly the procedure of the Clough-Tocher scheme. We use
the description of Mann [15]. For ijk ∈ {012, 120, 201},
(a) Set Vi and Tij like we have described above. To remember this choice is

unique.

(b) Set Ii1 to lie in the tangent plane at Vi. As a formula:

Ii1 =
1

3
(Vi + Tij + Tik).

(c) Now set Ci to be coplanar with Tjk, Tkj and C ′
i. This choice has some free-

dom because this is exactly the C1-joint condition. Clough and Tocher
used a linear scheme for the choice. We use a modified scheme from
Farin which minimizes the C2 discontinuity and so should yield to a
better result.

(d) Set Ii2 to lie in the plane spanned by Cj , Ck and Ii1.

(e) Set S to lie in the plane spanned by I02, I12 and I22.

The method we use is named by Farin and is presented next.
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V2
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T12

T10

T01

T02

T20

C

V1

V0

V ′
2

C ′

I12I02 I11

I01

I10

I00

I ′
01

I ′
11

I ′
10

I ′
00

C0

C2

C1

C ′
2

Figure 3: Clough-Tocher split

Farins method

Farins method yields to a C1 joint and minimizes the C2 discontinuities along
the sharing edge of two neighbouring Bezier patches. This method yields
to quadratic precision and improves the standard Clough-Tocher technique.
The method uses the Clough-Tocher scheme beside of (c). So we replace (c)
by the following steps.

(i) Set an initial C by

1

4
(T20 + T02 + T10 + T01 + T21 + T12)− 1

6
(V0 + V1 + V2).

This formula was given in Farin [7] and ensures quadratic precision of
the patch, but no C1 joints between the sharing edges.

(ii) Next set the barycentric coordinates relative to the neighbouring trian-
gles, i.e.

V2 = u′V ′
2 + v′V1 + w′V0,

V ′
2 = uV2 + vV0 + wV1.

(iii) Now use subdivision to get settings for Ci, Ii1 and Ii2 where i = 0, 1, 2.
Here we use that due to our construction we get by applying the De
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Casteljau algorithm at the barycenter (1
3
, 1

3
, 1

3
) automatically the Bezier

points of the mini-triangles. In particular, b1
110 corresponds to C2 in our

construction. Further we additionally see that b1
002 corresponds to I21.

In this way we get an initial setting for Ci and Ii1. By knowing this
values we can get values for Ii2.

(iv) Next formulas are according to Mann [15]. The formula are obtained by
minimizing the C2 discontinuities with a standard Lagrange multiplier
method. More detailed the least squares problem, solve (25) subject
to minimizing the C2 error equations (28) and (29) has to be solved.
By using a standard least squares method Farin obtains the following
formulas. Here we only write down the formulas and we refer for more
details to Farin [8]. The notation in the formula is adapted to the
currently used notation for Bezier patches.

r1 = u′I ′
12 + v′I ′

11 − uI12 − wI11,

r2 = u′I ′
02 + w′I ′

01 − uI02 − vI01,

r2 = vT01 + wT10,

a11 = 2(v2 + w2),

a12 = −2(vw′ + wv′),

a22 = 2(w′2 + v′2),

s1 = 2(vr1 + wr2),

s2 = −2(w′r1 + v′r2),

D = 2ua12 + u2a22 + a11,

C ′
2 =

us1 + ua12r3 + u2s2 + r3a11

D
,

C2 =
C ′

2 − vT01 − wT10

u
.

We can see that the last equation is exactly the C1 condition from
above. In an analogous way we can get values for C0 and C1.

Then continue with the Clough-Tocher scheme at (d). At the boundary of
the area we are considering obviously we can not determine the Ci value
adjacent to the boundary due to C2 discontinuity minimization so we use
the values we get for Ci due to the setting of the initial C. Maybe one can
use the formula for the directional derivative of a patch to set the values for
Ci corresponding to the boundary.
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2.4 Existence and uniqueness theorems

Theorem 2.16 (Implicit function theorem). Let f : Rn+m → R
m, f(x, y) be

a continuously differentiable function. Fix a point
(a1, . . . , an, b1, . . . , bm) = (a, b) ∈ R

n+m with f(a, b) = c where c ∈ R
m. If the

matrix Dyf(a, b) =

(

∂fi

∂yj

(a, b)

)

(i,j)

where i, j = 1, . . . , , m is invertible, then

there exists an open set U ⊆ R
n containing a ∈ R

n, an open set V ⊆ R
m con-

taining b ∈ R
m, and a unique continuously differentiable function g : U → V

such that
f(x, g(x)) = c for all x ∈ U. (30)

Next we rephrase a theorem of Neumaier [18, p. 177] which gives us infor-
mation about the existence of solution branches.

Theorem 2.17. Let G : D0 ⊆ R
n → R

n be Lipschitz continuous on D ⊆ D0,
and let A ∈ IR

n×n be a Lipschitz matrix for G on D. If x ∈ x0 ∈ ID then the
following condition holds. If x ∈ int(x0) and ∅ 6= K(x, x0) ⊆ int(x0) then G
contains a unique zero in x0.

The operator K is defined by

K(x, x0) = x− CG(x)− (CA− I)(x0 − x) (31)

and is called the Krawczyk operator.

Remark.
This theorem says that the analogue of a Newton-iteration step in interval
analysis contracts.

Now we rephrase a theorem of Neumaier [18, p. 204] which gives us infor-
mations concerning the uniqueness of solution paths.

Theorem 2.18. Let G : R
p ⊆ Λ × R

n → R
n be a Lipschitz continuous

function, (λ0, x0) ∈ Λ×R
n an approximate root, D ⊆ R

n, E ⊆ Λ closed and
connected sets such that D×E ⊆ Λ×R

n, and A : ID → IR
n×n is an interval

function such that A(x) is a Lipschitz matrix of the function G fixed at λ for
all x ∈ ID, λ ∈ E.
Let x0 ∈ x0 ∈ ID and suppose that

(CA(x)− I)(x0 − x0) ⊆ d, (32)

2

{

CG(λ, x0)

∣

∣

∣

∣

λ ∈ E
}

⊆ g, (33)

where d, g ∈ IR
n and C ∈ R

n×n again a preconditioning matrix. Then

x0 − g− d ⊆ int(x0), (34)
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implies that, for all λ ∈ E, the equation G(λ, x) = 0 has a unique solution
x = H(λ) ∈ x0, and the function H : E → R

n defined in this way is
continuous.
Moreover, the box x1 = (x0 − g− d) ∩ x0 is an enclosure of the solution set
for all λ ∈ E.

Remark.
On closer inspection we see that Theorem 2.18 is just a straight-forward mod-
ification of Theorem 2.17. For a function G : Rp ⊆ Λ × R

n → R
n, G(λ, x)

Theorem 2.18 says that if for all λ ∈ E, for the function Gλ : R
n → R

n

where λ is held fixed the conditions in Theorem 2.17 hold then for all λ ∈ E
nearby a unique solution exists and one gets additionally the continuity of
the so-constructed solution path.
In conclusion this means we do not have to prove the existence of a solution
path separately.
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3 Problem formulation

3.1 The reduction process

This section summarizes parts of Neumaier [19]. We first rephrase the fixed
point equation (5),

Φλ,σ

(

u
ξ

)

:=

(

u
ξ

)

− A−1

(

F (λ, u) + A1ξ
µ(λ, u)− σ

)

.

Remark.
We repeat the proof of the following theorem which one can find in Neumaier
[19] with very small changes because one can see that the proof also works
with the weaker condition on the matrix A to have a left-inverse A+ for which
a bound α > 0 for its norm can be found. If all columns of the matrix A
are linear independent then the Moore-Penrose inverse is a left inverse of
the matrix A. So the following discussion may works partly for this weaker
condition. However we do not discuss this in detail.

Theorem 3.1. Let δ ≥ 0 such that the ball

Bδ(u0) =
{

u ∈ D
∣

∣

∣ ‖u− u0‖ ≤ δ
}

is in int(D), and for all u ∈ Bδ(u0) we have

∥

∥

∥

∥

∥

(

DuF (λ, u)− A0 0
Duµ(λ, u)− A2 0

)∥

∥

∥

∥

∥

≤ 1

2α
. (35)

If
∥

∥

∥

∥

∥

(

F (λ, u0) + A1ξ0

σ − µ(λ, u0)

)∥

∥

∥

∥

∥

≤ δ

2α
, (36)

then Φλ,σ (see (5)) is a contraction in Bδ(u0, ξ0) =







(u, ξ)

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

(

u− u0

ξ − ξ0

)∥

∥

∥

∥

∥

≤ δ







.

Proof. Let (u, ξ) ∈ Bδ(u0, ξ0). Then the derivative of Φλ,σ with respect to
(u, ξ) is

Φ′
λ,σ = I − A−1

(

DuF (λ, u) A1

Duµ(λ, u) 0

)

= A−1

(

A0 −DuF (λ, u) 0
A2 −Duµλ, u) 0

)

,

so that
∥

∥

∥Φ′
λ,σ

∥

∥

∥ ≤
∥

∥

∥A−1
∥

∥

∥

∥

∥

∥

∥

∥

(

A0 −DuF (λ, u) 0
A2 −Duµ(λ, u) 0

)∥

∥

∥

∥

∥

≤ 1

2
.

28



Hence, by the mean value theorem

∥

∥

∥

∥

∥

Φλ,σ

(

u
ξ

)

− Φλ,σ

(

v
η

)∥

∥

∥

∥

∥

≤ 1

2

∥

∥

∥

∥

∥

(

u− v
ξ − η

)∥

∥

∥

∥

∥

for

(

u
ξ

)

,

(

v
η

)

∈ Bδ

(

u0

ξ0

)

.

Thus Φλ,σ has a Lipschitz constant 1
2
. Moreover for the choice v = u0, η = ξ0,

we find
∥

∥

∥

∥

∥

Φλ,σ

(

u
ξ

)

−
(

u0

ξ0

)∥

∥

∥

∥

∥

≤ 1

2

∥

∥

∥

∥

∥

(

u− u0

ξ − ξ0

)∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

Φλ,σ

(

u0

ξ0

)

−
(

u0

ξ0

)∥

∥

∥

∥

∥

≤ δ

2
+

∥

∥

∥

∥

∥

−A−1

(

F (λ, u0) + A1ξ0

σ − µ(λ, u0)

)∥

∥

∥

∥

∥

≤ δ

2
+
∥

∥

∥A−1
∥

∥

∥

∥

∥

∥

∥

∥

(

F (λ, u0) + A1ξ0

σ − µ(λ, u0)

)∥

∥

∥

∥

∥

≤ δ.

Hence Φλ,σ is a contraction in Bδ(u0, ξ0) and has a unique fix point in
Bδ(u0, ξ0) due to Banachs fixed point theorem.

We apply this theorem in a box (λ, σ) ⊆ Λ×Rl. The verification then implies
that for all (λ, σ) ∈ (λ, σ) exists a point (u, ξ) ∈ Bδ(u0, ξ0) where ξ0 = 0 for
which F̃ (λ, σ, u, ξ) = 0.
We now consider the maximal simply connected, open set of (λ, σ) ∈ Λ×R

l

such that the mapping Φλ,σ is a contraction in some ball Bδ(u0, ξ0) with Σ.

Further we write for these unique fixed point at (λ, σ) ∈ Λ×Rl by

(

ũ(λ, σ)
ξ(λ, σ)

)

.

The implicit function theorem (Theorem 2.16) now says that the mappings
ũ : Σ → R

n and ξ : Σ → R
k defined in this way are k0-times continuously

differentiable and that they satisfy

F (λ, ũ) + A1ξ = 0, µ(λ, ũ) = σ (37)

in Σ. Now we have an implicit parametrization for the solution manifold M .

M =







(

λ
u(λ, σ)

)

∣

∣

∣

∣

∣

∣

(λ, σ) ∈ Σ, ξ(λ, σ) = 0







. (38)

Further is M the image under λ of a reduced manifold Σ∗ ∈ Λ×R
k given by

Σ∗ =
{

(λ, σ) ∈ Σ
∣

∣

∣ ξ(λ, σ) = 0
}

. (39)

Next is a theorem which shows that the reduced manifold has the required
topological property.
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Theorem 3.2. The mapping ϕ : Σ→ Λ×D defined by

ϕ(λ, σ) =

(

λ
ũ(λ, σ)

)

is Ck0-diffeomorphism to Σ∗.

The proof you can find in Neumaier [19].
We see that the singular behaviour of M is reflected in the reduced manifold
Σ∗. In particular, the multi-valued function

µ̂(λ) =
{

σ
∣

∣

∣ (λ, σ) ∈ Σ, ξ(λ, σ) = 0
}

(40)

describes the solution manifold.
Now we study what is to be observed by application of Theorem 3.1 and
Theorem 3.2.
First we consider again our problem,

F : Λ×D ⊆ R
p=1 × R

n → R
m, F (λ, u) = 0, (41)

where F is k0-times continuously differentiable again and n, k0 ∈ N. If p > 1
we hope that our observations of the case p = 1 helps us to find easily a
procedure for the p > 1 case. We discuss this case later. Now we start with
the question of how to choose the matrix A.
Now we assume that we know an approximate zero (λ0, u0) ∈ Λ ×D of the
continuously differentiable function F where nearby is a (near) singularity.
Then close to DuF (λ0, u0) exists a linear operator A0 with dim ker A0 =
m0 > 0. Then the following proposition helps us for a good choice of the
linear operator A. We assume that A is chosen with the even mentioned A0

and appropriate choices for the linear operators A1 and A2 such that A is a
bijection and the norm of its inverse is bounded by α > 0.

Proposition 3.3. Let v1, . . . , vm0
be linearly independent null vectors of A0,

and let w∗
1, . . . , w∗

m0
be linearly independent null vectors of the adjoint A∗

0 :
R

m → R
n.

(i) If A is a bijection, then A2v1, . . . , A2vm0
are linearly independent and

A∗
1w∗

1, . . . , A∗
1w∗

m0
are linearly independent.

(ii) If m0 = k, then, conversely, these conditions imply that A is a bijection.

The proof you can find in Neumaier [19].
The conclusion of this proposition is that for the vectors v1, . . . , vm0

∈ R
n and

w1, . . . , wm0
∈ R

m which span the invariant subspaces corresponding to the
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small eigenvalues of DuF (λ0, u0) and its adjoint, A1 and A2 should be chosen
such that the rank of the matrices [A2v1, . . . , A2vm0

] and [A∗
1w1, . . . , A∗

1wm0
]

has rank m0 and the rank is stable under perturbations of the size such that
a corresponding eigenvalue gets zero.
Clearly we need k ≥ m0 to make the linear operator A a bijection and the
number of unfolding functionals should be at least the algebraic number of
small eigenvalues of DuF (λ0, u0) ∈ R

n×n. If this is not true then α > 0 is
very large.
In common cases the choice of the linear operator A2 depends on the un-
folding functionals µ, that means A2 ≈ Duµ(λ0, u0) and because of that the
unfolding functionals µ must be chosen appropriate to use our procedure.
From now on we say n = m. This is the most common case we consider,
although most of the discussion below can be adapted for the case n 6= m.
Now we assume that close to (λ0, u0) ∈ Λ×D which is a known approximate
zero of the function F we have a point (λ̄, ū) ∈ Λ × D such that for the
matrix Ā0 := DuF (λ̄, ū),

dim ker Ā0 = m0 = 1.

holds. In particular then the matrix Ā0 ∈ R
n×n is singular. There shall be no

further singular linear operator close to A0 and Ā0. If we have F (λ̄, ū) = 0 and
dim ker H̄0 = 1 where H̄0 := (DλF (λ̄, ū), Ā0) then we have a turning point
at (λ̄, ū). If dim ker H̄0 = 2 then either a perfect or an imperfect bifurcation
might occur. Now we assume that the more interesting latter case occurs.
For the following sections we want to reference mainly to Allgower and Georg
[1].

3.2 The choice of A1

We know that the matrix Ā0 is a singular and that means in particular that
the corresponding linear operator Ā0 is not surjective. Due to the funda-
mental theorem of linear algebra we know that dim range Ā0 = n− 1 and in
particular dimR

n\ range Ā0 = 1. We also know that (range Ā0)⊥ = ker ĀT
0 .

So the mapping Ā0u + A1ξ =
(

Ā0 A1

)

(

u
ξ

)

is surjective when A1 is chosen

appropriately that means 0 6= A1 ∈ ker ĀT
0 . So we know that a good choice

of A1 should be in ker ĀT
0 .

Unfortunately we do not know the exact point (λ̄, ū) ∈ Λ × D where the
singularity occur and so we have to try to approximate ker ĀT

0 respectively
ker H̄T

0 . We also can use ker H̄0 because A1 /∈ range H̄0 ⇒ A1 /∈ range Ā0. So
the problem we must solve is to determine an approximate vector A1 ∈ R

n
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which approximately spans ker H̄T
0 is

min
e

{

‖H∗
0 e‖

∣

∣

∣ ‖e‖ = 1
}

, (42)

where H0 :=
(

DλF (λ0, u0) A0

)

. Here the norms mean the ℓ2-norm or in
the matrix-case the induced spectral norm. These norms are always meant
in this section unless something else is said.
The solution of this problem is the eigenvector of H0H

T
0 corresponding to its

absolute smallest eigenvalue.

3.3 The choice of A2

Here we assume that no unfolding functional µ is given. Analogously to above
we aim to find a vector A2 ∈ R

n such that the mapping
ĀT

0 v + AT
2 η : R

n+1 → R
n gets surjective because then we know that

ker

(

Ā0

A2

)

= {0}. This is exactly what we want to have. In an analogous

way like above we get the problem

min
τ

{

‖A0τ‖
∣

∣

∣ ‖τ‖ = 1
}

. (43)

The solution of this problem is the eigenvector corresponding to the absolute
smallest eigenvalue of AT

0 A0. Here we use the matrix A0 ∈ R
n×n instead

of the matrix H0 ∈ R
n×(n+1) because we assume that the kernel of H̄0 has

dimension two and so we do not know if we get the approximation which
works to shrink the null space of the matrix Ā0.

3.4 The choice of A1 with an additional assumption

Now we are assuming additionally that the functional µ : Rp=1×R
n → R

k=1

is given appropriately. We discuss later what appropriate means.
We consider the matrices

(

H̄0

µ̄(λ,u)

)

:=

(

F̄λ Ā0

µ̄λ µ̄u

)

:=

(

DλF (λ̄, ū) DuF (λ̄, ū)

Dλµ(λ̄, ū) Duµ(λ̄, ū)

)

and

(

Ā0

µ̄u

)

instead of H̄0 and Ā0. Then

(

H̄0

µ̄(λ,u)

)

is a (n + 1)× (n + 1) matrix

and if µ̄(λ,u) is not linearly dependent of the rows of H̄0 then

dim ker

(

H̄0

µ̄(λ,u)

)

= 1 =: m0.
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Unfortunately we can not check the linear independence because we do not
know the point (λ̄, ū) ∈ Λ×D. From now on we say the unfolding functional
µ is chosen appropriately if the vector µ̄(λ,u) is linear independent of the rows
of the matrix H̄0.
The next steps are very similar to the discussion above. We know that

dimR
n\ range

(

H̄0

µ̄(λ,u)

)

= 1 and so we have to find analogously to above an

approximation of ker

(

H̄0

µ̄(λ,u)

)T

. Analogously the problem we must solve is

min
e







∥

∥

∥

∥

∥

∥

(

H0

µ(λ,u)(λ0, u0)

)T

e

∥

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

∣

‖e‖ = 1







, (44)

and the solution is again the eigenvector corresponding to the absolute small-

est eigenvalue of

(

H0

D(λ,u)µ(λ0, u0)

)(

H0

D(λ,u)µ(λ0, u0)

)T

.

We see that the vector e is element of Rn+1 but should be from R
n. So we

have to adapt our expanded problem to

F̃ (λ, σ, u, ξ) =

(

F (λ, u) + A′
1ξ

µ(λ, u)− σ + A′′
1ξ

)

(45)

where A1 = (A′
1, A′′

1)T := e.
In this slightly adapted problem solutions with ξ = 0 are again solutions of
our original problem and for the corresponding fixed point equation

Φλ,σ

(

u
ξ

)

:=

(

u
ξ

)

− A−1

(

F (λ, u) + A′
1ξ

µ(λ, u)− σ + A′′
1ξ

)

(46)

Theorem 3.1 stays true with slight modifications. The condition (36) is
looking now in the following way:

∥

∥

∥

∥

∥

(

F (λ, u0) + A′
1ξ0

µ(λ, u0)− σ + A′′
1ξ0

)∥

∥

∥

∥

∥

≤ δ

2α
. (47)

The condition (35) does not change and the proof is easily to modify for this
case.

3.5 Another ansatz to choose the extension of our prob-
lem

We assume that we know a LU-decomposition of the matrix A0, in particular
P A0 = LU. Here P is the n× n pivoting matrix, L a n× n lower triangular
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matrix with diagonal entries equal one and U is an n × n upper triangular
matrix. By knowing this decomposition we consider a decomposition of the
matrix A,

(

P 0
0 1

)

A =

(

P A0 P A1

A2 0

)

=

(

LU P A1

A2 0

)

=

=

(

L 0
0 1

)(

U L−1P A1

A2 0

)

=: L̃Ũ .

We know that diagonal matrices like L and U are invertible if and only if
their components on the diagonal are not equal zero. So we know that the
matrix L̃ is invertible if L is too. We are assuming above that the matrix A0

is invertible so also L must be invertible and as an implication L̃ too.
The matrix U ∈ R

n×n is due to the same reasons invertible and we aim to
choose A1 ∈ R

n and A2 ∈ R
n such that Ũ ∈ R

(n+1)×(n+1) stays invertible and
is well-conditioned. We know that a diagonal matrix is well-conditioned if
their diagonal entries are large compared with the entries in the same row
and in the same column. So we choose A2 ∈ R

n such that we try to correct
the worst entry. We set

Ai
2 =















‖U‖ if i = argmin
j

{

δj :=
|ujj|

maxk{|ujk| , |ukj|}

}

,

0 otherwise,

(48)

where the superscript i means the ith component of A2.
Here the norm is not the ℓ2 - norm. The norm here shall be compatible with
the chosen norms to verify the solution and in particular to determine the
bound α > 0 for the inverse of A.
Next we have to choose A1 ∈ R

n in an appropriate way. Now we change

the last column
(

L−1P A1 0
)T

with the column where the vector A2 has
the non-zero entry and consider this matrix. We can do this because such
a transformation has no effect on the invertibility and well-conditioned of
the matrix. Now we choose A1 ∈ R

n such that the transformed matrix is a
diagonal matrix and such that its diagonal entry is large compared with the
entries in the same column and the same row. The entries in the same column
we can choose and so we want them to be zero. The entry in the diagonal we
choose to be ‖U‖ again. So we get the linear equation system L−1P A1 = 0
in all components which are not equal to the component where A2 ∈ R

n is
zero and L−1P A1 = ‖U‖ in the component where A2 ∈ R

n non-zero. Easily
we get the formula

A1 = P T L [0, . . . , 0, ‖U‖ , 0, · · · , 0]T , (49)
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where the non-zero entry of the vector on the right-hand side is in the same
entry as the non-zero entry of A2 ∈ R

n.
If we have some more δj ≥ 0 which are small then this indicates us that the
initial problem has singularities or near singularities of higher degree than
one. In this case we need an additional extension for the already extended
problem to get a well-conditioned problem. This we can get by applying this
procedure again.
Now we assume that we have a given unfolding functional µ with
A2 := µ(λ0, u0) or at least A2 ∈ R

n determined with a method from above.

Then we have Ã :=

(

A0

A2

)

and we determine a LU-decomposition of Ã. That

means
P Ã = LU,

where P is the n+1×n+1 pivoting matrix, L is a n+1×n lower triangular
matrix with lii = 1 ∀i = 1, . . . , n and U an upper triangular n × n matrix.
For L there is only one choice of extension possible:

L̃ :=
(

L en+1

)

,

where ek is the kth unit vector.
We consider

P

(

A0 A1

A2 0

)

=

(

P

(

A0

A2

)

P

(

A1

0

))

=

=

(

LU P

(

A1

0

))

= L̃

(

U
0

L̃−1P

(

A1

0

))

.

Due to equivalent argumentation like above we want A1 ∈ R
n such that the

(n + 1)th entry of L̃−1P

(

A1

0

)

is equal to ‖U‖ and any other entry shall

be zero. The system of linear equation which arises of this condition is in
general not solvable because the matrix L̃−1P is nonsingular. Anyway we
consider the formula

P T L̃

(

0
‖U‖

)

=

(

A1

0

)

. (50)

We know the pivoting matrix P T is changing the rows of the lower diagonal
matrix L̃. So we see if the lowest row of L̃ is moved by the pivoting matrix
P T then we really get zero at the right-hand side of the formula in the last
entry of the vector. Equivalent to the condition of removing the lowest row
to another entry is that the entry p(n+1)(n+1) of P must equal zero. If we
have p(n+1)(n+1) = 1 we need one more non-zero entry in the vector on the
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left-hand side of the formula above too. We write x ∈ R
n for this vector.

Now we consider the entry where the last column of L̃ respectively L has its
maximum absolute value, because we want the additional non-zero entry in
x ∈ R

n to be small. Let (n + 1, i) be the index of this entry in the matrix L.
Then we set the further non-zero entry of the vector in the formula on the
left-hand side by

xi = − ‖U‖
l(n+1),i

.

Now we get A1 ∈ R
n by the formula

P T L̃x =

(

A1

0

)

. (51)

Using this ansatz we automatically get a LU-decomposition of the matrix
A. The matrix U gives us some hints about the condition of the extended
problem we get. If we have some δi ≥ 0 defined like above which are small
then either the unfolding functional µ might not be appropriately chosen and
we have to find a different one or the initial problem might have singularities
or near singularities of higher degree.

3.6 The m0 = 2 case

Now we assume that close to (λ0, u0) ∈ Λ×D we have a point (λ̄, ū) ∈ Λ×D
where Ā0 := DuF (λ̄, ū) is a singular matrix and

dim ker Ā0 = m0 = 2.

There shall be no further singular linear operator close to the linear op-
erators A0 and Ā0. If we have F (λ̄, ū) = 0 and dim ker H̄0 = 2 where

H̄0 :=
(

DλF (λ̄, ū) Ā0

)

then we probably have intuitively a simple bifur-
cation point with additionally turning point behaviour with respect to λ
at (λ̄, ū). If dim ker H̄0 = 3 then there might be a perfect or an imperfect
bifurcation of higher order. Now we assume that the latter case occurs.
Exemplary we try to find a good choice for the linear operator A1. With
the same arguments as above is dim range Ā0 = n − 2. Obviously then
we need two vectors A′

1 ∈ R
n and A′′

1 ∈ R
n to make the linear mapping

Ā0u + A′
1ξ′ + A′′

1ξ′′ : Rn × R
2 → R

n surjective. Ideally these vectors should
be element of ker ĀT

0 = (range Ā0)
⊥ and these space has exactly dimension 2

and so is spanned by two vectors. Now we set A1 =
(

A′
1 A′′

1

)

and ξ =

(

ξ′

ξ′′

)

.

There is v /∈ range H̄0 ⇒ v /∈ range Ā0 true so that we get the known problem
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again to approximate the kernel of ĀT
0 (respectively H̄T

0 )

min
e

{∥

∥

∥HT
0 e
∥

∥

∥

∣

∣

∣ ‖e‖ = 1
}

,

where we already know how to find a solution.
Here we expect to find two vectors which approximately span the kernel of
ĀT

0 . Now we can either choose the two eigenvectors corresponding to the
two smallest eigenvalues of H0H

T
0 or maybe we take at first one solution (the

eigenvector corresponding absolute smallest eigenvalue) like above. Then we
call this vector A′

1. Next we consider the problem

min
e







∥

∥

∥

∥

∥

(

HT
0

A′T
1

)

e

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

∣

‖e‖ = 1







.

The solution of this problem shall get us an approximate nullvector of H̄T
0

which is additionally approximately orthogonal to the vector A′
1 ∈ R

n we
have found previously.
In the same way we modify the methods described above for the choice of
the linear operator A2 or (maybe) the choice of A1 ∈ R

n when the unfolding
functional µ is given.
We see that we do not need difficult modifications for the choice of A1 ∈ R

n

and A2 ∈ R
n when m0 = 2. If even m0 > 2 the method to find the matrices

A1 and A2 stays the same. There is to remark that if the unfolding functional
µ : Rp × R

n → R
l is given and l < m0 then additional unfolding functionals

must be found such that the modified functional µ maps into R
l with l ≥ m0.

However, in general we have no information about the kind of singularity and
we assume at first that a simple bifurcation occurs.

3.7 What happens when p > 1

We say now that p = 2 and m0 = 1 again and the other assumptions stay
the same. Then there are the possibilities that dim ker H̄0 is either 2 or 3. In
the first case we do not have any bifurcation in these region. Our technique
should work anyway like in all cases when singularities of lower degree occur.
When dim ker H̄0 = 3 we need an appropriate linear operator A1 : Rl → R

n

and an appropriate unfolding functional µ : R
p × R

n → R
l (respectively

A2 : Rn → R
l). The choice is in analogous way possible as in the p = 1 case.

The ’bifurcation diagram’ in this case is 3-dimensional.
Now we look at the case when p = 2 and m0 = 2. Here are three possibilities:
either is dim ker H̄0 equal to 2, 3 or 4. When we have dim ker H̄0 = 2 again no
bifurcation occurs. In the other situations we have bifurcations. In general

37



we do not know which situation is present so we have to assume the worst
case. This means dim ker H̄0 = 4. Here the linear operator A1 must map from
R

2 into the R
n and analogously the unfolding functional µ from R

p×R
n into

R
2. The determination of the vectors A1 and A2 can easily be adapted from

above for this case. If the extension of the considered problem is appropriate
then the matrix A must not be singular.
So theoretically the technique works for p > 1 and m0 > 1 the same as for
p = 1 and m0 = 1. However we should try to keep the dimension of the
vector space of σ as small as possible, because in the following we try to
show that the fixed point equation (5) is a contraction in some region for all
(λ, σ) ∈ (λ, σ) where (λ, σ) ∈ IR

p+l. This task is much more difficult if the
dimension of the box is high because the volume of this box increases with
the degree of the dimension of the box. However the dimension of the vector
space of λ is given so we should try to avoid a high dimension for the vector
space of σ.

3.8 A predictor-corrector method

We assume for simplicity the problem,

F : Rp × R
n ⊇ Λ×D → R

n, F (λ, u) = 0. (52)

Then an ordinary Euler-Newton-Method to solve (52) can be sketched shortly
like this:

x̃i = xi−1 + ht (The predictor step), (53)

xi = x̃i−1 − BF (x̃i) (The corrector step), (54)

where xi = (λi, ui) respectively x̃i = (λ̃i, ũi), B = D(λ,u)F (x̃i)
+ or in the

Newton-chord case B = D(λ,u)F (xi−1)
+. Here D(λ,u)F (xi−1)

+ means the
Moore-Penrose inverse of D(λ,u)F (xi−1). Further h ∈ R is the step-length
and t ∈ R

n is the tangent vector at (λi−1, ui−1) The vector is unique if and
only if rank F(λ,u)(xi−1) = n. The full rank condition means that no bifur-
cation point is at the point (λi−1, ui−1) ∈ R

p+n. Usually this conditions is
true.
Now we make some assumptions. The box we want to study we call
(λ, u) ∈ IR

p+n and we assume that we know an approximate root
(λ0, u0) ∈ (λ, u) of the function F : Λ×D → R

n. Then the point (λ0, σ0, u0, ξ0)
is an approximate root of the extended function F̃ where σ0 = µ(λ0, u0) and
ξ0 = 0. Clearly we again mean by µ the previously invented unfolding func-
tional.
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We aim to find more approximate roots (λ̃0, ũ0) ∈ (λ, u). Our construction

of the extended problem leads to find approximations for

(

ũ
ξ

)

(λ̃0, σ̃0) (see

section 3.1) where λ̃0 ∈ λ and σ̃0 ∈ σ ∈ IR
l and where σ ⊇ µ(λ, u).

The predictor step

When we assume that the function F̃ has no singularities in the box we have

to study and due to F̃ is C1 the mapping

(

ũ
ξ

)

: R2 → R
n+1 which satisfy

F̃ (λ, σ, ũ(λ, σ), ξ(λ, σ)) = 0 for all (λ, σ) ∈ (λ, σ) is again C1. Then the

derivative functions

(

ũ
ξ

)

λ

and

(

ũ
ξ

)

σ

exist and are continuous in the whole

box.
When we differentiate F̃ (λ, σ, ũ(λ, σ), ξ(λ, σ)) with respect to λ where the

function

(

ũ
ξ

)

(λ, σ) is defined like above we get

(

DuF (λ, ũ(λ, σ)) A1

Duµ(λ, ũ(λ, σ)) 0

)(

ũλ(λ, σ)
ξλ(λ, σ)

)

+

(

DλF (λ, ũ(λ, σ))
Dλµ(λ, ũ(λ, σ))

)

= 0.

Due to the definition of the mapping

(

ũ
ξ

)

we get

(

DuF (λ, ũ(λ, σ)) A1

Duµ(λ, ũ(λ, σ)) 0

)(

ũλ(λ, σ)
ξλ(λ, σ)

)

= −
(

DλF (λ, ũ(λ, σ))
Dλµ(λ, ũ(λ, σ))

)

. (55)

This linear system of equation holds ∀(λ, σ) ∈ L × S. In analogous way we
get the the linear system of equations

(

DuF (λ, ũ(λ, σ)) A1

Duµ(λ, ũ(λ, σ)) 0

)(

ũσ(λ, σ)
ξσ(λ, σ)

)

=

(

0
1

)

. (56)

We want to use these linear system of equations (55) and (56) for the pre-
dictor step. We need both vectors for the predictor step because contrarily
to the sketched Euler-Newton where roots of a function F : Rp=1×R

n → R
n

have to be found our problem maps from R
p=2 × R

n+1 to R
n+1 and due to

our assumptions the kernel of the Jacobi-Matrix near roots which are situ-
ated in the studied box (λ, σ) must have dimension 2. Then the kernel of
this Jacobi-Matrix is spanned by the vectors (1, 0, ũλ(λ, σ), ξλ(λ, σ))T and
(0, 1, ũσ(λ, σ), ξσ(λ, σ))T . Further the matrix in (56) is nonsingular for all
(λ, σ) ∈ L × S due to our assumptions and so the solution of the system of
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linear equations (55) is unique for all (λ, σ) ∈ (λ, σ). Analogously the same
is true for (56). To remark the right-hand side in (55) can be 0 ∈ R

n+1 and
then the solution (uλ, ξλ) ∈ R

2 at this point naturally is 0 ∈ R
n+1.

Then a predictor step is

(

ui

ξi

)

=

(

ui−1

ξi−1

)

+ h1

(

ui−1
λ

ξi−1
λ

)

+ h2

(

ui−1
σ

ξi−1
σ

)

, (57)

where

(

ui

ξi

)

approximates

(

ũ(λi, σi)
ξ(λi, σi)

)

for some (λi, σi) ∈ (λ, σ) and

(

ui
λ

ξi
λ

)

respectively

(

ui
σ

ξi
σ

)

approximates the derivative of the mapping

(

ũ
ξ

)

with

respect to λ respectively σ at the point (λi, σi) ∈ (λ, σ). The reel values
hi (i = 1, 2) are denoting step lengths. Like in every such method we have to
care that the step length is not too large.
We also see that behind h1 and h2 hides the λ and σ direction. So if we

know approximately

(

ũ
ξ

)

(λ0, σ0) and we want to use this predictor-corrector

method to find an approximation for

(

ũ(λ′
0, σ′

0)
ξ(λ′

0, σ′
0)

)

then

k
∑

j=1

hj
1 = λ′

0 − λ0 and
k
∑

j=1

hj
2 = σ′

0 − σ0 (58)

have to hold. Here k ∈ N is the number of predictor steps which are used and
hj

i ≥ 0 means the steplength of hi ≥ 0 in the jth predictor step (i = 1, 2).
If we have p > 1 or l > 1 then λ and σ are p-dimensional vectors (respectively
l-dimensional vectors). Then the linear systems of equations are

(

DuF (λ, ũ(λ, σ)) A1

Duµu(λ, ũ(λ, σ)) 0

)(

ũλr
(λ, σ)

ξλr
(λ, σ)

)

= −
(

Dλr
F (λ, ũ(λ, σ))

Dλr
µ(λ, ũ(λ, σ))

)

and
(

DuF (λ, u(λ, σ)) A1

Duµ(λ, u(λ, σ)) 0

)(

uσr
(λ, σ)

ξσr
(λ, σ)

)

=

(

0
er

)

,

where r ∈ N is the rth coefficient of the vector in R
l and er means the rth

unit vector in R
l. Obviously the steplengths h1 and h2 must be vectors in

R
p now. At least the conditions of (58) must hold in every coefficient of λ

respectively σ.
Some discussion on how to choose appropriate steplengths you can find in
Allgower and Georg [1].
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The corrector step

Due to condition (58) we do not want to change the λ and σ coordinate in
the corrector step. So we consider

F̃λ,σ : Rn+1 → R
n+1, F̃λ,σ(u, ξ) := F̃ (λ, σ, u, ξ), (59)

where we assume λ ∈ R
p and σ ∈ R

l fixed.
Then we can use the probably previously determined matrix A−1 in the New-
ton step. This matrix approximates D(u,ξ)F̃ (λ0, σ0, u0, ξ0)

−1 and we assume
here that due to our construction A−1 ≈ D(u,ξ)F̃ (λ, σ, u, ξ)−1 holds more or
less for all (λ, σ) ∈ (λ, σ) and for all u ∈ u. If this assumption is not true
we have to consider a smaller box and to compute a new extension for our
originally problem. Now we can set the corrector step,

(

ui

ξi

)

=

(

ũi

ξ̃i

)

− A−1F̃λi,σi
(ũi, ξ̃i). (60)

Maybe we should iterate this step more often because in general the matrix
A−1 is no very good approximation of Fu(λi, σi, ũi, ξ̃i)−1 and so the conver-
gence is slower. Then we write for the corrector iteration equation

Ψλ,σ

(

v
η

)

=

(

v
η

)

−A−1F̃λ,σ(v, η). (61)

The corrector iteration is initialised with (ũi, ξ̃i) which probably was de-
termined with a previously described predictor step. We use the already
determined approximation A−1 because in general it is expensive to compute
an inverse in every step. However, we could try probably to get a better
approximation with rank-one updates of A−1.

Remark.

We often have the task to determine

(

ũ
ξ

)

(λ, σ) for some (λ, σ) ∈ (λ, σ) and

we know a good approximation to initialise the corrector iteration such that
we do not need a predictor step. However one has to be aware of the fact that
a corrector iteration changes in particular the vector u ∈ R

n and this implies
a change of the σ ∈ R

l value (vector) because σ = µ(λ, u). So one has to
care that the σ value (vector) does not change too much and maybe correct
the error with a correcting predictor step.
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4 The verification process

This section is based on the previous sections and tries to apply the results.
In particular we want to reference for this section to Kearfott [12].
In this section we apply the previous discussion to provide algorithms which
shall give us rigorously verified solution paths with respect to λ and σ. Ad-
ditionally we want to get enclosures where bifurcation or near bifurcation
points occur. To remind we consider a k0 ≥ 1 times continuously differen-
tiable nonlinear mapping,

F : Λ×D ⊆ R
p × R

n → R
m, F (λ, u),

where we want to find enclosures for all roots in a bounded area
Λ̃× D̃ ⊆ Λ×D. We assume that we know additionally the derivatives of F
with respect to u and λ. Here in this section we say that n = m. Further for
the either given or determined unfolding functional µ : Rp × R

n → R
l and

the linear operator A1 : Rl → R
n.

During this section all norms are assumed to be the common maximum norm
or the induced matrix norm, the absolute row sum. This assumption we make
for simplicity reasons. If we would use weighted maximum norms then the
changes in the discussion are small (see section 2.2).

4.1 Verifying a box

We start with how to apply Theorem 3.1 in our context. First we rewrite
(36),

‖F (λ, u0) + A1ξ0‖ ≤
δ

2α
, ‖σ − µ(λ, u0)‖ ≤

δ

2α
.

We use these conditions for determining an adequate value for δ ≥ 0. By
considering the condition (35) we see that a small value for δ ≥ 0 provides
better chances to verify a solution box using Theorem 3.1.
Here we need the results of section 2.1 to compute good enclosures of the
range of the terms on the left-hand side of the inequations above.

Algorithm 2 (Analysing a single box)
Find interval vectors u ∈ IR

n and (λ, σ) ∈ IR
p+l such that the following

condition holds, ∀(λ, σ) ∈ (λ, σ) ∃!(u, ξ) ∈ (u, ξ) with a suitable box ξ ∈ IR
l

such that F̃λ,σ(u, ξ) = 0.

Input

• The interval vectors λ ∈ IR
p, σ ∈ R

l

42



• An initial approximate solution (λ0, σ0, u0, ξ0) of the extended problem.

Output

• A boolean variable b1 which is true when the verification was successful.

• A boolean variable b2 which is true when the verification was successful
and 0 /∈ ξ.

• The interval box u ∈ IR
n.

The Algorithm

• Set b1, b2 as false .

• Set δ.

δ ← 2α max {sup (‖F (λ, u0) + A1ξ0‖ , ‖µ(λ, u0)− σ‖)}

• If ‖ξ0‖ > δ

– Set u.
u← midrad (u0, δ) .

– Check the condition (35),
∥

∥

∥

∥

∥

(

DuF (λ, u)−A0 0
Duµ(λ, u)−A2 0

)∥

∥

∥

∥

∥

≤ 1

2α
.

If the check is successful

∗ Set b1 ← true and b2 ← true .

• Else (Set ξ0 = 0).

– Reset δ.

δ ← 2α max {sup (‖F (λ, u0)‖ , ‖µ(λ, u0)− σ‖)}

– Set u.
u← midrad (u0, δ) .

– Check the condition (35),
∥

∥

∥

∥

∥

(

DuF (λ, u)−A0 0
Duµ(λ, u)−A2 0

)∥

∥

∥

∥

∥

≤ 1

2α
.

If the check is successful

∗ Set b1 ← true .
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Remarks. (i) We always have to take care that we do not loose rigour in
our computations.

(ii) To remind the value for the bound α > 0 we get by the condition (4).

(iii) The value for δ ≥ 0 shall be small. We see that a good initial approx-
imative solution (u0, ξ0) ∈ R

n+l and a small absolute value for α > 0
provide us this small value for δ ≥ 0. The value of α > 0 shall be ap-
propriately small if the extended problem is well-conditioned, i.e. if the
original problem is not too bad-conditioned near (λ0, u0) ∈ R

p+n and
if the choice of the extension of the problem is appropriate. Addition-
ally an appropriate choice of the used norms can improve the value for
α > 0.

(iv) Due to our aim to find a solution path for the original problem we are
only interested in solutions of the extended problem where ξ = 0. How-
ever if the condition ‖ξ0‖ > δ is true then we try to verify a box which
restricts the solution path. Obviously the correctness of this condition
would yield to a box ξ ∈ IR

l such that 0 /∈ ξ. In particular if such a box
has been verified b2 is true and such a box restricts the area where the
solution path possibly crosses.

If this condition does not hold then we set ξ0 = 0 which yields clearly to
A1 ·ξ0 = 0 and so this term does not occur anymore in the determination
of δ ≥ 0. So we only verify boxes where solutions of the original problem
can exist, i.e. if the algorithm is successful 0 ∈ ξ holds.

(v) In this algorithm and the following algorithms we assume that the com-
mon maximum norm and its induced matrix norm is used. However
if one uses weighted maximum norms to improve the results then one
only has to adapt the setting of the box u ∈ IR

n by the midrad operator.
The changes one has to make are described in section 2.2.

(vi) In the same way like we set u ∈ IR
n we could set ξ ← midrad (0, δ) .

However in general we do not need this enclosure. We only need to
know if 0 ∈ ξ or 0 /∈ ξ.

The next question which arises is how to proceed the continuation process.

4.2 Continuation

For this subsection we want to reference to Chow and Hale [3], Golubitsky
et al. [10] and Rheinboldt [22].
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We have assumed that the real function F : R
p × R

n → R
n is ko ≥ 1

times continuously differentiable. So the implicit function theorem (Theorem
2.16) says that for a non-singular root (λ0, u0) ∈ R

p+n of the function F,
neighbourhoods U of λ0, V of u0 and a unique continuously differentiable
function u : U → V such that F (λ, u(λ)) = 0. So the function u maps the
unique solution branch in the open set U.
For the extended problem we can similarly derive such a unique continuously

differentiable function

(

ũ
ξ

)

: Σ→ U. The open sets Σ, U must be neighbour-

hoods of (λ0, σ0) ∈ R
p+l respectively (u0, ξ0) ∈ R

n+l where F̃λ0,σ0
(u0, ξ0) = 0.

Clearly the original function problem must have been extended appropriately,
i.e. there are no singularities in Σ× U.
If we have successfully applied Algorithm 2 then we know boxes
(λ, σ) ∈ IR

p+l and (u, ξ) ∈ IR
n+l for which the statement

∀(λ, σ) ∈ (λ, σ) ∃!(u, ξ) ∈ (u, ξ) such that F̃λ,σ(u, ξ) = 0 holds. In partic-
ular then the invertibility of D(u,ξ)F̃λ,σ(u, ξ) for all (λ, σ, u, ξ) ∈ (λ, σ, u, ξ)
can be implied because Theorem 3.1 holds just there. So there are open

sets (λ, σ) ⊂ Σ, (u, ξ) ⊂ U and a function

(

ũ
ξ

)

: Σ → U such that

F̃λ,σ(ũ(λ, σ), ξ(λ, σ)) = 0 holds for all (λ, σ) ∈ Σ.
Actually we are interested in the solution branches of the original problem.
In (38) and (39) we see that we have to solve ξ(λ, σ) = 0 where ξ : Σ → Uξ

where Uξ ⊃ ξ is an open set. The notation Uξ means the restriction of U to
the coefficients corresponding to ξ. If we try to apply the implicit function
theorem to this reduced problem ξ(λ, σ) = 0 some cases can occur. We are
assuming that ξ(λ0, σ0) = 0 for some (λ0, σ0) ∈ (λ, σ). This assumption is
reasonable because if the function ξ would not have any roots in the con-
sidered box then we would not be interested in it anyway. There are three
different cases to consider. In figure 4 you can see illustrations how the bi-
furcation diagram defined by the function µ̂ defined in (40) can be for the
corresponding case. The illustrations in figure 4 for simplicity cover the case
when p = l = 1.

(A) The simplest case is if for all (λ0, σ0) ∈ (λ, σ) with ξ(λ0, σ0) = 0 exist
neighbourhoods Σ̃λ ⊆ Σλ of λ0, Σ̃σ ⊆ Σσ of σ0 and a unique continuously
differentiable function η : Σ̃λ → Σ̃σ exist such that ξ(λ, η(λ)) = 0 for
all λ ∈ Σ̃λ, i.e. if the matrix Dσξ(λ0, σ0) ∈ R

l×l is invertible for all such
(λ0, σ0). Then obviously F (λ, ũ(λ, η(λ))) = 0 holds for all λ ∈ Σ̃λ and
the function ũ ◦ η : Σ̃λ → Ṽu is continuously differentiable for Ṽu ⊆ Vu

suitable.

In the figure 4 the graphs (a) - (d) cover this case.
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(B) In this case there is a (λ0, σ0) ∈ (λ, σ) where the matrix
Dσξ(λ0, σ0) ∈ R

l×l has not full rank, i.e. is not invertible. Then due
to the implicit function theorem no such neighbourhoods and function
like in the first case can be found for (λ0, σ0). On the other hand if the
matrix D(λ,σ)ξ(λ0, σ0) has full rank then we can re-sort the variables and
find such a continuously differentiable function which parametrizes the
solution branch near (λ0, σ0) with respect to some λ̃ ∈ R

p. Similarly as
above then F (λ̃, ũ(λ, η(λ̃))) = 0 holds. The variables of the function F
must have been re-sorted in the same way as for the reduced problem.
For example in the simplest case p = l = 1 then a function η : Σ̃σ → Σ̃λ

such that ξ(η(σ), σ)) = 0 in the suitable chosen sets Σ̃λ and Σ̃σ. For
p = l = 1 this phenomena is called turning point. Again we can follow
that the corresponding solution branch of the original problem is con-
tinuously differentiable in the corresponding neighbourhood when the
branch is appropriately parametrized.

Graphs with common turning points you can see in figure 4, graphs (e),
(f) and (g).

(C) This case differs from the previous case only because here the matrix
D(λ,σ)ξ(λ0, σ0) ∈ R

l×l has not full rank too. Here no such function
exists to parametrize the solution branch, even if the variables are re-
sorted, with respect to some λ̃ ∈ R

p. Then we have a singularity at
(λ0, σ0) ∈ R

p+l, in the reduced problem, probably a bifurcation point.
Due to the construction of the extended problem F̃λ,σ(u, ξ) = 0 this
implies that there is a point u0 := u(λ0, σ0) ∈ u such that the original
problem has a singularity at (λ0, u0) ∈ Λ × D. See for this implication
the discussion in section 3.1, especially Theorem 3.2.

In the graphs (h),(i) in figure 4 you can see bifurcation points. In (h)
the bifurcation point is additionally a turning point too. This situation
is called often pitchfork bifurcation.

For the continuation we are using the continuity of the solution branches.
We see in the illustrations that if a solution branch of the reduced problem
ξ(λ, σ) = 0 crosses the considered box (λ, σ) ∈ IR

p+l then the considered
branch must cross the boundary of (λ, σ) ∈ IR

p+l at least twice. The con-
tinuity of the solution path implies this. If there are more than two areas
in the considered box (λ, σ) ∈ IR

p+l then this implies that the considered
box contains either a bifurcation point or that at least two distinct solution
paths which cross (λ, σ) ∈ IR

p+l without bifurcating. The last case is if we
have a solution branch which is completely contained in the considered box

46



λ

σ

(λ, σ)

(a) λ

σ

(λ, σ)

(b) λ

σ

(λ, σ)

(c)

λ

σ

(λ, σ)

(d) λ

σ

(λ, σ)

(e)

b

λ

σ

(λ, σ)

(f)

b b

λ

σ

(λ, σ)

(g)

b

λ

σ

(λ, σ)

(h)

b

λ

σ

(λ, σ)

(i)

Figure 4: Some possible kinds of bifurcation diagrams when p = l = 1.

(λ, σ) ∈ IR
p+l. Then the solution branch does not cross the boundary of

(λ, σ) ∈ IR
p+l.

Remarks. (i) A solution branch of the reduced problem can be pieced to-
gether continuously through the cases (A), (B) and (C). In particular if
we have the simplest case p = 1 then each branch is a curve, for p > 1
each branch is a p-dimensional manifold.

(ii) It is reasonable to assume that the considered box (λ, σ) ∈ IR
p+l is

narrow. So we call the case when more than one solution branch crosses
the box without bifurcating an imperfect bifurcation. This situation we
have in the graphs (d) and (e) in figure 4.

(iii) Until now we have not defined a bifurcation point. Here we give an
informal definition for the problem F (λ, u) = 0 where the function
F : Rp ⊇ Λ × R

n → R
n is continuously differentiable. In a bifurcation

point (λ0, u0) locally the number of solutions of the considered problem
changes with λ ∈ R

p. Further this definition shall not be dependent on
re-sorting the variables.

Necessarily the matrix D(λ,u)F (λ0, u0) ∈ R
n×(p+n) must not have full
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rank at a bifurcation point (λ0, u0) ∈ Λ×R
n. However this condition is

not sufficient.

(iv) When we speak of re-sorting the variables (x1, . . . , xn) ∈ R
n then we

mean to get variables (x̃1, . . . , x̃n) ∈ R
n where

(x̃1, . . . x̃n) = (xπ(1), . . . , xπ(n)) and where π is a permutation of the
set {1, . . . , n} .

(v) Again assuming that the box we are considering is narrow there are max-
imally l+1 solution branches in this box because otherwise the extended
problem still is ill-conditioned and as a consequence the verification of
Theorem 3.1 does not succeed. The graph (e) in figure 4 may be an ex-
ample for this situation. Then the extended problem must be extended
again. See for this section 3.6.

As a conclusion we see that analysing the boundary of the box (λ, σ) ∈ IR
p+l

gives us useful informations for the continuation. We have to find areas of
the boundary of the considered box where a solution branch crosses and the
number of such areas give us a good clue about which situation we have. For
the simple l = 1 case this means that two such areas indicates that we have no
singularity in the considered box. By contrast four such areas are indicating
a bifurcation or at least an imperfect bifurcation. If there is no such area in
the boundary then this indicates that the whole branch is contained in this
box. This is case is unlikely if the box is narrow. For l > 1 the thoughts are
very similar.
Further we use the knowledge of the area where the solution branch crosses
to choose the next box we want to verify (see figure 5). So the next topic is
how to analyse the boundary of a verified box (λ, σ) ∈ IR

p+l.

(new box to check)

(verified box)

Figure 5: Choice of another box to check. Case p = l = 1.
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4.3 Analysing the boundary of a verified box

Here we are considering interval vectors λ ∈ IR
p, σ ∈ IR

l, u ∈ IR
n which

has been successfully verified by the previously presented algorithm. Now we
want to analyse the solution of the extended problem for all (λ, σ) ∈ ∂(λ, σ),
the boundary of (λ, σ) ∈ IR

p+l.
For simplicity now we say p = l = 1. First we are considering the left
boundary edge (see figure above). This edge can be written as an inter-
val (λ, σ) ∈ IR

2 where to recall the notation λ = [λ, λ]. Here we consider λ
as an interval. Obviously the conditions

‖F (λ, u0) + A1ξ0‖ ≤ sup ‖F (λ, u0) + A1ξ0‖

and
sup ‖µ(λ, u0)− σ‖ ≤ sup ‖µ(λ, u0)− σ‖ ,

where u0 = mid u are true because λ ⊆ λ. So we can set δ ≥ 0 absolute
smaller than in the previous verifying algorithm for our considered interval
vectors. When we set the corresponding interval vectors, now named by
ũ ∈ IR

p, in the same way like in the previous verifying algorithm we have
ũ ⊆ u. So the condition

sup

∥

∥

∥

∥

∥

(

DuF (λ, ũ)− A0 0
Duµ(λ, ũ)− A2 0

)∥

∥

∥

∥

∥

≤ sup

∥

∥

∥

∥

∥

(

DuF (λ, u)−A0 0
Duµ(λ, u)−A2 0

)∥

∥

∥

∥

∥

≤ 1

2α

always holds. Unfortunately, we do not get additionally information her
because ξ0 = 0 always in verified boxes. So we have to think of a way to
verify that no solution branch of the original problem passes the considered
edge.
So we aim to find an interval vector (ũ, ξ̃) ∈ IR

n+l corresponding to the
boundary edge (λ, σ) ∈ IR

p+l where 0 /∈ ξ̃. So we start with determining an
approximation for the solution of the extended problem (ũ0, ξ̃0) ∈ R

n+l at
(λ, mid σ) ∈ R

p+l. In general here ξ̃0 6= 0, what is important for us. Assuming
we have found such a good approximation (ũ0, ξ̃0) ∈ R

n+l we first determine

δ1 :=
∥

∥

∥ξ̃0

∥

∥

∥ . (62)

For the verification that no solution path passes the boundary edge we need
δ < δ1 because then we have certainly 0 /∈ ξ̃. Next we determine δ ≥ 0 in
almost the same way like in the previous algorithm,

δ = 2α max
{

sup
(∥

∥

∥F (λ, ũ0) + A1ξ̃0

∥

∥

∥ , ‖µ(λ, ũ0)− σ‖
)}

.

If the condition δ < δ1 is true then we reset δ ≥ 0 such that δ < δ1 and
maximum. Then we can set (ũ, ξ̃) ∈ IR

n+l in the same way like in the
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previous algorithm. By this construction the condition (ũ, ξ̃) ⊆ (u, ξ) is
not necessarily holding. However, clearly we are only interested in the area
(ũ, ξ̃) ∩ (u, ξ). Then we consider

sup

∥

∥

∥

∥

∥

(

DuF (λ, ũ ∩ u)− A0 0
Duµ(λ, ũ ∩ u)− A2 0

)∥

∥

∥

∥

∥

≤ sup

∥

∥

∥

∥

∥

(

DuF (λ, u)−A0 0
Duµ(λ, u)−A2 0

)∥

∥

∥

∥

∥

≤ 1

2α
.

Obviously this condition automatically is true. So we do not have to check
this condition explicitly. So we see we only have to check the condition
δ < δ1. The set (ũ, ξ̃) ∩ (u, ξ) must not be empty if the approximate root
(ũ0, ξ̃0) ∈ R

n+l is appropriate. If this set is empty then the approximate root
(ũ0, ξ̃0) ∈ R

n+l is contained in another wrong area and our arguments are
not applicable because they are locally.
For the boundary edge where the σ value is held constant the procedure
works in almost the same way.

Algorithm 3 (Boundary analysing)
Try to verify that no solution branch of the reduced problem passes the
considered part of the boundary (λ̃, σ̃) ⊆ ∂(λ, σ).

Input

• A part of the boundary of the considered interval vector, here called
(λ̃, σ̃) ∈ IR

p+l.

• An approximate solution (ũ0, ξ̃0) ∈ R
n+l of the extended problem at

mid(λ̃, σ̃) ∈ R
p+l.

Output

• A boolean variable b initialised with false which indicates if the verifica-
tion has been successful or not.

The Algorithm

• Set δ.

δ ← 2α max
{

sup
(∥

∥

∥F (λ̃, u0) + A1ξ0

∥

∥

∥ ,
∥

∥

∥µ(λ̃, u0)− σ̃
∥

∥

∥

)}

• If δ <
∥

∥

∥ξ̃0

∥

∥

∥ .

– Set b← true .
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Remarks. (i) We consider the part of the boundary (λ̃, σ̃) ∈ IR
p+l of the

considered interval box (λ, σ) ∈ IR
p+l as an interval vector. Obviously

in the simplest case when λ and σ are one-dimensional variables then
either λ̃ ∈ IR

p or σ̃ ∈ IR
l is a thin interval, i.e. a real constant

represented by its interval representation.

(ii) In general the boundary of a box x ∈ IR
n can be seen as the union of

all interval vectors in the set
{

(x1, . . . , xi, . . . , xn), (x1, . . . , xi, . . . , xn)

∣

∣

∣

∣

i = 1, . . . , n
}

.

(iii) When λ and σ are higher-dimensional variables the algorithm remains
valid.

Until now we did not think about what is happening when the verifying
algorithm or the algorithm to analyse a part of a boundary is not successful.
We start considering this next.
Obviously we have to consider a smaller interval vector when Algorithm 3
fails. So we introduce the concept of bisection.

Algorithm 4 (Bisection)
Split a interval vector x ∈ IR

n into a list of intervals xi for which x =
⋃

i
xi

holds by bisecting in every coordinate.

Input

• An interval box x ∈ IR
n.

Output

• A list of interval vectors L for which x =
⋃

w∈L

w holds.

The Algorithm

• Add x to the list L.

• For k = 1, . . . , n.

– Initialise a list K with the same intervals as in L.

– Delete all elements in L.

– While K is not empty.

∗ Take the first interval box y from K and delete it in the list.
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∗ If rad yk 6= 0

· Set two new interval vectors y1, y2 ∈ IR
n. If j 6= k holds

then yp
j ← yj (p = 1, 2) and else

y1
k ← [y

k
,
y

k
+ yk

2
], y2

k ← [
y

k
+ yk

2
, yk].

· Add these two interval boxes y1, y2 to the list L.

∗ Else

· Add y to the list L.

Remarks. (i) By applying this algorithm for x ∈ IR
n we see the maximal

number of intervals which contain L is increasing exponentially with n.
So this algorithm is not suitable for a large n. However, we apply this
algorithm either for the interval vectors (λ, σ) ∈ IR

p+l or λ ∈ IR
p and

due to our construction then p and l is fairly small.

(ii) In application the condition rad yk 6= 0 one should replace by rad yk ≥ ǫ
where ǫ > 0 bounds the minimal radius of the interval vectors one wants
to consider. Additionally one may avoid infinite loops.

(iii) See the figure 6 for an illustration when n = 2.

x

x

w2 w4

w1 w3

Figure 6: Bisection for n = 2.

Further if we have the case that a solution branch passes the considered
party of boundary (λ̃, σ̃) ∈ IR

p+l then Algorithm 3 must not be successful.
So we introduce a bound for the maximal radius of a part of the boundary
(λ̃, σ̃) ∈ IR

p+l on which we apply Algorithm 3. If we have such a part of the
boundary where the radius is lower as the introduced bound we assume that
the solution branch crosses the boundary of the box there. So we can write
down the algorithm which analyses the complete boundary of (λ, σ) ∈ IR

p+l.
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Algorithm 5 (Complete boundary analysing)
Find parts of the boundary of (λ, σ) ∈ IR

p+l where a solution branch
traverses probably.

Input

• A list of interval vectors L where each interval vector represents a part
of the boundary of the interval vector (λ, σ) ∈ IR

p+l.

• The corresponding enclosure u ∈ R
n to the box (λ, σ) ∈ IR

p+l.

• A function g(λ, σ) which allows to calculate an approximate solution of
the extended problem F̃λ,σ(u, ξ) = 0.

Output

• A list V which contains interval vectors (λ̃, σ̃) ⊆ ∂(λ, σ) where a solu-
tion branch may traverse and a corresponding enclosure ũ ∈ IR

n.

The algorithm

• While L is not empty.

– Take an interval vector (λ̃, σ̃) from the list L and delete it in L.

– Set (ũ0, ξ̃0)← g(mid(λ̃, σ̃)).

– If max rad(λ̃, σ̃) > ǫ where ǫ > 0 and suitable.

∗ Apply Algorithm 3 with input (λ̃, σ̃) and (ũ0, ξ̃0).

∗ If Algorithm 3 was not successful, i.e. b is false .

· Apply Algorithm 4 on (λ̃, σ̃) Then we get a list K. Now
add all the interval vectors contained in the list K to the
list L.

– Else (Here is assumed that a part of the boundary is found where
a solution branch crosses).

∗ Set δ.

δ ← 2α max {sup(‖F (λ, u0)‖ , ‖µ(λ, u0)− σ‖)}

∗ Set ũ.

ũ← midrad (u0, δ)

ũ← ũ ∩ u.

∗ Add (λ̃, σ̃) and ũ to the list V.
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Remarks. (i) We have to take care of the fact that this algorithm does
not provide boxes (λ̃, ũ) ∈ IR

p+l where a corresponding unique solution
branch of the original problem is verified. However, if ǫ > 0 is chosen
appropriately small then it is very likely that such a solution branch
exists uniquely in these box and is.

(ii) The restricting setting ũ ← ũ ∩ u is necessary to ensure rigour but in
general the considered boxes are very narrow so it is very likely that u ∈
IR

n without this restriction is an appropriate corresponding enclosure
too. Without this restriction we would have to check the condition (35)
instead for ũ ∈ IR

n.

4.4 Complementation

Another procedure we need is taking the complement of an interval box
x ∈ IR

n in an interval box y ∈ IR
n.

Algorithm 6 (Complementation)
Take the complement of an interval vector x ∈ IR

n in an interval vector
y ∈ IR

n. See figure 7 for an illustration when n = 2.

Input

• The interval vectors x, y ∈ IR
n.

Output

• A list of interval vectors L such that
⋃

w∈L

w = y\x.

The algorithm

• Initialise an empty list L.

• If x ∩ y is empty.

– Insert y into the list L.

• Else

– For i = 1, . . . , n.

∗ Set the interval z← xi ∩ yi.

∗ If z > y
i
.
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y

x
w1

w3

w4

w2

y

x

w1

w2

y

x

w1

w2

Figure 7: Examples of complementation in IR
2

· Set an interval vector w ∈ IR
n such that its ith coordinate

is [y, z] and its other coordinates are the same as those of
y.

· Insert w into L.

∗ If z < yi.

· Set an interval vector w ∈ IR
n such that its ith coordinate

is [z, y] and its other coordinates are the same as those of
y.

· Insert w into L.

∗ Replace the ith coordinate of y by z.

Remark.
The complementation algorithm does not need necessarily x ⊆ y, but we
need only this case so the illustration in figure 7 covers only this case. The
illustration does not cover all possible cases of complementation in R

2.

Now we can write down the procedure how to completely analyse a box
(λ, σ) ∈ IR

p+n concerning a crossing solution branch of the reduced problem
ξ(λ, σ) = 0.

4.5 Completely analysing a box

Algorithm 7 (Complete box analysing)
Here either a smaller box to verify or a verified box is found. Additionally
boxes to continue the algorithm are provided and the boundary of the possibly
verified box is analysed.

Input

• The interval boxes λ ∈ IR
p and σ ∈ IR

l.
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• The lists of interval vectors K and L.

• (optional) An approximate root (λ0, u0) ∈ Λ × R
n of the function

F : Λ× R
n → R

n.

Output

• Modified lists K,L.

• If the algorithm is successful the verified box (λ, σ) ∈ IR
p+l with a

corresponding box u ∈ IR
n and its corresponding boundary information

in the list V.

The algorithm

• Set (u0, ξ0)← g(mid(λ, σ)) unless the approximate root is given.

• Apply Algorithm 2. The input is (λ, σ) and u0.

• If the verification in Algorithm 2 was successful.

(a) Now the interval vectors λ ∈ IR
p, σ ∈ IR

l, u ∈ IR
n are known.

(b) Form interval vectors representing the boundary of (λ, σ) ∈ IR
p+l

and initialise a list B containing all these interval vectors.

(c) Apply Algorithm 5. The input is the list B and the output is a
list V which contains the information where the solution branches
cross probably the boundary of the considered box (λ, σ) ∈ IR

p+l.

(d) Find all interval vectors (λ̂, σ̂) ∈ IR
p+l from the list K which have

a non-empty intersection (i.e. is ’neighboured’) with one of the
interval vectors (λ̃, σ̃) ∈ IR

p+l from the list V. If such a box is
found, delete this box in K and add it to the list L.

• Else

(A) Set an interval vector (λ̂, σ̂) ∈ IR
p+l such that

(λ̂, σ̂) ⊆ (λ, σ) and narrower. Further the solution branch

shall cross (λ̂, σ̂) ∈ IR
p+l certainly. See figure 8.

If an approximative root is given then set

(λ̂, σ̂)← midrad
(

(λ0, σ0),
1

2
rad(λ, σ)

)

∩ (λ, σ).

(B) Take the complement of (λ̂, σ̂) ∈ IR
p+l in (λ, σ) ∈ IR

p+l Use the
complementation, Algorithm 6. Then add the interval vectors of
the list which is set through the complementation algorithm to the
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list K or L depending on if a box has already been verified from
which a solution path traverses into the box. Further add the box
(λ̂, σ̂) ∈ IR

p+l to the list L.

Remarks. (i) The list L shall contain interval vectors (λ, σ) ∈ IR
p+l which

shall be verified with Algorithm 2. Unless at the beginning of the overall
algorithm a box is added to L when a different box has been verified
with Algorithm 2 and these two boxes have a common boundary ’edge’
and additionally Algorithm 3 has shown that a solution branch crosses
this common boundary. So the list L shall store additionally this cor-
responding boundary information for each box in it.

Then there is a list S where verified boxes (λ, σ) ∈ IR
p+l and the cor-

responding box u ∈ IR
n is stored. Further information on the boundary

of each element in S may be stored in the list.

In the overall algorithm we are considering the solution branch of the
reduced problem in a box (λ0, σ0) ∈ IR

p+l. Then the list K contains
interval vectors such that the union of this interval vectors is the com-
plement of the union of all interval vectors (λ, σ) ∈ IR

p+l of the lists
S,L in the box (λ0, σ0).

(ii) For the setting of (λ̂, σ̂) ∈ IR
p+l in (A) one must ensure that the so-

lution path crosses this box (see figure 8). By combining bisection and
the midrad operator such a box can be found easily.

(λ̃, σ̃)

(λ1, σ1)

(λ̂, σ̂)

verified box

Figure 8: How to choose an appropriately narrower box.
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4.6 Overall algorithm

Initialisation

Take a box from L

Box Verification
Boundary∗∗

If L 6= ∅
Take a box

from LFind New Boxes∗∗

successful

Narrower Box

else

else

Put Box Into N

too narrow

Put Verified Box Into S∗∗

Put New Boxes Into L∗∗

Take Box

From N

Initialisation∗

elseif

N 6= ∅
Box Verification

successful

Put Box Into F

else

∗∗: Unless 0 /∈ ξ

Figure 9: Sketch of overall algorithm

Algorithm 8 (Overall algorithm)
Find a verified enclosure for the solution paths of the original problem in a
box (λ0, u0) ⊆ Λ×R

n starting at an approximate root (λ0, u0) ∈ (λ0, u0).

Input

• The interval boxes λ0 ∈ IR
p, u0 ∈ IR

n in which the verified solution
paths of the problem must be found.

• An initial approximate solution (λ0, u0) ∈ (λ0, u0) of the original prob-
lem.

• (optional) A given unfolding functional µ : Rp ×R
n → R

l.

• (optional) Some lists K,L.
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Output

• Some lists S,F .

The algorithm

(a) Use the discussion from sections 3.2 to 3.7 to determine the extension of
the problem. Now A1 ∈ R

n×l, A2 ∈ R
n×l are known and if necessary the

unfolding functional µ is also determined.

(b) Compute the bound α > 0 for the norm of the inverse of A =

(

A0 A1

A2 0

)

where A0 = DuF (λ0, u0).

(c) Set an initial box IR
l ∋ σ0 ← µ(λ0, u0).

(d) Determine an approximate solution function g(λ, σ) of the extended prob-
lem around the known approximate solution. See sections 3.8 and 2.3.

(e) If necessary initialise the lists L,K of interval boxes both with (λ0, σ0).

Initialise the lists S,F as empty lists.

(f) While L is not empty.

• Take a box (λ, σ) ∈ IR
p+l and possibly its corresponding boundary

information, another box (λ̃, σ̃) ∈ IR
p+l, from L and delete it in L.

• If rad (λ, σ) > ǫ.

– Apply Algorithm 7 to completely analyse (λ, σ). The input is
(λ, σ), the lists K,L and if available (λ̃, σ̃) and the approximate
root (λ0, u0).

– If Algorithm 7 has been successful then add the resulting verified
box (λ, σ) ∈ IR

p+l, the corresponding box u ∈ IR
n and the

corresponding boundary information stored in a list V to the list
S.

Elseif L is not empty or S is not empty.

– Add the box (λ, σ) and its corresponding boundary information,
another box (λ̃, σ̃), to the list N .

– Add an approximate root R
p+n ∋ (λ1, u1) ∈ R

p+n correspond-
ing to the box (λ, σ) to the list N . Set λ1 ← mid λ1 and set
u1 ∈ IR

n by determining g(mid(λ1, σ1)).

Else
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– Add the box (λ, σ) to the list F .

(g) While N is not empty.

• Take a box (λ, σ) ∈ IR
p+l, its corresponding boundary information

and the corresponding approximate root (λ1, u1) ∈ R
p+l from the list

N and delete this box in the list N . If this box has not been verified
already, this means the box is not contained in S then initialise the
list Lnew with this box and the corresponding boundary information.
Otherwise take a new box from N and try again.

• Apply recursively Algorithm 8. The input is (λ0, u0), the listsK,Lnew

as well as the corresponding approximate root (λ1, u1) ∈ R
p+n of

the function F. Furthermore is the possibly determined functional µ
input too.

• Concatenate the resulting lists S̃, F̃ with the lists S,F .

Initialisation

Take a box from L

Algorithm 2Algorithm 5∗∗

(Algorithm 4
Algorithm 3)

If L 6= ∅
Take a box

from LFind New Boxes∗∗

successful Narrower Box

(Algorithm 6)

else

else

Put Box Into N

too narrow

Put Verified Box Into S∗∗

Put New Boxes Into L∗∗

Take Box

From N

Initialisation∗

elseif

N 6= ∅
Algorithm 2

successful

Put Box Into F

else

∗∗: Unless 0 /∈ ξ

Figure 10: Overall algorithm, Algorithm 8
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Remarks. (i) The bold marked frames and arrows mark the steps of Algo-
rithm 7. The bracketed algorithms are needed amongst others in this
step.

(ii) By initiation we mean the steps (a) to (e) in Algorithm 8. In the
initiation∗ step the steps (c) and (d) has to be skipped. Further then no
new unfolding functional must be determined.

(iii) The list S obviously shall contain all verified boxes
(λ, σ) ∈ IR

p+l with the corresponding box u ∈ IR
n and correspond-

ing boundary information. Then the condition for all (λ, σ) ∈ (λ, σ)
exists (u, ξ) ∈ (u, ξ) such that F̃λ,σ(u, ξ) = 0 holds for an appropriately
large box ξ ∈ IR

l for which 0 ∈ ξ must hold.

In the list N boxes are stored for which the verification of Theorem
3.1 fails with the determined matrix A and α > 0. For boxes in N
we assume that the reason for the failure is that the interval matrix
A ∈ R

(n+l)×(n+l) does not approximate the Jacobian matrix in this box
well enough anymore (see condition (35)). So the algorithm aims to ver-
ify Theorem 3.1 for boxes in N with a more suitable matrix A and cor-
responding bound α > 0 (see (g)). Additionally corresponding boundary
information shall be stored in N . Further a corresponding approximate
root is stored in N to initialise Algorithm 8.

In the list F boxes are stored in which the verification of Theorem 3.1
fails even if there is a new matrix A and corresponding bound α > 0
determined. In general there are two possible reasons for this failure.
Firstly there could be a singularity of higher order than expected. Sec-
ondly the unfolding functional µ is not appropriately. Maybe one can
try again with a different unfolding functional. Actually the initially
considered box (λ0, u0) ∈ IR

p+n is narrow in general. So if we have
determined the unfolding functional using the discussion in section 3.8
then it is unlikely that the reason of failure is an inappropriate unfolding
functional.

Principally a cause of failure to verify Theorem 3.1 always can be too
much overestimation when determining the range of the functions F or
its derivative function DuF, but here we must assume that the overes-
timation is low enough.

(iv) If the unfolding functional µ : R
p × R

n → R
l is given then we as-

sume to either know Duµ : Rp × R
n → R

l×n. Then clearly A2 is set by
A2 = Duµ(λ0, u0). Otherwise A2 is determined using the discussion in
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section 3 and the unfolding functional is defined by the linear func-
tional µ(u) = A2 ·u. As a consequence then clearly Duµ(u) = A2 for all
(λ, u) ∈ Λ×D.

(v) If n ≥ 0 is not too large then one may determine the matrix A and
the corresponding bound α > 0 for every box which has to be analysed.
However, for n ≥ 0 large the explicit computation of the inverse of a
large matrix A is very expensive, so one must try to avoid too much of
these computations.

(vi) We need an interval matrix A−1 ∈ IR
(n+l)×(n+l) such that there exists a

real matrix B ∈ A−1 such that AB = BA = I, where I ∈ R
(n+l)×(n+l)

means the identity matrix. For details see Kearfott [12] or Neumaier
[18].

(vii) For the computing of a grid using our discussion in section 3.8 a matrix
which approximates the inverse of A is useful. Easily we can get such
a matrix by R

(n+l)×(n+l) ∋ A−1 = mid A−1.

(viii) In (a) and (b) it is recommendable to determine appropriate weights
w1, w2 ∈ R

n+l for the norms to be used. See section 2.2.

(ix) If the bound α > 0 is not appropriately small then the extended problem
may be ill-conditioned. Maybe one should monitor the value α > 0.

(x) The function g(λ, σ) shall give qualitatively good approximations of the
solution of the extended problem near (λ0, σ0) ∈ R

p+l. Beside of the
appropriate extension of the original problem the good quality of the
approximate solution is important for the verification of a box. So
maybe the approximation we get by the function g(λ, σ) should be im-
proved with a Newton-Chord iteration. See section 3.8. The matrix
A−1 ∈ R

(n+l)×(n+l) shall be applicable for Newton-Chord iteration.

By using a Newton-Chord iteration we should be aware that in general
a change u implies a change in σ ∈ R

l because σ = µ(λ, u). The situa-
tion we have, is to determine an approximation of the solution at some
(λ0, σ0) ∈ R

p+n. So we have to take care that for the corresponding ap-
proximate solution (u0, ξ0) ∈ R

n+l the value (or vector) σ̃0 = µ(λ0, u0)
does not differ too much from the desired σ0 ∈ R

l. Maybe sometimes a
correcting predictor step is needed to get the approximate root for the
desired σ0 ∈ R

l.

We use the discussion of the sections 3.8 and 2.3 to determine the
function g(λ, σ) which approximates the solution of the extended prob-
lem with respect to λ and σ. Any other method to determine such a
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function which provides a good enough approximation of the solution is
applicable too.

(xi) The value ǫ > 0 in the condition rad (λ, σ) > ǫ must be set correspond-
ing to the quality of the approximation of solutions through the function
g(λ, σ) and possibly additional Newton-Chord iteration. If the quality
of the approximation of a solution (u0, ξ0) ∈ R

n+l at mid (λ, σ) ∈ R
p+l

in general do not yield to σ̃0 = µ(λ0, u0) ∈ σ then it is not usefully to
consider boxes of this size.

(xii) The condition ’L is not empty or S is not empty’ in the second case of
(g) is needed to avoid an infinite loop in the case when a box can not
get verified.

(xiii) The extension we use provides locally that singularities of the original
problem disappear in the extended problem. However we have to be
aware that for a root (λ0, u0) ∈ (λ0, u0) of the real function F we must
not obviate the existence of another root (λ0, u1) ∈ (λ0, u0) such that
µ(λ0, u0) = µ(λ0, u1).

4.7 Existence and uniqueness of the solution path

Here we reference to Neumaier [18] and to Rheinboldt [22].
Here we first assume that we have found a verified box (λ, σ) ∈ IR

p+l, the
corresponding box u ∈ IR

n and we know certainly that a solution branch
passes the box. Further corresponding boundary information, two boxes
(λ̃1, σ̃1), (λ̃2, σ̃2) ∈ IR

p+l and the corresponding boxes ũ1, ũ2 ∈ IR
n we as-

sume to know. By applying Algorithm 8 this situation occurs very likely
after the first box has been verified. By remembering section 4.3 we know
that such a box (λ̃1, σ̃1) ∈ IR

p+l and the corresponding ũ1 ∈ IR
n does not

provide that a solution branch of the reduced problem ξ(λ, σ) = 0 certainly
crosses (λ̃1, σ̃1) ∈ IR

p+l unless it is very likely. As a consequence we must
not obviate the case (g) of figure 4 in the simple p = l = 1 case. For higher
dimensional cases solution manifolds can also occur which do not cross the
boundary of the corresponding box. For simplicity and illustration reasons
we discuss mainly the simple case, although the consequences shall hold for
the higher-dimensional case too.
So we need to prove that a solution branch of the reduced problem is unique
and exists which traverses such a box (λ̃1, σ̃1) ∈ IR

p+l. We apply Theorem
2.17 to prove existence.
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Existence

Here we consider Theorem 2.17 which you can find in section 2.4
The interval matrix A ∈ IR

n×n is defined by A = F ′(x) and the precondi-
tioning matrix C ∈ R

n×n shall approximate the inverse of A ∈ IR
n×n. This

interval matrix A satisfies the condition to be a Lipschitz matrix (see for de-
tails Neumaier [18]). Generally C ∈ R

n×n is a real matrix. The term int(x0)
means the interior of a set represented by x0 ∈ IR

n.
We have to take care on rigour, so in application we interpret x ∈ R

n as an
interval.

Remark.
The Krawczyk operator defined in Theorem 2.17 also could be used to improve
the enclosure u ∈ IR

n in Algorithm 2. There are also better operators than
the Krawczyk operator, for example the Hansen-Sengupta operator which
is similar to the ordinary Gauss-Seidel method. For more see Neumaier [18]
and Kearfott [12].

We apply this theorem on our original problem, this means on a k0 ≥ 1 times
continuously differentiable function F : Rp ⊇ Λ×D → R

n. Actually on the
function Fλ : D → R

n where λ ∈ λ̃i is held fixed and the interval vector x0

in the theorem we replace by ũi ∈ IR
n and x by mid ũi ∈ R

n (i = 1, 2).
Actually if the interval matrix A is not (near) singular then this existence
verification shall not fail due to overestimation of the range of the functions
F or DuF because the construction of Algorithm 5 provides very narrow
boxes ũ1 ∈ IR

n.
The next question to consider is the local uniqueness of solution branches.

Uniqueness

We apply the Theorem 2.18 which you can find in section 2.4 on the orig-
inal problem, more exactly on the function F : R

p ⊇ Λ × D → R
n at

(λ̃i, ũi) ∈ IR
p+l (i = 1, 2).

If such a continuous function H like in Theorem 2.18 exists for F then we call
this continuous function u and F (λ, u(λ)) = 0 holds for all λ in the consid-
ered area. Then this clearly implies F̃ (λ, µ(λ, u(λ)), ũ(λ), ξ(λ))) = 0 where
ũ(λ) = ũ (λ, µ(λ, u(λ))) = 0 and ξ(λ) = ξ(λ, µ(λ, u(λ))) = 0 (by remember-
ing the notation of section 4.2) for all these λ and the functions ũ and ξ are
continuous as compositions of continuous functions.
Now we consider the application of this theorem for the simple case,
p = l = 1. More we say that the part of the boundary we are considering is
[λ, σ̃] ∈ IR

2 where we remember λ = [λ, λ]. Obviously λ is interpreted as an
interval. Intuitively we see that λ is a point or a thin interval so the function
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u : λ→ R
n maps to only one point in R

n. However, the theorems above are
implications of the implicit function theorem (see proofs in Neumaier [18]),
so the validity of F (λ, u(λ)) = 0 remains in an open neighbourhood of λ ∈ R.
As a consequence the solution branch of the reduced problem ξ(λ, σ) = 0 is
µ(λ, u(λ)) in this neighbourhood and must traverse [λ, σ̃] ∈ IR

2.
So by remembering the situation described at the beginning of this section
we can imply the traversing of the solution branch of (λ̃2, σ̃2) ⊆ ∂(λ, σ) if we
have proven that the solution branch traverses (λ̃1, σ̃1) ⊆ ∂(λ, σ) (see figure
11) due to the continuity of the solution branch (see section 4.2). Colloquially
spoken a solution branch which traverses the boundary of a box must not
disappear in the box.
Unluckily we can not imply the uniqueness in (λ̃2, σ̃2), although it is very
unlikely that there is another solution branch which traverses (λ̃2, σ̃2) be-
cause this branch would have to traverse (λ̃2, σ̃2) twice for not harming the
condition of not disappearing in the verified box.

(λ, σ)

(λ̃1, σ̃1)
(λ̃2, σ̃2)

Figure 11: Continuation of a solution branch I

As long as the boxes we verify always provide only one additional part of
its boundary where the solution branch might cross we can imply that the
solution branch continues through this parts of the boundary and moreover
we assume uniqueness. Next if we find a box where we suspect a (near)
bifurcation, i.e. the boundary information we compute is more than one
additional part of the boundary the box (see figure 12). Then we have to
apply Theorem 2.18 for all areas (2), (3), (4), (5) where the solution branch
might traverse. If we verify Theorem 2.18 at (2) and we still know that this
theorem holds at (1) then this implies that a solution branch between (1) and
(2). Clearly we have assumed that between (1) and (2) we have not verified
a box where a singularity is suspected. However we can not say anything
about the uniqueness of the solution path between (1) and (2).
If Theorem 2.18 is verified at (2), (3), (4), (5) this implies a (imperfect) bifur-
cation in the considered box for the reduced problem and due to construction
of the extended problem also a (imperfect) bifurcation in the original prob-
lem. Unluckily there is no way to decide if we have the situation of a perfect
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or an imperfect bifurcation.

(1)
(2)

(3)

(5) (4)

Figure 12: Continuation of a solution branch II

We know that the Jacobian-matrix DuF (λ0, u0) at a bifurcation point
(λ0, u0) ∈ Λ × D is not invertible, so the Jacobian near such a singular
Jacobian might be ill-conditioned. So it would not be surprisingly if the
verification of Theorem 2.18 near a bifurcation point fails, because of an ill-
conditioned Lipschitz-matrix A. Without loss of generality we say that the
verification of Theorem 2.18 fails at (3). However, then we can try again at
the next box we verify (see figure 13).

(1)
(2)

(3)

(5) (4)

(3a)

Figure 13: Continuation of a solution branch III

The verification of Theorem 2.18 at (3a) instead of at (3) then also implies
an (imperfect) bifurcation.
We see by additionally using Theorem 2.18 we get enclosures for areas where
a solution branch of the reduced and in the following of the original problem
is unique and exists continuously and we get additionally enclosure for areas
where an (imperfect) bifurcations occur.

Remarks. (i) We could apply this theorem also on each verified box. Then
the uniqueness can be shown everywhere. However the verification of
uniqueness in this way would not work if a turning point occurs.

(ii) The same arguments should also work in a very similar way for the
higher-dimensional case when p > 1 or l > 1. If there is l > 1 then
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(1)
(2)

(3)

(5) (4)

Figure 14: Continuation of a solution branch IIa

more than four parts of the boundary can exist where a solution branch
traverses, in particular 2(l + 1) such parts are possible if the considered
box is narrow enough.

(iii) If the box is not narrow the implication of a perfect or imperfect bi-
furcation would not be reasonable, but we previously stated in the last
preceding section that the assumption of a narrow box is reasonable.

(iv) For the illustration of the non-decidability of perfect or imperfect bifur-
cation see figure 14.
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5 Implementation and examples

For the implementation we use the software MATLAB. Here we do not go into
the features which MATLAB provides because this would be far too much.
We assume that the reader is familiar with the basic usage of MATLAB.
However we introduce the basic features of a toolbox for MATLAB which
provides rigorous interval computations. This toolbox is called INTLAB.

5.1 Implementation

First we start with the introduction of INTLAB. This toolbox from Rump
provides the needed rigorous interval computations. In particular the compu-
tations use the outward rounding which is described in section 2.1 to beware
rigour.

INTLAB

We start with the commands to define an interval. In MATLAB this type
of data structure is called intval. These commands are infsup(a,b) as well
as midrad(m,r) and intval(x). The infsup command provides an interval
matrix with component-wise lower bound a and upper bound b. Obviously
then a,b must be matrices, in MATLAB of data-type double, with the same
size and b must be greater or equal than a component-wise. The midrad

command essentially provides the same as the previously defined operator
with the same name. The input of type double m is the midpoint of the
provided interval and r the radius. Obviously r must be positive and either a
scalar, i.e. a double of size 1, or of the same size as m. Moreover the command
intval gives us the possibility to convert a matrix or better a double x into
its interval representation. This conversion must not lead principally to a
thin interval due to rounding issues (see section 2.1). The input can either
be a double or a string which represents a double object.
In our main reference for INTLAB Rump [23] is suggested that the command
intval leads to a different result for double and string as input, but according
to the corresponding help in MATLAB in the actual version of INTLAB the
type of input should not lead to a different result anymore.
Further INTLAB provides the commands inf, sup, mid, rad where the
result is quite obvious and we do not write this down in detail. One has to
be aware of the fact that the command inf in another context in MATLAB
means the representation of infinity.
Further important commands are intersect(a,b), emptyintersect(a,b)

and hull(a,b). The first two commands provide the component-wise in-
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tersection of two interval matrices of same size and emptyintersect gives
additionally a boolean matrix of the same size. If an entry in the boolean
matrix is true then the intersection of the intervals corresponding to this
entry is empty. In particular if we consider two interval vectors, i.e. two
interval boxes then their intersection must not be empty in any entry so that
the intersection of the sets represented by the interval vectors is not empty.
For the command hull one has to be aware that the hull of the sets repre-
sented by the two interval boxes is not equal to the union of two intervals
boxes even if the union actually is simply connected. So one has to be very
careful with this command. The command hull for two intervals a,b yields
to an interval where the lower bound is the minimum of both lower bounds
and the upper bound is the maximum of the upper bounds.
Most important INTLAB provides rigorous enclosures of the range for the
elementary operations as well as for the range of the most common ele-
mentary functions (see section 2.1). Moreover INTLAB has two modes of
interval matrix multiplication. The first mode, called FastIVMatrixMulti-
plication, provides a fast but no very sharp interval matrix multiplication.
The more advisable mode in our application is called SharpIVMatrixMulti-
plication and provides a much sharper result with the expense of a slower
execution. However in the case of global optimization the sharpness is more
important. Especially if both multiplicands are thick interval matrices the
sharper interval matrix multiplication is advisable. The mode are initialised
by the command intvalinit(’SharpIVMatrixMultiplication’) respec-
tively intvalinit(’FastIVMatrixMultiplication’). The standard mode
is FastIVMatrixMultiplication.
Further a call like

x = intval(0.125) + 1/10;

results into x to be a intval. However the result is not correct in the sense
we probably want it to be because 0.225 is not contained in the interval
represented by x. By calling

x = 0.125 + intval(1)/10;

we would get a correct result. However to ensure correct results we should
care that all quantities in a call are of type intval by converting double ob-
jects with the command intval into intval objects. We mentioned in section
2.1 that naive interval evaluation of function can lead to large overestimation
of the range. As a consequence the common interval evaluation with INT-
LAB can also lead to such a large overestimation. To improve this problem
INTLAB contains toolboxes for slope arithmetic and automatic differentia-
tion which yields to mean value forms. Here we do not discuss this toolboxes
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because the examples chosen to illustrate the previously provided method
would not be improved by this toolboxes. However in general centred forms
are advisable if one needs to evaluate the enclosure of the range of more
complicated functions. Then slope arithmetic or automatic differentiation
are useful.
At least we need the bound α > 0 and for determining this bound an en-
closure of the inverse matrix of the matrix A is needed. INTLAB can solve
interval systems of linear equations, this means clearly that an enclosure of
the solution is provided. The command is called verifylss and by using
this procedure the common MATLAB command inv is overloaded for intval
objects. So we can commonly call the command inv(A) which results in an
enclosure of the inverse of the matrix A.
For more details on INTLAB we first refer to Rump [23] and the corre-
sponding homepage. There you can find a lot of references on the usage
of INTLAB. Further if you install INTLAB there one can find some demos
which are useful when you begin to use INTLAB. More information on the
mentioned commands you can find with the help command in MATLAB.

Own Implementation

Here I list classes and functions which I have written in MATLAB using
INTLAB to apply the previously discussed topics with a short description of
the usage of the corresponding class or function.

funk:
This class stores the function name name and the vectors A1 and A2 which
one is using at the moment. The considered evaluation of the function F
and its derivatives must be stored in the following way fname.m respectively
dxname.m respectively dlambdaname.m. If such a funk object is called f

then we can evaluate the wished original or extended function or its deriva-
tive by the commands f.f(·), f.dx(·), f.dlambda(·), f.F(·), f.Dx(·),

f.Dlambda(·), f.Dsigma(·). A capital letter always means the extended
function.

findA1, findA2:
This functions find appropriate vectors A1 respectively A2 using the discus-
sion in the sections 3.2 and 3.3.

Gridd:
This class finds in a box defined by an interval vector lsbox for some points
gridpoints (λ, σ) corresponding function values or (vectors) y and values or
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(vectors) for the corresponding derivatives dlambda, dsigma. In particular
a corrector step method corrStep and a predictor step methods predStep

corresponds to this class. This class bases on the discussion in sections 3.8.

BezPolynom, TriKubBezPolynom, TriKubBezInterp:
A BezPolynom object represents a Bezier polynomial on an arbitrary sim-
plices with its coefficients and the vertices of the corresponding simplices.
The class BezPolynom has a method to evaluate the polynomial (see Algo-
rithm 1, de Casteljau). A TriKubBezPolynom object represents a triangular
cubic Bezier polynomial like in the discussion of section 2.3. Such an object is
determined by the vertices of the corresponding triangle and the coefficients
which are illustrated in figure 3. The class TriKubBezPolynom is a subclass
of BezPolynom. The class TriKubBezInterp patches such TriKubBezPoly-
nom objects together to a Bezier surface. The coefficients are determined
by using Farins method from section 2.3 based on the information we get
by a Gridd object. Here we use the class DelaunayTri and its methods of
MATLAB. This class provides a Delaunay triangulation. At the boundary
of the triangulation we determine additional gradient vectors to find good
coefficients for the corresponding Bezier polynomials.
These are all the preprocessing functions I use in my implementation.

Remark.
Due to some reasons I mention later I do not analyse the boundary edges of
every box the algorithm is verifying. I check the boundary of bigger boxes only
which are completely checked (see figure 15). Here the boxes filled green and

Figure 15: Illustrations of possible situations through my implementation

red has been verified by Algorithm 2. Through the green boxes a solution path
crosses very likely and the red boxes restricting the area where the solution
path traverses. In particular in the red boxes we know 0 /∈ ξ (see Algorithm
2). The cyan marked segment of the boundary of the big box marks the area
we have to analyse with Algorithm 5. Based on the information we get by
Algorithm 5 we may choose the next bigger box to consider.
We see that depending on the choice of the size of such a bigger box either
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the first or the second situation occurs. The reason why I do not check the
boundary of each sub-box is that on the one hand this analysing of the bound-
ary is quite expensive and needs an even higher accuracy than the common
check for verification of a small box. On the other hand the separately con-
sidering of bigger boxes helps to keep the administration of the small subboxes
smaller. Otherwise this administration gets very large and as a consequence
the procedure gets slower and slower.
So I assume inside a bigger box that every small box which shares an edge
with a already verified small box where the solution path might crosses, must
be checked by Algorithm 2 without analysing the boundary of each verified
small box.
For the continuation with further bigger boxes see figure 8. The parameters
respectively the size of this bigger box depends on the considered problem and
one must try to find a suitable size.

BoxManagement:
This class is responsible for the administration of all sub-boxes in a bigger
box. This means there are the main properties verBoxes and notVerBoxes.
Not surprisingly in verBoxes are the verified boxes with the corresponding
enclosure is stored. In notVerBoxes every box is stored which have not been
verified yet. The boxes stored in these two properties cover the whole bigger
box which is considered. I use the MATLAB class containers.Map for these
properties. Further the class BoxManagement stores the information which
box shares a boundary edge with another box. As a consequence of this the
whole algorithm knows which boxes must be verified yet. At least this class
BoxManagement also stores and manages the boundary information of the
considered bigger box. The mentionable methods which accord to this class
are modify and plot. The command modify modifies a BoxManagement ob-
ject for the different situations which can occur (see Algorithm 7). Further
the command plot provides a plot in a very similar way like in the figure 2
above.

VerifiedBox:
This class is the main and most important part of the whole procedure.
This class aims to completely analyse such a bigger box similar to Algo-
rithm 8. The most important properties of this class are initbox which is
a intval object which restricts the considered box. Then there is a property
BoxM, a BoxManagement object. Above I have describe the function of such
an object. Further there is a property BezSurface, a TriKubBezInterp ob-
ject. The function of such an object has been described above too. Further
there are lists of integers flist, blist which are connected to the prop-
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erty notVerBoxes in BoxM. The integers in blist connect to boxes which
are marked red in figure 2. In the list flist integers are stored which corre-
sponds to boxes in notVerBoxes in the object BoxM for which our verification
algorithm has not been successfully. The reasons why this can happen have
been discussed section 4.
The key methods this class contain are try2Verify and boundaryCheck.
The key method try2Verify does the same like the Algorithm 7 without
analysing the boundary edges of the considered small box. The method
boundaryCheck analyses the boundary edge of the considered bigger box.
Here see figure 2. This methods checks the cyan marked edges and tries to
restrict the area where a solution path traverses more.
Further there is a method for calculating the bound α > 0 and the matrix
A, calcAlpha, a simple method to find appropriate weights, findWeights,
a method for a possibly needed corrector iteration, corrStep, and methods
for bisection and complementation, bisect and takeComplement.

Verifying:
This class starts the whole algorithm. As input we need the function name
to initialise a object of type func, a starting point, i.e. a approximate root
of the considered function, and an intval object to restrict the area in which
we want to determine the solution path. Optionally one can give a unfolding
functional. This class manages the bigger boxes and initialises the class
VerifiedBox for appropriate boxes. The main property is called verList.
In verList objects of the type VerifiedBox are listed. The class uses the
boundary information which is stored in this VerifiedBox objects to find new
boxes which must be analysed. The class also tries to avoid that some areas
are double checked.
Further the class Verifying contains a method plot which executes plot

for all VerifiedBox objects stored in verList.

Remarks. (i) At least there is the possibility to initialise a new vector A1

for each box we want to analyse with VerifiedBox or we can initialise
at the beginning of Verifying once a vector A1 and keep this. If the
considered area is large it is possibly recommendable to initialise A1 each
time new else once determining such a vector is enough. The unfolding
functional µ should be kept in the whole process because otherwise the
bifurcation diagram is not be meaningful. Often there is a linear un-
folding functional, maybe determined by the function findA2, and then
as a consequence the vector A2 does not change during the algorithm.

(ii) In the implementation we have to try that the administration of the
boxes does not slow down the program. The analysing of the bound-
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ary need high accuracy to give useful results and as a consequence the
boundaryCheck method is quite expensive. The cost of the command to
verify a box is dependent on the domain of the function we are consid-
ering. Here we need to compute enclosures of the range of the function
by using interval analysis. These computations are expensive if we are
considering a function with a domain of high dimension.

(iii) For the Bezier surface to interpolate the solution manifold we should not
use a grid with a large amount of points because otherwise the evaluation
of the Bezier surface gets expensive and slows down the program.

5.2 Examples

First we start with the simple example of the common pitchfork bifurcation.

Example 1. The problem we are considering is

x3 − λx = 0 (63)

where x, λ ∈ R. Obviously one solution path can be written down explicitly by
x(λ) = x = 0. The second solution path we can write down by x(λ) = ±

√
λ.

We can not give an explicit expression for the whole solution path of the
second branch because at (λ, x) = (0, 0) we have a turning point with respect
to λ. However our algorithm should not have a problem through the turning
point as well as the bifurcation point at the same point.
Obviously we can also write down a explicit expression for the second branch
with respect to x. This is λ(x) = x2. So it is reasonable to choose the unfolding
functional µ : R→ R such that µ(x) = x. Then we have σ = x and A2 = 1.
By applying this algorithm and plotting the result we get the following figures.
As starting point we chose λ = 1 and a random number x ≈ 0.
We see clearly that the algorithm has found the wished solution branches. In
the green marked area the solution path proceeds and further the illustration
says that the solution path does not traverse red marked areas and lines.
Moreover the blue points (areas) we got by analysing the boundary of such
bigger boxes. So the blue areas restrict the continuation of the solution paths
very much. In figure 17 I zoomed in near the bifurcation point.
By applying successfully the results of section 4.7 on the blue marked parts
of the edge of the middle box we can show that a (near) bifurcation point is
contained in this box. The smaller the box is the likelier a reel bifurcation
point is contained in this box. By applying the results of section 4.7 on more
such parts of edges of boxes which are marked blue one can show existence and
uniqueness of the solution branches beside the box where the (near) bifurcation
point occurs.
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Figure 16: Pitchfork

Figure 17: Pitchfork - near bifurcation
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Here we determined at the beginning of the algorithm the linear operator
respectively the vector A1 and did not change it during the algorithm.

To prepare the next example we rephrase first a theorem of Chow and Hale
[3].

Theorem 5.1. Let F : R × R
n ⊇ Λ×D → R

n a k ≥ 2 times continuously
differentiable function. Suppose that

F (λ, x) = Bx− λx + N(λ, x) (64)

N(λ, 0) = 0, Nx(λ, 0) = 0 (65)

where B ∈ R
n×n and N a nonlinear function. If λ0 is a simple eigenvalue

of B with eigenvector y0 6= 0, then (λ, x) = (λ0, 0) is a bifurcation point of
F (λ, x) = 0.

Example 2. Here we are considering the function F : R×R
3 → R

3,

F (λ, x) = Ax− λx + λ







b11x3
1 + b12x1x2 + b13x1x3

b21x1x2 + b22x3
2 + b23x2x3

b31x1x3 + b32x2x3 + b33x3
3





 (66)

where

A =







−1 0 1.2
−1 1 0.01
0.22 1 −1.3





 , B =







1.23 0.8 −1.01
−0.04 0.4 0
−4 1 −0.9





 .

Not surprisingly this function fits for the theorem above and so we know by
determining the eigenvalues of the matrix A where we must expect simple
bifurcations. The eigenvalues are approximately −1.982, 0.5374 and 0.1446.
So we apply the implementation on this function starting at λ = 0.4 and
x ≈ 0 ∈ R

3 and hoping to find the solution branches bifurcating approximately
at (0.5374, 0) ∈ R×R

n and (0.1446, 0) ∈ R×R
n. Here the vector A1 changes

for every bigger box the algorithm considers. The unfolding functional we
determined by the discussion of section 3 and more exactly with the method
findA2 is

µ(u) =







−0.7265
−1.1438
−0.7995





 · u.

In the figures below the σ-value is determined by this unfolding functional.
In the figure 18 we see that the expected behaviour of the solution branches
is detected by our algorithm. Moreover we see that the same solution branch
bifurcates approximately at (0.5374, 0) ∈ R×R

n and (0.1446, 0) ∈ R×R
n of

the trivial solution branch u = 0.
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Figure 18: Example 2

Figure 19: Example 2 - near bifurcation point
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In figure 19 we zoom in near the bifurcation point (0.5374, 0) ∈ R× R
n.

Here I marked the boxes with black points where four parts of the boundary
edge has been found where possibly a solution branch traverses. However
on closer examination we see that beside of the box where we know through
Theorem 5.1 that a bifurcation point occurs the possible solution branches
would traverse into boxes where no further part of the boundary is found
where a solution branch can traverse. By this observation it gets very unlikely
that a solution branch really crosses this edge and as a consequence it is very
unlikely that a bifurcation point occurs in such a box.

By increasing the accuracy of the computations one could get even narrower
enclosures and better guesses for the areas where a solution branch traverses
the edge of a box. However I think the illustrations make clear how the
method works and shows the applicability.
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6 Further comments and prospects

First we mention that all results are possibly improvable by using an appro-
priate branch and bound scheme. Due to the fact that in general branch and
bound is very expensive one may have to think about good splitting strate-
gies. For more we refer exemplary to Ratz and Csendes [21] or Csendes and
Ratz [5].
Next there is the possibility to use the operators we have mentioned in the
previous section, the Krawczyk operator or the Hansen-Sengupta operator,
to improve the enclosures we get by our algorithms. More details one can
find in Neumaier [18] or Kearfott [12].
Further the discussion of section 2.3 can be used to interpolate lower and
upper bound surfaces for the solution paths.
At the beginning of the work we claimed the matrix A to be invertible and
the norm the inverse of A to be bounded by an α > 0 (see (4)). We mentioned
that our main Theorem 3.1 still works if the matrix only has a left-inverse
for which the norm must be bounded. In the main results of section 4 we
claimed the considered function F to have the form F : Rp × R

n → R
n and

as a consequence then µ : Rp × R
n → R

k and A1 : Rl → R
n with k = l.

The condition k = l is necessary because otherwise the matrix A would not
be quadratic and as a consequence not invertible. However, the presented
results should work for a non-quadratic matrix A too if the matrix A is left-
invertible and the norm of its inverse is bounded and one can show that the
considered solution paths are still continuous.
In the original work, Neumaier [19], the considered function F is not claimed
to be reel. The domain D × Λ ⊆ R

p × R
n and the co-domain R

m of F can
be replaced by D × Λ ⊆ R

p × X and Y where X, Y are finite- or infinite-
dimensional Banach spaces. Then the same results like in section 1 remain
true with the additional assumption that the Frechet derivative DuF (λ0, u0)
is a Fredholm operator. In general this means that the results of section 1
are applicable also on a wider range of problems. For example on suitable
differential equations.
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7 Header

7.1 class funk

1 classdef funk

2 properties ( SetAccess = protected )

3 name % function names

4 % function evaluations in m-files:

5 % fname.m, dxname.m, dlambdaname

6 end

7 properties

8 A1 % vector to extend A1

9 A2 % vector to extend A2

10 end

11

12 methods

13 function obj = funk(n)

14 % to initialise a funk object

15 end

16

17 y = f(obj,lambda,x)

18 % function evaluation

19

20 y = dx(obj,lambda,x)

21 % jacobian evaluation w.r. to x

22 y = dlambda(obj,lambda,x)

23 % jacobian evaluation w.r. to lambda

24

25 y = F(obj,lambda,sigma,x,xi)

26 % extended function evaluation

27

28 y = Dx(obj,lambda,x)

29 % extended jacobian w.r. to x

30

31 y = Dlambda(obj,lambda,x)

32 % extend jacobian w.r. to lambda

33

34 y = Dsigma(obj)

35 % extend jacobian w.r. to sigma

36 % no input needed if unfolding functional is linear

37 end

38 end

7.2 function findA1

1 function A1 = findA1(fun, lambda, x)

2
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3 % Computes vector A1 to extend the problem

4 % Uses eigenvector method

5

6 % INPUT

7 % fun: funk object to evaluate the considered function

8 % lambda: value of lambda (at approximate root)

9 % x: value of x (at approximate root)

10

11 % OUTPUT

12 % A1: vector to extend the problem

7.3 function findA2

1 function A2 = findA2(fun,lambda,x)

2

3 % Computes vector A2 to extend the problem

4 % Uses eigenvector method

5

6 % INPUT

7 % fun: funk object to evaluate the considered function

8 % lambda: value of lambda (at approximate root)

9 % x: value of x (at approximate root)

10

11 % OUTPUT

12 % A2: vector to extend the problem

7.4 class Gridd

1 classdef Gridd

2 properties

3 gridpoints % (lambda,sigma) gridpoints

4 y % corresponding function values

5 dlambda % corresponding gradients w.r. to lambda

6 dsigma % corresponding gradients w.r. to sigma

7 fun % funk obj to evaluate considered function

8 invA % preconditioning matrix

9 lsbox % interval box in which the grid is

10 end

11 properties ( Hidden )

12 epsilo % bound for the min steplength

13 epsilonsigm % bound for the change of sigma

14 varepsilo % bound

15 inith % initial steplength

16 end

17

18 methods
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19 function obj = Gridd(fu, box, AA, start, xi0)

20 % initialise Gridd object

21 end

22

23 [succ, obj] = corrStep(obj, lambda, sigma, x, xi)

24 % corrector step

25 % INPUT

26 % lambda, sigma, x, xi: initial value

27 % OUTPUT

28 % stored int the object obj

29 % succ: succesfull or not

30

31

32 [lambda, sigma, x, xi, obj] =

33 predStep(obj, lambda, sigma, x, xi, h1, h2, mod)

34 % predictor step

35 % INPUT

36 % lambda, sigma, x, xi: initial value

37 % OUTPUT

38 % stored int the object obj

39

40 obj = predCorrS(obj,lambda,sigma,x,xi,mod,neg)

41 % predictor-corrector step, sigma direction

42 % INPUT

43 % lambda, sigma, x, xi: initial value

44 % mod: last step or not

45 % neg: steplength positive or negative

46 % OUTPUT

47 % stored int the object obj

48

49 obj = predCorrW(obj,lambda,sigma,x,xi,mod,neg)

50 % predictor-corrector step, lambda direction

51 % INPUT

52 % lambda, sigma, x, xi: initial value

53 % mod: last step or not

54 % neg: steplength positive or negative

55 % OUTPUT

56 % stored int the object obj

57

58 obj = predCorrWs(obj,lambda,sigma,x,xi,mod,neg1, neg2)

59 % predictor-corrector step, diagonal direction

60 % INPUT

61 % lambda, sigma, x, xi: initial value

62 % mod: last step or not

63 % neg1: steplength w.r. to lambda positive or negative

64 % neg1: steplength w.r. to sigma positive or negative

65 % OUTPUT

66 % stored int the object obj

67
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68 obj = calcGrid(obj, lambda, sigma, x, xi)

69 % initialises the calculation

70 % INPUT

71 % lambda, sigma, x, xi: initial value

72 % OUTPUT

73 % stored int the object obj

74

75 [succ, obj] = initStep(obj, lambda, sigma, x, xi)

76 % first step of calculation

77 % INPUT

78 % lambda, sigma, x, xi: initial value

79 % OUTPUT

80 % stored int the object obj

81 % succ: succesfull or not

82 end

83 end

7.5 class BezPolynom

1 classdef BezPolynom

2

3 properties

4 coeff

5 % coeff ... coefficients of a Bezier patch

6 % [i,j,k], ... indices of coeff,

7 % here keys correspoding to a vector

8 end

9 properties (SetAccess = protected)

10 tri %simplex defined by its vertices stored in tri

11 degree %degree of the patch

12 end

13 properties (Dependent, SetAccess = protected)

14 dimstart % dimension of the domain

15 dimziel %dimension of the co-domain

16 end

17

18 methods

19 function obj = BezPolynom(c,t,deg)

20 % initialises the BezPolynom object

21 % c defines the coefficients

22 % t ... dimension of the domain

23 % deg ... degree of the patch

24 end

25

26 val = get.coeff(obj)

27 % get method for coeff

28
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29 val = get.degree(obj)

30 % get method for degree

31

32 val = get.dimstart(obj)

33 % get method for dimstart

34

35 val = get.dimziel(obj)

36 % get method for dimziel

37

38 val = bezVal(obj,x);

39 % evaluation of the patch at a point x

40

41 ind = makeindex(obj);

42 % get indices of the patch

43 end

44 end

7.6 class TriKubBezPolynom

1 classdef TriKubBezPolynom < BezPolynom

2 properties

3 Ci % coefficients C_i

4 I1 % coefficients I_01, I_11, I_21

5 I2 % coefficients I_02, I_12, I_22

6 end

7

8 methods

9 function obj = TriKubBezPolynom(c,t,dlambda,dsigma)

10 % initialiss TriKubBezPolynom

11 % c ... values at the vertices

12 % t ... vertices of the triangle

13 % dlambda ... gradient w.r. to lambda at vertices

14 % dsigma ... gradient w.r. to sigma at vertices

15 end

16

17 val = get.Ci(obj)

18 %get method for Ci

19

20 obj = CalcInitCoeff(obj,c,dlambda,dsigma)

21 % calculates coefficients at the edge of the triangle

22 % INPUT like above

23

24 obj = CalcInitInteriorCoeff(obj)

25 % calculates interior coefficient b_111

26 end

27 methods ( Static )

28 val = CalcInitCm(c)
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29 % calculates b_111 with Ci coefficients

30 end

31 end

7.7 class TriKubBezInterp

1 classdef TriKubBezInterp

2 properties

3 tkbp % TriKubBezPoly corresponding to dtri

4 dtri % a delaunay triangulation, DelaunayTri object

5 end

6

7 methods

8 function obj = TriKubBezInterp(v)

9 % initialises a TriKubBezInterp object

10 % v ... a Gridd object

11 end

12

13 obj = CalcBezPoly(obj,y,dlambda,dsigma,ff)

14 % starts the computation

15 % y ... function value

16 % dlambda ... gradient w.r. to lambda

17 % dsigma ... gradient w.r. to sigma

18 % ff ... funk object for evaluation of

19 % the considered function

20

21 obj = Farin(obj,e,tt)

22 % Farins method

23 % indices of vertices of an edge

24 % index of an edge of a triangle

25

26 obj = Farinend(obj);

27 % Last step of Farins method

28

29 obj = BorderCi(obj,e,t,ff);

30 % computes Bezier points at the boundary of the triangulation

31

32 [val, isin] = bezSurfVal(obj,x);

33 % evaluates the Bezier surface

34 % INPUT

35 % x ... point at which the surface is evaluated

36 % val ... resulting value

37 % isin ... boolean variable which says if x is inside of the

38 % triangulation

39 end

40 end
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7.8 class BoxManagement

1 classdef BoxManagement

2 properties

3 initBox % (lambda, x) intval box. area which is considered

4 lbox % corresponding lambda intval box

5 sbox % corresponding sigma intval box

6

7 verBoxes

8 % containers.Map object. (lambda, sigma) intval boxes with

9 % corresponding enclosure x intval box

10 notVerBoxes

11 % container.Map object. (lambda, sigma) intval boxes which are not

12 % yet considered

13

14 vNeighbourV

15 % containers.Map object. Neighbourhood between verified Boxes

16 vNeighbourN

17 % containers.Map object. Neighbourhood between verified Boxes and

18 % not verified Boxes

19 nVNeighbourV

20 % containers.Map object. Neighbourhood between not verified Boxes

21 % and verified Boxes

22 nVNeighbourN

23 % containers.Map object. Neighbourhood between not verified Boxes

24

25 Boundary % information which part of the boundary must be analysed

26 Boundary2 % information where the path probably traverses

27 BoundaryNo % information on which edge the boundary traverses

28 end

29

30 methods

31 function obj = BoxManagement(box, sbo)

32 % initialise a BoxManagement object

33 % box: initialises initbox

34 % sbo initilialises sbox

35 end

36

37 plotall(obj,list,farbe)

38 % plotting method

39 % list: list of restricting boxes

40 % farbe: colour of the restricting boxes

41

42 is = isNeighbour(obj, mod1, index1, mod2, index2)

43 % Check if two boxes are neighboured

44 % mod1, mod2: type of box, verified or not verified box

45 % index1, index2: index of the boxes according to mod1,mod2

46

47 [obj, nkeys] = modify(obj, mod, oldindex, list)
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48 % method which updates all informations if something changes

49 % mod: which kind of change

50 % oldindex: index of the box in which a change happens

51 % list: lists the new boxes

52 end

53 end

7.9 class VerifiedBox

1 classdef VerifiedBox

2

3 properties

4 initbox %(lambda u) intval box to consider

5 BoxM % corresponding BoxManagement object for adminstration

6 func % funk object, function which is considered, extension

7 BezSurface % Bezier surface to evaluate approximate roots

8 flist

9 % list of indices according to boxes where the verification failed

10 blist

11 % list of indices according to boxes to restrict the enclosure

12 end

13

14 properties ( Hidden )

15 sweights % weight vector according to the domain

16 zweights % weight vector according to the co-domain

17

18 alpha % current bound alpha

19 invA % current preconditioning matrix inv(A)

20 A % current jacobian matrix

21

22 currlbox % current lambda box which is considered

23 currsbox % current sigma box which is considered

24

25 todolist % list of indices according which shall be verified

26 nlist

27 % list of indices according to boxes where a new alpha ı́s needed

28

29 stolnewbox % tolerances according to the size of a box

30 stolnewboxl

31 tolnewbox

32 tolnewboxl

33 inittolnewbox

34 inittolnewboxl

35 stboxs

36 stboxl

37 mintolnewbox

38 mintolnewboxl
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39

40 minbsradius % tolerances according to the boundary check

41 minblradius

42 minbradius

43

44 actkey % key of the actually considered box

45 nactkey

46 % key of the box for which a new alpha has been computed

47 end

48

49 methods

50 function obj = VerifiedBox(mod, funkt, start, boxa)

51 % initialises a VerifiedBox object

52 % mod: modus, first or normal

53 % start: initial approximate root

54 % boxa: (u lambda) intval box which has to be analysed

55

56 end

57

58 obj = try2Verify(obj, mod1, mod2, start)

59 % Box verification algorithm

60 % mod1: mode first or normal

61 % mod2: weighted or not weighted norms

62 % start: approximate root if mod1 = first

63

64 obj = boundaryCheck(obj, mod)

65 % Analysing the boundary

66 % mod: weighted or not weighted

67

68 obj = calcAlpha(obj, mod1, mod2, start)

69 % Calculate a new alpha

70 % mod1: with corrector iteration or without

71 % mod2: weighted or not weighted norms

72 % start: approximate root

73

74 [val, succ] = corrStep(obj, start, invA);

75 % Corrector iteration

76 % start: approximate root

77 % invA: approximate inverse, Newton-Chord

78 % OUTPUT

79 % val: value of the root after iteration

80 % succ: successful or not

81

82 obj = findWeights(obj, start, AA, invA);

83 % simple method to get weights for the domain and co-domain

84 % start: approximate root

85 % AA: jacobian of F

86 % invA: approximate inverse

87
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88 list = bisect(obj, box);

89 % bisection of the intval object box

90 % list: intval vector with the resulting boxes

91 end

92 methods (Static)

93 list = takeComplement(AA, BB);

94 % take the complement of a box AA in a box BB

95 % list: resulting boxes in a intval vector

96 end

97 end

7.10 class Verifying

1 classdef Verifying

2 properties

3 initStart % initial approximate root

4 initbox % initial box to consider

5

6 toDoList % keys according to boxes to analyse

7 verList % list of VerifiedBox objects which are analysed

8

9 func % funk object, function to consider

10 A12 % A1, A2 is here stored if it does not change

11 end

12 properties ( Hidden )

13 radbox % about the size of new chosen boxes

14 extbox

15

16 keylist % list of keys to boxes for analysation

17

18 boundarylist % stores edges where no solution path traverses

19 end

20

21 methods

22 function obj = Verifying(funkt, start, boxa, A2)

23 % initialises a Verifying object

24 % funkt: funk object -> func

25 % boxa: (lambda x) box to consider

26 % A2: if unfolding functional given and linear then A2

27 end

28

29 plot(obj)

30 % plotting method, uses plot method of BoxManagement

31

32 nbox = thecheck(obj,nbox,obox, i)

33 % checks if a new box for verification is appropriately chosen

34 % nbox: new intval box
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35 % obox: old intval box at which the new box connects

36 % i: says at which edge the boxes connect

37

38 end

39 methods ( Static )

40 list = takeComplement(A,B)

41 % complementation method

42 end

43 end
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Abstract (Deutsch)

In dieser Arbeit werden nichtlineare, reelle, parameter-abhängige Funktionen
betrachtet. Hier sind die Nullstellen von solchen Funktionen gesucht. An
nicht-singulären Stellen der Lösungsmannigfaltigkeit des Problems, welches
wir betrachten, impliziert der Satz über implizite Funktionen, dass eine
Funktion existiert, welche die Lösungsmannigfaltigkeit lokal in Abhängigkeit
des gewählten Parameters beschreibt. Im Allgemeinen sind nun singuläre
Stellen der Lösungsmannigfaltigkeit schwerer behandelbar. Unsere Meth-
ode erweitert das Problem, so dass Singularitäten in der Lösung des ur-
sprünglichen Problems im erweiterten Problem korrigiert werden und so
nicht mehr vorkommen. Des weiteren bekommen wir ein niedrig - dimension-
ales Problem, dessen Lösung die Lösungsmannigfaltigkeit des ursprünglichen
Problems reflektiert, im Speziellen in der Nähe von Bifurkationspunkten. Die
theoretische Grundlage für diese Methode wurde in Neumaier [19] erarbeitet.
Wir wollen hier eine rigorose Einschließung der Lösungsmannigfaltigkeit
finden. Für diesen Zweck wird das Konzept der Intervallanalysis und In-
tervallarithmetik in einer Sektion behandelt. Intervallanalysis und Inter-
vallarithmetik wird hier hauptsächlich verwendet um Einschließungen von
Funktionsbereichen zu finden um die erarbeitete Methode rigoros anzuwen-
den. Die Einführung enthält die wichtigsten Begriffe, Notationen und Sätze
aus dem Bereich der Intervallanalysis.
Die Methode benötigt auch eine Interpolation der Lösungsmannigfaltigkeit.
Für diesen Zweck werden Bezier Patches über Dreiecken betrachtet. Genauer
gesagt wird zur Interpolation der Lösung eine Methode verwendet, die erst-
mals in Clough and Tocher [4] präsentiert wurde und dann von Farin in [8],
[9] noch weiter entwickelt wurde.
Der Hauptteil der Arbeit präsentiert die zwei Theoreme, die der Methode
zugrunde liegen, und den Schlüssen die daraus zu ziehen sind. Es wird
diskutiert wie das urpsprüngliche Problem erweitert werden muss um die
Singularitäten zu korrigieren. Auch eine Prediktor-Corrector Methode für
die betrachtete Form des Problems wird erarbeitet. Weiters werden Algo-
rithmen erarbeitet um rigorose Lösungseinschließungen zu bekommen. Der
Hauptteil schließt mit einer Diskussion über Existenz und Eindeutigkeit von
Lösungszweigen innerhalb von Lösungseinschließungen.
Die Implementation der erarbeiteten Methode erfolgt in MATLAB. Speziell
verwendet wird die Toolbox INTLAB von Rump. Mehr dazu in Rump [23].
Am Ende der Arbeit werden noch Beispiele präsentiert, auf die die Imple-
mentation angewendet wurde.
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