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Advances in Spectral Learning with Applications to Text Analysis and
Brain Imaging

Abstract
Spectral learning algorithms are becoming increasingly popular in data-rich domains, driven in part by recent
advances in large scale randomized SVD, and in spectral estimation of Hidden Markov Models. Extensions of
these methods lead to statistical estimation algorithms which are not only fast, scalable, and useful on real data
sets, but are also provably correct.

Following this line of research, we make two contributions. First, we

propose a set of spectral algorithms for text analysis and natural

language processing. In particular, we propose fast and scalable

spectral algorithms for learning word embeddings -- low dimensional

real vectors (called Eigenwords) that capture the “meaning” of words from their context. Second, we show how
similar spectral methods can be applied to analyzing brain images.

State-of-the-art approaches to learning word embeddings are slow to

train or lack theoretical grounding; We propose three spectral

algorithms that overcome these limitations. All three algorithms

harness the multi-view nature of text data i.e. the left and right

context of each word, and share three characteristics:

1). They are fast to train and are scalable.

2). They have strong theoretical properties.

3). They can induce context-specific embeddings i.e. different embedding for “river bank” or “Bank of
America”.

\end{enumerate}

They also have lower sample complexity and hence higher statistical

power for rare words. We provide theory which establishes

relationships between these algorithms and optimality criteria for the

estimates they provide. We also perform thorough qualitative and

quantitative evaluation of Eigenwords and demonstrate their superior performance over state-of-the-art
approaches.

Next, we turn to the task of using spectral learning methods for brain imaging data.

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1257
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Methods like Sparse Principal Component Analysis (SPCA), Non-negative Matrix Factorization (NMF) and
Independent Component Analysis (ICA) have been used to obtain state-of-the-art accuracies in a variety of
problems in machine learning. However, their usage in brain imaging, though increasing, is limited by the fact
that they are used as out-of-the-box techniques and are seldom tailored to the domain specific constraints and
knowledge pertaining to medical imaging, which leads to difficulties in interpretation of results.

In order to address the above shortcomings, we propose

Eigenanatomy (EANAT), a general framework for sparse matrix factorization. Its goal is to statistically learn
the boundaries of

and connections between brain regions by weighing both the data and prior neuroanatomical knowledge.

Although EANAT incorporates some neuroanatomical prior knowledge in the form of connectedness and
smoothness constraints, it can still be difficult for clinicians to interpret the results in specific domains where
network-specific hypotheses exist. We thus extend EANAT and present a novel framework for prior-
constrained sparse decomposition of matrices derived from brain imaging data, called Prior Based
Eigenanatomy (p-Eigen). We formulate our solution in terms of a prior-constrained l1 penalized (sparse)
principal component analysis. Experimental evaluation confirms that p-Eigen extracts biologically-relevant,
patient-specific functional parcels and that it significantly aids classification of Mild Cognitive Impairment
when compared to state-of-the-art competing approaches.
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ABSTRACT

ADVANCES IN SPECTRAL LEARNING WITH APPLICATIONS TO TEXT

ANALYSIS AND BRAIN IMAGING.

Paramveer Singh Dhillon

Lyle H. Ungar

James C. Gee

Spectral learning algorithms are becoming increasingly popular in data-rich do-

mains, driven in part by recent advances in large scale randomized SVD, and in

spectral estimation of Hidden Markov Models. Extensions of these methods lead to

statistical estimation algorithms which are not only fast, scalable, and useful on real

data sets, but are also provably correct. Following this line of research, we make

two contributions. First, we propose a set of spectral algorithms for text analysis

and natural language processing. In particular, we propose fast and scalable spec-

tral algorithms for learning word embeddings – low dimensional real vectors (called

Eigenwords) that capture the “meaning” of words from their context. Second, we

show how similar spectral methods can be applied to analyzing brain images.

State-of-the-art approaches to learning word embeddings are slow to train or

lack theoretical grounding; We propose three spectral algorithms that overcome

these limitations. All three algorithms harness the multi-view nature of text data

i.e. the left and right context of each word, and share three characteristics:

1. They are fast to train and are scalable.

2. They have strong theoretical properties.

3. They can induce context-specific embeddings i.e. different embedding for

“river bank” or “Bank of America”.

They also have lower sample complexity and hence higher statistical power for rare

words. We provide theory which establishes relationships between these algorithms
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and optimality criteria for the estimates they provide. We also perform thorough

qualitative and quantitative evaluation of Eigenwords and demonstrate their supe-

rior performance over state-of-the-art approaches.

Next, we turn to the task of using spectral learning methods for brain imaging

data.

Methods like Sparse Principal Component Analysis (SPCA), Non-negative Ma-

trix Factorization (NMF) and Independent Component Analysis (ICA) have been

used to obtain state-of-the-art accuracies in a variety of problems in machine learn-

ing. However, their usage in brain imaging, though increasing, is limited by the fact

that they are used as out-of-the-box techniques and are seldom tailored to the do-

main specific constraints and knowledge pertaining to medical imaging, which leads

to difficulties in interpretation of results.

In order to address the above shortcomings, we propose Eigenanatomy (EANAT),

a general framework for sparse matrix factorization. Its goal is to statistically learn

the boundaries of and connections between brain regions by weighing both the data

and prior neuroanatomical knowledge.

Although EANAT incorporates some neuroanatomical prior knowledge in the

form of connectedness and smoothness constraints, it can still be difficult for clini-

cians to interpret the results in specific domains where network-specific hypotheses

exist. We thus extend EANAT and present a novel framework for prior-constrained

sparse decomposition of matrices derived from brain imaging data, called Prior

Based Eigenanatomy (p-Eigen). We formulate our solution in terms of a prior-

constrained `1 penalized (sparse) principal component analysis. Experimental evalu-

ation confirms that p-Eigen extracts biologically-relevant, patient-specific functional

parcels and that it significantly aids classification of Mild Cognitive Impairment

when compared to state-of-the-art competing approaches.
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Chapter 1

Introduction

Spectral learning methods employ matrix factorization techniques to factor a matrix

into low dimensional components typically weighted by its eigenvalues. Since the

eigenvalues represent the “spectrum” of the matrix, these methods based on eigen-

decomposition of the underlying matrix constitute spectral learning.

Spectral Learning algorithms are becoming increasingly popular for analyzing

data sets that are large either in terms of number of observations (such as text

analysis) or features (such as medical images), or both, driven in part by recent

advances in large scale randomized Singular Value Decomposition (SVD) (Halko

et al. 2011), and in spectral estimation of Hidden Markov Models (Hsu et al. 2009).

Extensions of these methods lead to statistical estimation algorithms which are not

only fast, scalable, and useful on real data sets, but are also provably correct.

This thesis advances the use of spectral algorithms by designing new algorithms

for two application areas. First, we propose new spectral algorithms for Text Anal-

ysis/Natural Language Processing. Particularly, we propose fast and scalable spec-

tral algorithms for learning word embeddings – low dimensional real vectors (called

eigenwords) that capture the “meaning” of words from their context. Second, we

show how similar spectral methods can be applied to analyzing brain images.
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1.1 Spectral Word Embeddings

In recent years there has been immense interest in learning embeddings for words

from large amounts of raw text. A word embedding is a mathematical object as-

sociated with each word. Ideally these embeddings should capture a rich variety

of information about that word, including topic, part of speech, and word features

such as animacy, sentiment, gender, or whether the numbers are years or small num-

bers. They are typically learned in a totally unsupervised manner by exploiting the

co-occurrence structure of words in unlabeled text.

The most obvious embedding of a word is a vector the size of vocabulary of

the corpora (∼ 100k) with only one entry (corresponding to the index of the word)

set to one, hence also known as “one-hot” embedding. One-hot embeddings, being

high dimensional suffer from the curse of dimensionality and are also inefficient for

storage.

So, it is imperative to learn embeddings over a smaller ‘k’ dimensional (∼ 50)

vocabulary to rid of the aforementioned problems. They provide an efficient and

condensed representation of words and are an easy way to improve the performance

of a supervised Natural Language Processing system by providing an additional set

of features to “plug” into the supervised classifier.

The NLP systems use labeled data to learn a model, and there is not a lot of

labeled text available for these tasks (For English there is still a decent amount of

labeled text but very little for other languages.). So, the word embeddings, having

been learned from large amounts of raw data provide a highly discriminative set of

features which enable the supervised learner to perform better.

Word embeddings have proven useful and have given state-of-the-art perfor-

mance on many natural language processing tasks e.g. syntactic parsing (Täckström

et al. 2012; Parikh et al. 2014), POS Tagging (Dhillon et al. 2012b; Huang et al.
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2013), dependency parsing (Bansal et al. 2014; Koo et al. 2008; Dhillon et al. 2012a),

sentiment analysis (Dhillon et al. 2012b), chunking (Turian et al. 2010; Dhillon et al.

2011), Named Entity Recognition (NER) (Turian et al. 2010; Dhillon et al. 2011),

word analogies (Mikolov et al. 2013a,b) and word similarity (Huang et al. 2012) to

name a few.

Word embeddings can be broadly classified into two types 1). Clustering based

discrete embeddings or 2). Real valued dense embeddings. Figure 1.1 shows the two

types of embeddings.

Figure 1.1: Clustering based vs Dense Embeddings

The state-of-the-art approaches (Collobert and Weston 2008; Mnih and Hinton

2007; Mikolov et al. 2013a,b) to learning word embeddings are slow to train and lack

theoretical grounding. In addition, they only provide context oblivious embeddings

i.e. same embedding for a given word (say) “bank” irrespective of the fact, if it is

“river bank” or “Bank of America”, which can be sub-optimal in some domains e.g.

Named Entity Recognition (NER) or Word Sense Disambiguation (WSD).
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We propose three algorithms for learning word embeddings which address these

issues. All the algorithms, 1) One Step CCA (OSCCA), 2) Two Step CCA (TSCCA)

and 3) Low Rank Multi-View Learning (LR-MVL) have a Canonical Correlation

Analysis (CCA) style eigen-decomposition at their core (which projects the high

dimensional words to k (∼ 50) dimensions (see Figure 1.2)), but at the same time

are significantly novel.

Figure 1.2: CCA Based dimensionality reduction.

They harness the multi-view nature of text data i.e. the left and right context

of each word and share three characteristics:

1. They are fast to train and are scalable.

2. They have strong theoretical properties.

3. They can induce context-specific embeddings i.e. different embedding for

“river bank” or “Bank of America”.

In addition to this, TSCCA and LR-MVL also have lower sample complexity and

hence higher statistical power for rare words. This thesis provides theory which

establishes relationships between these algorithms and optimality criteria for the

estimates they provide under the assumption that the data are generated by an

HMM (standard assumption used in NLP).
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Center Word One Hot OSCCA TSCCA
communal (1166) historical, moral,

visual, modern,
bureaucratic

eternal, outdoor,
civic, spiritual,
virtual

collective, cultural,
civic, racial, Victo-
rian

rabbi (1196) physician, nurse,
boy, waiter, bishop

priest, preacher,
lawmaker, dentist,
waiter

priest, bishop,
preacher, Jew,
pastor

cabbage (1196) shrimp, potatoes,
rice, asparagus,
garden

yogurt, peppers,
lettuce, peas,
broccoli

broccoli, squash,
mushrooms, let-
tuce, carrots

Cubs (1068) Beatles, Angels,
Communists, mu-
seum, Indians

Dodgers, Yankees,
Redskins, Giants,
Sox

Giants, Yankees,
Dodgers, Redskins,
Rangers

Table 1.1: (Rare Words) Nearest Neighbors of One Hot, OSCCA and TSCCA word
embeddings. Counts of words in corpora in brackets.

As a sample, Table 1.1 shows the set of nearest neighbors found by the eigenwords

(Since our word embeddings employ eigen-decomposition, we call them eigenwords)

and the original high dimensional (one-hot) representation and it clearly shows the

superiority of eigenwords.

This thesis also performs a thorough qualitative and quantitative evaluation of

eigenwords. First, we show that when plotted they capture subtle syntactic and

semantic aspects of the word with “similar” words being closer in this syntactic-

semantic space. Next, we show that these word embeddings when included as ad-

ditional features in supervised NLP systems, achieves state-of-the-art performance

on tasks including Named Entity Recognition (NER), chunking, sentiment analy-

sis, part of speech (POS) tagging, word similarity computation and syntactic and

semantic word analogy tasks.

1.2 Spectral Learning for Brain Image Analysis

Next, we turn to the task of using Spectral Learning methods to harness the power

of brain imaging data. This setting is complementary to the Text/ NLP setting
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as over here we have far fewer observations than features (i.e small n, large p), so

dimensionality reduction becomes all the more important.

Dimensionality reduction methods like Sparse Principal Component Analysis

(SPCA), Non-negative Matrix Factorization (NMF) and Independent Component

Analysis (ICA) have been used to obtain state-of-the-art accuracies in a variety

of problems in Machine Learning. However, their usage in brain imaging, though

increasing, is limited by the fact that they are used as out-of-the-box techniques

and are seldom tailored to the domain specific constraints/knowledge pertaining to

medical imaging. For instance, uninformed, generic matrix decomposition methods,

e.g. standard principal component analysis (PCA) or ICA, may be difficult to

interpret because the solutions will produce vectors that are everywhere non-zero,

i.e. involve the whole brain rather than its parts.

In order to address the above shortcoming, we propose Eigenanatomy (EANAT),

a general framework for sparse matrix factorization that is closely related to SPCA,

NMF, and ICA. The goal of EANAT is to statistically learn the boundaries of

and connections between the brain regions by weighing both data and prior neu-

roanatomical guidance. Recent work points to the fact that exploiting problem-

specific information can improve parts-based embeddings (Guan et al. 2011; Cai

et al. 2010; Hosoda et al. 2009). EANAT component images, on the other hand,

enable prior knowledge to enhance solution stability and are tied to a set of neu-

roanatomical coordinates that are connected, smooth and may also be defined by

non-negative weights.

Although EANAT incorporates some neuroanatomical prior knowledge in the

form of connectedness and smoothness constraints which aids clinical interpretabil-

ity, it might still be difficult for clinicians to interpret the results in a specific domain

where network-specific hypotheses exist. For example, someone studying fronto-

temporal dementia would expect some or most of the signal to lie in frontal cortex,

6



however if the voxels in frontal cortex don’t explain the variance in data, these

approaches won’t highlight them.

So, going one step further, we present a novel framework for prior-constrained

sparse decomposition of matrices derived from brain imaging data, called Prior

Based Eigenanatomy (p-Eigen). p-Eigen stands in stark contrast with both the

totally data-driven and totally prior driven approaches as it borrows strength from

both these paradigms and leads to statistically refined definitions of ROIs based on

information from data and hence provides a trade-off between the two approaches.

In particular, p-Eigen seeks to identify a data-driven matrix decomposition like

PCA/ICA, but at the same time it constrains the individual components by spatial

anatomical priors (probabilistic regions of interest (ROIs)). We formulate our novel

solution in terms of a prior-constrained `1 penalized (sparse) principal component

analysis (SPCA). p-Eigen is shown in Fig. 1.3.

We use p-Eigen to address the problem of generating subject-specific functional

connectivity networks. Using p-Eigen enables modeling of the inter-subject variabil-

ity in the functional parcel boundaries and allows us to construct subject-specific

functional networks with reduced sensitivity to ROI placement. We show that

while still maintaining correspondence across subjects, p-Eigen extracts biologically-

relevant and patient-specific functional parcels that facilitate hypothesis-driven net-

work analysis. We show that using connectivity graphs derived from p-Eigen refined

ROIs significantly aid classification of Mild Cognitive Impairment (MCI) as well as

the prediction of scores in a Delayed Recall memory task when compared to graph

metrics derived from state-of-the-art competing approaches. In a second set of ex-

periments, we also show that the using the p-Eigen refined ROIs in structural cortical

thickness images also aids classification of Mild Cognitive Impairment (MCI).
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Figure 1.3: Prior Based Eigenanatomy (p-Eigen). An initial data matrix is de-
composed into its eigenvectors, with each eigenvector being constrained by a corre-
sponding cortical prior.

1.3 Summary & Broader Contribution

The two domains of Text/Natural Language Proecessing and brain imaging posit

different challenges. Text applications have large n and large p, and brain imaging

applications have small n, large p, where n is a token for text applications and a

subject for brain imaging, and p is a word’s context in text and a brain voxel in

brain imaging. Broadly, this thesis shows that relatively simple linear models based

on eigen-decomposition can help us attain state-of-the-art accuracies on these two

domains and we do not require more complex non-linear models e.g. the ones based

on Deep Neural Nets.
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1.4 Organization of Thesis

This thesis is organized as follows. Chapters 2, 3 and 4 describe our three learn-

ing algorithms for eigenwords and show their empirical performance on multiple

text analysis tasks. Chapters 5 describes our Eigenanatomy (EANAT) framework

and uses the eigenvectors derived from it to classify control subjects vs Parkin-

son’s patients for a clinically relevant population. Chapter 6 describes the Prior

Based Eigenanatomy (p-Eigen) framework. Chapters 7 and Chapter 8 use it to

to construct refined parcellations and subject specific functional connectivity net-

works from BOLD fMRI images and structural T-1 images respectively. Chapter 9

concludes the thesis and also provides avenues for future research.
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Chapter 2

Eigenwords: CCA-Based Vector

Space Models of Text

In1 recent years there has been immense interest in learning embeddings for words

from large amounts of raw text. Word embeddings map each word in text to a ‘k’

dimensional (∼ 50) real valued vector. They are typically learned in a totally un-

supervised manner by exploiting the co-occurrence structure of words in unlabeled

text. Ideally these embeddings should capture a rich variety of information about

that word, including topic, part of speech, word features such as animacy, senti-

ment, gender, whether the numbers are years or small numbers, and the direction

of sentiment (happy vs. sad).

Their importance has been amplified by the fact that over the past decade there

has been increased interest in using unlabeled data to supplement the labeled data

in semi-supervised learning settings. This is mainly to overcome the inherent data

sparsity and get improved generalization accuracies in high dimensional domains

like NLP. Approaches like (Ando and Zhang 2005; Suzuki and Isozaki 2008) have

1This chapter is based on work in (Dhillon et al. 2011),(Dhillon et al. 2012b) and (Dhillon et al.
2014 (Under Review)
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been empirically very successful and have achieved excellent accuracies on a variety

of NLP tasks. However, it is often difficult to adapt these approaches to use in

conjunction with an existing supervised NLP system as these approaches enforce a

particular choice of model.

So, an increasingly popular alternative is to learn representational embeddings

for words from a large collection of unlabeled data (typically using a generative

model), and to use these embeddings to augment the feature set of a supervised

learner, thereby improving the performance of a state-of-the-art NLP system e.g. a

sentiment analyzer, parser, part of speech tagger etc.

Word embeddings have proven useful and have given state-of-the-art perfor-

mance on many natural language processing tasks e.g. syntactic parsing (Täckström

et al. 2012; Parikh et al. 2014), POS Tagging (Dhillon et al. 2012b; Huang et al.

2013), dependency parsing (Bansal et al. 2014; Koo et al. 2008; Dhillon et al. 2012a),

sentiment analysis (Dhillon et al. 2012b), chunking (Turian et al. 2010; Dhillon et al.

2011), Named Entity Recognition (NER) (Turian et al. 2010; Dhillon et al. 2011),

word analogies (Mikolov et al. 2013a,b) and word similarity (Huang et al. 2012) to

name a few.

These NLP systems use labeled data to learn a model, and there is limited

labeled text available for these tasks (For English there is still a reasonable amount

of labeled text but much less for other languages.). So, the word embeddings, having

been learned from large amounts of raw data provide a highly discriminative set of

features which enable the supervised learner to perform better.

As mentioned earlier, embedding methods produce features in low dimensional

spaces or over a small vocabulary size, unlike the traditional approach of working

in the original high dimensional vocabulary space with only one dimension “on” at

a given time.

Broadly speaking, the embedding methods fall into two categories (as also shown
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in Figure 2.1):

Figure 2.1: Clustering based vs Dense Embeddings

1. Clustering based word embeddings: Clustering methods, often hierarchical, are

used to group distributionally similar words based on their contexts. The two

dominant approaches are Brown Clustering (Brown et al. 1992a) and (Pereira

et al. 1993a). As recently shown, HMMs can also be used to induce a multi-

nomial distribution over possible clusters (Huang and Yates 2009).

2. Dense embeddings: These embeddings are dense, low dimensional and real-

valued. Each dimension of these embeddings captures latent information about

a combination of syntactic and semantic word properties. They can either be

induced using neural networks like C&W embeddings (Collobert and Weston

2008), Hierarchical log-linear (HLBL) embeddings (Mnih and Hinton 2007),

word2vec embeddings (Mikolov et al. 2013a,b) or by eigen-decomposition of the

word co-occurrence matrix, e.g. Latent Semantic Analysis/Latent Semantic
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Indexing (LSA/LSI) (Dumais et al. 1988).

The most classic and successful algorithm for learning word embeddings is Latent

Semantic Analysis (LSA) (Landauer et al. 2008) which works by performing SVD

on word by document matrix.

Unfortunately, the state-of-the-art embedding methods suffer from a number of

shortcomings: 1). They are slow to train (especially, the traditional Deep Learning

based approaches (Collobert and Weston 2008; Mnih and Hinton 2007). Though,

recently, (Mikolov et al. 2013a,b) have proposed neural network based embeddings

which avoid using the hidden layers which are typical in Deep Learning. This,

coupled with good engineering allows their embeddings to be trained in minutes. 2).

They are sensitive to the scaling of the embeddings (especially `2 based approaches

like LSA/PCA). 3). They learn a single embedding for a given word type; i.e. all

the occurrences of the word “bank” will have the same embedding, irrespective of

whether the context of the word suggests it means “a financial institution” or “a

river bank”. Recently, (Huang et al. 2012) have proposed context specific word

embeddings, but their Deep Learning based approach is slow and can not scale to

large vocabularies.

In this chapter we provide spectral algorithms (based on eigen-decomposition)

for learning word embeddings, as they have been shown to be fast and scalable for

learning from large amounts of unlabeled data (Turney and Pantel 2010), have a

strong theoretical grounding, and are guaranteed to converge to globally optimal

solutions (Hsu et al. 2009). Particularly, we are interested in Canonical Correlation

Analysis (CCA) (Hotelling 1935) based methods as:

• First, unlike PCA or LSA based methods they are scale invariant.

• Second, unlike LSA they can capture multi-view information. In text applica-

tions the left and right contexts of the words provide a natural split into two
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views which is totally ignored by LSA as it throws the entire context into a

bag of words while constructing the term-document matrix.

We propose a variety of dense embeddings; they learn real-valued word em-

beddings by performing Canonical Correlation Analysis (CCA) (Hotelling 1935)

between the past and future views of the data (Imagine the present view as the

current token, then the previous and the next tokens are the past and future views)

. All our embeddings have a number of common characteristics and address the

shortcomings of the current state-of-the-art embeddings. In particular, they are:

1. Fast, scalable and scale invariant.

2. Provide better sample complexity for rare words.

3. Can induce context-specific embeddings i.e. different embeddings for “bank”

based on whether it means “a financial institution” or “a river bank”.

4. Strong theoretical foundations.

The remainder of the chapter is organized as follows. In the next section we give

a brief overview of CCA, which forms the core of our method. The following section

describes our proposed algorithms.

2.1 Brief Review: Canonical Correlation Analysis (CCA)

CCA (Hotelling 1935) is the analog to Principal Component Analysis (PCA) for

pairs of matrices. PCA computes the directions of maximum covariance between

elements in a single matrix, whereas CCA computes the directions of maximal cor-

relation between a pair of matrices. Like PCA, CCA can be cast as an eigenvalue

problem on a covariance matrix, but can also be interpreted as deriving from a
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generative mixture model (Bach and Jordan 2005). See (Hardoon et al. 2004) for a

review of CCA with applications to machine learning.

More specifically, given a set of n paired observation vectors {(l1, r1), ..., (ln, rn)}–

in our case the two matrices are the left (L) and right (R) context matrices of a

word–we would like to simultaneously find the directions Φl and Φr that maximize

the correlation of the projections of L onto Φl with the projections of R onto Φr.

This is expressed as

max
Φl,Φr

E[〈L,Φl〉〈R,Φr〉]√
E[〈L,Φl〉2]E[〈R,Φr〉2]

(2.1)

where E denotes the empirical expectation. We use the notation Clr (Cll) to de-

note the cross (auto) covariance matrices between L and R (i.e. L’R and L’L

respectively.).

The left and right canonical correlates are the solutions (eigenvectors) 〈Φl,Φr〉

of the following equations:

Cll
−1ClrCrr

−1CrlΦl = λΦl

Crr
−1CrlCll

−1ClrΦr = λΦr (2.2)

We keep the k left and right singular vectors (Φl and Φr) corresponding to the

k largest singular values. These computations can be performed easily using eig()

function in MATLAB or R.

The basic intuition behind CCA is shown in Figure 2.2.

There is an equivalent formulation of CCA which allows us to compute the

solution via SVD of Cll
−1/2ClrCrr

−1/2. (See the appendix for proof).

Cll
−1/2ClrCrr

−1/2 ≡ ΦlΛΦr (2.3)

where 〈Φl,Φr〉 are the left and right singular vectors and Λ is the diagonal matrix
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Figure 2.2: CCA Based dimensionality reduction.

of singular values. Finally, the CCA projections are gotten by “de-whitening” 2 as

Φlproj = C
−1/2
ll Φl and Φrproj = C

−1/2
rr Φr.

For most of the embeddings proposed in this chapter, the SVD formulation is

preferred since it avoids fewer multiplications of large sparse matrices which is an

expensive operation.

2.1.1 Suitability of CCA for Learning Word Embeddings

Recently, (Foster et al. 2008) showed that CCA can exploit multi-view nature of the

data and provide sufficient conditions for CCA to achieve dimensionality reduction

without losing predictive power. They assume that the data was generated by the

model shown in Figure 2.3. The two assumptions that they make are that 1) Each

of the two views are independent conditional on a k-dimensional hidden state (H)

and that 2) The two views provide a redundant estimate of the hidden state (H).

These two assumptions are generalization of the assumptions made by co-training (Blum

and Mitchell 1998) (Figure 2.4), as co-training conditions on the observed labels (Y)

and not on a more flexible representation i.e. a hidden state (H).

2One way to think about CCA is as “whitening” the covariance matrix. Whitening converts
covariances into correlations.
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Figure 2.3: Multi-View Assumption. Grey color indicates that state is hidden.

Figure 2.4: Co-training Assumption.

In text and Natural Language Processing (NLP) applications, its typical to as-

sume a Hidden Markov Model (HMM) as the data generating model (Jurafsky and

Martin 2000). Its easy to see that a Hidden Markov Model (HMM) satisfies the

multi-view assumption. Hence, the left and right context of a given word provides

two natural views and one could use CCA to estimate the hidden state (H).

Furthermore, as mentioned earlier, CCA is scale invariant and provides a nat-

ural scaling (inverse or square root of the inverse of the auto-covariance matrix,

depending on whether we use Eigen-decomposition or SVD formation) for the ob-

servations. If we further use the SVD formulation, then it also allows us to harness

the recent advances in large scale randomized SVD (Halko et al. 2011), which allows

the embeddings learning algorithms to be fast and scalable.

The invariance of CCA to linear data transformations allows proofs that keeping

the dominant singular vectors (those with largest singular values) will faithfully

capture any state information (Kakade and Foster 2007). Also, CCA extends more
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naturally than LSA to sequences of words.3 Remember that LSA uses “bags of

words”, which are good for capturing topic information, but fail for problems like

part of speech (POS) tagging which need sequence information.

Finally, as we show in the next chapter the CCA formulation can be naturally

extended to a two step procedure that, while equivalent in the limit of infinite data,

gives higher accuracies for finite corpora and provides better sample complexity.

So, in summary we estimate a hidden state associated with words by computing

the dominant canonical correlations between target words and the words in their

immediate context. The main computation, finding the singular value decomposition

of a scaled version of the co-occurrence matrix of counts of words with their contexts,

can be done highly efficiently. Use of CCA also allows us to prove theorems about

the optimality of our reconstruction of the state.

In the next section we show how to efficiently compute a vector that characterizes

each word type by using the left singular values of the above CCA to map from the

word space (size v) to the state space (size k). We call this mapping the eigenword

dictionary for words, as it associates with every word a vector that captures that

word’s syntactic and semantic attributes. As will be made clear below, the eigenword

dictionary is arbitrary up to a rotation, but captures the information needed for any

linear model to predict properties of the words such as part of speech or word sense.

2.2 Problem Formulation

Our goal is to estimate a vector for each word type that captures the distributional

properties of that word in the form of a low dimensional representation of the cor-

relation between that word and the words in its immediate context.

More formally, assume a document (in practice a concatenation of a large number

3It is important to note that it is possible to come up with PCA variants which take sequence
information into account.
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of documents) consisting of n tokens {w1,w2, ...,wn}, each drawn from a vocabulary

of v words. Define the left and right contexts of each token wi as the h words to the

left or right of that token. The context sits in a very high dimensional space, since

for a vocabulary of size v, each of the 2h words in the combined context requires

an indicator function of dimension v. The tokens themselves sit in a v dimensional

space of words which we want to project down to a k dimensional state space. We

call the mapping from word types to their latent vectors the eigenword dictionary.

For a set of documents containing n tokens, define Ln×vh and Rn×vh as the

matrices specifying the left and right contexts of the tokens, and Wn×v as the

matrix of the tokens themselves. In W, we represent the presence of the jth word

type in the ith position in a document by setting matrix element wij = 1. L and R

are similar, but have columns for each word in each position in the context. (For

example, in the sentence “I ate green apples yesterday.”, for a context of size h = 2,

the left context of “green” would be “I ate” and the right context would be “apples

yesterday” and the third row of W would have a “1” in the column corresponding

to the word “green”.) Figure 2.5 shows the W, L and R matrices for a sample

sentence.

Define the complete context matrix C as the concatenation [L R]. Thus, for a

trigram representation with vocabulary size v words, history size h = 1, C has 2v

columns – one for each possible word to the left of the target word and one for each

possible word to the right of the target word.

Awc = W>C then contains the counts of how often each word w occurs in

each context c, the matrix Acc = C>C gives the covariance of the contexts, and

Aww = W>W, the word covariance matrix, is a diagonal matrix with the counts

of each word on the diagonal.4

We want to find a vector representation of each of the v word types such that

4We will pretend that the means are all in fact zero and refer to these Acc etc. as covariance
matrices, when in fact they are actually second moment matrices.
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Figure 2.5: Various matrices for a sample sentence.

words that are distributionally similar (ones that have similar contexts) have similar

state vectors. We will do this using Canonical Correlation Analysis (CCA) (Hotelling

1935; Hardoon and Shawe-Taylor 2008), by taking the CCA between the combined

left and right contexts C = [L R] and their associated tokens, W.

2.3 One Step CCA (OSCCA)

Using the above, we can define a “One step CCA” (OSCCA), procedure to estimate

the eigenword dictionary as follows:

CCA(W,C)→ (ΦW,ΦC) (2.4)

where the v × k matrix ΦW contains the eigenword dictionary that characterizes

each of the v words in the vocabulary using a k dimensional vector. More generally,

the “state” vectors S for the n tokens can be estimated either from the context

as CΦC or (trivially) from the tokens themselves as WΦW. Its important to note
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that both these estimation procedures give a redundant estimate of the same hidden

“state.”

The left canonical correlates found by OSCCA give an optimal approximation

to the state of each word, where “optimal” means that it gives the linear model of

a given size, k that is best able to estimate labels that depend linearly on state,

subject to only using the word and not its context. The right canonical correlates

similarly give optimal state estimates given the context.

OSCCA, as defined in Equations 2.4 thus gives an efficient way to calculate the

eigenword dictionary ΦW for a set of v words given the context and associated word

matrices from a corpus.

2.3.1 Theoretical properties

We now discuss how well the hidden state can be estimated from the target word.

(A similar result can be derived for estimating hidden state from the context.) The

state estimated is arbitrary up to any linear transformation, so all our comments

address our ability to use the state to estimate some label which depends linearly

on the state.

Keeping the dominant singular vectors in ΦW and ΦC provides two different

bases for estimated state. Each is optimal in its own way, as explained below.

The following Theorem 1 shows that the left canonical correlates give an optimal

approximation to the state of each word (in the sense of being able to estimate an

emission or label Y for each state), subject to only using the word and not its

context.

Theorem 1. Let (Wt,Ct, Yt) for t = 1 . . . n be n tuples of random variables drawn

i.i.d. from some distribution (pdf or pmf) D(wt, ct, yt). We call the pair (Y1 . . . Yn, β)

a linear context problem if
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1. Yt is a linear function of the context (i.e. Yt = α>Ct)

2. β>Wt is the best linear estimator of Yt given Wt, namely β minimizes E
∑

t(Yt−

β>Wt)
2 and

3. Var(Yt) ≤ 1.

Define Φl
i to be the i’th left singular vector for the SVD of Eq. 2.3 with Crr =

E(C>C), Clr = E(W>C), and Cll = E(W>W) where (W,C) are drawn from the

marginal distribution D(w, c). Then, for all ε > 0 there exists a k such that for any

linear context problem (Y1 . . . Yn, β), there exists a γ ∈ Rk such that Ŷt =
∑k

i=1 γiφit

is a good approximation to Yt in the sense that E(Ŷt − β>W)2 ≤ ε.

Please see the Appendix for the proof.

To understand the above theorem, note that we would have liked to have a

linear regression predicting some label Y from the original data W. However, the

original data is very high dimensional. Instead, we can first use CCA to map high

dimensional vectors W to lower dimensional vectors ΦW, from which Y can be

predicted. For example with a few labeled examples of the form (W, Y ), we can

recover the γi parameters using linear regression. The ΦW subspace is guaranteed

to hold a good approximation. A special case of interest occurs when estimating

a label Z (= α>C) plus zero mean noise. In this case, one can pick Y = E(Z)

and proceed as above. This effectively extends the theorem to the case where the

mapping from C to Y is random, not deterministic.

Note that if we had used covariance rather than correlation as done by LSA/PCA

then in the worst case, the key singular vectors for predicting state could be those

with arbitrarily small singular values. This corresponds to the fact that for prin-

ciple component regression (PCR), there is no guarantee that the largest principle

components will prove predictive of an associated label.
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One can think of Theorem 1 as implicitly estimating a k-dimensional hidden

state from the observed W. This hidden state can be used to estimate Y . Note

that for Theorem 1, the state estimate is “trivial” in the sense that because it comes

from the words, not the context, every occurrence of each word must give the same

state estimate. This is attractive in that it associates a latent vector with every

word type, but limiting in that it does not allow for any word ambiguity. The right

canonical vectors allow one to estimate state from the context of a word, giving

different state estimates for the same word in different contexts, as is needed for

word sense disambiguation. We relegate that discussion to the next chapter, when

we discuss induction of context-specific word embeddings. For now, we focus on the

simpler use of left canonical covariates to map each word type to a k dimensional

vector.

2.4 Discussion

We have argued that for many problems, CCA can give better feature vectors for

words than PCA. CCA, in our application, finds the components of maximum corre-

lation between the context words, taking into account their location in the context,

with the word of interest, unlike PCA on n-grams, which treats all the words in the

n-gram equivalently.

PCA and CCA share deep similarities, not just in both being spectral methods.

If the word co-occurrence matrix for PCA is normalized by scaling each word by

dividing by the square of its overall frequency, then in the special case of bigrams,

PCA and CCA become identical. In this special case, the context and the target

word covariances C′C and W′W become (after normalization) the identity matrix.

Since CCA scales by the inverse of these covariance matrices, if they are identity

matrices, PCA and CCA will have identical singular vectors.
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In the more common case of a larger context, PCA will devote more degrees of

freedom to finding the structure within the context, while CCA will focus on finding

the correlation between context and target word. If we could afford to compute and

use larger state spaces, this would not be too serious, but because we are working

with large corpora and large vocabularies, even a five-fold reduction in the number

of components that is kept matters.

More broadly, we have argued that a single vector for each word can capture a

wide range of attributes of that word including, part of speech, animacy, sex, edibil-

ity, etc. One could instead have clustered words based on distributional similarity

using, e.g., (Pereira et al. 1993b) or (Brown et al. 1992b), but one would need some

complex multi-faceted hierarchical clustering scheme to come close to capturing the

different dimensions represented in the attribute vectors. For example, should “he”

and “she” be in the same or different clusters? The words are very similar on many

dimensions, but opposed on at least one. Using vector models also has advantages

over categories in allowing word meaning to sit on a continuum, rather than being

binned into discrete categories. There is substantial evidence from human studies

that word meanings are often interpreted on a graded scale (Erk and McCarthy

2009), rather than categorically.

Words typically follow a Zipfian distribution, i.e. most words are rare, so getting

better estimates of their state from just a few samples can help us get predictive

performance when the eigenwords are used as features in a supervised learning task.

So, in the next chapter, we propose two eigenword learning algorithms which have

better sample complexity for rare words.
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Chapter 3

Efficient computation of

eigenwords with better sample

complexity

OSCCA1 is optimal only in the limit of infinite data. In practice, data is, of course,

always limited. In languages, lack of data comes about in two ways. Some languages

are resource poor; one just does not have that many tokens of them (especially lan-

guages that lack a significant written literature). Even for most modern languages,

many of the individual words in them are quite rare. Due to the Zipfian distribu-

tion of words, many words do not show up very often. A typical year’s worth of

Wall Street Journal text only has “lasagna” or “backpack” a handful of times and

“ziti” at most once or twice. To overcome these issues we propose a two-step pro-

cedure which gives rise to two algorithms, Two Step CCA (TSCCA) and Low-Rank

Multi-View Learning (LR-MVL) that have better sample complexity for rare words.

1This chapter is based on work in (Dhillon et al. 2011),(Dhillon et al. 2012b) and (Dhillon et al.
2014 (Under Review).
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3.1 Benefits of CCA for rare words

As mentioned earlier, the standard way of coding a word’s representation is using a

“one-hot” embedding i.e. a sparse vector which is 1 (or “on”) at only one position

and zero everywhere else. For instance, if we are considering a context window of 1

on either side of a word and a vocabulary of 15,000 words then the context matrix

will be of size 15001× 30002. The rows represent 15000 words and one generic “out

of vocabulary” word, the columns represent 15001 words to the left and to the right

of that word.

These simple embeddings are not ideal for multiple reasons. First, they are

computationally expensive and tedious to store and operate on; one has to ensure

that one only performs sparsity preserving operations as it might become infeasible

to store the entire dense matrix in the memory. Second, these representations suffer

from the curse of dimensionality, which is a well known phenomenon in Machine

Learning which states that in high dimensions all the vectors look similar. Though,

these high-dimensional vectors might still capture meaningful information for the

more frequent words they perform poorly for rare words.

The OSCCA embeddings proposed in the last chapter, address both these issues.

They learn low dimensional (typically 50-100) vectors for each word which makes it

feasible to store the dense matrix efficiently in memory and to perform algebraic op-

erations on it. Second, we get rid of the curse of dimensionality and can actually find

meaningful neighbors of words, rather than all the words looking like their neigh-

bors. This also implies that the vectors capture meaningful syntactic and semantic

information about that word and hence can be used as out-of-the-box features in

supervised learning tasks. The OSCCA embeddings or any dense embedding, for

that matter, can also be seen as smoothing the aggregate context information of that

word and in that process capturing relevant (syntactic and semantic) information
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about that word.

One potential shortcoming of OSCCA embeddings, as highlighted above, is that

the vectors it learns for rare words can be poor owing to the paucity of data. The

TSCCA and LR-MVL embeddings that we describe in the next section learn better

embeddings for rarer words.

3.1.1 Illustration

We use an American newswire corpus (Reuters) containing ∼ 290 million tokens

of text to illustrate our points; in particular that the “one-hot” representations

suffer due to curse of dimensionality and that OSCCA and TSCCA smooth the

representations giving meaningful word vectors. In particular we use vectors learned

by “one-hot”, OSCCA and TSCCA and plot the nearest neighbors for some of the

frequent and rare words. We learned 100 dimensional vectors for OSCCA and

TSCCA, using a context size of 2 words to the left and right and vocabulary of

15,000 words.

The results for randomly selected frequent and rare words are shown in Tables 3.1

and 3.2. As can be seen, for frequent words, all three approaches give reasonable

neighbors which capture both the syntax and the semantics. For the rarer words

TSCCA neighbors capture the most relevant information for that word. This can

be attributed to its borrowing strength from more frequent distributionally similar

words. Even OSCCA performs decently for the rare words, giving mostly relevant

neighbors. However, the “one-hot” embeddings perform poorly and mostly return

gibberish, even though the words we chose for demonstration occurred ∼ 1K times

in the corpora and thus were not extremely rare.
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Center Word One Hot OSCCA TSCCA
Republican (169363) Democratic, GOP,

conservative, lib-
eral, party

Democratic, GOP,
Conservative, con-
servative, centrist

Democratic, GOP,
incumbent, Senate,
centrist

California (96166) Florida, Virginia,
Maryland, Texas,
Michigan

Virginia, Mary-
land, Texas,
Louisiana, Florida

Virginia, Mary-
land, Oregon,
Texas, Connecticut

security (95138) military, intel-
ligence, safety,
government, de-
fense

intelligence, coun-
terterrorism, mili-
tary, enforcement,
humanitarian

safety, operational,
intelligence, health,
technical

news (147332) media, press, tele-
vision, business,
newspaper

media, televi-
sion, press, radio,
newspaper

television, broad-
cast, TV, radio,
telephone

Table 3.1: (Frequent Words) Nearest Neighbors of One Hot, OSCCA and TSCCA
word embeddings. Counts of words in corpora in brackets.

Center Word One Hot OSCCA TSCCA
communal (1166) historical, moral,

visual, modern,
bureaucratic

eternal, outdoor,
civic, spiritual,
virtual

collective, cultural,
civic, racial, Victo-
rian

rabbi (1196) physician, nurse,
boy, waiter, bishop

priest, preacher,
lawmaker, dentist,
waiter

priest, bishop,
preacher, Jew,
pastor

cabbage (1196) shrimp, potatoes,
rice, asparagus,
garden

yogurt, peppers,
lettuce, peas,
broccoli

broccoli, squash,
mushrooms, let-
tuce, carrots

Cubs (1068) Beatles, Angels,
Communists, mu-
seum, Indians

Dodgers, Yankees,
Redskins, Giants,
Sox

Giants, Yankees,
Dodgers, Redskins,
Rangers

Table 3.2: (Rare Words) Nearest Neighbors of One Hot, OSCCA and TSCCA word
embeddings. Counts of words in corpora in brackets.
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Algorithm 1 Two step CCA

1: Input: L,W,R
2: CCA(L,R)→ (ΦL,ΦR)
3: S = [LΦL RΦR]
4: CCA(S,W)→ (ΦS,ΦW)
5: Output: ΦW, the eigenword dictionary

3.2 Two Step CCA (TSCCA) for estimating Eigenword

dictionary.

We now introduce our two step procedure TSCCA of computing an eigenword dictio-

nary and show theoretically that it gives better estimates than the OSCCA method

described in the last section.

In the two-step method, instead of taking the CCA between the combined con-

text [L R] and the words W, we first take the CCA between the left and right

contexts and use the result of that CCA to estimate the state S of all the tokens in

the corpus from their contexts. Note that we get partially redundant state estimates

from the left context and from the right context; these are concatenated to make

combined state estimate. This will contain some redundant information, but will

not lose any of the differences in information from the left and right sides. We then

take the CCA between S and the words W to get our final eigenword dictionary.

This is summarized in Algorithm 1. The first step, the CCA between L and R, must

produce at least as many canonical components as the second step, which produces

the final output.

The two step method requires fewer tokens of data to get the same accuracy in

estimating the eigenword dictionary because its final step estimates fewer parameters

O(vk) than the OSCCA does O(v2).

Before stating the theorem, we first explain this intuitively. Predicting each

word as a function of all other word combinations that can occur in the context is
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far sparser than predicting low dimensional state from context, and then predicting

word from state. Thus, for relatively infrequent words, OSCCA should have signifi-

cantly lower accuracy than the two step version. Phrased differently, mapping from

context to state and then from state to word (TSCCA) gives a more parsimonious

model than mapping directly from context to word (OSCCA).

The relative ability of OSCCA to estimate hidden state compared to that of

TSCCA can be summarized as follows:

Theorem 2. Given a matrix of words, W and their associated left and right con-

texts, L and R with vocabulary size v, context size h, and corpus of n tokens. The

ratio of the dimension of the hidden state that needs to be estimated by TSCCA

in order to recover with high probability the information in the true state to the

corresponding dimension needed for OSCCA is h+k
hv .

Please see the appendix for a proof of the above theorem.

Since the corpora we care about usually have vh � h+ k, the TSCCA proce-

dure will in expectation correctly estimate hidden state with a much smaller number

of components k than the one step procedure. Or, equivalently, for an estimated

hidden state of given size k, TSCCA will correctly estimate more of the hidden state

components.

As mentioned earlier, words have a Zipfian distribution so most words are rare.

For such rare words, if one computes a CCA between them and their contexts, one

will have very few observations, and hence will get a low quality estimate of their

eigenword vector. If, on the other hand, one first estimates a state vector for the

rare words, and then does a CCA between this state vector and the context, the rare

words can be thought of as borrowing strength from more common distributionally

similar words. For example, “umbrage” (56,020) vs. “annoyance” (777,061) or

“unmeritorious” (9,947) vs. “undeserving” (85,325). The numbers in parentheses
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are the number of occurrences of these words in the Google n-gram collection used

in some of our experiments.

3.3 Low Rank Multi-View Learning (LR-MVL)

The context around a word, consisting of the h words to the right and left of it,

sits in a high dimensional space, since for a vocabulary of size v, each of the h

words in the context requires an indicator function of dimension v. So, we propose

an algorithm Low Rank Multi-View Learning (LR-MVL), where we work in the k

dimensional space to begin with.

The key move in LR-MVL is to project the hv-dimensional L and R matrices

down to a k dimensional state space before performing the first CCA. This is where

it differs from TSCCA. Thus, all eigenvector computations are done in a space that

is v/k times smaller than the original space. Since a typical vocabulary contains at

least 100, 000 words, and we use state spaces of order k ≈ 100 dimensions, this gives

a 1,000-fold reduction in the size of calculations that are needed.

LR-MVL iteratively updates the real-valued state of a token Zt, till convergence.

Since, the state is always real-valued, this also allows us to replace the projected

left and right contexts with exponential smooths (weighted average of the previous

(or next) token’s state i.e. Zt−1 (or Zt+1) and previous (or next) token’s smoothed

state i.e. St−1 (or St+1).), of them at a few different time scales. One could use

a mixture of both very short and very long contexts which capture short and long

range dependencies as required by NLP problems as NER, Chunking, WSD etc.

Since exponential smooths are linear, we preserve the linearity of our method.

We now describe the LR-MVL algorithms.
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3.3.0.1 The LR-MVL Algorithms

Based on our theory (described in next subsection), various algorithms are possi-

ble for LR-MVL. We provide two algorithms, Algorithms 2, 3 (without and with

exponential smooths).

Algorithm 2 LR-MVL (I) Algorithm - Learning from Large amounts of Unlabeled
Data (no exponential smooths).

1: Input: Token sequence Wn×v, state space size k.
2: Initialize the eigenfeature dictionary Âv×k to random values N (0, 1).
3: repeat
4: Project the left and right context matrices Ln×vh and Rn×vh down to ‘k’ dimensions

and compute CCA between them. [ΦL,ΦR]=CCA(LÂh, RÂh). //Ah is the stacked
version of Â matrix as many times as the context length ‘h’.

5: Normalize Φ
(k)
L and Φ

(k)
R . //Divide each row by the maximum absolute value in that

row (Scales between -1 and +1).
6: Compute a second CCA between the estimated state and the word itself

[ΦW ,ΦC ]=CCA(W, [LÂhΦ
(k)
L , RÂhΦ

(k)
R ]).

7: Â = Φ
(k)
W

8: Compute the change in Â from the previous iteration
9: until |∆Â| < ε

10: Output: ΦL, ΦR, Â .

A few iterations (∼ 10) of the above algorithms are sufficient to converge to the

solution. (Since the optimizations are convex, there is a single solution, so there is

no issue of local minima.) If the assumptions (1, 1A, 2 and 3) (in appendix) are

satisfied, our methods converge equally rapidly to the true canonical variates.

3.3.0.2 Theoretical Properties of LR-MVL

We now present the theory behind the LR-MVL algorithms; particularly we show

that the reduced rank matrix A allows a significant data reduction while preserving

the information in our data and the estimated state does the best possible job of

capturing any label information that can be inferred by a linear model.

The key difference from TSCCA is that we can initialize the state of each word

randomly and work in a low (k) dimensional space from the beginning, iteratively
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Algorithm 3 LR-MVL (II) Algorithm - Learning from Large amounts of Unlabeled
Data (with exponential smooths).

1: Input: Token sequence Wn×v, state space size k, smoothing rates αj

2: Initialize the eigenfeature dictionary Â to random values N (0, 1).
3: repeat
4: Set the state Zt (1 < t ≤ n) of each token wt to the eigenword vector of the corre-

sponding word.
Zt = (Âw : w = wt)

5: Smooth the state estimates before and after each token to get a pair of views for each
smoothing rate αj .

S
(l,j)
t = (1− αj)S

(l,j)
t−1 + αjZt−1 // left view L

S
(r,j)
t = (1− αj)S

(r,j)
t+1 + αjZt+1 // right view R.

where the tth rows of L and R are, respectively, concatenations of the smooths S
(l,j)
t

and S
(r,j)
t for each of the α(j)s.

6: Find the left and right canonical correlates, which are the eigenvectors Φl and Φr of
(L′L)−1L′R(R′R)−1R′LΦl = λΦl.
(R′R)−1R′L(L′L)−1L′RΦr = λΦr.

7: Project the left and right views on to the space spanned by the top k left and right
CCAs respectively

Xl = LΦ
(k)
l and Xr = RΦ(k/2)

r

where Φ
(k)
l , Φ(k)

r are matrices composed of the singular vectors of Φl, Φr with the k
largest magnitude singular values. Estimate the state for each word wt as the union
of the left and right estimates: Z = [Xl, Xr]

8: Compute a second CCA between the estimated state and the word itself
[ΦW ,ΦZ ]=CCA(W, Z).

9: Âw = ΦW .
10: Normalize Âw. //Divide each row by the maximum absolute value in that row (Scales

between -1 and +1).
11: Compute the change in A from the previous iteration
12: until |∆Â| < ε

13: Output: Φk
l , Φk

r , Â .
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refining the state until convergence and still we can recover the eigenword dictionary

(A).

As earlier, let L be an n×hv matrix giving the words in the left context of each

of the n tokens, where the context is of length h, R be the corresponding n × hv

matrix for the right context, and W be an n × v matrix of indicator functions for

the words themselves.

Lemma 1. Define A by the following limit of the right singular vectors:

CCAk(W, [L,R])left ≈ A.

Under assumptions 2, 3 and 1A, (in appendix) such that if

CCAk(L,R) ≡ [ΦL,ΦR] then

CCAk(W, [LΦL,RΦR])left ≈ A.

Please see the appendix for the proof.

Lemma 3 shows that instead of finding the CCA between the full context and

the words, we can take the CCA between the Left and Right contexts, estimate

a k dimensional state from them, and take the CCA of that state with the words

and get the same result. Lemma 3 is similar to Theorem 2, except that it does not

provide ratios of the estimated state sizes.

Let Ãh denote a matrix formed by stacking h copies of A on top of each other.

Right multiplying L or R by Ãh projects each of the words in that context into the

k-dimensional reduced rank space.

The following theorem addresses the core of the LR-MVL algorithm, showing

that there is an A which gives the desired dimensionality reduction. Specifically, it

shows that the previous lemma also holds in the reduced rank space.
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Theorem 3. Under assumptions 1, 1A and 2 (in appendix) there exists a unique

matrix A such that if

CCAk(LÃh,RÃh) ≡ [Φ̃L, Φ̃R]

then

CCAk(W, [LÃhΦ̃L,RÃhΦ̃R])left ≈ A

where Ãh is the stacked form of A.

See the appendix for the Proof 2.

Because of the Zipfian distribution of words, many words are rare or even unique.

So, just as in the case of TSCCA, CCA between the rare words and context will

not be informative, whereas finding the CCA between the projections of left and

right contexts gives a good state vector estimate even for unique words. One can

then fruitfully find the CCA between the contexts and the estimated state vector

for their associated words.

3.4 Generating Context Specific Embeddings

Once we have estimated the CCA model using any of our algorithms (i.e. OSCCA,

TSCCA, LR-MVL), it can be used to generate context specific embeddings for the

tokens from training, development and test sets (as described in Algorithm 4). These

embeddings could be further supplemented with other baseline features and used in

a supervised learner to predict the label of the token.

2Our matrix A corresponds to the matrix Û used by (Hsu et al. 2009; Siddiqi et al. 2010). They
showed that U is sufficient to compute the probability of a sequence of words generated by an
HMM; although we do not show it here, our A provides a more statistically efficient estimate of U
than their Û , and hence can also be used to estimate the sequence probabilities.
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Algorithm 4 Inducing Context Specific Embeddings for Train/Dev/Test Data

1: Input: Model (Φk
l , Φk

r , A) output from above algorithm and Token sequences Wtrain,

(Wdev, Wtest)

2: Project the left and right views L and R onto the space spanned by the top k left and

right CCAs respectively. If algorithm is Algorithm 3, then, smooth L and R first.

Xl = LΦk
l and Xr = RΦk

r

and the words onto the eigenfeature dictionary Xw = W trainA

3: Form the final embedding matrix Xtrain:embed by concatenating these three estimates

of state

Xtrain:embed = [Xl ,Xw ,Xr]

4: Output: The embedding matrices Xtrain:embed, (Xdev:embed, Xtest:embed) with

context-specific representations for the tokens.

Note that we can get context “oblivious” embeddings i.e. one embedding per

word type, just by using the eigenfeature dictionary (Av×k).

3.5 Efficient Estimation

As mentioned earlier, CCA can be done by taking the singular value decomposition

of a matrix. For small matrices, this can be done using standard functions in e.g.

MATLAB, but for very large matrices (e.g. for vocabularies of tens or hundreds

of thousands of words), it is important to take advantage of the recent advances in

SVD algorithms. For our experiments we use the method of (Halko et al. 2011),

which uses random projections to compute SVD of large matrices.

The key idea is to find a lower dimensional basis for A, and to then compute

the singular vectors in that lower dimensional basis. The initial basis is generated

randomly, and taken to be slightly larger than the eventual basis. If A is v × hv,

and we seek a state of dimension k, we start with a hv× (k+ l) matrix Ω of random

numbers, where l is number of “extra” basis vectors between 0 and k. We then
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Algorithm 5 Randomized singular value decomposition

1: Input: matrix A of size v × hv, the desired hidden state dimension k, and the
number of “extra” singular vectors, l

2: Generate a hv × (k + l) random matrix Ω
3: for i =1:5 do
4: M = AΩ.
5: [Q,R]=QR(M) //Find v × (k + l) orthogonal matrix Q.
6: B = Q>A
7: end for
8: Find the SVD of B. [Û, Λ̂, V̂>] =SVD(B), and keep the k components of Û

with the largest singular values.
9: Ã = QÛ. //Compute the rank-k projection.

10: Output: The rank-k approximation Ã. (Similar procedure can be repeated to
get the right singular values and the corresponding projections.)

project A onto this matrix and take the SVD decomposition of the resulting matrix

(A ≈ ÛΛ̂V̂>).

Since AΩ is v×(k+ l), this is much cheaper than working on the original matrix

A. We keep the largest k components of U and of V, which form a left and a right

basis for A respectively.

This procedure is repeated for a few (∼ 5) iterations. The algorithm is summa-

rized in Algorithm 5.

(Halko et al. 2011) prove a number of nice properties of the above algorithm.

In particular, they guarantee that the algorithm, even without the extra iterations

in steps 3 and 6 produces an approximation whose error is bounded by a small

polynomial factor times the size of the largest singular value whose singular vectors

are not part of the approximation, σk+1. They also show that using a small number

of “extra” singular vectors (l) results in a substantial tightening of the bound, and

that the extra iterations, which correspond to power iteration, drive the error bound

exponentially quickly to one times the largest non-included singular value, σk+1
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3.6 Conclusion

We proposed two new and improved spectral method, two-step alternative (TSCCA)

and (Low Rank Multi-View Learning) LR-MVL which provide more accurate state

estimates (lower sample complexity) for small corpora than standard OSCCA.

LR-MVL can also be viewed as a type of co-training (Blum and Mitchell 1998):

The state of each token wt is similar to that of the tokens both before and after it,

and it is also similar to the states of the other occurrences of the same word elsewhere

in the document. LR-MVL takes advantage of these two different types of similarity

by alternately estimating word state using CCA on the states of the words before

and after each target token and using the average over the states (second CCA)

associated with all other occurrences of that word.
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Chapter 4

Evaluating Eigenwords

In this chapter1 we provide qualitative and quantitative evaluation of the various

eigenword algorithms. The state estimates for words capture a wide range of infor-

mation about them that can be used to predict part of speech, linguistic features,

and meaning. Before presenting a more quantitative evaluation of predictive accu-

racy, we present some qualitative results showing how word states, when projected

in appropriate directions usefully characterize the words.

We compare our approach against a variety of state-of-the-art word embeddings:

1. Turian Embeddings (C&W and HLBL) (Turian et al. 2010).

2. SENNA Embeddings (Collobert et al. 2011).

3. word2vec Embeddings (Mikolov et al. 2013a,b).

We also compare against simple PCA/LSA embeddings and other model based

approaches wherever applicable.

We downloaded the Turian embeddings (C&W and HLBL), from http://metaoptimize.

com/projects/wordreprs and use the best ‘k’ reported in the paper (Turian et al.

1This chapter is based on work in (Dhillon et al. 2011),(Dhillon et al. 2012b) and (Dhillon et al.
2014 (Under Review).
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2010) i.e. k=200 and 100 respectively. SENNA embeddings were downloaded

from http://ronan.collobert.com/senna/. word2vec code was downloaded from

https://code.google.com/p/word2vec/. Since they made the code available we

could train them on the exact same corpora, had the exact same context window

and vocabulary size as the eigenword embeddings. The PCA baseline used is similar

to the one that has recently been proposed by (Lamar et al. 2010) except that here

we are interested in supervised accuracy and not the unsupervised accuracy as in

that paper.

In the results presented below (qualitative and quantitative), we trained all the

algorithms (including eigenwords) on Reuters RCV1 corpus (Rose et al. 2002) for

uniformity of comparison2. Case was left intact and we did not do any other “clean-

ing” of data. Tokenization was performed using NLTK tokenizer (Bird and Loper

2004). RCV1 corpus contains Reuters newswire from Aug ’96 to Aug ’97 and con-

taining about 215 million tokens after tokenization.

Unless otherwise stated, we consider a fixed window of two words (h=2) on either

side of a given word and a vocabulary of 100,000 most frequent words for all the

algorithms3, in order to ensure fairness of comparison.

Eigenword algorithms are robust to the dimensionality of hidden space (k), so

we did not tune it and fixed it at 200. For other algorithms, we report results using

their best hidden space dimensionality.

Our theory and CCA in general (Bach and Jordan 2005) rely on normality

assumptions, however the words follow Zipfian (heavy tailed) distribution. So, we

took the square root of the word counts in the context matrices before running

OSCCA, TSCCA and LR-MVL(I). This squishes the word distributions and makes

them look more normal. We ran LR-MVL(I) and LR-MVL(II) for 10 iterations and

2word2vec, PCA and Turian (C&W and HLBL) embeddings are all trained on Reuters RCV1,
but SENNA embeddings (training code not available) were trained on a larger Wikipedia corpus.

3Turian (C&W and HLBL), SENNA embeddings had much bigger vocabulary sizes of 268,000
and 130,000, though they also use a window of 2 as context.
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only used one exponential smooth of 0.5 for LR-MVL(II).

4.1 Qualitative Evaluation of OSCCA

To illustrate the sorts of information captured in our state vectors, we present a

set of figures constructed by projecting selected small sets of words onto the space

spanned by the second and third largest principal components of their eigenword

dictionary values, which are simply the left canonical correlates calculated from

Equation 2.4. (The first principle component generally just separates the selected

words from other words, and so is less interesting here.)

Figure 4.1 shows plots for three different sets of words. The left column uses the

eigenword dictionary learned using OSCCA (the other eigenword algorithms gave

similar results), while the right column uses the corresponding latent vectors derived

using PCA on the same data. In all cases, the 200-dimensional vectors have been

projected onto two dimensions (using a second PCA) so that they can be visualized.

The PCA algorithm differs from CCA based (eigenword) algorithms in that it

does not whiten the matrices via (Cll
−1/2 and Crr

−1/2) before performing SVD. If

one considers a word and its two grams to the left and right as a document, then

its equivalent to the Latent Semantic Analysis (LSA) algorithm.

The results for various (handpicked) semantic categories are shown in Figure 4.1

and 4.2

The top row shows a small set of randomly selected nouns and verbs. Note

that for CCA, nouns are on the left, while verbs are on the right. Words that are

of similar or opposite meaning (e.g. “agree” and “disagree”) are distributionally

similar, and hence close. The corresponding plot for PCA shows some structure,

but does not give such a clean separation. This is not surprising; predicting the part

of speech of words depends on the exact order of the words in their context (as we
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Center Word OSCCA NN PCA NN
market markets, trade, currency,

sector, activity.
dollar, economy, govern-
ment, sector, industry.

company firm, group, giant, opera-
tor, maker.

government, group, dol-
lar, following, firm.

Ltd Limited, Bhd, Plc, Co,
Inc.

Corp, Plc, Inc, name, sys-
tem.

President Governor, secretary,
Chairman, leader, Direc-
tor.

Commerce, General, fuel,
corn, crude.

Nomura Daiwa, UBS, HSBC,
NatWest, BZW.

Chrysler, Sun, Delta, Bre-
X, Renault.

jump drop, fall, rise, decline,
climb.

surge, stakes, slowdown,
participation, investing.

rupee peso, zloty, crown, pound,
franc.

crown, CAC-40, FTSE,
Nikkei, 30-year.

Table 4.1: Nearest Neighbors of OSCCA and PCA word embeddings.

capture in CCA); a PCA-style bag-of-words can’t capture part of speech well.

The bottom row in Figure 4.1 shows names of numbers or the numerals repre-

senting numbers and years. Numbers that are close to each other in value tend to

be close in the plot, thus suggesting that state captures not just classifications, but

also more continuous hidden features.

The plots in Figure 4.2 show a similar trend i.e., eigenword embeddings are able

to provide a clear separation between different syntactic/semantic categories and

capture a rich set of features characterizing the words, whereas PCA mostly just

squishes them together.

Table 4.1 shows the five nearest neighbors for a few representative words using

OSCCA and PCA. As can be seen, the OSCCA based nearest neighbors capture

subtle semantic and syntactic cues e.g Japanese investment bank (Nomura) having

another Japanese investment bank (Daiwa) as the nearest neighbor, whereas the

PCA nearest neighbors are more noisy and capture mostly syntactic aspects of the

word.
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Figure 4.1: Projections onto two dimension of selected words in different categories using
both OSCCA (left) and PCA (Right). Top to bottom: 1). (Nouns vs Verbs): house, home, dog, truck, boat,
word, river, cat, car, sleep, eat, push, drink, listen, carry, talk, disagree, agree. 2). (Eateries vs vehicles): apples, pears,
plums, oranges, peaches, fruit, cake, pie, dessert, truck, boat, car, motorcycle. 3). (Numerals vs letter numbers vs years):
one, two, three, four, five, six, seven, eight, nine, ten, 1, 2,. . ., 10, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
2004, 2005, 2006, 2007, 2008, 2009.
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Figure 4.2: Projections onto two dimension of selected words in different categories using
both OSCCA (left) and PCA (Right). Top to bottom: 1). (Weekdays vs verbs vs pronouns): monday, tuesday,
wednesday, sunday, friday, eat, drink, sleep, his, her, my, your. 2). (Different kinds of pronouns): i, you, he, she, they,
we, us, them, him, her, our, his, hers. 3). (Nouns vs Adjectives vs Units of measurement ): man, woman boy, girl, lawyer,
doctor, guy, farmer, teacher, citizen, mother, wife, father, son, husband, brother, daughter, sister, boss, uncle, pressure,
temperature, permeability, density, stress, viscosity, gravity, tension, miles, pounds, degrees, inches, barrels, tons, acres,
meters, bytes.
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4.2 Quantitative Evaluation

This section describes the performance (accuracy and richness of representation) of

various eigenword algorithms. We evaluate the quality of the eigenword dictionary

by using it in a supervised learning setting to predict a wide variety of labels that

can be attached to words.

We first compare OSCCA against TSCCA, LR-MVL(I) and LR-MVL II) em-

beddings on a set of Part of Speech (POS) tagging problems for different languages,

looking at how the predictive accuracy scales with corpus size for predictions on

a fixed vocabulary. These results use small corpora and highlight that TSCCA,

LR-MVL(I) and LR-MVL(II) perform better for rarer words.

Next, we perform experiments for a variety of NLP tasks including, Word Sim-

ilarity, Sentiment Classification, Named Entity Recognition (NER), chunking and

Google semantic and syntactic analogy tasks to demonstrate the richness of the state

learned by eigenwords and that they perform comparably or better than other state-

of-the-art approaches. For these tasks, we report results using the best eigenwords

for compactness, though all the four algorithms gave similar performances.

4.2.1 Part of Speech (POS) Tagging

We compare the performance of various eigenword algorithms on the task of POS

tagging in four different languages. Note that this experiment is performed only to

show the improved performance of TSCCA, LR-MVL (I) and LR-MVL (II) for rarer

words compared to OSCCA and not to show the superior performance of eigenwords

compared to other state-of-the-art algorithms.

Table 1 provides statistics of all the corpora used, namely: the Wall Street Jour-

nal portion of the Penn treebank (Marcus et al. 1993) (we consider the 17 tags

of (PTB 17) (Smith and Eisner 2005)), the Bosque subset of the Portuguese Flo-
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Language Number of POS tags Number of tokens
English 17 100311
Danish 25 100238

Bulgarian 12 100489
Portuguese 22 100367

Table 4.2: Description of the POS tagging datasets

resta Sinta(c)tica Treebank (Afonso et al. 2002), the Bulgarian BulTreeBank (Simov

et al. 2002) (with only the 12 coarse tags), and the Danish Dependency Treebank

(DDT) (Kromann 2003).

Note that some corpora like English have ∼ 1 million tokens whereas Danish

only has ∼ 100k tokens. To address this data imbalance we kept only the first

∼ 100k tokens of the larger corpora so as to perform a uniform evaluation across all

corpora.

Theorem 2 implies that the difference between OSCCA and TSCCA/LR-MVL(I)/LR-

MVL(II) should be more pronounced at smaller sample sizes, where the errors are

higher and that they should have similar predictive power asymptotically when we

learn them using large amounts of data. So, we evaluate the performance of the

methods on varying data sizes ranging from 5k to the entire 100k tokens. As men-

tioned earlier, we take a context size of h = 2 for eigenwords i.e. a word to the left

and a word to the right; for PCA this reduces to a bag of 5-grams. It is important

to note that for POS tagging usually a small context (in our case h = 2) is sufficient

to get state-of-the-art performance as can be substantiated by trigram POS taggers

e.g. (Merialdo 1994), so we need not consider longer contexts.

As mentioned earlier, for the unlabeled learning part i.e. learning using eigen-

words/PCA we are interested in seeing the eigenword dictionary estimates for the

word types (for a fixed vocabulary) get better with more data. So, when varying

the unlabeled data from 5k to 100k we made sure that they had the exact same

vocabulary and that the performance improvement is not coming from word types
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not present in the 5k tokens but present in the total 100k.

To evaluate the predictive accuracy of the descriptors learned using different

amounts of unlabeled data, we learn a multi-class logistic regression to predict the

POS tag of each type. We trained using 80% of the word types chosen randomly

and then tested on the remaining 20% types and this procedure was repeated 10

times. Its important to note that our train and test sets do not contain any of the

same word types.4

The accuracy of using OSCCA, TSCCA, LR-MVL(I), LR-MVL(II) and PCA

features in a supervised learner are shown in Figure 4.3 for the task of POS tagging.

As can be seen from the results, eigenword embeddings are significantly better (5%

significance level in a paired t-test) than the PCA-based supervised learner. Among

the eigenwords, TSCCA, LR-MVL(I) and LR-MVL(II) are significantly better than

OSCCA for small amounts of data, and (as predicted by theory) the two become

comparable in accuracy as the amount of unlabeled data used to learn the CCAs

becomes large.

4.2.2 Word Similarity Task (WordSim-353)

A standard dataset for evaluating vector-space models is the WordSim-353 dataset (Finkel-

stein et al. 2001) which consists of 353 pairs of nouns. Each pair is presented without

context and associated with 13 to 16 human judgments on similarity and relatedness

on a scale from 0 to 10. For example, (professor, student) received an average score

of 6.81, while (professor, cucumber) received an average score of 0.31.

For this task, its interesting to see how well the cosine similarity between the

word embeddings correlates with the human judgement of similarity between the

same two words. The results in Table 4.3 show the Spearman’s correlation between

4We are doing non-disambiguating POS tagging i.e. each word type has a single POS tag, so if
the same word type occurred in both the training and testing data, a learning algorithm that just
memorized the training set would perform reasonably well.
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Figure 4.3: Plots showing accuracy as a function of number of tokens used to train
the PCA/eigenwords for various languages. Note: The results are averaged over 10
random, 80 : 20 splits of word types.

the cosine similarity of the respective word embeddings and the human judgements.

As can be seen, eigenwords are statistically significantly (computed using resam-

pled bootstrap) better than all embeddings except SENNA.

4.2.3 Sentiment Classification

It is often useful to group words into semantic classes such as colors or numbers,

professionals or disciplines, happy or sad words, words of encouragement or discour-

agement, etc.

Many people have collected sets of words that indicate positive or negative senti-

ment. More generally, substantial effort has gone into creating hand-curated words
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Model ρ× 100
PCA 30.25

Turian (C&W) 28.08
Turian (HLBL) 35.24

SENNA 44.32
word2vec (SK) 42.73
word2vec (CB) 42.97

eigenwords (best) 44.86

Table 4.3: Table showing the Spearman correlation between the word embeddings
based similarity and human judgement based similarity. Note that the numbers
for word2vec are different from the ones reported elsewhere, which is due to the
fact that we considered a 100,000 vocabulary and a context window of 2 just like
eigenwords, in order to make a fair comparison.

that can be used to capture a variety of opinions about different products, papers,

or people. For example (Teufel 2010) contains dozens of carefully constructed lists

of words that she uses to categorize what authors say about other scientific papers.

Her categories include “problem nouns” (caveat, challenge, complication, contra-

diction, . . . ), “comparison nouns” (accuracy, baseline, comparison, evaluation, . . . ),

“work nouns” (account, analysis, approach, . . . ) as well as more standard sets of

positive, negative, and comparative adjectives.

In the example below, we use words from a set of five dimensions that have been

identified in positive psychology under the acronym PERMA (Seligman 2011):

• Positive emotion (aglow, awesome, bliss, . . . ),

• Engagement (absorbed, attentive, busy, . . . ),

• Relationships (admiring, agreeable, . . . ),

• Meaning (aspire, belong, . . . )

• Achievement (accomplish, achieve, attain, . . . ).

For each of these five categories, we have both positive words – ones that connote,

for example, achievement, and negative words, for example, un-achievement (ama-

teurish, blundering, bungling, . . . ). We would hope (and we show below that this is

in fact true), that we can use eigenwords not only to distinguish between different

49



Word sets Number of observations
Class I Class II

Positive emotion or not 81 162
Meaningful life or not 246 46
Achievement or not 159 70
Engagement or not 208 93
Relationship or not 236 204

Table 4.4: Description of the datasets used. All the data was collected from the
PERMA lexicon.

PERMA categories, but also to address the harder task of distinguishing between

positive and negative terms in the same category. (The latter task is harder because

words that are opposites, such as “large” and “small,” often are distributionally

similar.)

The description of the PERMA datasets is given in Table 4.4 and Table 4.2.3

shows results for the five PERMA categories. As earlier, we used logistic regression

for the supervised binary classification.

As can be seen from the plots, the eigenwords perform significantly (5% signifi-

cance level in a paired t-test) better than all other embeddings in 3/5 cases and for

the remaining 2 cases they perform significantly better than all embeddings except

word2vec.

eigenwords
(best)

PCA Turian
(C&W)

Turian
(HLBL)

SENNA word2vec
(SK)

word2vec
(CB)

(µ± σ) (µ± σ) (µ± σ) (µ± σ) (µ± σ) (µ± σ) (µ± σ)

Positive 25.3± 5.8 33.14 ±
5.6

32.6 ± 5.6 29.7 ± 6.2 29.9 ± 5.1 27.7± 7.3 28.1 ± 6.7

Engagement 15.3 ± 5.0 29.6 ± 5.7 26.3 ± 6.2 23.7 ± 5.9 20.9 ±5.1 20.9 ± 5.3 20.5 ± 5.6
Relationship 12.6 ± 3.7 46.3 ± 4.9 36.1 ± 4.3 28.3 ± 4.3 18.9 ± 3.4 15.4 ± 4.3 16.5 ± 3.8
Meaningful 8.5 ± 3.2 15.4 ± 3.9 15.9 ± 4.0 16.2 ± 4.3 14.6 ± 3.5 11.6 ± 3.9 14.5 ± 4.4
Achievement 16.0 ± 5.7 31.3 ± 5.6 30.3 ± 6.1 23.1 ± 5.6 20.4 ± 4.9 24.3 ±7.4 29.0 ± 6.1

Table 4.5: Binary Classification % test errors (
∑n

i=1
I[yi 6=ŷi]

n ) averaged over 100
random 80/20 train/test splits for sentiment classification. Bold (3/5 cases) in-
dicates the cases where eigenwords are significantly better (5% level in a paired
t-test) compared to all other embeddings. In the remaining 2/5 cases eigenwords
are significantly better than all embeddings except word2vec.
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4.2.4 Named Entity Recognition (NER) & Chunking

In this section we present the experimental results of eigenwords on Named En-

tity Recognition (NER) and chunking. For the previous evaluation tasks we were

performing classification of individual words in isolation, however NER and chunk-

ing tasks involve assigning tasks to running text. This allows us to induce context

specific embeddings i.e. a different embedding for a word based on its context.

4.2.4.1 Datasets and Experimental Setup

For the NER experiments we used the data from CoNLL 2003 shared task and

for chunking experiments we used the CoNLL 2000 shared task data5 with stan-

dard training, development and testing set splits. The CoNLL ’03 and the CoNLL

’00 datasets had ∼ 204K/51K/46K and ∼ 212K/ − /47K tokens respectively for

Train/Dev./Test sets.

Named Entity Recognition (NER): We use the same set of baseline features

as used by (Zhang and Johnson 2003; Turian et al. 2010) in their experiments. The

detailed list of features is as below:

• Current Word wi; Its type information: all-capitalized, is-capitalized, all-digits

and so on; Prefixes and suffixes of wi

• Word tokens in window of 2 around the current word i.e. d = (wi−2, wi−1, wi, wi+1, wi+2);

and capitalization pattern in the window.

• Previous two predictions yi−1 and yi−2 and conjunction of d and yi−1

• Embedding features (eigenwords, C&W, HLBL, Brown etc.) in a window of 2

around the current word (if applicable).

5More details about the data and competition are available at http://www.cnts.ua.ac.be/

conll2003/ner/ and http://www.cnts.ua.ac.be/conll2000/chunking/
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Following (Ratinov and Roth 2009) we use regularized averaged perceptron

model with above set of baseline features for the NER task. We also used their

BILOU text chunk representation and fast greedy inference as it was shown to give

superior performance.

We also augment the above set of baseline features with gazetteers, as is standard

practice in NER experiments.

Chunking: For our chunking experiments we use a similar base set of features

as above:

• Current Word wi and word tokens in window of 2 around the current word

i.e. d = (wi−2, wi−1, wi, wi+1, wi+2);

• POS tags ti in a window of 2 around the current word.

• Word conjunction features wi∩wi+1, i ∈ {−1, 0} and Tag conjunction features

ti ∩ ti+1, i ∈ {−2,−1, 0, 1} and ti ∩ ti+1 ∩ ti+2, i ∈ {−2,−1, 0}.

• Embedding features in a window of 2 around the current word, including the

current word (when applicable).

Since the CoNLL 00 chunking data does not have a development set, we randomly

sampled 1000 sentences from the training data (8936 sentences) for development.

So, we trained our chunking models on 7936 training sentences and evaluated their

F1 score on the 1000 development sentences and used a CRF6 as the supervised

classifier. We tuned the magnitude of the `2 regularization penalty in CRF on

the development set. The regularization penalty that gave best performance on

development set was 2. Finally, we trained the CRF on the entire (“original”)

training data i.e. 8936 sentences.

6http://www.chokkan.org/software/crfsuite/

52

http://www.chokkan.org/software/crfsuite/


4.2.4.2 Results

The results for NER and chunking are shown in Tables 4.6 and 4.7, respectively,

which show that eigenwords perform significantly better than state-of-the-art com-

peting methods on both NER and chunking tasks.

F1-Score
Embedding/Model Dev. Set Test Set
Baseline

No Gazetteers

90.03 84.39
Brown 1000 clusters 92.32 88.52
Turian (C&W) 92.46 87.46
Turian (HLBL) 92.00 88.13
SENNA - 88.67
word2vec (SK) 92.54 89.40
word2vec (CB) 92.08 89.20
eigenwords (Best) 93.19 89.99
Brown, 1000 clusters

With Gazetteers

93.25 89.41
Turian (C&W) 92.98 88.88
Turian (HLBL) 92.91 89.35
SENNA - 89.59
word2vec (SK) 92.99 89.69
word2vec (CB) 92.93 89.89
eigenwords (Best) 93.97 90.59

Table 4.6: NER Results. Note: F1-score= Harmonic Mean of Precision and Recall.
Note that the numbers reported for eigenwords here are different than those in
(Dhillon et al. 2011) as we use a different vocabulary size and different dimensionality
than there.

Embedding/Model Test Set F1-Score
Baseline 93.79
Brown 3200 Clusters 94.11
Turian (HLBL) 94.00
Turian (C&W) 94.10
SENNA 93.94
word2vec (SK) 94.02
word2vec (CB) 94.16
eigenwords (best) 94.23

Table 4.7: Chunking Results. Note that the numbers reported for eigenwords here
are different than those in (Dhillon et al. 2011) as we use a different vocabulary size
and different dimensionality than there.
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4.2.4.3 Modeling Context: Context Sensitive Embeddings

Modeling the context in embeddings gives decent improvements in accuracies on

both NER and chunking problems. For the case of NER, the polysemous words

were mostly like Chicago, Wales, Oakland etc., which could either be a location or

organization (Sports teams, Banks etc.), so when we don’t use the gazetteer fea-

tures, (which are known lists of cities, persons, organizations etc.) we got higher

increase in F-score by modeling context, compared to the case when we already

had gazetteer features which captured most of the information about polysemous

words for NER dataset and modeling the context didn’t help as much. The polyse-

mous words for the chunking dataset included words such as spot (VP/NP), never

(VP/ADVP), more (NP/VP/ADVP/ADJP) etc. and in this case embeddings with

context helped significantly, giving 3.1−6.5% relative improvement in accuracy over

context oblivious embeddings.

4.2.5 Google Semantic and Syntactic Relations Task

(Mikolov et al. 2013a,b) present new syntactic and semantic relation datasets com-

posed of analogous word pairs. The syntactic relations dataset contains word pairs

that are different syntactic forms of a given word e.g. write : writes :: eat : eats

There are nine such different kinds of relations: adjective-adverb, opposites, com-

parative, superlative, present participle, nation-nationality, past tense, plural nouns

and plural verbs

The semantic relations dataset contains pairs of tuples of word relations that

follow a common semantic relation e.g. in Athens : Greece :: Canberra : Australia,

where the two given pairs of words follow the country-capital relation. There are

three other such kinds of relations: country-currency, man-woman, city-in-state and

overall 8869 such pairs of words. The task here is to find a word d that best fits the

following relationship: a : b :: c : d given a, b and c. They use the vector offset
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method, which assumes that the words can be represented as vectors in vector space

and computes the offset vector: yd = ea − eb + ec where ea, eb and ec are the vector

embeddings for the words a, b and c. Then, the best estimate of d is the word in the

entire vocabulary whose embedding has the highest cosine similarity with yd. Note

that this is a hard problem as it is a v class problem, where v is the vocabulary size.

Table 4.8 shows the performance of various embeddings for semantic and syn-

tactic relation tasks. Here, as earlier, we trained eigenwords on a Reuters RCV1

with a window size of 2, however as can be seen it performed significantly better

compared to all the embeddings except word2vec. We conjectured that it could

be due to the fact that we were taking too small a context window which mostly

captures syntactic information, which was sufficient for the earlier tasks. So, we ex-

perimented with a window size of 10 with the hope that a broader context window

should be able to capture semantic and topic information. For this configuration,

the eigenwords’ performance was comparable to word2vec and as we had intuited

most of the improvement in performance took place on the semantic relation task.

Embedding/Model Semantic
Relation

Syntactic
Relation

Total Accu-
racy

Turian (C&W) 1.41 2.20 1.84
Turian (HLBL) 3.33 13.21 8.80
SENNA 9.33 12.35 10.98
eigenwords (Window size= 2) 12.21 29.40 21.70
word2vec (Window size= 10) (SK) 33.91 32.81 33.30
word2vec (Window size= 10) (CB) 31.05 36.21 33.90
eigenwords (Window size= 10) (Best) 34.79 31.01 32.70

Table 4.8: Accuracies for Semantic, Syntactic Relation Tasks and total accuracies.

4.2.6 Discussion

In this chapter performed a thorough qualitative and quantitative evaluation of

eigenwords on a variety of natural language processing tasks. As we saw, eigen-

words capture syntactic and semantic information about the words and give superior

performance compared to state-of-the-art embeddings. They perform significantly
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better than all the embeddings except word2vec on all the supervised learning tasks.

They perform comparably to or sometimes better than word2vec, though there is no

clear pattern of superiority. Thus, word2vec is a viable alternative to the eigenwords

embeddings as they capture similar syntactic and semantic information. However,

eigenwords have better sample complexity for rare words and can perform better

on resource poor languages for which relatively little unlabeled data is available.

The spectral methods used to compute eigenwords also have a clearer theoretical

foundation than the word2vec algorithm.
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Chapter 5

Eigenanatomy: A Framework

for Sparse Component Analysis

for Brain Imaging

High1 dimensional datasets are frequently collected in medicine and biology. Mag-

netic resonance imaging (MRI), gene expression and genotype all contain thousands

to millions of measurements per individual. The individual discrete measurements

comprising these modalities are related to each other through the lens of both

the quantitative technology and the underlying biology. Therefore, the resulting

datasets often exhibit strong covariation and suffer from the curse of dimensional-

ity. When this type of data is addressed with univariate statistics, studies may be

underpowered or fail to capture the intrinsically multivariate nature of the underly-

ing biological signal.

Data-driven dimensionality reduction and feature selection techniques provide a

potentially optimal strategy for analyzing “big data” in biological domains. Dimen-

sionality reduction methods find (weighted) combinations of the univariate mea-

1This chapter is based on work in (Dhillon et al. 2014 (Under Review).
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surements such that the original data is well-described by a relatively small set

of summary measurements. Given the presence of collinearity, dimensionality re-

duction methods may improve statistical power by collecting related measurements

together. This also facilitates data inspection which is challenging when using uni-

variate approaches to data with several thousand or more variables.

There are three commonly used methods for data driven dimensionality reduc-

tion:

• Principal Component Analysis (PCA) (Jolliffe 2005): It is one of the

most widely used dimensionality reduction algorithms. PCA, however, has

the disadvantage that the low-dimensional components consist of contribu-

tions from every component of the high-dimensional space, which makes inter-

pretation of the low-dimensional space difficult. Many techniques have been

proposed to deal with this issue. One common method is Sparse PCA (SPCA)

(Jolliffe and Uddin 2000; Shen and Huang 2008b; Guan and Dy 2009). Sparse

PCA incorporates penalties on the matrix decomposition to encourage each

component to consist of contributions from only a few components from the

higher dimensional space. Another related technique is sparse coding (Lee

et al. 2006; Mairal et al. 2010) (or dictionary learning) (Varoquaux et al. 2011;

Abraham et al. 2013), which is motivated more from a neurological perspective

and way the human cortex processes information (Olshausen and Field 2004).

• Non-negative Matrix Factorization (NMF) (Paatero and Tapper 1994):

It constrains the components to be positive i.e. each learned component of

the dictionary is a positive sum of positive “parts” rather than a sparse sum

of positive or negative parts. The main motivation behind NMF is to come up

with “parts-based representations” which transforms unstructured data into

more interpretable pieces (Lee and Seung 1999a; Hoyer and Dayan 2004; Lee
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and Seung 1999b; Berry et al. 2007). Alternatively, one could drop the posi-

tivity constraint and impose the sparsity constraint. Another variant involves

imposing sparsity in addition to positivity which is called non-negative sparse

coding (Hoyer and Dayan 2004).

• Independent Component Analysis (ICA) (Hyvärinen and Oja 2000): It

is motivated by the “blind source separation” problem: Given a data ma-

trix that contains information from a variety of sources, how can we uncover

the original sources? It optimizes statistical independence among the basis

vectors. Note that PCA, owing to its gaussianity assumption identifies the

true sources only upto a rotation, so we need a non-gaussianity assumption

(prior/regularization) on the sources to recover the true sources. Because of

the different motivation of ICA, and slightly different notation it makes com-

parisons between the various methods difficult.

All these methods fall into the more general class of sparse matrix factorization

framework– each making a different set of assumptions. They can be viewed through

a common lens as we show below.

These methods have been used to obtain state-of-the-art accuracies in a variety

of problems in Machine Learning. However, their usage in brain imaging, though

increasing, is limited by the fact that they are used as out-of-the-box techniques

and are seldom tailored to the domain specific constraints/knowledge pertaining to

medical imaging. For instance, uninformed, generic matrix decomposition methods,

e.g. standard principal component analysis (PCA) or ICA, may be difficult to

interpret because the solutions will produce vectors that are everywhere non-zero,

i.e. involve the whole brain rather than its parts.

This limits their popularity especially among clinicians who are often as inter-

ested in clinical interpretability as predictive accuracy. Sparse methods have sought
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to resolve this issue (Hoyer and Dayan 2004; Witten and Tibshirani 2010; Friedman

et al. 2010; Cherkassky and Ma 2009; Friedman et al. 2008a). However, these recent

sparse multivariate methods are anatomically uninformed and which may lead to

unstable results (Xu et al. 2012). In this chapter, we propose to bridge this gap

by providing matrix decomposition techniques regularized by neuroanatomically in-

spired smoothness and connectedness terms.

In order to address the above shortcomings, in this chapter, we propose Eige-

nanatomy (EANAT). Eigenanatomy (EANAT) is a general framework for sparse

matrix factorization that is closely related to SPCA, NMF, and a version of ICA 2.

The goal of EANAT is to statistically learn the boundaries of and connections be-

tween brain regions by weighing both data and prior neuroanatomical guidance.

Recent work points to the fact that exploiting problem-specific information can im-

prove parts-based representations (Guan et al. 2011; Cai et al. 2010; Hosoda et al.

2009). EANAT component images, on the other hand, enable prior knowledge to

enhance solution stability and are tied to a set of neuroanatomical coordinates that

are connected, smooth and may also be defined by non-negative weights.

The specific constraints implemented within each of these methods alter the pat-

terns that are extracted. Each algorithm has a different history, employs different

theoretical arguments and is favored in a different community. The optimization

methods are also heterogeneous, making it challenging to know, when comparing

different implementations of the algorithms, whether the theoretical or practical

differences are the root of performance variation. To address this concern, we im-

plement EANAT decompositions with respect to a consistent data-term and then

enforce smoothness and sparsity constraints inspired by SPCA, ICA and NMF. This

allows us to compare positively constrained decompositions (as with NMF) to ICA

and SPCA-like decompositions.

2Log hyperbolic cosine sparsity penalty.
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Our main contributions are:

1. From a theoretical standpoint, we provide a unified objective function for

sparse matrix factorization inspired by SPCA, NMF and ICA which allows

us to incorporate different aspects of each kind of decomposition into a single

framework.

2. From a practical standpoint, we provide uniform optimization algorithms, that

allow for easy comparison of the decompositions without the confounds of

different implementation strategies.

3. Customization of EANAT for neuroimaging by using domain specific spar-

sity and smoothness constraints which aid interpretability of results and give

superior predictive performance.

4. A thorough evaluation involving comparison with standard approaches; and

finally the public availability of our toolkit.

The remaining chapter is organized as follows; we first describe the various

dimensionality reduction methods and provide a unified objective for them. Then

we describe our EANAT theoretical framework and detail how the framework may

be extended to implement neuro or brain imaging specific decompositions. Finally,

we outline our optimization algorithm and provide experimental evaluation.

5.1 Eigenanatomy (EANAT)

The class of methods encompassing NMF, ICA, SPCA and singular value decom-

position (Sill et al. 2011b; Lee et al. 2010; Yeung et al. 2002) form the basis for the

approach proposed here. So, firstly, we describe SPCA, ICA and NMF through a

common lens and provide a unified objective for them. Finally, we show how one can

define hybrid matrix decomposition methods by combining different approaches.
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5.1.1 Notation

Define a n× p (rows by columns) matrix X, where n is the number of observations

(subjects) and p is the number of total voxels. For instance, X can be the cortical

thickess measurements or the fMRI time series for all the n subjects. We seek

a sparse decomposition of the X matrix into two matrices U and V, (such that

X ≈ UV>). The V matrix, which is of size p × k is typically called the factor

loading matrix and each of its columns is a basis vector for approximating the X

matrix or sometimes it is also called a dictionary, in the sparse coding literature

where each of its columns is an atom. The U matrix of size n × k is called the

coefficient matrix or the latent vectors.

arg min
U,V

‖X−UV>‖2F (5.1)

Now, there are three keys aspects of the above objective that a researcher might

care about and might want to tailor to the requirements of a specific domain.

1. Sparsity: Should the U and/or V matrices be sparse?

2. Orthogonality: Should each of U and V matrices have orthogonal columns i.e.

∀ l1 ≤ i < k ui ⊥ uj and vi ⊥ vj ? In addition to this, should the columns

of U be orthogonal to the columns of V.

3. Positivity: Should the entries of U and/or V matrices be only positive?

Broadly, this gives rise to four different algorithms

5.1.2 Principal Component Analysis (PCA)

In standard PCA, U, and V are orthogonal and are related by U = XV. The matrix

V is estimated by performing singular value decomposition (SVD) on the correlation
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matrix X>X and contains the ‘k’ eigenvectors with the largest eigenvalues as its

columns.

A potential problem with standard PCA is that the low-dimensional compo-

nents it finds consist of contributions from each of the p components of the high-

dimensional space, which can be undesirable in a domain like brain imaging.

5.1.3 Sparse Principal Component Analysis (SPCA)

Sparse PCA (SPCA) augments the objective function presented in Equation 5.1

by putting an `1 sparsity constraint on the columns of V. Its worth noting that

unlike standard PCA, SPCA does not normally include an explicit orthogonality

constraint. The reconstruction error term makes the orthogonality less important

(Le et al. 2011). If we were to enforce sparsity on the coefficients matrix U instead

of the loadings matrix V, then we get the sparse coding (Lee et al. 2006; Mairal

et al. 2010) or sparse dictionary learning (Varoquaux et al. 2011; Abraham et al.

2013) objective.

arg min
U,V

‖X−UV>‖22 + λ
∑
i

‖Vi‖1 (5.2)

5.1.4 Non-negative Matrix Factorization

NMF requires both U and V to be non-negative. There are no orthogonality con-

straints as earlier.

minimize
U,V

‖X−UV>‖22

subject to U,V � 0,

(5.3)

where � indicates element-wise inequality. This constraint fits naturally to problems

in which the input data is non-negative, as is the case with text mining where

each document can be seen as composed of words (Berry et al. 2007) or music

analysis (Févotte et al. 2009). If we further add a sparsity penalty on the coefficients

matrix U, then we get non-negative sparse coding (Hoyer and Dayan 2004).
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5.1.5 Independent Component Analysis (ICA)

The motivation for ICA comes from the blind source separation problem where

“blind” means we know nothing about the source of signals, and we have to recover

all the true sources generating the data.

ICA seeks to impose statistical “independence” on the sources. It is related to

sparse coding, in that if we replace the `1 sparsity penalty in sparse coding with

a non-gaussianity promoting penalty, we get ICA. The notation of ICA is also a

bit different and in literature A and s are used instead of U and V respectively.

However, to be consistent, we will stick to our notation of U and V.

arg min
U,V

‖X−UV>‖22 + λp(U), (5.4)

where p(U) penalizes the non-independence of the columns of U. Although there

are many ways to optimize for statistical independence (or “non-Gaussianity”), e.g.

skewness, kurtosis; a common practical way of enforcing the independence is to use

the log hyperbolic cosine penalty. The log hyperbolic cosine is a close approximation

to the `1 norm, Equation 5.4 is closely approximated by

arg min
U,V

‖X−UV>‖22 + λ
∑
i

‖Ui‖1. (5.5)

The optimization of the general ICA objective is also different from SPCA, sparse

coding, NMF all of which can be optimized by gradient descent, arnoldi iteration or

SVD. The most standard algorithm for ICA optimization is an approximate Newton

method, called FastICA (Hyvarinen 1999).

It is worth noting that though we have cast SPCA, sparse coding, NMF and

ICA in the same objective but still there are differences between the two in addition

to what is described above.
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Firstly, the connection is tied to the assumption of using a log hyperbolic cosine

penalty; if we were to use some other penalty then there might not be an obvious

similarity between the methods, which makes sense as SPCA considers only upto

second order moments (gaussianity assumption) whereas ICA optimizes fourth order

moments.

Secondly, since SPCA tries to find directions capturing decreasing variance (sec-

ond order moment); there is a natural ordering to the components of SPCA. How-

ever, the basis vectors found by standard ICA are not ranked in any order. So,

above, we assume that the components of ICA are also ranked according to decreas-

ing variance.

5.2 EANAT Objective

EANAT objective uses a hybrid decomposition schemes which borrow ideas from

SPCA and ICA and further augments it with neuroanatomically specific penalty

terms. EANAT seeks to represent each component image with a set of neuroanatom-

ical coordinates that are connected, smooth and are defined by non-negative weights.

Although this latter constraint can be relaxed, non-negativity improves our ability

to interpret data by preventing weights from being both positive and negative within

the same eigenanatomy component. Also, non-negativity means that the projections

of eigenanatomy into subject space are simple weighted averages of the input data

(e.g. cortical thickness values) for each subject.

arg min
U,V

‖X−UV>‖22 + λ1S(U) + λ2S(V), (5.6)

where λ1 controls the contribution of the ICA (sparse coding) sparsity component

of the penalty and λ2 controls the sparsity of the SPCA component of the penalty.

S(·), the sparsity penalty, is defined as follows,
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S(V) =

k∑
i=1

‖G× vi‖1, (5.7)

∀i 6=j〈vj ,vi〉 = 0 , vi � 0 , ‖S(v)‖1 = γ

Where, γ is a user defined sparsity parameter which controls the number of non-zero

entries in the solution. G is a kernel matrix which enforces smoothness and connect-

edness among the different EANAT components along the anatomical manifold and

is similar in spirit to the wavelet or discrete cosine basis transform (Becker et al.

2011). When the G operator is equal to I (identity matrix), it reduces to a simple

`1 penalty.

Its worth noting a further few points about the objective:

• We enforce orthogonality between the various components. In other words, ∀

1 ≤ i, j ≤ p, ui ⊥ uj and vi ⊥ vj but unlike standard PCA, ui 6= vi · x.

• Non-negativity of the components means that the projections of eigenanatomy

into subject space are simply weighted averages of the input data (e.g. cortical

thickness values) for each subject. Although this constraint can be relaxed,

non-negativity improves our ability to interpret data by preventing weights

from being both positive and negative within the same eigenanatomy compo-

nent. As such, one may compute effect sizes and interpret statistics directly,

for example, “reductions in posterior cingulate cortical thickness reduce per-

formance on memory-related psychometrics.”

To the best of our knowledge, directly exploring the interaction between sparse-

ness, orthogonality and non-negativity for automated parcellation of the brain is

novel. This penalty set gives us anatomically reasonable results as we show in the

66



experiments section.

5.2.1 Optimization

There are a variety of ways that one could optimize the above objective. (Mairal

et al. 2010) formulate a convex alternative for the above objective which uses an

elastic net type penalty on V. However, we propose an alternating optimization

approach, also called an analysis-synthesis loop (Murphy 2012). As a broader tem-

plate, we optimize U keeping V fixed. Next, we deflate the X matrix using the

optimized Us, and then optimize V with U fixed. This alternating procedure is re-

peated till convergence. Each of our sparse optimization for U and V is performed

via iterative soft-thresholding on the conjugate gradient of the Rayleigh Quotient.

Iterative soft-thresholding (soft(a, δ) , sign(a)(‖a‖ − δ)+ with x+ =max(x,0))

falls in the class of proximal gradient methods and has been shown to have bet-

ter convergence (Bredies and Lorenz 2008) and scalability properties compared to

other sparse optimization algorithms e.g. Least Angle Regression (LARS) (Yang

et al. 2010). Furthermore, deflation has been shown to give better sparse PCA

solutions (Mackey 2008); so adding a deflation step between the alternating opti-

mizations helps us get better solutions.

5.2.2 Implementation Details

We know that the best rank ‘k’ reconstruction of a matrix i.e. argminX̂ ‖X − X̂‖2F, is

provided by its first ‘k’ eigenvectors (Eckart and Young 1936) i.e. X̂ =
∑k

i=1 dkukv
>
k .

Hence, the best rank-1 approximation of X, i.e. the n × 1 and p × 1 vectors ũ,

ṽ such that,

ũ∗, ṽ∗ = minũ,ṽ‖X− ũṽ>‖2F (5.8)

is given by the SVD solution– ũ = u1 and ṽ = d1v1, where u1, v1 and d1 are the
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first left and right eigenvectors and the eigenvalue, respectively, of the X matrix.

Proceeding this way, d2u2v
>
2 provide the best rank-1 approximation of the “de-

flated” matrix X− d1u1v
>
1 and so on.

As pointed by (Shen and Huang 2008a), with ṽ fixed, the above optimization

over ũ is equivalent to a least squares regression of X on ṽ. However, in our case, we

have sparsity on ũ also, so it becomes a sparse optimization problem (Equation 6.4).

Similarly, with ũ fixed, the optimization over ṽ is also a sparse optimization

problem (Equation 5.10). As mentioned in the last section, we solve both these by

iterative soft thresholding on the conjugate gradient of Rayleigh Quotient.

As described earlier, our implementation alternates between optimization of

Equations 6.4, 5.10 (shown below for iteration number ‘m’) till convergence .

U∗m = argmin
U,‖U‖=1,u>i uj=0,i 6=j

(X−UV>m−1)2 + λ1‖GU‖1 (5.9)

{v∗i }m = argmin
vi,‖vi‖=1,v>i vj=0,i 6=j

(X\i −Umv
>
i )2 + λ‖Gvi‖1 (5.10)

where X\i , X−
∑k

j=1,j 6=i ũj ṽ
>
j is the “deflated” X matrix.

The sparseness, smoothness and non-negativity are enforced as discussed in the

previous section.

The details of our algorithm can be found in Algorithms 6, 7.

5.3 Experiments

In this section we benchmark the performance of Eigenanatomy (EANAT) on Parkin-

son’s Progressive Markers Initiative (PPMI) dataset.

The data consists of T1 images of 613 individuals with 3 diagnostic statuses:

Control, (Scans without evidence for dopaminergic deficit) SWEDD or (Parkinson’s
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Algorithm 6 Eigenanatomy: EANAT (Main Algorithm)

1: Input: X, λ
2: Standardize the data matrix X: Mean center it and scale to unit variance
3: Initialize the eigenvectors randomly V← N (0,1)
4: U← SCGP(X,V, λ1, 1 : k)
5: while ∆‖V‖ ≤ ε do
6: for i=1 to k do
7: X\i ← X−

∑k
j=1,i6=j ujv

>
j //Deflate X

8: vi ← SCGP(X\i,V, λ, i)

9: U ← SCGP(X,V, λ1, 1 : k) //Where V is the matrix with only its ith column
updated. Other columns are the same as previous iteration

10: end for
11: end while
12: Output: V

Algorithm 7 EANAT (Sub Algorithm): Sparse Conjugate Gradient Pro-
jection (SCGP) for finding vi

1: Input: X, V, λ,i
2: k ← 1
3: ck ← V:,i //V:,i contains the ith eigenvector.
4: ck ← S(ck,γ) //Soft-Max Thresholding.
5: gk−1 ← 1 //Initialize Gradient.
6: while ∆c ≤ ε do
7: gk ← (X>X)ck //Gradient of Rayleigh quotient.

8: γ ← gk·gk
gk−1·gk−1 //Conjugate Gradient.

9: dk ← gk + γ · dk−1

10: ck+1 ← ck + dk

11: ck+1 ← Orthogonalize(ck+1, V:,\i) //Orthogonalize w.r.t. all the other k−1
eigenvectors.

12: ck+1 ← S(ck+1,γ)

13: ck+1 ← ck+1

‖ck+1‖ //Normalize

14: k ← k + 1
15: end while
16: Output: ck+1
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disease) PD. SWEDD term can refer to any subject that looks as if they have PD

but where subsequent functional imaging assessments do not confirm this. SWEDD

phenotypes therefore vary in much the same way as PD phenotypes do. Other details

about image acquisition and diagnosis can be found here (http://www.ppmi-info.

org/access-data-specimens/).

The basic statistics for the cohort are given in Table 5.1.

Characteristic Entire Cohort
(613)

Only Controls
(175)

Only PD (379) Only SWEDD
(59)

(µ± σ) (µ± σ) (µ± σ) (µ± σ)
Age 61.06 ± 10.30 59.99 ± 11.36 61.54 ± 9.76 61.09 ± 10.34

Gender (Female) 220 64 135 21
Weights (kg) 81.20 ± 16.37 79.79 ± 15.88 81.40 ± 16.86 84.16 ± 14.26

Table 5.1: Basic statistics for the cohort.

The data was preprocessed using ANTs (Avants et al. 2009) and the pipeline de-

scribed in (Tustison et al. 2014) was used to generate cortical thickness and Jacobian

measurement images. Since the cerebellum is thought to be involved in Parkinson’s

disease (Wu and Hallett 2013), the Jacobian image should capture discriminative

information which should aid in Parkinson’s classification.

5.3.1 Evaluation

We use the demographics along with the top 10 EANAT eigenvectors derived from

cortical thickness and Jacobian measurement images to learn a multiclass logistic

regression classifier to classify subjects into controls, PD and SWEDD.

We randomly divided the dataset into training/testing (80/20) instances and

repeated this procedure 100 times. The results (average classification accuracy on

the test set) are shown in Table 5.2.

The main findings are that cortical thickness and Jacobian measurements help

on top of just demographics based covariates though not significantly. However,
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using both the measurements i.e. cortical thickness and Jacobian significantly (5%

level in a paired t-test) helps classification of Controls vs SWEDD vs PD.

Covariates Used % Classification Error
(µ± σ)

D 38.9 ± 2.8
D+J 37.5 ± 2.4
D+T 38.0 ± 2.1

D+T+J 36.7 ± 1.9

Table 5.2: Test Set % Classification Errors (Averaged over 100 random splits). Note
D= Demographics (Age, Weight, Gender). T= (Top 10) Eigenvectors derived from
Cortical thickness images. J= (Top 10) Eigenvectors derived from Jacobian images.
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Chapter 6

Prior Based Eigenanatomy

(p-Eigen): Incorporating Prior

Knowledge into Eigenanatomy

As1 described in the last chapter, there have been significant breakthroughs in med-

ical imaging machinery over the past few decades. This has led to an increase in the

amount and diversity of data being available e.g. structural and functional modali-

ties, neuro-cognitive batteries, genetics, and environmental measurements etc. This

has lead to a substantial interest in using sophisticated statistical methods to analyze

and explore this data. Methods like Principal Component Analysis (PCA), Indepen-

dent Component Analysis (ICA), Canonical Correlation Analysis (CCA) and their

robust and sparse variants (Witten et al. 2009; Avants et al. 2010) have been the

workhorse of brain and neuro-imaging fields as they provide key insights into the

data in a totally data driven way. In the previous chapter, we proposed a unified

framework, Eigenanatomy (EANAT), which learns the boundaries of and connec-

tions between the brain regions by weighing both data and prior neuroanatomical

1This chapter is based on work in (Dhillon et al. 2014).
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guidance.

However, one potential pitfall of these approaches, which has made clinicians and

other researchers cautious with their use is the lack of control over the areas they

highlight. Since, they work in a totally data driven way, the end clinician/researcher

has little control over the areas of brain they chose. Clinicians usually have some

form of prior knowledge as to which areas may contain the signal they are looking

for, for example, someone studying fronto-temporal dementia would expect some or

most of the signal to lie in frontal cortex, however if the voxels in frontal cortex

don’t explain the variance in data these approaches won’t highlight them.

So, this has led the clinicians and researchers to work with totally prior driven

approaches e.g. Region of Interest (ROI) analysis (Poldrack 2007), where they chose

a pre-defined region manually or based on past study (for instance Brodmann Areas)

and study it exclusively. The assumption is that the ROI is correct and contains all

relevant signal. However, important signal may have slightly different boundaries

than the scientist’s conception. The data representation (or spatially varying noise)

may also lead to strong or weak signal within different parts of the ROI. Such dataset

specific information is not taken into account by a traditional ROI. When effects

are localized to the selected region, and that region is well-defined, an ROI analysis

may provide the most sensitive testing method. However, some conditions involve

a network of regions that may not be fully identified. In such cases—in addition

to the general case of an exploratory analysis in a small dataset—dimensionality

reduction may provide advantages over an ROI analysis or mass univariate voxel-

based morphometry (Mechelli et al. 2005).

Our approach provides a principled way of incorporating priors in an other-

wise totally data driven approach based on Sparse Principal Component Analysis

(SPCA) (Zou et al. 2006; Witten et al. 2009; d’Aspremont et al. 2007; Shen and

Huang 2008a).
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p-Eigen allows an initial binary or probabilistic ROI to adapt to the underlying

subject specific covariation within the data. At the same time, p-Eigen maintains

proximity to (and the locality of) the original region and thus retains the advantages

of the standard seed based approach. p-Eigen also maintains non-negativity in the

estimated anatomically-constrained eigenvector, thereby keeping ROI interpretabil-

ity. This allows us to modify the definitions of labels to capture the variation in

dataset while still staying close to the initial ROI definitions. p-Eigen therefore pro-

duces labelings with “soft” weighted averages and as we show in the experimental

sections (in the next two Chapters), are more sensitive to the underlying brain data

than a standard ROI.

Given an ROI set, p-Eigen has only one key parameter to tune- the weight of

the prior term guiding the decomposition. Therefore, our optimization objective

provides a tradeoff between 1). staying close to the initial ROI definitions and 2).

allowing data to lead the exploratory analysis by explaining variance through PCA.

A good way to think about this is as ROI definitions forcing us to be conservative

and staying close to the initial brain parcellation; on the other hand the SPCA

component gives us liberty to be either more exploratory or more focused on the

content of the given dataset. The tradeoff between the two competing paradigms

is defined by user tunable (prior strength) parameter, which is chosen via cross

validation.

Our proposed approach is shown in Fig. 6.1.

In the remaining chapter we provide the details of Prior Based Eigenanatomy

(p-Eigen) and provide an algorithm.
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Figure 6.1: Prior Based Eigenanatomy (p-Eigen). An initial data matrix is de-
composed into its eigenvectors, with each eigenvector being constrained by a corre-
sponding cortical prior.

6.1 Prior Based Eigenanatomy: p-Eigen

p-Eigen is based on the methods of sparse principal components analysis (SPCA) (Zou

et al. 2006; Witten et al. 2009; d’Aspremont et al. 2007; Shen and Huang 2008a)

and singular value decomposition (Sill et al. 2011a).

Define a n×p (rows by columns) matrix {X} where n is the number of subjects,

p is the number of total voxels where each X matrix could derive from the subjects’

T1-structural imaging data or from each subject’s BOLD fMRI image (in which

case ‘n’ will be the number of timepoints in that subject’s timeseries image.). Also,

assume that we have a prior matrix M (Fig. 6.2) each of whose k rows corresponds to
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a separate prior and each of whose p columns contains the probability of a particular

voxel belonging to that prior.

Figure 6.2: Prior Matrix (M). Each row corresponds to a different ROI (Total k
of them) and each column corresponds to a different voxel in the brain (Total p of
them).

We seek a sparse decomposition of the X matrix constrained by the anatomical

priors M which should give us a n × k matrix where each of the k eigenvectors

explains the variance in the corresponding anatomical region specified by the prior.

Our objective is described by Equation 6.1.

v∗i = argmax
vi,‖vi‖=1,v>i vj=0,i 6=j,vi�0

vi
>
(
C + θ ·m>i mi

)
vi − λi‖vi‖+1 (6.1)

where mi is the ith prior and is itself a vector of size (1× p). C is the covariance

matrix X>X. θ is a user tunable parameter which controls the tradeoff between the

influence of data and the prior and should be typically tuned on a held out validation
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set in the absence of other knowledge. Smaller values of θ suggest that we trust data

more and as θ is increased the eigenvectors v are increasingly influenced by the prior.

The ‖vi‖+1 term ensures sparsity and non-negativity in the eigenvectors; in addition

to this we enforce unit norm and orthogonality constraints on sparse eigenvectors.

Connection to Sparse PCA: Our objective (Equation 6.1) is intimately con-

nected to the variance maximization formulation of sparse principal components

analysis (SPCA) (Zou et al. 2006; Witten et al. 2009) :

v∗i = argmax
vi,‖vi‖=1,v>i vj=0,i 6=j

vi
>Cvi − λ‖vi‖1 (6.2)

where terms have the same meaning as in Equation 6.1.

As can be seen, our objective entails that instead of finding the eigenvectors of the

data covariance matrix as done by SPCA, we find the eigenvectors of the transformed

data covariance matrix obtained by “regularizing” it by the prior information. An

important consequence of this is that we are not confining our data driven priors to

lie in the original ROIs but rather we are encouraging them to find ways to explain

data variance in this new “prior regularized” space.

One could optimize the p-Eigen objective in Equation 6.1 using an iterative

approach like power iteration. However, in our experience we found the standard

power iteration to be unstable and got more efficient and stable solutions using

an optimization approach which performs iterative soft-thresholding on the conju-

gate gradient of the Rayleigh Quotient. In addition, we deflate our data matrix X

(factoring out the effect of other eigenvectors) between computations of different

eigenvectors, which lead to better solutions (Mackey 2008). The resulting method is

related to the Non-linear Iterative Partial Least Squares (NIPALS) algorithm (Wold

et al. 1987) for large scale PCA which also combines deflation with estimation of

the principal eigenvector.
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6.2 An Algorithm for p-Eigen

In this section we provide an alternating optimization approach, also called an

analysis-synthesis loop (Murphy 2012) for solving the p-Eigen optimization problem.

As was briefly mentioned at the end of the last section, our optimization performs

iterative soft-thresholding on the conjugate gradient of the Rayleigh Quotient and

further relies on deflation to get better quality solutions.

Iterative soft-thresholding (soft(a, δ) , sign(a)(‖a‖ − δ)+ with x+ =max(x,0))

falls in the class of proximal gradient methods and has been shown to have bet-

ter convergence (Bredies and Lorenz 2008) and scalability properties compared to

other sparse optimization algorithms e.g. Least Angle Regression (LARS) (Yang

et al. 2010). Furthermore, deflation has been shown to give better sparse PCA

solutions (Mackey 2008); so we added a deflation step between the alternating op-

timizations.

The deflation based optimization of Equation 6.1 entails performing an addi-

tional ordinary least squares regression (OLS) step and can be motivated as follows.

We know that the best rank ‘k’ reconstruction of a matrix i.e. argminX̂ ‖X− X̂‖2,

is provided by its first ‘k’ eigenvectors (Eckart and Young 1936) i.e. X̂ =
∑k

i=1 dkukv
>
k .

Hence, the best rank-1 approximation of X, i.e. the n × 1 and p × 1 vectors ũ,

ṽ such that,

ũ∗, ṽ∗ = minũ,ṽ‖X− ũṽ>‖2 (6.3)

is given by the SVD solution– ũ = u1 and ṽ = d1v1, where u1, v1 and d1 are the

first left and right eigenvectors and the eigenvalue, respectively, of the X matrix.

Proceeding this way, d2u2v
>
2 provide the best rank-1 approximation of the “de-

flated” matrix X− d1u1v
>
1 and so on.

As pointed by (Shen and Huang 2008a), with ṽ fixed, the above optimization

over ũ is equivalent to a least squares regression of X on ṽ.
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Similarly, with ũ fixed, the optimization over ṽ is a sparse optimization problem.

As mentioned in the last section, we solve this by iterative soft thresholding on the

conjugate gradient of Rayleigh Quotient.

So, our implementation alternates between the optimization of Equations 6.4,

6.5 (shown below for iteration number ‘s’) till convergence .

U∗s = argmin
U,‖U‖=1,u>i uj=0,i 6=j

‖X−UV>s−1‖2 (6.4)

{v∗i }s = argmax
vi,‖vi‖=1,v>i vj=0,i 6=j,vi�0

vi
>
(
C\is + θ ·m>i mi

)
vi − λi‖vi‖+1 (6.5)

where symbols have the same meaning as in Equation 6.1. C
\i
s is the covariance

matrix created from the “deflated” X matrix. C
\i
s , X>\iX\i where X\i , X −∑k

j=1,j 6=i u
(s)
j v
>(s−1)
j .

The sparseness is enforced by a soft-thresholding algorithm as in (Zou et al.

2006; Witten et al. 2009). We denote this function as S(v, λ) and choose λ in a data

driven way as λi =
∑p

j=1
mij

p . In other words, we are constraining the sparsity of our

eigenvectors to be equal to the weighted size of the corresponding prior ROI. Defining

sparsity in this manner via neuro-anatomical priors has biological motivation, as the

sizes of ROIs are approximately equal to the sizes of different areas of the brain that

we are modeling.

In addition to the sparsity penalty, we also include an optional minimum cluster

size threshold, as is commonly performed in Voxel Based Morphometry (VBM)-type

analyses. We have found that including a minimum cluster threshold size generally

improves robustness of results by getting rid of isolated voxels and also helps prevent

overfitting. In the experiments presented in this chapter, we chose the minimum

cluster threshold as 100 voxels.
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Similar to (Zass and Shashua 2006; Hoyer 2002), non-negativity in the eigen-

vectors is enforced by repeated projection onto the feasible (non-negative) set. In

between different iterations of our algorithm, the negative values in the eigenvectors

are zeroed and the optimization is continued.

The details of our algorithm can be found in Algorithms 8, 9. Note that the

OLS regression step is just required to compute u which is required for deflation of

the data matrix.

Algorithm 8 Prior Based Eigenanatomy: p-Eigen (Main Algorithm)

1: Input: X, M, θ
2: Standardize the data matrix X: Mean center it and scale to unit variance
3: Initialize the eigenvectors V←M based on the corresponding priors // vi ← mi where
mi is the ith row of M

4: U← ReconOpt(X,V)
5: repeat
6: for i=1 to k do
7: X\i ← X−

∑k
j=1,i6=j ujv

>
j // Deflate X

8: vi ← SPP(X\i,V,mi, θ, i)

9: U← ReconOpt(X,V) // Where V is the matrix with only its ith column updated.
Other columns remain the same as the previous iteration

10: end for
11: until ∆‖V‖ ≤ ε
12: Output: V

Algorithm 9 p-Eigen Sub-algorithm (ReconOpt)

1: Input: X, V //Optimize Reconstruction error for finding ui
2: U← (XX>)−1XV //Performs Ordinary Least Squares Regression.
3: Output: U

6.3 Conclusion

We proposed a novel approach, Prior Based Eigenanatomy (p-Eigen), for fMRI

network analysis which integrates ideas from the matrix decomposition and the

ROI paradigms. p-Eigen leads to statistically refined definitions of ROIs based

on local covariance structure of the data matrix and provides a principled way of
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Algorithm 10 p-Eigen Sub-algorithm Sparse Prior (Based) Projection for finding
vi (SPP)

1: Input: X, V, m, θ, i
2: k ← 1
3: ck ← V:,i //V:,i contains the ith eigenvector.
4: ck ← S(ck,λi) //Soft-Max Thresholding.
5: gk−1 ← 1 //Initialize Gradient.
6: repeat
7: gk ← (X>X + θ ·m>m)ck //Gradient of Rayleigh quotient.

8: γ ← gk·gk
gk−1·gk−1 //Conjugate Gradient.

9: dk ← gk + γ · dk−1

10: ck+1 ← ck + dk

11: ck+1 ← Orthogonalize(ck+1, V:,\i) //Orthogonalize w.r.t. all the other k−1
eigenvectors.

12: ck+1 ← S(ck+1,λi)

13: ck+1 ← ck+1

‖ck+1‖ //Normalize

14: k ← k + 1
15: until ∆c ≤ ε
16: Output: ck+1

incorporating prior information in the form of probabilistic or binary ROIs while

still allowing the data to softly modify the original ROI definitions. In the next two

chapters, we show the empirical performance of p-Eigen on BOLD fMRI and T1

(cortical thickness) imaging data.
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Chapter 7

Prior Based Eigenanatomy

(p-Eigen) for Generating

Subject Specific Functional

Connectivity Networks.

In1 this chapter we show the performance of p-Eigen on resting-state BOLD fMRI

data. In particular, we use p-Eigen to perform a prior constrained sparse decomposi-

tion of each subject’s time series image separately. The signal in the p-Eigen refined

ROIs is then correlated to create subject specific functional connectivity networks.

Functional connectivity is defined as the temporal co-activation of neuronal acti-

vation patterns between anatomically separated regions of the brain (Aertsen et al.

1989) and is thought to be an indicator of functional communication between these

different regions. Typically, functional connectivity studies measure the level of cor-

relation between the time-series of the resting state BOLD signal of the different

1This chapter is based on work in (Dhillon et al. 2014).
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brain regions (Biswal et al. 1997; Damoiseaux et al. 2006; Salvador et al. 2005).

Studying the brain as an integrative network of functionally interacting brain re-

gions can shed new light on large scale neuronal communication in the brain and

how this communication is impaired in neurological diseases (Bullmore and Sporns

2009; Mohammadi et al. 2009; Seeley et al. 2009).

7.1 Related Work

There are two predominant approaches for the analysis of functional connectivity:

• Seed (ROI) Based Approaches: These are straightforward and operate

in the traditional confirmatory network paradigm (Tukey 1977). They involve

computing the correlation between the time series of a given (preselected) seed

brain region (ROI) 2 against all the other brain regions, resulting in a set of

functional connectivity maps of the given brain regions (Biswal et al. 1997;

Cordes et al. 2000). These functional connectivity maps can then be used

to construct resting-state-networks of functionally correlated regions in the

brain (Fox et al. 2005). The seed region can either be selected based on prior

clinical knowledge or it can be selected from the activation map of a separate

task dependent fMRI scan.

• Learning Based Approaches: These approaches use statistical techniques

to explore functional connectivity in the brain, obviating the need to define

a seed region. Typical methods employed are Principal Component Analysis

(PCA) (Friston 1998), Independent Component Analysis (ICA) or its variants

e.g. Group ICA (Beckmann and Smith 2004; Beckmann et al. 2005; Damoi-

seaux et al. 2006; Varoquaux et al. 2010a; Petrella et al. 2011) or hierarchical

2One can compute these correlations either voxel wise or by averaging over the voxels in an
entire ROI.
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methods (Cordes et al. 2002; Salvador et al. 2005; Blumensath et al. 2013).

These methods strive to find a set of orthogonal or independent signals in the

time series that can explain the resting state activity patterns. ICA based

methods are the popular methods in this setting as they can find a set of in-

dependent signals from whole brain voxel-wise data and also due to the public

availability of tools like MELODIC in FSL (Jenkinson et al. 2012) for ICA and

Group ICA of fMRI Toolbox (GIFT) (Calhoun et al. 2001). Subsequently, one

can create brain connectivity networks from the outputs of these approaches

by computing correlations between the different (independent/orthogonal) sig-

nals they find.

The brain networks found by the above approaches are represented as a set of

vertices (brain regions) connected by edges which represent the strength of corre-

lation between those two regions (He and Evans 2010; Stam et al. 2007). Various

independent studies (surveyed here (van den Heuvel and Hulshoff Pol 2010)) have

consistently found a set of eight functional connectivity networks in the brain. One

can use a set of key properties of the network graph e.g. clustering coefficient, cen-

trality and modularity to get further insights into the flow of neuronal signals within

a network (He and Evans 2010; Stam et al. 2007).

The above mentioned approaches for analyzing functional connectivity and con-

structing brain networks suffer from a variety of problems. The Group ICA based

approaches do a group decomposition of the time series’ images of the entire cohort;

they have an averaging effect and erode away any subject specific characteristics of

the network. So, the Group ICA analysis is usually followed by a back reconstruction

step to generate subject specific functional connectivity maps (Smith et al. 2011).

However, it is unclear how to choose a statistically justified threshold to binarize

these maps.
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The seed based approaches also suffer from the problem of averaging the signal

and may be sensitive to ROI placement (Zhang et al. 2012), co-registration errors

and the specific ROI boundaries. These approaches assume that the signal lies

totally within a predefined region. However, the important signal may have slightly

different boundaries than the scientist’s conception. The data representation (or

spatially varying noise) may also lead to strong or weak signal within different

parts of the ROI. Such dataset specific information is not taken into account by a

traditional seed based approach. When effects are localized to the selected region,

and that region is well-defined, a seed based analysis may provide the most sensitive

testing method. However, some conditions involve a network of regions that may

not be fully identified.

Furthermore, it has been shown that decreased/impaired functional connectivity

in certain brain networks, for instance, the Default Mode Network (DMN) has as-

sociation with neurodegenerative disorders e.g. Alzheimer’s Disease (AD) (Greicius

et al. 2004; Sheline et al. 2010), schizophrenia (Liu et al. 2008; Whitfield-Gabrieli

et al. 2009), multiple sclerosis (MS) (Lowe et al. 2008), mild cognitive impairment

(MCI) (Petrella et al. 2011; Agosta et al. 2012; Hedden et al. 2009; Bai et al. 2009).

So, it has become even more imperative to improve statistical analysis methods to

efficiently leverage the scarce patient BOLD fMRI data that is typically available.

We have drawn a clear contrast between our approach and the two related ap-

proaches namely seed based approaches (no influence of data) and Group ICA/PCA

based approaches (only data driven). That said, there has also been substantial

work on incorporating prior information across subjects to build subject specific

functional networks as proposed by this paper.

Some early work that performed PCA on fMRI signal within ROIs (Nieto-

Castanon et al. 2003) clearly foreshadowed p-Eigen. (Thirion et al. 2006) also

proposed a spectral learning based technique for parcellation that delineates homo-
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geneous and connected regions across subjects, providing subject specific functional

networks.

The research that is perhaps closest to ours is (Ng et al. 2009a), (Deligianni

et al. 2011) and (Blumensath et al. 2013). (Ng et al. 2009a) used group replicator

dynamics (GRD) for finding sparse functional networks that are common across

subjects but have subject specific weightings of the brain regions. (Deligianni et al.

2011) used brain anatomical connectivity to constrain the conditional independence

structure of functional connectivity via a multivariate autoregressive model. (Blu-

mensath et al. 2013) perform hierarchical parcellation of the brain with a further

clustering of the parcels to derive spatially contiguous parcels. Closely related is the

work (Ng et al. 2009b) which constrains the PCA output by employing neighborhood

information to learn spatially contiguous clusters.

p-Eigen is complementary to these set of approaches and proposes a new formu-

lation to derive subject specific functional parcels (and hence connectivity networks)

and also the first one to use the networks to derive covariates for MCI and Delayed

Recall prediction. Moreover, unlike any of the above approaches p-Eigen, helps us

maintain a direct correspondence between the anatomy of the same regions across

different subjects hence leading to better clinical interpretability.

7.2 Experiments

Our data consists of time series images of 59 individuals (28 females and 31 males)

with 34 controls and 25 subjects diagnosed clinically with Mild Cognitive Impair-

ment (MCI). Patients were diagnosed according to the criterion of Petersen (2004).

The memory measure used to get the delayed recall score was the Consortium to

Establish a Registry for Alzheimer’s Disease (CERAD) Word List Memory (WLM)

test (Morris et al. 1989). Each time series had a total of 120 points. The basic
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statistics for the cohort are given in Table 7.1.

Images were acquired on a 3T Siemens Trio scanner. The imaging protocol

included the following sequences: 1 mm3 T1-weighted structural MRI and 3×3×3

mm3 resting-state BOLD fMRI covering the entire brain (TR/TE = 4000/30 ms;

Matrix = 64×64; 40 axial slices).

Characteristic Entire Cohort Only Controls Only Patients
(µ± σ) (µ± σ) (µ± σ)

Age 70.4± 8.5 69.9± 9.4 71.1± 7.0
Education 16.7± 2.7 16.4± 3.0 17.2± 2.3

Delayed Recall 6.2± 3.2 8.4± 1.6 3.1± 1.8
Total Hippocampal Vol. 4065.2± 766.8 4281.7± 642.0 3770.8± 835.0

Table 7.1: Basic statistics for the cohort.

7.2.1 Data Preprocessing

We used ANTs (Avants et al. 2009) to preprocess the data and used a subset of the

AAL labels (80 cortical labels out of the total 116 labels) as our seed ROIs (Tzourio-

Mazoyer et al. 2002). The list of 80 cortical labels is in Appendix A. Firstly, we

registered the AAL labels which were in template space to subject T1 space and

then subsequently registered them to the BOLD space. Once in BOLD space, we

multiplied the labels with a gray matter probability mask to smooth the labels and

convert them to probabilities as well as to reject labelings in non-cortical regions.

We embrace a minimalistic approach to resting-state fMRI processing that seeks

to use widely accepted methods to factor out nuisance variables within subject-

space (Glasser et al. 2013). The first step in our process involves motion correcting

each time-slice of the BOLD image to the average BOLD image in order to capture

motion parameters. The first five time slices are discarded before further processing.

We then identify physiological noise with the CompCor algorithm (Behzadi et al.

2007). Motion and CompCor parameters are then residualized off of the time series
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matrix. Subsequently, we apply a band pass filter to the time-series data with

lower and upper frequencies of 0.01 and 0.1 respectively. No spatial smoothing is

performed and all computations are undertaken within the original subject’s BOLD

space.

After subject-specific preprocessing, we used p-Eigen to create the constrained

eigenvectors {vi}ki=1. Once we had the eigenvectors, we used a total of eight labels

for our study on the default mode and hippocampus network. The eight AAL ROIs

that we used along with their modified counterparts after running p-Eigen are shown

in Figures 7.3, 7.4, 7.5, 7.6, 7.7.

It is worth clarifying that since the algorithms for PCA and p-Eigen optimization

are iterative in nature, they need an initialization of eigenvectors. In order to make

a fair comparison we initialize the eigenvectors with the AAL ROIs both for PCA as

well as p-Eigen. We did not have to initialize them this way for PCA, as it is oblivious

to any prior information, and has no correspondence between the eigenvectors and

the ROIs; however we did that just in order to make a fair comparison. In the case

of PCA the eigenvectors drift away freely whereas for p-Eigen they remain close to

the priors based on the strength of the prior weight.

Next, we computed the regularized partial correlations between the mean BOLD

signal across all the 120 time series points, which were used to construct the func-

tional connectivity graphs for all the three methods AAL, PCA and p-Eigen.

Regularized partial correlations have been shown to be a more robust measure

of graph connectivity than simple correlations or partial correlations (Smith et al.

2011; Varoquaux et al. 2010b). We estimated them using Graphical Lasso, which

also imposes sparseness on the estimated partial correlations, making the derived

network more interpretable (Friedman et al. 2008b).

Note that we run p-Eigen and find partial correlations using all the 80 cortical

ROIs in order to explain the covariation in the entire cortex. Finally, we derive
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covariates for MCI classification and delayed recall prediction from only the eight

nodes in the default mode and hippocampus network post hoc due to their strong

association with MCI as has been pointed out by (Petrella et al. 2011; Agosta et al.

2012; Hedden et al. 2009; Bai et al. 2009).

7.2.2 Choosing tunable parameters

We used the Graphical Lasso R package (Friedman et al. 2008b) for estimating

regularized partial correlations and the GLMNET R package (Friedman et al. 2009)

for Elastic Net classification.

The Graphical Lasso has a tunable parameter (hyperparameter) ρ which controls

the amount of regularization (sparsity in the estimated regularized partial correla-

tions), with ρ = 0 corresponding to no regularization. Further, the Elastic Net has

two tunable parameter α and β. α controls the sharing of strength between `2 and

`1 penalties with a smaller α corresponding to a bigger `2 regularization. β scales

the strength of the penalty terms ( `2 and `1) relative to the data term, just as in

any penalized regression. In addition to this, p-Eigen has a tunable parameter θ

which controls the effect of the priors, with higher values corresponding to larger

effect of prior.

We tuned all these parameters in a totally data driven manner via a nested leave

5 out cross validation (CV), where we tried values of ρ, α ∈ [0,1] in steps of 0.02,

β ∈ [0,2] in steps of 0.05 and θ ∈ [0.05, 0.95] in steps of 0.1. In order to be totally

objective and be completely fair to all the methods, we tuned these parameters

separately for all the three methods AAL, PCA and p-Eigen for the tasks of MCI

vs. Normal classification and prediction of Delayed Recall in a memory task. Finally,

we choose the parameters corresponding to the minimum CV error.

The work-flow showing the details of our approach is shown in Figures 7.1 and

7.2.
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Figure 7.1: Work-flow (Part 1) showing our prediction pipeline.

The results reported in the next subsection use the “best” values of these tunable

parameters that we found in the cross validation (CV) and are reported in the

Table 7.2.

MCI vs Control Delayed Recall (Patients)
Parameter p-Eigen AAL PCA p-Eigen AAL PCA

ρ 0.2 0.26 0.66 0.74 (0.64) 0.88 (0.58) 0.88 (0.4)
α 0.94 0.44 0.08 0.02 (0.48) 0.02 (0.72) 0.02(0.36)
β 0.1 2 0.1 1.7 (0.4) 0.7 (1.7) 0.7 (0.9)
θ 0.80 N/A N/A 0.80 N/A N/A

Table 7.2: Best values (minimum CV error on most validation splits) of the tunable
parameters chosen via CV. Parameters for Delayed Recall for Patients in parenthesis.
Note that the implicit value of θ for AAL is 1 and for PCA is 0.
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Figure 7.2: Work-flow (Part 2) showing our prediction pipeline.
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Figure 7.3: Row 1: The original 8 AAL ROIs; Row 2: PCA modified ROIs; Row
3: p-Eigen modified ROIs (θ = 0.5); Row 4: p-Eigen modified ROIs (θ = 0.80) for
a randomly chosen subject. 6 of these 8 ROIs are from the default mode network
(Precuneus (L/R), Angular Gyrus (L/R), Frontal Medial Orbital Lobe (L/R)) and
the remaining two are from left and right parts of hippocampus.
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Figure 7.4: Modified Frontal Medial Orbital Lobe ROIs as a function of θ for a
randomly chosen subject.

Figure 7.5: Modified Hippocampal ROIs as a function of θ for a randomly chosen
subject.
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Figure 7.6: Modified Angular Gyrus ROIs as a function of θ for a randomly chosen
subject.
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Figure 7.7: Modified Precuneus ROIs as a function of θ for a randomly chosen
subject.

7.2.3 Results

We used our functional connectivity graph network information for classifying con-

trols vs MCI. We also used the network information to predict the Delayed Recall

for the entire cohort as well as for the patients.

In all the experiments reported below, we perform a leave-5-out cross validation

(separate from the one used to tune the hyperparameters) i.e. training on 54 and

testing on 5, and this procedure was repeated a 1000 times. We used an Elastic Net

classifier whose parameters were tuned as described earlier.

The base features that we used in our classification tasks were, age, education,

gender and Hippocampal Volume (Total left and right, as well as separately for left

and right hemisphere) of the subject. As described earlier, in addition to this, we

used the sparse inverse correlation matrix of the DMN network (which was estimated

using Graphical Lasso) as features.
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The results are summarized in the Tables 7.3 and 7.4.

Feature Set MCI vs. Normal Delayed Recall (All) Delayed Recall (Patients)
(µ± σ) (µ± σ) (µ± σ)

Base Features 0.42 ± 0.08 2.68 ± 0.35 1.47 ± 0.30
+ p-Eigen 0.24 ± 0.06 1.83 ± 0.29 0.97 ± 0.18

Table 7.3: Results showing p-Eigen better than just using the Base Features. For
MCI vs. Normal we report mean classification error (e.g. 0.24  24%), whereas

for Delayed Recall we report Mean Absolute Prediction Error (
∑n

i=1
‖yi−ŷi‖

n ). The
p-values from two sample t-tests for all columns are 2.2× 10−16 .

# FeatureSet MCI vs. Nor-
mal

Delayed Re-
call (All)

Delayed Re-
call (Patients)

(µ± σ) (µ± σ) (µ± σ)
1. AAL 0.36 ± 0.05 2.34 ± 0.21 1.41 ± 0.28
2. PCA 0.34 ± 0.06 2.41 ± 0.35 1.35 ± 0.21
3. p-Eigen 0.24 ± 0.06 1.83 ± 0.29 0.97 ± 0.18

Table 7.4: Results showing p-Eigen better than AAL and PCA ROI labels. For
MCI vs. Normal we report mean classification error (e.g. 0.24 24%), whereas for

Delayed Recall we report Mean Absolute Prediction Error (
∑n

i=1
‖yi−ŷi‖

n ). All the
classifiers also used Base Features in addition to the graph measurement features
from ROIs. The p-values from two sample t-test for p-Eigen vs AAL and PCA are
2.2× 10−16.

The obtained networks for the AAL, PCA and p-Eigen labels are shown in

Figures 7.10, 7.12 and the corresponding heatmaps are show in Figures 7.11 and 7.13.

The Dice coefficient for p-Eigen as a function of the prior strength parameter θ

is shown in Figure 7.8. A prior strength of zero corresponds to totally data driven

(PCA) based decomposition and a prior strength of one corresponds to using only

the prior. As expected, there is increasing overlap between the p-Eigen refined ROIs

and the true AAL ROIs as the prior strength increases.

Our main findings are:

1. p-Eigen network measurements along with the base features are a significantly

better predictor of both MCI status and Delayed Recall score compared to

96



0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prior Strength θ

D
ic

e
 C

o
e
ff

ic
ie

n
t

Figure 7.8: Dice coefficient for p-Eigen for the randomly chosen subject (same as
Figure 7.3) with AAL ROIs as a function of the prior strength parameter θ. The

plotted dice coefficient ( =2 |A∩B||A|+|B| , where A is the p-Eigen modified ROI and B is

the true AAL ROI ) was computed as the average of dice coefficients over all the 8
DMN ROIs.

using the base features alone.

2. p-Eigen network measurements along with the base features are a significantly

better predictor of both MCI status and Delayed Recall score compared to

using AAL or PCA ROI graph measurements along with the base features.

7.2.4 Robustness of p-Eigen

In this section we first show some additional experiments which highlight the ro-

bustness of our approach. Particularly, we consider alternate definitions of initial

ROIs and the use of other measures of correlation to construct networks.

Sensitivity to the Choice of ROIs.

To investigate the sensitivity of our results we considered an alternative ROI set

constructed using Ward Clustering (Michel et al. 2012). We parcellated the average

time-series image of the subjects using Ward Clustering (we used the implementation

from NILEARN (http://nilearn.github.io/)) with 80 clusters and then used
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those as the prior ROIs for p-Eigen. The corresponding method is called p-Eigen

(Ward).

In addition, we also compared p-Eigen against another baseline. We created

subject specific parcellations by intersecting AAL ROI labels with the subject spe-

cific ROIs obtained by performing Ward Clustering on each subject’s time series

image separately and keeping only those clusters that were larger than 100 voxels.

This provides a simple baseline method to construct subject specific parcellations

and hence functional connectivity networks.

The results are shown in Table 7.5 and the corresponding intersected ROIs are

shown in Figure 7.9. We can make two observations from the results. Firstly,

p-Eigen with AAL ROIs is statistically significantly better than subject specific

parcellations constructed by intersecting AAL labels with Ward clusters. This shows

that subject specific functional parcellations constructed using p-Eigen contain more

discriminative signal to aid MCI and delayed recall prediction.

Secondly, p-Eigen with AAL ROIs is significantly better (though marginally)

than p-Eigen using Ward Clustered ROIs. We conjecture that it is due to the Ward

Clustered ROIs being noisy as can be seen in Fig. 7.9. When we further smoothed

them and used them to constrain p-Eigen (p-Eigen (Ward)), the difference was no

longer significant.

So, p-Eigen is reasonably robust to the choice of ROIs used for priors, unless

they are very noisy. In such cases, smoothing might improve performance.

Using Pearson’s Correlation for Constructing Networks.

As mentioned earlier, regularized partial correlations have been shown to be

a robust measure of graph connectivity. However, its estimation procedure via

Graphical Lasso has a tunable parameter ρ, which needs to be chosen via cross

validation. So, we were interested in knowing if we can obviate the need for it by

constructing the functional connectivity network using Pearson’s correlation which
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# FeatureSet MCI vs. Nor-
mal

Delayed Re-
call (All)

Delayed Re-
call (Patients)

(µ± σ) (µ± σ) (µ± σ)
1. Ward Cluster-

ing
0.33 ± 0.08 2.24 ± 0.23 1.21 ± 0.24

2. p-Eigen
(Ward)

0.28 ± 0.05 2.07 ± 0.26 1.10 ± 0.22

3. p-Eigen
(AAL)

0.24 ± 0.06 1.83 ± 0.29 0.97 ± 0.18

p-value (2. vs 3.)
0.045

(2. vs 3.)
0.041

(2. vs. 3)
0.066

(1. vs 3.)
2.7× 10−6

(1. vs 3.)
1.4× 10−7

(1. vs. 3)
3.4× 10−5

Table 7.5: Results comparing 1). p-Eigen with Ward Clustering based ROIs and 2).
p-Eigen with AAL ROIs vs p-Eigen with Ward Clustering based ROIs. For MCI vs.
Normal we report mean classification error (e.g. 0.24 24%), whereas for Delayed

Recall we report Mean Absolute Prediction Error (
∑n

i=1
‖yi−ŷi‖

n ). All the classifiers
also used Base Features in addition to the graph measurement features from ROIs.
Note: The reported p-values are from a two sample t-test.

Figure 7.9: Figure showing only those Ward ROIs that had a non-zero intersection
with any of the 8 AAL ROIs and were larger than 100 voxels. There were a total of
7 such ROIs.
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has no tunable parameters.

The results are shown in Table 7.6. As can be seen p-Eigen with graph con-

structed using Graphical Lasso performs significantly better than p-Eigen with the

graph constructed using Pearson’s correlation. This can be due to the fact that

since regularized partial correlations explain away the effect of all the other nodes

in the network while computing correlation between a pair of nodes, they are more

robust. Our finding is also in consonance with the finding by (Smith et al. 2011).

# FeatureSet MCI vs. Nor-
mal

Delayed Re-
call (All)

Delayed Re-
call (Patients)

(µ± σ) (µ± σ) (µ± σ)
1. AAL (Pear-

son)
0.39 ± 0.05 2.51 ± 0.23 1.57 ± 0.28

2. PCA (Pear-
son)

0.38 ± 0.06 2.59 ± 0.37 1.46 ± 0.21

3. p-Eigen
(Pearson)

0.31 ± 0.04 2.09 ± 0.31 1.11 ± 0.11

4. p-Eigen
(GLasso)

0.24 ± 0.06 1.83 ± 0.29 0.97 ± 0.18

p-value (3. vs 4.)
1.3× 10−4

(3. vs 4.)
2.1× 10−3

(3. vs. 4)
3.3× 10−4

Table 7.6: Results showing p-Eigen (AAL) with Graphical Lasso better than p-Eigen
using Pearson’s correlation. For MCI vs. Normal we report mean classification error
(e.g. 0.24 24%), whereas for Delayed Recall we report Mean Absolute Prediction

Error (
∑n

i=1
‖yi−ŷi‖

n ). All the classifiers also used Base Features in addition to the
graph measurement features from ROIs. All other p-values for each column were
2.2× 10−16.

7.3 Discussion

We proposed a new approach for deriving data-driven subject specific functional

parcellations. The strong and robust empirical performance of p-Eigen makes it a

viable alternative to the seed based or totally data driven approaches. p-Eigen also

enhances the findings of several MCI clinical studies.
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Multiple clinical studies have reported that there is change in connectivity in

default mode network (DMN) for MCI patients as well as for the patients who

progress onto clinical Alzheimer’s Disease (AD) (Greicius et al. 2004; Sheline et al.

2010; Petrella et al. 2011; Agosta et al. 2012; Hedden et al. 2009; Bai et al. 2009;

He and Evans 2010).

There are variations in ROI definitions across these studies and furthermore

there are some variations on the ROIs thought to be the primary nodes. In this

paper, we tried to choose the ROIs corresponding to one of the most widely accepted

definitions of DMN. However, differences in definition of the primary nodes of the

network maybe a source of some variation across the studies. Nonetheless, there are

two consistent and general findings across most MCI studies.

• There is reduced mean connectivity across all the nodes in the DMN for the

MCI patients compared to the healthy controls.

• There is reduced mean connectivity of the hippocampus with the other nodes

of the DMN (Frontal Medial Orbital, Angular Gyrus, Precuneus in our case)

for the MCI patients compared to the healthy controls.

The networks and heatmaps generated by our approach (Figures 7.10, 7.12, 7.11

and 7.13) for a randomly chosen patient and control illustrate these findings.

First, all the three approaches (AAL, PCA, p-Eigen) highlight that there is

reduced mean DMN connectivity in the networks of MCI patients compared to the

controls. However, this reduction (averaged over all the subjects) is only significant

(p ≈ 0.03 in Welch’s t-test) for p-Eigen ROIs. The corresponding p-values for AAL

and PCA are 0.09 and 0.11 respectively.

Second, the memory network is disrupted in patients; they have limited or no

connectivity of hippocampus with the DMN. This contrast is more evident in the

case of p-Eigen ROIs as the Hippocampus has strong connections to DMN on aver-
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age for the controls but is not connected (or is weakly connected) to the nodes of

the DMN for the patients. In the case of AAL, the Hippocampus also has strong

connections to DMN for the controls but the change is less drastic when we com-

pare to patients as some patients also have significant hippocampus connectivity to

DMN. Lastly, in the case of PCA, there is no hippocampus connectivity with DMN

in the case of patients, but the same is true for controls also, as the PCA networks

have very few connections, in general.

A quantitative evaluation of mean connectivity of hippocampus with the nodes

of the DMN, shows that the reduction in mean connectivity between controls and

patients is highly significant (p < 0.01) for p-Eigen. For AAL and PCA it is again

insignificant, however, with a trend towards statistical significance.

We conjecture that it is due to the ability of p-Eigen ROIs to highlight these

differences (which have also been confirmed by multiple studies) between controls

and patients, that it does a better job of MCI vs. Control classification and Delayed

Recall prediction compared to AAL and PCA.

7.3.1 Limitations

In summary, we showed that p-Eigen better resolves subtle functional patterns that

separate MCI from controls and that this is largely consistent with past research.

It is also possible that changes in DMN may predict those who convert from MCI

to AD and those who do not. While we cannot address this question, it is possible

that our MCI data contains subjects of both types. Although this is a limitation in

this study, it leads to the possibility that p-Eigen may be extracting signal that is

relevant to separating those who do from those who do not progress to AD. This

will be a topic of future research. A second limitation of our research is that we

explored only a single parcellation scheme, i.e. the AAL. While other parcellation

schemes e.g. (Klein and Tourville 2011; Yeo et al. 2011) may reveal different results,
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Figure 7.10: Default Mode Networks for a randomly chosen control. Top-to-Bottom
AAL, PCA, pEigen. Key: FMO- Frontal Medial Orbital.
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Figure 7.11: Heatmaps for brain networks connectivity for the same randomly
chosen control as above. AAL, PCA, pEigen (L-to-R). Key: FMO- Frontal Medial
Orbital, AG- Angular Gyrus, P- Precuneus, Hipp.- Hippocampus.

our focus on the relatively consistently defined DMN mitigates this possibility. We

did show results which used data-driven Ward Clustering based parcellations and

showed that p-Eigen is reasonably robust to the definition of ROIs. However, we

think that this needs to be explored more as connectome analyses are known to

be sensitive to functional homogeneity (Zuo et al. 2013). We also note that a

full exploration of the parameter space of fMRI pre-processing decisions may alter

the results reported here. For instance, though we perform motion correction but

there might be some residual motion effects in the signal that could affect our

results (Van Dijk et al. 2012; Power et al. 2012). We chose a minimal pre-processing

pipeline with reasonable control for motion and other nuisance parameters widely

recognized as problematic. The fact that we employ a prediction framework and

consistent processing across all algorithms compared also mitigates this limitation,

although it remains considerable. Finally, we note that we explored only one out of

the many possible applications of p-Eigen. Additional work in structural imaging

and structural-functional decomposition will be considered in the future.
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Figure 7.12: Default Mode Networks for a randomly chosen patient. Top-to-Bottom
AAL, PCA, pEigen. Key: FMO- Frontal Medial Orbital.
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Figure 7.13: Heatmaps for brain networks connectivity for the same randomly
chosen patient as above. AAL, PCA, pEigen (L-to-R). Key: FMO- Frontal Medial
Orbital, AG- Angular Gyrus, P- Precuneus, Hipp.- Hippocampus.

7.4 Conclusion

The subject specific parcellations generated by p-Eigen were used to construct sub-

ject specific functional connectivity networks. These networks showed reduced sen-

sitivity to ROI placement for a cohort of subjects which included people diagnosed

with MCI. The network measures gathered from our refined ROIs significantly aid

classification of early Mild Cognitive Impairment (MCI) as well as the prediction of

Delayed Recall in a memory task when compared to metrics derived from standard

registration-based ROI definitions, totally data driven methods, a model based on

standard demographics plus hippocampal volume and state-of-the-art Ward Clus-

tering parcellations. We showed that the use of p-Eigen enhances the detection of

previously demonstrated findings in this population, namely that there is reduced

mean connectivity and disruption of the connections of hippocampus with DMN for

MCI patients.
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Chapter 8

Prior Based Eigenanatomy

(p-Eigen) for Generating

Structural (T1) Imaging Brain

Parcellations

In this chapter we show the performance of p-Eigen on structural (cortical thickness)

imaging data. We use p-Eigen to create refined cortical labels which are then used

as features in a classifier to classify Mild Cognitive Impairment (MCI).

8.1 Experimental Results

Our data consists of images from 222 individuals with equal number of males and

females of whom 122 were diagnosed clinically with Mild Cognitive Impairment

(MCI) and the remaining 100 were normal controls. The average age of the co-

hort was 71.33. All images were acquired with a Siemens Trio 3.0 Tesla MRI

scanner. The analysis of T1 images was done using publicly available Advanced
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Normalization Tools (ANTS, http://www.picsl.upenn.edu/ANTS/) and the as-

sociated pipelining framework PipeDream (http://sourceforge.net/projects/

neuropipedream/) which mapped each subject to an existing, elderly/neurodegenerative

population template, built from images acquired from the same scanner and imaging

parameters.

We used two cortical label (probabilistic ROIs) definitions for our experiments 1).

Non-Rigid Image Registration Evaluation Project (NIREP), (http://www.nirep.

org/), 32 labels in total and 2). LONI Probabilistic Brain Atlas (LPBA40) (Shat-

tuck et al. 2008), 55 labels in total.

We ran p-Eigen independently for each label set with varying values of prior

strengths, θ = [0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0].

8.1.1 Qualitative Results

The figures below show slices of axial and sagittal section labelings for unconstrained

PCA, true cortical labels (NIREP and LPBA40) and p-Eigen.

Note that in the unconstrained PCA, the same label is assigned to parts of the

left frontal gyrus and the left superior temporal gyrus (shown by arrows in figure)

since it has no notion of anatomy; on the other hand, p-Eigen, since it is anatomical

prior driven does not join distant structures which aids interpretability.

Another interesting observation is that both p-Eigen and unconstrained PCA

have assigned the same label to corresponding regions in the left and right hemi-

spheres. This occurs less frequently in p-Eigen as we have constrained it via anatom-

ical priors.

8.1.2 Classification of MCI vs Controls

We hypothesize that p-Eigen will improve over basic ROIs on (MCI vs Controls)

classification results by allowing the summary measurements derived from the imag-
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Figure 8.1: Results for LPBA40 labels. Left to right- Unconstrained PCA, prior
LPBA labels, p-Eigen labels. The arrows show left frontal gyrus and the left superior
temporal gyrus. The value of the prior strength θ for p-Eigen is 0.2, chosen on
validation set. Note that not all the 55 anatomical priors can be seen in this slice.
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Figure 8.2: Results for NIREP labels. Left to right- Unconstrained PCA, prior
NIREP labels, p-Eigen labels. The value of the prior strength θ for p-Eigen is 0.5,
chosen on validation set. Note that not all the 32 anatomical priors can be seen in
this slice.
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ing data to adapt to the underlying signal. We also hypothesize that p-Eigen locality

will improve over unconstrained PCA-based classification.

We use the projections (eigenvectors projected onto the data matrix) resulting

from unconstrained PCA, p-Eigen and prior cortical labels to distinguish individuals

with Mild Cognitive Impairment (MCI) from normal aging individuals (Zhou et al.

2011). Since it is a classification problem, we used logistic regression and randomly

split the data into training (80%), validation (10%) and testing (10%). Firstly, we

use cross validation to determine the best value of prior strength parameter (θ); we

train on the training data and test on validation data with varying prior strengths as

mentioned above and then choose the best value of prior strength as the one which

gave the least classification error on the validation set. The best prior strength value

was θ = 0.5 for NIREP labels and θ = 0.2 for LPBA40 labels.

Next, with these values of λ we trained p-Eigen on the entire training and val-

idation set and tested on the test set. This whole procedure was repeated 10000

times and the classification accuracies are given in Table 8.1.

Algorithm (µ± σ) NIREP LPBA40
Unconstrained PCA 62.58%± 4.5% 62.58%± 4.5%
ROI Cortical Labels 66.05± 3.9% 65.95%± 3.6%
p-Eigen 67.96%± 2.3% 67.15%± 3.2%

Table 8.1: Test Set classification accuracies averaged over 10000 runs (More details
in text). p-Eigen is significantly (p − val < 0.0001 in paired t-test) better than
Unconstrained PCA and ROI Cortical Labels

As can be seen from the table, the p-Eigen significantly (paired t-test) outper-

forms unconstrained PCA as well as the approach which just uses cortical ROI labels

hence leading to a classifier which can better distinguish MCI patients from normal

controls.
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Chapter 9

Conclusion & Future Work

In this thesis we made multiple contributions. First, we proposed three algorithms

for learning word embeddings (eigenwords) which are fast to train, have strong the-

oretical properties, can induce context specific embeddings and have better sample

complexity for rare words. All the algorithms had a Canonical Correlation Analysis

(CCA) style eigen-decomposition at their core. We performed a thorough evaluation

of eigenwords learned using these algorithms, and showed that they were compara-

ble to or better than other state-of-the-art algorithms when used as features in a

set of NLP classification tasks. Eigenwords are able to capture nuanced syntactic

and semantic information about the words. They also have a clearer theoretical

foundation than the competing algorithms, which allows us to bound their error

rate in recovering the true hidden state under linearity assumptions.

Second, we showed that in order to get good performance with spectral embed-

dings (or any embeddings which employ matrix factorization on word co-occurrence

matrices) we need to transform the data, in particular, transform the word counts

by taking their square-root. This makes the result look more Gaussian and hence

provide better fits and better embeddings especially when using models of data

generation which make Gaussianity assumptions e.g. CCA.
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Third, we proposed Eigenanatomy (EANAT), a general framework for sparse

matrix factorization for brain images. EANAT incorporates neuroanatomical prior

knowledge in the form of connectedness and smoothness constraints. We further

augmented it and proposed p-Eigen which incorporates even more domain knowl-

edge and identifies a data-driven matrix decomposition constrained by probabilistic

regions of interest (ROIs). We provided efficient optimization algorithms for EANAT

and p-Eigen.

The parcellations generated by both EANAT and p-Eigen are able to extract

highly discriminative information which helps us validate network-specific hypothe-

ses and significantly improve classification of Mild Cognitive Impairment.

Fourth, we showed that linear models help us attain state-of-the-art performance

on two domains– text and brain imaging and there is no need to move to more

complex non-linear models, e.g. Deep Learning based models. In addition, spectral

learning methods are highly scalable and parallelizable and can incorporate the

latest advances in numerical linear algebra as black-box routines.

There are many open avenues for future research building on the above spectral

methods.

1. Our word embeddings are based on modeling individual words based on their

contexts; it will be interesting to induce embeddings for entire phrases or

sentences. There are multiple possibilities here. One could directly model

phrases by considering a phrase as a “unit” rather than a word, perhaps taking

the context of a word or phrase from connected elements in a dependency

or constituency parse tree. Another possibility is to learn embeddings for

individual words but then combine them in some manner to get an embedding

for a phrase or a sentence; some relevant work on this problem has been done

by (Socher et al. 2012, 2013).
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2. Closely related is the idea of semantic composition. Recent advances in spec-

tral learning for tree structures e.g. (Dhillon et al. 2012a; Cohen et al. 2012)

may be able to be extended to provide scalable principled alternative methods

to the recursive neural networks of (Socher et al. 2012, 2013).

3. Also it will be fruitful to study embeddings where the contexts are left and

right dependencies of a word rather than the neighboring words in the surface

structure of the sentence. This might give more precise embeddings with

smaller data sets.

4. We can also borrow ideas and approaches from the brain imaging work and

incorporate more domain knowledge into learning of eigenwords. For example,

one could envision using ontologies like WordNet (Fellbaum 1998) as priors in

an otherwise data-driven embedding learning.

5. On the brain imaging front it will be desirable to model even more complicated

priors e.g. arbitrary variance-covariance structures between the ROIs. This

might require extending spectral methods to handle more more sophisticated

Bayesian models with hierarchical priors.

6. Recent work modeling the brain activity associated with textual stimulus (Mitchell

et al. 2008) could benefit from both parts of this thesis. One would ideally

learn joint models of word or sentence embeddings along with functional time-

series brain imaging data, akin to (Fyshe et al. 2014).

114



Appendix A

Appendix

A.1 Eigenwords

A.1.1 CCA by SVD

Proof of Eq. 2.3.

Assuming W is the n× v word matrix and C is the n×hv context matrix where

n is the number of tokens in the corpus, h is the context size and v is the vocabulary

size. Further Cwc = W>C, Ccc = C>C and Cww = W>W . The CCA objective

is to find vectors Φw and Φc such that the linear combinations sw = Φ>wW and

scc = Φ>c C are maximally correlated.

max
Φw,Φc

E[s>wscc]√
E[s>wsw]

√
E[s>ccscc]

(A.1)

i.e.

max
Φw,Φc

Φw
>CwcΦc√

Φw
>CwwΦw

√
Φc
>CccΦc

(A.2)

This is equivalent to

max
Φw,Φc

Φw
>CwcΦc (A.3)
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subject to unit-norm constraints Φw
>CwwΦw = I and Φc

>CccΦc = I.

Then, performing full SVD on Cww and Ccc, we get

Cww = VwΛwV
>
w

Ccc = VcΛcV
>
c

where V >w Vw = Iv×v and V >c Vc = Ihv×hv.

Define change of basis as

uw = Λ−1/2
w V >w W

ucc = Λ−1/2
c V >c C

Now, in this new transformed basis:

E[u>wuw] = Λ
−1/2
w V >w WV >w ΛwVwVwΛ

−1/2
w = Iv×v and similarly E[u>ccucc] = Ihv×hv,

as desired.

Transform the coefficients Φw and Φc, so that sw and scc can be expressed as

linear combination in the new basis:

sw = Φ>wW = g>Φwuw

scc = Φ>c C = g>Φcucc

where gΦw = ΛwVwΦw and gΦc = ΛcVcΦc.

So, the CCA optimization problem can be cast as the following maximization

criteria
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max
gΦw ,gΦc

g>ΦwDwcgΦc (A.4)

subject to unit-norm constraints g>ΦwgΦw = I and g>ΦcgΦc = I.

where Dwc = Λ
−1/2
w V >w CwcVcΛ

−1/2
c .

The solution to above is nothing but the SVD of Dwc.

Finally, we can construct the original coefficient matrices Φw and Φc as Φw =

VwΛ
−1/2
w GΦw and Φc = VcΛ

−1/2
c GΦc , where GΦw and GΦc are the matrices corre-

sponding to the vectors gΦw and gΦc respectively.

Now, in our case Cww = W>W is the diagonal word occurrence matrix with

the words counts in the corpus on the diagonal, so Λ
−1/2
w is nothing but C

−1/2
ww and

Vw = I.

The context matrix Ccc = C>C, though is not diagonal but it can be approxi-

mated by its diagonal. One could also approximate it as a diagonal matrix plus its

first order Taylor’s expansion, but it would make the resulting matrix substantially

more dense and hence the computations intense. In our experiments we found no

improvement in prediction accuracy by adding the first order Taylor’s term, so we

approximate Ccc just by its diagonal.

A.1.2 Chapter 2: Theorem 1.

Proof:

With out loss of generality, we can assume that W and C have been transformed

to their canonical correlations coordinate space. So V ar(W) is the identity and

V ar(C) is the identity, and the Cov(W,C) is a diagonal with non-increasing values

ρi on the diagonal (namely the correlations / singular values). We can write α and β

in this coordinate system. By orthogonality we now have βi = ρiαi. So, E(Y −βW)2

is simply
∑

(αi−βiρi)2. Which is
∑
α2
i (1−ρ2

i ). Our estimator will then have γi = βi
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for i smaller than k and γi = 0 otherwise. Hence (Ŷ − β>W)2 =
∑∞

i=k+1 β
2
i .

So if we pick k to include all terms which have ρi ≥
√
ε our error will be less

than ε
∑∞

i=k+1 α
2
i ≤ ε.

q.e.d.

A.1.3 Chapter 3: Theorem 2.

Proof:

The key is that CCA can be understood using the same machinery as is used for

analyzing linear regression. In this context we want to recover the word of length v

given its context which can be expressed in terms of regression. For a more in-depth

discussion of how CCA relates to regression, see Glahn (1968), for example. Thus,

consider the case of predicting a vector y of length v (the word) from a vector x

(the context, which is of dimension 2hv in the one step CCA case and dimension 2k

in the two step CCA). We consider the linear model

y = xβ + ε

Note that, we are predicting only one dimension of our v-dimensional vector y at a

time.

We want to understand the variance of our prediction of a word given the context.

As is typical in regression, we caluclate a standard error for each coefficient in our

contexts, ≈ O( 1√
n

). In the one step CCA, X = [L R], and running a regression

we will get a prediction error on order of hv
n , but since we have v such y’s we get a

total prediction error on the order of hv2

n .

For the two-step case we take X = [LΦL RΦR]. As mentioned earlier, note

that now we are working with about 2k predictors instead of 2hv predictors. If we

knew the true ΦL and ΦR, and thus the true subspace covered by our predictors,

118



the regression error would be on the order of kv
n (again, since there are v entries

in our vector y). Instead, we have an estimation of ΦL and ΦR. If these were

computed on infinite amounts of data (and hence we would be arbitrarily close to

the true subspace)–we would be done. However since they come from a sample, we

are using Φ̂L and Φ̂R which are approximation to the ideal ΦL and ΦR. So our

task is to understand the error introduced by this sample approximation of the true

CCA. First, we develop some notation and concepts found in Stewart (1990).

Consider two subspaces V and V̂ and respective matrices containing an orthonor-

mal basis for these subspaces V and V̂. Let γ1, γ2, . . . be the singular values of the

matrix V>V̂, then define

θi = cos−1 γi

and define the canonical angle matrix Θ = diag(θ1, . . . , θk).

These values of Θ capture the effect of using estimated singular vectors, V̂ to

form an underlying subspace, as compared to the true subspace formed by the true

singular vectors V stemming from infinite data. The largest canonical angle captures

the largest angle between any two vectors- one from the perturbed subspace and

one from the true subspace. The second largest canonical angle captures the second

largest angle between any two vectors given that they are orthogonal to the original

two, and so on. In this proof we will only make use of the largest canonical angle to

provide a loose upper bound on the error stemming from the imperfect estimation

of the true subspace.

Now, consider a matrix Â = A + E and take the thin singular value decompo-

sition of A and Â (and here we take the liberty of applying diag in a block matrix
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sense)

A = [U1U2]diag(Λ1,Λ2)[V1V2]>

Â = [Û1Û2]diag(Λ̂1, Λ̂2)[V1V2]>

In our case we have that λi = 0 for all λi ∈ Λ2.

From Stewart and Sun (1990), we have that

max{|| sin Θ||2, || sin Ψ||2} ≤ c||E||2 (A.5)

for some constant c where here Θ is the matrix of canonical angles formed from the

subspaces of U and Û, and Ψ is the matrix of canonical angles formed between the

subspaces of V and V̂. Note that since Θ and Ψ are diagonal matrices the induced

norms || · ||2 recover the largest canonical angle of each subspace, and hence we

can simultaneously derive an upper bound for the largest canonical angle of either

subspace.

We have now developed the machinery we need to analyze the two step CCA.

Without loss of generality, assume that L>L = R>R = I, then ultimately we

are interested in projection onto the subspace spanned by B = [LU1 RV1]. Note

that because of our assumption the projection onto LU1 is LU1U>1 L> and similarly

for RV1. Furthermore, note from our assumptions that LU1 forms an orthonormal

basis for the space spanned by LU1 (since

(LU1)>(LU1) = U>1 L>LU1 = I

and similarly for LÛ1, RV1, and RV̂1).

Lastly, and critically, the singular values of U>1 L>LÛ1 are identical to those

of U>1 Û1 (similarly for RV1 etc.) and so from above we have that the matrix of
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canonical angles between the subspaces LU1 and LÛ1 are identical to Θ, the matrix

of canonical angles between U1 and Û1, and likewise the matrix of canonical angles

between the subspaces RV1 and RV̂1 are identical to Ψ, the matrix of canonical

angles between V1 and V̂1, and thus the maximal angle enjoys the same bound

derived above. If we can get a handle on the spectral norm of E, which will come

directly from random matrix theory, then we can bound the largest canonical angle

of our two subspaces.

We know that E is a random matrix of iid Gaussian entries with variance 1
n ,

and that the largest singular value of a matrix is the spectral norm of the matrix.

From random matrix theory we know that the square of the spectral norm of E is

O(
√
hv√
n

), from say Rudelson and Vershynin (2010).

The strategy will be to divide the variance in the prediction of y into two separate

parts. First the variance that comes from predicting using the incorrect subspace,

and then the variance from regression (as stated above) if we had the correct sub-

space.

Let X̂ = [LΦ̂L RΦ̂R] (i.e. the incorrect subspace) and X = [LΦL RΦR] (the

true version). To get a handle on predicting with the incorrect subspace (we will

consider the subspaces LΦL and RΦR separately here, but note that from (A.5) the

angles between the subspaces and their respective perturbed subspaces are bounded

by a common bound) we note that, for the regression of Y on X we have

β|X̂ =
Cov(Y, X̂)

Var(X̂)

and

β|X =
Cov(Y,X)

Var(X)
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and

Cov(Y,X) = Cov(Y, X̂)

so trivially

β|X̂ = β|X ∗ Var(X)

VarX̂

= β|X ∗ Var(X)

Var(X) + Var(X− X̂)

Let ŷ be the the estimate of y from the true subspace, and ˆ̂y be the estimate from

the perturbed subspace. For the first part of our strategy, bounding the error that

comes from predicting with the incorrect subspace, we want to bound E(ŷ − ˆ̂y)2.

We have

[
ŷ − ˆ̂y

]2
=
[
β|X ∗ x− β|X̂ ∗ x

]2

=
[
(β|X− β|X̂) ∗ x

]2

=

[(
β|X− β|X Var(X)

Var(X) + Var(X− X̂)

)
∗ x

]2

=

[
β|X

(
1− Var(X)

Var(X) + Var(X− X̂)

)
∗ x

]2

=

[
β|X ∗ x

(
Var(X− X̂)

Var(X) + Var(X− X̂)

)]2

=

[
ŷ ∗

(
Var(X− X̂)

Var(X) + Var(X− X̂)

)]2

(A.6)

Because we are working with a ratio of variances instead of actual variances,

then without loss of generality we can set Var(X̂) = 1 for all predictors.

Now, we don’t really care what the exact ’true’ X’s are (formed with the true

singular vectors), because we only care about predicting y and not actually recov-
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ering the true β’s associated with our SVD. This means we do not suffer from the

usual constraints imposed on the erratic behavior of singular vectors. Usually one

must handle this kind of error with respect to the entire subspace since singular

vectors are highly unstable. In our case, however, we are free to compare to any

’true’ vectors we like from the correct subspace, as long as they span the entire true

subspace (and nothing more).

We will define a theoretical set of predictors to compare with, then. We are

doing this to obtain an upper bound for the total possible variance of Var(x− x̂) for

any acceptable set of x’s in the true underlying subspace (where we take acceptable

to mean that the x’s span the true subspace and nothing more).

We handle each subspace LÛ1 and RV̂1 separately. The construction is to take

our first vector and ’choose’ a vector from the true subspace that lies such that the

angle between the two vectors is the maximal canonical angle between the true and

perturbed subspaces.

We proceed to our second predictor and choose a vector from the true subspace

such the second ‘true’ predictor is orthogonal to the first. Note that the angle

between our second observed x̂ and the second chosen x is at most the maximal

canonical angle by assumption. Again, because we don’t care about the β’s as-

sociated with our true singular vectors, but only about prediction quality of our

perturbed subspace, we need not be worried that our ’chosen’ vectors might not be

the true singular vectors. We continue in this manner until we have expired all of

our predictors from both sets of spaces.

We know from above that the sine of the maximal angle of of both sets of

subspaces is O
(√

hv√
n

)
and so we have that the maximal variation

Var(X− X̂)

Var(X̂)
∼ O

(√
hv√
n

)
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and so from A.6 we have

E(ŷ − ˆ̂y)2 = E

[
ŷ ∗O

(√
hv√
n

)]2

≈ O
(
hv

n
∗ 1

v

)
= O

(
h

n

)

We have v of these to predict, so we have a total error attributable to subspace

estimation on the order of hv
n . Adding regression error as we did from above, which

is on the order of kv
n we get a total error of (h+k)v

n . We recall that the error from

the one step CCA is on the order of hv2

n which yields an error ratio of h+k
hv .

q.e.d.

A.1.4 Chapter 3: Lemma 1 and Theorem 3.

Our goal is to find a v×k matrix A that maps each of the v words in the vocabulary

to a k-dimensional state vector. We will show that the A we find preserves the

information in our data and allows a significant data reduction.

Let L be an n× hv matrix giving the words in the left context of each of the n

tokens, where the context is of length h, R be the corresponding n× hv matrix for

the right context, and W be an n × v matrix of indicator functions for the words

themselves.

We will use three assumptions at various points in our proof:

Assumption 1. L, W, and R come from a rank k HMM i.e it has a rank k

observation matrix and a rank k transition matrix both of which have the same

domain.

For example, if the dimension of the hidden state is k and the vocabulary size

is v then the observation matrix, which is k× v, has rank k. This rank condition is

similar to the one used by Siddiqi et al. (2010).
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Assumption 1A. For the three views, L, W and R assume that there exists a

“hidden state H” of dimension n× k, where each row Hi has the same non-singular

variance-covariance matrix and such that E(Li|Hi) = Hiβ
T
L and E(Ri|Hi) = Hiβ

T
R

and E(Wi|Hi) = Hiβ
T
W where all β’s are of rank k, where Li, Ri and Wi are the

rows of L, R and W respectively.

This assumption actually follows from the previous one.

Assumption 2. ρ(L,W), ρ(L,R) and ρ(W,R) all have rank k, where ρ(X1,X2)

is the expected correlation between X1 and X2.

This is a rank condition similar to that in Hsu et al. (2009).

Assumption 3. ρ([L,R],W) has k distinct singular values.

This assumption just makes the proof a little cleaner, since if there are repeated

singular values, then the singular vectors are not unique. Without it, we would have

to phrase results in terms of subspaces with identical singular values.

We also need to define the CCA function that computes the left and right

singular vectors for a pair of matrices:

Definition 1 (CCA). Compute the CCA between two matrices X1 and X2. Let ΦX1

be a matrix containing the d largest singular vectors for X1 (sorted from the largest

on down). Likewise for ΦX2. Define the function CCAd(X1,X2) = [ΦX1 ,ΦX2 ].

When we want just one of these Φ’s, we will use CCAd(X1,X2)left = ΦX1 for the

left singular vectors and CCAd(X1,X2)right = ΦX2 for the right singular vectors.

Note that the resulting singular vectors, [ΦX1 ,ΦX2 ] can be used to give two

redundant estimates, X1ΦX1 and X2ΦX2 of the “hidden” state relating X1 and X2,

if such a hidden state exists.
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Definition 2. Define the symbol “≈” to mean

X1 ≈ X2 ⇐⇒ lim
n→∞

X1 = lim
n→∞

X2

where n is the sample size.

Lemma 2. Define A by the following limit of the right singular vectors:

CCAk([L,R],W)right ≈ A.

Under assumptions 2, 3 and 1A, such that if CCAk(L,R) ≡ [ΦL,ΦR] then we have

CCAk([LΦL,RΦR],W)right ≈ A.

This lemma shows that instead of finding the CCA between the full context and

the words, we can take the CCA between the Left and Right contexts, estimate a k

dimensional state from them, and take the CCA of that state with the words and

get the same result.

Proof:

By assumption 1A, we see that:

E(LβL|H) = HβT
LβL

and

E(RβR|H) = HβT
RβR

Since, again by assumption 1A both of the β matrixes have full rank, βT
LβL is

a k × k matrix of rank k, and likewise for βT
RβR. So

E(βT
RRTLβL|H) = βT

RβRHTHβLβ
T
L
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So,

βT
RE(RTL)βL = βT

RβRE(HTH)βLβ
T
L

since βT
RβR, E(HTH) and βT

LβL are all k × k full rank matrices, βR and βL span

the same subspace as the singular values of the CCA between L and R since by

assumption 2 they have rank k also. Similar arguments hold when relating L with

W and when relating R with W. Thus if CCAk(L,R),W) ≡ [ΦL,ΦR],

CCAk(LΦL,RΦR)right ≈ CCAk([LβL,RβR],W)right

(where we have used assumption 3 to ensure that not only are the subspaces the

same, but that the actual singular vectors are the same.)

Finally by 3 we know that the rank of CCAk([L,R],W)right is k we see that

CCAk([LβL,RβR],W)right ≈ CCAk([L,R],W)right.

Calling this common limit A yields our result.

q.e.d.

Let Ãh denote a matrix formed by stacking h copies of A on top of each other.

Right multiplying L or R by Ãh projects each of the words in that context into the

k-dimensional reduced rank space.

The following theorem addresses the core of a new LR-MVL(II) algorithm, show-

ing that there is an A which gives the desired dimensionality reduction.

Theorem 4. Under assumptions 1, 2 and 3 there exists a unique matrix A such

that if CCAk(LÃh,RÃh) ≡ [Φ̃L, Φ̃R] then

CCAk([LÃhΦ̃L,RÃhΦ̃R],W)right ≈ A
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where Ãh is the stacked form of A.

Proof: We start by noting that assumption 1 implies assumption 1A. Thus, the

previous lemma follows. So we know

CCAk([L,R],W)right ≈ CCAk([LΦL,RΦR],W)right

where, as usual, CCAk(L,R) ≡ [ΦL,ΦR], which allows us to define A. This A

has the property that the rank of CCA(WA,H)left is the same as CCA(W,H)left

where H is the hidden state process associated with our data. Hence anything

which is not in the domain of A won’t have any correlation with H and hence no

correlation with other observed states. So L and LÃh have the same “information.”

More precisely,

[ÃhΦ̃L, ÃhΦ̃R] ≈ CCAk(L,R)

where CCAk(LÃh,RÃh) ≡ [Φ̃L, Φ̃R] Putting this together with our first equation

shows our desired result.

q.e.d.

A.2 p-Eigen

A.2.1 List of 80 AAL (Cortical) ROIs used

1,Precentral_R

2,Precentral_L

3,Frontal_Sup_R

4,Frontal_Sup_L

5,Frontal_Sup_Orb_R

6,Frontal_Sup_Orb_L

7,Frontal_Mid_R
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8,Frontal_Mid_L

9,Frontal_Mid_Orb_R

10,Frontal_Mid_Orb_L

11,Frontal_Inf_Oper_R

12,Frontal_Inf_Oper_L

13,Frontal_Inf_Tri_R

14,Frontal_Inf_Tri_L

15,Frontal_Inf_Orb_R

16,Frontal_Inf_Orb_L

17,Rolandic_Oper_R

18,Rolandic_Oper_L

19,Supp_Motor_Area_R

20,Supp_Motor_Area_L

21,Olfactory_R

22,Olfactory_L

23,Frontal_Sup_Medial_R

24,Frontal_Sup_Medial_L

25,Frontal_Med_Orb_R

26,Frontal_Med_Orb_L

27,Rectus_R

28,Rectus_L

29,Insula_R

30,Insula_L

31,Cingulum_Ant_R

32,Cingulum_Ant_L

33,Cingulum_Mid_R

34,Cingulum_Mid_L
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35,Cingulum_Post_R

36,Cingulum_Post_L

37,Hippocampus_R

38,Hippocampus_L

39,ParaHippocampal_R

40,ParaHippocampal_L

41,Amygdala_R

42,Amygdala_L

43,Calcarine_R

44,Calcarine_L

45,Cuneus_R

46,Cuneus_L

47,Lingual_R

48,Lingual_L

49,Occipital_Sup_R

50,Occipital_Sup_L

51,Occipital_Mid_R

52,Occipital_Mid_L

53,Occipital_Inf_R

54,Occipital_Inf_L

55,Fusiform_R

56,Fusiform_L

57,Postcentral_R

58,Postcentral_L

59,Parietal_Sup_R

60,Parietal_Sup_L

61,Parietal_Inf_R
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62,Parietal_Inf_L

63,SupraMarginal_R

64,SupraMarginal_L

65,Angular_R

66,Angular_L

67,Precuneus_R

68,Precuneus_L

69,Heschl_R

70,Heschl_L

71,Temporal_Sup_R

72,Temporal_Sup_L

73,Temporal_Pole_Sup_R

74,Temporal_Pole_Sup_L

75,Temporal_Mid_R

76,Temporal_Mid_L

77,Temporal_Pole_Mid_R

78,Temporal_Pole_Mid_L

79,Temporal_Inf_R

80,Temporal_Inf_L
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