258 research outputs found

    Stochastic Optimization for Deep CCA via Nonlinear Orthogonal Iterations

    Full text link
    Deep CCA is a recently proposed deep neural network extension to the traditional canonical correlation analysis (CCA), and has been successful for multi-view representation learning in several domains. However, stochastic optimization of the deep CCA objective is not straightforward, because it does not decouple over training examples. Previous optimizers for deep CCA are either batch-based algorithms or stochastic optimization using large minibatches, which can have high memory consumption. In this paper, we tackle the problem of stochastic optimization for deep CCA with small minibatches, based on an iterative solution to the CCA objective, and show that we can achieve as good performance as previous optimizers and thus alleviate the memory requirement.Comment: in 2015 Annual Allerton Conference on Communication, Control and Computin

    A survey of cross-lingual word embedding models

    Get PDF
    Cross-lingual representations of words enable us to reason about word meaning in multilingual contexts and are a key facilitator of cross-lingual transfer when developing natural language processing models for low-resource languages. In this survey, we provide a comprehensive typology of cross-lingual word embedding models. We compare their data requirements and objective functions. The recurring theme of the survey is that many of the models presented in the literature optimize for the same objectives, and that seemingly different models are often equivalent, modulo optimization strategies, hyper-parameters, and such. We also discuss the different ways cross-lingual word embeddings are evaluated, as well as future challenges and research horizons.</jats:p

    Cross-lingual alignment transfer: a chicken-and-egg story?

    Get PDF
    International audienceIn this paper, we challenge a basic assumption of many cross-lingual transfer techniques: the availability of word aligned parallel corpora, and consider ways to accommodate situations in which such resources do not exist. We show experimentally that, here again, weakly supervised cross-lingual learning techniques can prove useful, once adapted to transfer knowledge across pairs of languages

    Advances in Spectral Learning with Applications to Text Analysis and Brain Imaging

    Get PDF
    Spectral learning algorithms are becoming increasingly popular in data-rich domains, driven in part by recent advances in large scale randomized SVD, and in spectral estimation of Hidden Markov Models. Extensions of these methods lead to statistical estimation algorithms which are not only fast, scalable, and useful on real data sets, but are also provably correct. Following this line of research, we make two contributions. First, we propose a set of spectral algorithms for text analysis and natural language processing. In particular, we propose fast and scalable spectral algorithms for learning word embeddings -- low dimensional real vectors (called Eigenwords) that capture the “meaning” of words from their context. Second, we show how similar spectral methods can be applied to analyzing brain images. State-of-the-art approaches to learning word embeddings are slow to train or lack theoretical grounding; We propose three spectral algorithms that overcome these limitations. All three algorithms harness the multi-view nature of text data i.e. the left and right context of each word, and share three characteristics: 1). They are fast to train and are scalable. 2). They have strong theoretical properties. 3). They can induce context-specific embeddings i.e. different embedding for “river bank” or “Bank of America”. \end{enumerate} They also have lower sample complexity and hence higher statistical power for rare words. We provide theory which establishes relationships between these algorithms and optimality criteria for the estimates they provide. We also perform thorough qualitative and quantitative evaluation of Eigenwords and demonstrate their superior performance over state-of-the-art approaches. Next, we turn to the task of using spectral learning methods for brain imaging data. Methods like Sparse Principal Component Analysis (SPCA), Non-negative Matrix Factorization (NMF) and Independent Component Analysis (ICA) have been used to obtain state-of-the-art accuracies in a variety of problems in machine learning. However, their usage in brain imaging, though increasing, is limited by the fact that they are used as out-of-the-box techniques and are seldom tailored to the domain specific constraints and knowledge pertaining to medical imaging, which leads to difficulties in interpretation of results. In order to address the above shortcomings, we propose Eigenanatomy (EANAT), a general framework for sparse matrix factorization. Its goal is to statistically learn the boundaries of and connections between brain regions by weighing both the data and prior neuroanatomical knowledge. Although EANAT incorporates some neuroanatomical prior knowledge in the form of connectedness and smoothness constraints, it can still be difficult for clinicians to interpret the results in specific domains where network-specific hypotheses exist. We thus extend EANAT and present a novel framework for prior-constrained sparse decomposition of matrices derived from brain imaging data, called Prior Based Eigenanatomy (p-Eigen). We formulate our solution in terms of a prior-constrained l1 penalized (sparse) principal component analysis. Experimental evaluation confirms that p-Eigen extracts biologically-relevant, patient-specific functional parcels and that it significantly aids classification of Mild Cognitive Impairment when compared to state-of-the-art competing approaches

    Data fusion and matching by maximizing statistical dependencies

    Get PDF
    The core aim of machine learning is to make a computer program learn from the experience. Learning from data is usually defined as a task of learning regularities or patterns in data in order to extract useful information, or to learn the underlying concept. An important sub-field of machine learning is called multi-view learning where the task is to learn from multiple data sets or views describing the same underlying concept. A typical example of such scenario would be to study a biological concept using several biological measurements like gene expression, protein expression and metabolic profiles, or to classify web pages based on their content and the contents of their hyperlinks. In this thesis, novel problem formulations and methods for multi-view learning are presented. The contributions include a linear data fusion approach during exploratory data analysis, a new measure to evaluate different kinds of representations for textual data, and an extension of multi-view learning for novel scenarios where the correspondence of samples in the different views or data sets is not known in advance. In order to infer the one-to-one correspondence of samples between two views, a novel concept of multi-view matching is proposed. The matching algorithm is completely data-driven and is demonstrated in several applications such as matching of metabolites between humans and mice, and matching of sentences between documents in two languages.Koneoppimisessa pyritään luomaan tietokoneohjelmia, jotka oppivat kokemuksen kautta. Tehtävänä on usein oppia tietoaineistoista säännönmukaisuuksia joiden avulla saadaan uutta tietoa aineiston taustalla olevasta ilmiöstä ja voidaan ymmärtää ilmiötä paremmin. Eräs keskeinen koneoppimisen alahaara käsittelee oppimista useita samaa ilmiötä käsitteleviä tietoaineistoja yhdistelemällä. Tavoitteena voi olla esimerkiksi solutason biologisen ilmiön ymmärtäminen tarkastelemalla geenien aktiivisuusmittauksia, proteiinien konsentraatioita ja metabolista aktiivisuutta samanaikaisesti. Toisena esimerkkinä verkkosivuja voidaan luokitella samanaikaisesti sekä niiden tekstisisällön että hyperlinkkirakenteen perusteella. Tässä väitöskirjassa esitellään uusia periaatteita ja menetelmiä useiden tietolähteiden yhdistelemiseen. Työn päätuloksina esitellään lineaarinen tietoaineistojen yhdistelemismenetelmä tutkivaan analysiin, uusi menetelmä tekstiaineistojen erilaisten esitystapojen vertailuun sekä uusi yhdistelemisperiaate tilanteisiin joissa aineistojen näytteiden vastaavuutta toisiinsa ei tunneta ennalta. Työssä esitetään kuinka vastaavuus voidaan oppia tietoaineistoista itsestään, ilman ulkopuolista ohjausta. Uutta menetelmää sovelletaan työssä esimerkiksi hakemaan vastaavuuksia ihmisten ja hiirten metaboliamittauksista sekä etsimään samaa merkitseviä lauseita kahdella eri kielellä kirjoitetuista teksteistä

    Multi-view Representation Learning for Unifying Languages, Knowledge and Vision

    Get PDF
    The growth of content on the web has raised various challenges, yet also provided numerous opportunities. Content exists in varied forms such as text appearing in different languages, entity-relationship graph represented as structured knowledge and as a visual embodiment like images/videos. They are often referred to as modalities. In many instances, the different amalgamation of modalities co-exists to complement each other or to provide consensus. Thus making the content either heterogeneous or homogeneous. Having an additional point of view for each instance in the content is beneficial for data-driven learning and intelligent content processing. However, despite having availability of such content. Most advancements made in data-driven learning (i.e., machine learning) is by solving tasks separately for the single modality. The similar endeavor was not shown for the challenges which required input either from all or subset of them. In this dissertation, we develop models and techniques that can leverage multiple views of heterogeneous or homogeneous content and build a shared representation for aiding several applications which require a combination of modalities mentioned above. In particular, we aim to address applications such as content-based search, categorization, and generation by providing several novel contributions. First, we develop models for heterogeneous content by jointly modeling diverse representations emerging from two views depicting text and image by learning their correlation. To be specific, modeling such correlation is helpful to retrieve cross-modal content. Second, we replace the heterogeneous content with homogeneous to learn a common space representation for content categorization across languages. Furthermore, we develop models that take input from both homogeneous and heterogeneous content to facilitate the construction of common space representation from more than two views. Specifically, representation is used to generate one view from another. Lastly, we describe a model that can handle missing views, and demonstrate that the model can generate missing views by utilizing external knowledge. We argue that techniques the models leverage internally provide many practical benefits and lot of immediate value applications. From the modeling perspective, our contributed model design in this thesis can be summarized under the phrase Multi-view Representation Learning( MVRL ). These models are variations and extensions of shallow statistical and deep neural networks approaches that can jointly optimize and exploit all views of the input content arising from different independent representations. We show that our models advance state of the art, but not limited to tasks such as cross-modal retrieval, cross-language text classification, image-caption generation in multiple languages and caption generation for images containing unseen visual object categories

    Representation Learning for Words and Entities

    Get PDF
    This thesis presents new methods for unsupervised learning of distributed representations of words and entities from text and knowledge bases. The first algorithm presented in the thesis is a multi-view algorithm for learning representations of words called Multiview Latent Semantic Analysis (MVLSA). By incorporating up to 46 different types of co-occurrence statistics for the same vocabulary of english words, I show that MVLSA outperforms other state-of-the-art word embedding models. Next, I focus on learning entity representations for search and recommendation and present the second method of this thesis, Neural Variational Set Expansion (NVSE). NVSE is also an unsupervised learning method, but it is based on the Variational Autoencoder framework. Evaluations with human annotators show that NVSE can facilitate better search and recommendation of information gathered from noisy, automatic annotation of unstructured natural language corpora. Finally, I move from unstructured data and focus on structured knowledge graphs. I present novel approaches for learning embeddings of vertices and edges in a knowledge graph that obey logical constraints.Comment: phd thesis, Machine Learning, Natural Language Processing, Representation Learning, Knowledge Graphs, Entities, Word Embeddings, Entity Embedding
    corecore