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A B S T R A C T

The growth of content on the web has raised various challenges, yet also pro-
vided numerous opportunities. Content exists in varied forms such as text ap-
pearing in different languages, entity-relationship graph represented as struc-
tured knowledge and as a visual embodiment like images/videos. They are often
referred to as modalities. In many instances, the different amalgamation of modal-
ities co-exists to complement each other or to provide consensus. Thus making
the content either heterogeneous or homogeneous. Having an additional point
of view for each instance in the content is beneficial for data-driven learning and
intelligent content processing. However, despite having availability of such con-
tent. Most advancements made in data-driven learning (i.e., machine learning)
is by solving tasks separately for the single modality. The similar endeavor was
not shown for the challenges which required input either from all or subset of
them.

In this dissertation, we develop models and techniques that can leverage mul-
tiple views of heterogeneous or homogeneous content and build a shared repre-
sentation for aiding several applications which require a combination of modal-
ities mentioned above. In particular, we aim to address applications such as
content-based search, categorization, and generation by providing several novel
contributions.

First, we develop models for heterogeneous content by jointly modeling di-
verse representations emerging from two views depicting text and image by
learning their correlation. To be specific, modeling such correlation is helpful
to retrieve cross-modal content. Second, we replace the heterogeneous content
with homogeneous to learn a common space representation for content catego-
rization across languages. Furthermore, we develop models that take input from
both homogeneous and heterogeneous content to facilitate the construction of
common space representation from more than two views. Specifically, represen-
tation is used to generate one view from another. Lastly, we describe a model
that can handle missing views, and demonstrate that the model can generate
missing views by utilizing external knowledge. We argue that techniques the
models leverage internally provide many practical benefits and lot of immediate
value applications.

From the modeling perspective, our contributed model design in this the-
sis can be summarized under the phrase Multi-view Representation Learning
(MVRL). These models are variations and extensions of shallow statistical and
deep neural networks approaches that can jointly optimize and exploit all views
of the input content arising from different independent representations. We show
that our models advance state of the art, but not limited to tasks such as cross-
modal retrieval, cross-language text classification, image-caption generation in
multiple languages and caption generation for images containing unseen visual
object categories.
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1
I N T R O D U C T I O N

Context of this Thesis. In this thesis, we are interested in understanding het-
erogeneous and homogeneous content which has multiple views for any given
instance. This kind of data can support several applications in diverse domains.
We show that our research about building multi-view representation learning
models are useful for tasks such as cross-modal retrieval, cross-language text
classification, consistent multi-language image caption generation and genera-
tion of a caption for those images which contain unseen visual object categories.

1.1 motivation

1.1.1 Heterogeneous and Homogeneous Content

There is tremendous growth in the usage of the Web over past decade. Almost
50% of the world population is already online1 using different devices such as
desktops and mobiles to disseminate and access content. Most of the online
content created and obtained by individuals and enterprises belong to varied
forms and serve different real-world objectives such as content search, content
categorization and content generation. However, varied forms of the content are
highly unstructured [74] and require machine comprehensible representation to
facilitate such objectives.

. Example 1

Consider an example page from the news websitea in the Figure 1 which
contain unstructured content in varied forms. A human reader under-
stands that this page is about Tennis player Rafael Nadalb containing a
textual description (Blue), image (Red Berry), and a video (Dark Green).
However, for a machine, it is hard to comprehend such unstructured con-
tent in varied forms without sophisticated processing.

ahttps://edition.cnn.com/
bhttps://en.wikipedia.org/wiki/Rafael_Nadal

When we deep dive and infer about varied forms of the unstructured content
observed in the page, we understand that they represent various modalities. To
apprehend what are modalities, we present their clip art representation in the
Figure 2. From the left, clip art in the first position represents a video modality
and the second position denote audio. Similarly, modality in the third position

1https://thenextweb.com/insights/2017/01/24/digital-trends-2017-report-internet/

2

https://edition.cnn.com/
https://en.wikipedia.org/wiki/Rafael_Nadal
https://thenextweb.com/insights/2017/01/24/digital-trends-2017-report-internet/


1.1 motivation 3

Figure 1: News article containing textual description (Blue), Image (Red Berry), and a
Video (Dark Green).

represents an image, and the fourth position denotes text. The last position de-
notes linked data graph (e.g., DBpedia2) constituting entities and their relation-
ships.

Figure 2: Varied forms of the content denoted by different modalities (video, audio, im-
age, text in different languages and entity-relationship graph).

As mentioned earlier, modalities are highly unstructured as they do not fit
neatly into a relational database. Also, as pointed in many surveys3 that the
growth of unstructured content is more significant than the structured data,
which is attributable to the ease of creation of unstructured content in contrast
to the structured content.

. Example 2

In the Figure 3, we present an example comparing the structured vs. un-
structured content. Most of the structured content represents discrete rows
and columns with storage denoting relational databases (DB) and tables
(e.g., spreadsheets). While, unstructured data usually have an unmanaged
file structure having better semantics and require storage which is NoSQLa

(e.g., MongoDB).
ahttps://en.wikipedia.org/wiki/NoSQL

Now to address the problem of representing each modality in a machine com-
prehensible manner. Automatic learning of representations from each modality

2http://wiki.dbpedia.org/
3http://blog.aylien.com/rapidminer-wisdom-recap-the-value-in-analyzing/

https://en.wikipedia.org/wiki/NoSQL
http://wiki.dbpedia.org/
http://blog.aylien.com/rapidminer-wisdom-recap-the-value-in-analyzing/
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Unstructured Structured

 DB

Tables

Figure 3: An example distinguishing structured against unstructured data.

is widely adopted with representation learning [25]. Howbeit, modalities do not
occur in isolation, but they usually co-exist and blend between themselves to
add multiple views in representing a topic or concept, thus making the content ei-
ther homogeneous or heterogeneous. A homogeneous instance contains views from
the same modality while heterogeneous instance contains views from different
modalities.

ó Definition 1: View

A single view is a modality represented by either image, text, video or audio.

Research conducted earlier [156] have shown that leveraging homogeneous or
heterogeneous content can exploit information that is more expressive than that of
single view to learn representations having wide applicability. We find such con-
tent footprints on the Web at many places like news websites, e-commerce web
pages, social media sites (SNS) (e.g., Facebook4, Twitter5, Pinterest6), Wikipedia7,
video streaming platforms (e.g., YouTube8 and Vimeo9) and audio streaming
platforms (e.g., SoundCloud10, Spotify11). Example 3 and Example 4 shows sam-
ple of heterogeneous and homogeneous content respectively.

. Example 3

In the Figure 4, we present an example of heterogeneous content as observed
in Wikipedia. It provides the picture of Rafael Nadal at French Opena and
a write-up about his participation in it.

ahttps://en.wikipedia.org/wiki/French_Open

4https://www.facebook.com/
5https://twitter.com/
6https://www.pinterest.com/
7https://www.wikipedia.org/
8https://www.youtube.com/
9https://vimeo.com/

10https://soundcloud.com/
11https://www.spotify.com

https://en.wikipedia.org/wiki/French_Open
https://www.facebook.com/
https://twitter.com/
https://www.pinterest.com/
https://www.wikipedia.org/
https://www.youtube.com/
https://vimeo.com/
https://soundcloud.com/
https://www.spotify.com
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Figure 4: An example showing image and textual modalities about a common topic.

. Example 4

In the Figure 5, we present an example of homogeneous content as observed
in Wikipedia. It provides a write-up in different languages (English and
German) about Rafael Nadal.

Figure 5: An example constituting textual modality in different languages (Top: English,
Bottom: German).
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1.1.2 Heterogeneous and Homogeneous Content Applications

1.1.2.1 Overview

Many applications can be build by leveraging heterogeneous and homogeneous
content. However, in this thesis, we target only that content which has the image
and textual modalities. Also, we confine ourselves to following tasks:

À Content Search: It aims at satisfying information need of an end-user. That
is, a user expresses an information need as an input query and the re-
trieval engine attempts to discover data elements, which are assumed to
satisfy that need. However, when the content is heterogeneous (e.g., image
and text), input query and the retrieved data elements belong to different
modalities, thus making the discovery of such relevant elements hard. Re-
trieval across modalities can be supported by building representations that
share information across modalities and help to improve heterogeneous
content-based search significantly.

A similar challenge is also seen when the content is homogeneous, for in-
stance, if the input query and the retrieved data elements belong to differ-
ent languages, it makes the discovery of relevant elements hard. Retrieval
across languages can be supported by building representations that share
information across languages and help to improve homogeneous content-
based search significantly.

Á Content Categorization: The goal is to classify content into predefined
labels. For the heterogeneous content, label and the given data element
belong to different modalities. However, for the homogeneous content, the
data element and label belong to the same modality. A classical case for the
heterogeneous content is discovering textual labels for the images while for
the homogeneous content is learning label information from one language
to port that knowledge to another language.

Â Content Generation: The goal is to generate one modality from another
if the content is heterogeneous while generating one appearance from an-
other if the content is homogeneous. In general, transformation of one form
into another is a hard task to achieve.

In the Figure 6, the overall architecture is illustrated. Intuitively, it can be ob-
served that first, we need to find the combination of modalities that we want to
handle. Next, depending on the modalities selected, views of the heterogeneous
or homogeneous content is determined. Furthermore, using the multi-view con-
tent, we produce machine comprehensible representations with two different
techniques, i.e., correlation and common space learning to serve our applica-
tions.

1.1.2.2 Challenges

A significant challenge in the Figure 6 is creating a representation of the heteroge-
neous and homogeneous content. A useful representation captures the inherent
meaning from each view and builds a shared representation from all existing
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Homogeneous Heterogeneous

Categorization Search & Generation Generation

Our Applications

Multi-view 
Content

Modalities

Correlation Common Space Shared 
Representation

Figure 6: Overall Architecture.

views, which is an essential requirement for the applications mentioned above.
Thus, the systems built for each of these applications must address the problem
of how to effectively integrate multiple views in heterogeneous or homogeneous content
depicting various languages or modalities into a shared space representation.

� Problem 1: Unifying Multiple Views of Content (i.e., heterogeneous or
homogeneous) by Identifying their Correlations

Build a shared space by identifying correlation among content.

One way to integrate multiple views is by finding their correlation among con-
tent. A way to find the correlation is by calculating the joint dimensionality re-
duction of the homogeneous or heterogeneous content representations. In fact,
applications are also depended on the reduced dimensionality of representation
which incorporates shared knowledge across content sources. Thus, systems that
are built based on the correlated representations allow for a trade-off between re-
sult accuracy and computation time. Hence, only shallow representation is built
from the multiple views with less computational intensiveness.

� Problem 2: Unifying Multiple Views of Content (i.e., heterogeneous or
homogeneous) by Building their Common Space

Build a shared space by mapping content into a common space.

As presented in Section 1.1.2.1, there are several problems in dealing with ho-
mogeneous or heterogeneous content. However, in this thesis we are solely con-
cerned with Problem 1 and Problem 2. We also discuss the scope of this thesis
in Section 1.3.2.

In the next paragraphs, let us briefly introduce the fields of research concerned
with above problems.
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1.1.2.3 Problem 1: Unifying Multiple Views of Content with Correlation

Unifying multiple views emerging from either homogeneous or heterogeneous
content by identifying their correlation, is especially crucial for supporting the
application of content search. Here, the goal is to compute top-ranked query
results, given the query and results from either different modalities or languages.

Unifying multiple views of the content target this problem by building a shal-
low representation of views and then finding the correlation across views such
that it supports ranking across views. More specifically, these strategies allow re-
trieval engines to compute ranked results, with the textual modality of variable
length. It can lead to significant efficiency across languages for the content-based
search – as we will show in Chapter 4.

1.1.2.4 Problem 2: Unifying Multiple Views of Content with Common Space

Identifying correlations across multiple views is sometimes not possible due to
the large size of datasets representing homogeneous or heterogeneous content.
Here, building a common space representation is efficient concerning scalability
and also crucial for supporting content categorization and generation.

We employ both shallow and deep neural networks to target the Problem 2.
They comprise a set of techniques, which allow scaling to larger datasets contain-
ing multiple views by providing effective optimization [47]. Neural networks are
also found to be effective in representing modalities in the machine comprehensi-
ble manner. Recently, different architectures of the neural networks are employed
by NLP, CV and semantic web communities for various challenges.

Generally speaking, we consider shallow and deep neural networks regarding
two dimensions:

À Content Categorization

First, we consider shallow neural networks as an application to the cate-
gorization of homogeneous content where views arise from different lan-
guages. This way, joint modeling of languages is implemented to create a
common space representation – as we will show in Chapter 5.

Á Content Generation

Second, leveraging shallow neural networks for the generation of heteroge-
neous content is not adequate. Hence, we employ deep neural networks to
generate heterogeneous content. More specifically, we target the problem
of generation of textual descriptions for images in multiple languages and
also those images with novel visual object categories – as we will show in
Chapter 6 and Chapter 7 respectively.

1.2 heterogeneous and homogeneous content characteristics

In the section mentioned above, challenges that need to be addressed in cre-
ating the representations from the heterogeneous and homogeneous content is
reviewed. The further analysis shows that the content can have additional char-
acteristics. Based on our overall aim and the research questions that we want to
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contribute in this thesis, we split the essential characteristics broadly into four
different categories. The Figure 7 shows the summary of different characteristics
of the heterogeneous and homogeneous content which we encountered in our
work.

Characteristic-2

Cross-language Content

Characteristic-1

Cross-modal Content

Characteristic-3

Parallel Content

Characteristic-4

Non-parallel Content

Figure 7: Characteristics of the heterogeneous and homogeneous content used in this
thesis. The top row shows cross-modal and cross-language content which can
be either parallel or non-parallel as shown in the bottom row.

1.2.1 Characteristic 1: Cross-modal Content

A heterogeneous content containing any combination of modalities presented
in the Figure 2 is considered cross-modal. A sample scenario considering non-
aligned image and textual modality is presented in the Figure 4. However, cross-
modal content can exist in either parallel or non-parallel setup. There also exist
other variations of the cross-modal content, where a view can have more than
one example from the second view (e.g., multi-label textual annotation of an
image).

Usually, homogeneous content containing is not considered cross-modal as
both views emerge from the same modality.

1.2.2 Characteristic 2: Cross-language Content

A homogeneous content containing textual modality in different languages is
considered cross-language. Similar to the cross-modal content, cross-language
content can also exist in either parallel or non-parallel setup.

There is no possibility of cross-modal content being cross-language as views
emerge from different modalities. However, cross-language content can still align
a modality different than the textual modality to become both cross-language
and cross-modal.

1.2.3 Characteristic 3: Parallel Content

The notion of content being parallel emerge from the corpus analysis studied as
a part of the corpus linguistics [169]. Cross-language or cross-modal content is
considered parallel if it satisfies the following definition.
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ó Definition 2: Parallel Content

Any cross-modal or cross-language content that is specially formatted for
side-by-side comparison or alignment is referred to as parallel content.

In the Figure 8, we show an example page acquired from Wikipedia picture of
the day12 constituting cross-modal content which is parallel.

Figure 8: An example page constituting parallel cross-modal content.

However, datasets which are annotated by human annotators to create a per-
fect alignment between either cross-modal or cross-language content is usually
a prerequisite for many approaches. A typical example of the annotated cross-
modal content that is parallel is image-caption pairs. In the Figure 8, we show an
example acquired from the MSCOCO dataset 13 constituting image and its five
parallel textual descriptions (i.e., captions).

➔ a horse is standing next to a wooden 
fence.

➔ a horse standing at the edge of a 
fence.

➔ a brown and white horse standing 
inside of a fenced area.

➔ a horse stands in its enclosure near 
the ocean.

➔ a brown and white horse standing 
behind a wooden fence.

Figure 9: Image and its parallel captions.

Similarly, a potential scenario where cross-language content is parallel is the
precise translation of sentences existing in two different languages. This kind of
data plays a critical role in building automatic translation system between two
languages.

12https://en.wikipedia.org/wiki/Wikipedia:Picture_of_the_day
13http://cocodataset.org/#home

https://en.wikipedia.org/wiki/Wikipedia:Picture_of_the_day
http://cocodataset.org/#home


1.3 research questions and span 11

1.2.4 Characteristic 4: Non-parallel Content

Opposite of the parallel content is the non-parallel content. Cross-modal or cross-
language content is considered non-parallel if it satisfies the following definition.

ó Definition 3: Non-parallel Content

Any cross-modal or cross-language content that has no direct alignment or
side-by-side comparison between intra- or inter-modalities is referred to as
the non-parallel content.

However, in some cases, the content can be comparable, i.e., build from bilin-
gual documents which are conceptually aligned. For instance, Wikipedia pages
from two different languages describing same concept/topic are considered com-
parable as shown in the Figure 5. The situation perseveres for cross-modal con-
tent as well, where modalities are not the direct translation of each other, but
there exists a weak alignment between them. For example, usually on the social
media platforms, images are tagged with either hashtags or text with variable
length. Sometimes this may not wholly depict the visual content present in an
image. However, labels partially describe the visual content.

Heterogeneous and homogeneous content may have several other characteris-
tics, which may motivate additional research questions. However, in this thesis,
we concentrate on the above characteristics and present the overall scope of this
thesis in the Section 1.3.2.

1.3 research questions and span

In this section, we present the span and research questions that will be addressed
in the thesis.

1.3.1 Research Questions

Based on problems mentioned above, our overall research question is:

- Overall Research Question

How to unify subset of text, Entity Relationship graph, and image modality
representing languages, relational knowledge, and vision respectively into
a shared representation to assist homogeneous or heterogeneous content
search, categorization, and generation.

Given the characteristics of heterogeneous and homogeneous content in Sec-
tion 1.2, the overall question breaks down into several research questions, which
we target in Chapter 4, Chapter 5, Chapter 6 and Chapter 7. An overview of ad-
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How to unify subset of text, Entity Relationship graph, and image modality representing 
languages, relational knowledge, and vision respectively into a shared representation to assist 
homogeneous or heterogeneous content search, categorization, and generation.

Homogeneous 
and 

Heterogeneous 
Content 

Characteristics

Characteristic 1

Cross-modal Content

Characteristic 2

Cross-language Content

Characteristic 3

Parallel Content

Characteristic 4

Non-parallel Content

Research Question 4, Ch. 7

Future Work (FW1, FW2, FW3, FW4)

Research Question 3, Ch. 6Research Question 1, Ch. 4

Research Question 2, Ch. 5 Research Question 3, Ch. 6

Research Question 1, Ch. 4 Research Question 2, Ch. 5 Research Question 4, Ch. 7Research Question 3, Ch. 6

Research Question 3, Ch. 6Research Question 2, Ch. 5

Figure 10: Overview of heterogeneous and homogeneous content characteristics, and
research questions, which are addressed in this thesis.

dressed research questions and heterogeneous and homogeneous content char-
acteristics are depicted in the Figure 10.

- Research Question 1

Given two different views of heterogeneous content depicting text and im-
age modality, how can we build a shared representation to assist search by
finding correlation among their input representations?

Research Question 1 is driven by correlation principles of the heterogeneous
content and aims at supporting application of search with cross-modal retrieval.
Notably, our task is to process parallel cross-modal content emerging from two
views especially images and different languages text to learn their correlations.

We proposed a novel approach named correlated centroid space for this task
and extended previous works based on subspace learning to learn correlations
across parallel cross-modal content in the Chapter 4.

- Research Question 2

Given two different views of homogeneous content depicting text from dif-
ferent languages, how can we build a shared representation to assist catego-
rization by learning a common space by capturing regularities?

Here, we leverage homogeneous content where views emerge from two differ-
ent languages of the textual modality. We addressed this Research Question 2 by
learning a common space representation from both parallel or non-parallel cross-
language content. The shared representation built bilingual distributed word
representations, i.e., embeddings which learned regularities across languages. It
has played a crucial role in supporting cross-language textual classification tasks
as shown in the Chapter 5.
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- Research Question 3

Given two different views of heterogeneous content depicting text and im-
age modality, how can we build a shared representation of all views if an
auxiliary view depicting text in multiple languages is added to assist the
generation of text from an image?

Adding an auxiliary view to the already existing views of the training in-
stances of heterogeneous or homogeneous content has two inferences from the
content prospect.

À Does the auxiliary view provide a novel modality?

Á Does it match the modality of existing views?

We address the Research Question 3 by adding an auxiliary view matching the
modality of an existing view in the Chapter 6. Our approach proposes to learn a
common space of all views and further use it to generate text given an image. For
this, we leverage deep neural networks in the multi-task learning [37] setting to
jointly optimize three different views for delivering consistency among textual
descriptions generated across languages.

- Research Question 4

Given two different views of heterogeneous content depicting text and im-
age modality, how can we build a shared representation to assist the genera-
tion of text from an image if there are missing views?

Research Question 4 aims to address the learning from those instances which
contain missing views (e.g., missing modalities) and is discussed in the Chap-
ter 7. Our approach for handling missing views is achieved with external guid-
ance. To be specific, we leverage deep neural networks augmented with rela-
tional knowledge. It is evaluated on the task of textual description generation
for images containing visual object categories that are unseen during the train-
ing phase.

1.3.2 Span of this Thesis

MVRL has been addressed before in many contexts by various studies [156]. They
have leveraged modalities representing two different views to learn a shared rep-
resentation. In particular, the recent dissertations concentrated separately on the
language and vision [76] problems or addressed only language-specific chal-
lenges. There are also few works [299] which summarized MVRL from a theo-
retical perspective. In contrast to works as mentioned earlier, we will not focus
purely on a theoretical perspective or concentrate separately on specific modali-
ties.

Generally speaking, we target the above research questions in Chapter 4, Chap-
ter 5, Chapter 6 and Chapter 7. Concerning those questions, this thesis provides
several novel contributions – as we will outline in the next section.
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1.4 contributions

About the research questions mentioned above, this thesis provides the following
contributions:

+ Contribution for Research Question 1

Cross-modal retrieval to assist content search by leveraging correlated cen-
troid space.

Existing work for cross-modal retrieval was built using linear subspace learn-
ing approaches such as Canonical Correlation Analysis (CCA) [110], where the
correlation between different modalities is captured. Also, they have leveraged
only monolingual textual content to built representations which hinders the ac-
cessibility of retrieving cross-modal content in multiple languages.

In Chapter 4, we will show how to extend the kernel version of CCA technique
(i.e., KCCA) to capture correlated centroid space which is based on our previous
publication [1] and target the cross-modal content, i.e., image and textual content
in multiple languages.

+ Contribution for Research Question 2

Cross-language text classification to assist content categorization by leverag-
ing Bilingual Paragraph Vectors.

Based on our work in [2], we present a novel bilingual word embeddings learn-
ing approach in the Chapter 5. For this, we combine shallow neural networks
with the manifold alignment technique. More specifically, we extend existing
work of paragraph vectors [144] to build bilingual word representations.

We propose two techniques to handle both parallel and non-parallel content
for building bilingual word embeddings. On the one hand, we propose a model
that operates on sentence-level parallel content. On the other hand, we propose
an extension of the model which works with sentence-level parallel content to
work with non-parallel content by leveraging manifold alignment technique.

+ Contribution for Research Question 3

Consistent multi-language image caption generation to assist content gener-
ation given auxiliary views by leveraging multi-task attention.

We present an approach in the Chapter 6 which aims to jointly learn from
images and their caption pairs in multiple languages. This work helps to re-
duce divergence across captions generated across languages. To achieve it, we
propose deep neural network based attention models that leverage visual fea-
tures extracted from images and their captions for optimizing a multi-task objec-
tive. Learned models are further used to generate captions for images which are
highly consistent across languages.

+ Contribution for Research Question 4

Unseen visual object categories caption generation to assist content genera-
tion given missing views by leveraging knowledge guided assistance.
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Based on our work in [3], we present the knowledge-guided assistance to cap-
tion generation for images containing unseen visual object categories in Chap-
ter 7.

Our approach combines ideas from fields such as semantic web and computer
vision. First, knowledge graph entities are augmented with their learned em-
beddings and are also used to annotate images as labels. Furthermore, during
training of the image caption generation model, entity embeddings are lever-
aged to capture attention from an image to calculate the attention weights w.r.t
the caption words. Entity labels are also used, however only during the testing
phase as a constrained inference. Overall, this approach for caption generation
has shown to be compelling enough for scaling to visual object categories that
usually lack parallel captions (i.e., missing views) during training.

1.5 outline

The remainder of this thesis comprises six chapters, which aim at Research Ques-
tions 1 - 4 and discuss Contributions 1 - 4.

Ë Chapter 2 – Foundations
In the Chapter 2, we provide foundations to our approaches presented in
Chapter 4, Chapter 5, Chapter 6 and Chapter 7. Particularly, we introduce
fundamentals of MVRL and outline its application for combining hetero-
geneous or homogeneous content to support several applications such as
content search, categorization and generation.

Ì Chapter 3 – MVRL with Two Views and Correlated Centroid Space
In Chapter 4, we present a novel approach of MVRL to identify correla-
tions across two-views depicting cross-modal content. For this, we extend
the traditional subspace learning technique such as KCCA by adding class
specific clustering information such that it correlates semantically similar
cross-modal content closer to each other in the shared representation. This
work has shown to improve search, especially image retrieval given a tex-
tual query and vice versa.

Í Chapter 4 – MVRL with Two views and Co-regularization
We introduce a novel approach to build bilingual embeddings with two
views depicting cross-language content in the Chapter 5. For this, we lever-
age manifold alignment theory and shallow neural networks to project two
different languages that are either parallel or non-parallel into a shared rep-
resentation such that linguistic regularities among them are construable.
This work has shown to improve categorization, especially cross-language
text classification.

Î Chapter 5 – MVRL with Auxiliary Views and Joint Multi-Task Optimization
In Chapter 6, we introduce a novel approach for image caption generation
in multiple languages using more than two views depicting both cross-
modal and cross-language content. For this, we leverage multi-task learn-
ing and deep neural networks to propose a single model which can gener-
ate one modality from another. This work has shown to improve content
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generation, especially image caption generation in multiple languages by
making them consistent across languages.

Ï Chapter 6 – MVRL with Missing Views and Knowledge Guided Assistance
When there are missing views, standard MVRL approaches fail to predict
during inference. In Chapter 7, we deal with the missing information in
the heterogeneous content, particularly the image-caption parallel content.
We introduce a novel approach for generating captions for those images
containing visual object categories that are unseen in the training phase.
For this, we leveraged entity labels and their embeddings as constraints
and external semantic attention respectively for building an image caption
generation model. This work has shown to improve content generation,
especially scalable to larger visual object categories usually observed on
the web.

Ð Chapter 7 – Conclusion
Last, we summarize our contributions and results in Chapter 8 and give an
outlook on the future work.
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2
F O U N D AT I O N S

Context of this Chapter. In this chapter, we discuss the preliminaries for re-
mainder of the thesis. First, we present the challenges and advantages of rep-
resenting homogeneous content with representation learning in Section 2.1 and
later introduce the unified representation of heterogeneous and homogeneous
content with MVRL in Section 2.2.

2.1 representation learning

The goal of representation learning is to learn useful representations of the con-
tent. Efficient representations can identify and extricate the underlying multiple
explanatory factors of variation behind the content [25]. Also, representation of
the content supports machine learning applications for building useful predic-
tion models. Recently, attaining representations is done with neural network-
based approaches. However, Bayesian nonparametric methods [189] and other
hierarchical graphical model-based approaches [125] have also shown the ability
to learn rich representations of content. In the following, we review approaches
used for learning representations and discuss their intricacies.

2.1.1 Shallow Representation Learning

We understand the shallow representation learning from the perspective of hand-
crafted feature extraction. For many machine learning applications such as speech
recognition, NLP, and CV, feature extraction plays a key role in building predic-
tive models. Over the past decade, researchers have spent ample amount of time
in extracting and selecting relevant shallow features with several feature engi-
neering techniques. However, there are some problems observed with shallow
representations such as:

À They can be task specific and hard to generalize to other tasks.

Á Cannot capture complex and highly structured dependencies observed in
the content.

Â Require some prior knowledge about the content which can be helpful for
discarding irrelevant features (e.g., feature selection).

Ã They can be very inefficient regarding the number of computational units
(e.g., bases, hidden units) [23], and also concerning examples required [24].

18
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Depending on the application domain and data, handcrafted feature extraction
methods vary. For example, scale-invariant feature transform (SIFT) [161] use
histograms of gradient orientations for extraction of visual data (e.g., images)
features. Similarly, shallow features such as term frequency-inverse document
frequency (TF-IDF) [224] is used to rank relevant textual documents for a given
query to support information retrieval. Natural Language Understanding (NLU)
tasks supporting several applications [165] and divided based on syntax, seman-
tics, discourse, and speech are also dependent on feature extraction methods.
For example, tasks which fall under the umbrella of “semantics” such as lexical
semantics [51], natural language generation [208] and natural language under-
standing [5] are dependent on the shallow handcrafted feature extraction meth-
ods for many years to leverage machine learning methods.

However, for learning useful representations, shallow representation learning
usually combines feature extraction with dimensionality reduction techniques
for selecting best features. Global or local methods [303] are techniques of di-
mensionality reduction, where global methods preserve global information of
the content and local methods preserve the fundamental structure of high di-
mensional data in learned representations. In the following, we briefly describe
existing dimensionality reduction techniques which are diversified based on lo-
cal or global methods.

2.1.1.1 Global Methods of Dimensionality Reduction

Many global methods are proposed for selection of features and reducing the
dimensionality of extracted features. Principal component analysis (PCA) [277]
is one such method which makes linear dimensionality reduction by perform-
ing an orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of linearly uncorrelated variables. Similarly, other
approaches such as Independent Component Analysis (ICA) [117], Linear Dis-
criminant Analysis (LiDA) [213] also extract linear representations using both
unsupervised and supervised techniques. However, linear features are insuffi-
cient for many real-world complex data scenarios, consequently demanding for
more sophisticated techniques to get useful representations.

To assist such scenarios, linear methods were extended with non-linear tech-
niques to include non-linearity in the extracted features. However, these tech-
niques still provide shallow representations. Techniques such as kernel PCA
(KPCA) [172] and Generalized Discriminant Analysis (GDA) [18] extends PCA
and LiDA respectively for nonlinear dimensionality reduction using the ker-
nel trick [182]. While methods such as Gaussian Process Latent Variable Model
(GPLVM) [143] and Gaussian Process Latent Random Field (GPLRF) [302] are
designed in a manner to produce low dimensional representations by learning a
nonlinear mapping.

Although representations generated by global methods are useful for many
tasks, need for local methods which preserve the fundamental structure of high
dimensional data are also required.
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2.1.1.2 Local Methods of Dimensionality Reduction

Local methods that make dimensionality reduction preserve the structure by
using local information. Manifold learning [116] methods are significant contrib-
utors to the structure-preserving dimensionality reduction techniques by lever-
aging local information. However, there also exist other techniques such as Local-
ity Preserving Projections (LLP) [99], Marginal Fischer Analysis [287] and Non-
negative Matrix Factorization (NMF) [149] which perform linear dimensionality
reduction by leveraging local information.

Sometimes, the content exists on the lower dimensional manifold, methods
such as ISOMAP [251], local linear embedding (LLE) [218], Laplacian Eigen-
map [20] and local tangent space alignment (LTSA) [298] assist in performing
nonlinear dimensionality reduction by exploiting the local geometry around
each data point. Local methods were proven to be useful for several applica-
tions such as hyperspectral image processing [284], face recognition [100], doc-
ument processing [35] etc. Howbeit, they are still dependent on features which
are handcrafted. Hence, this created a necessity for a combined automatic fea-
ture extraction and non-linear dimensionality reduction methods for effective
representation of complex data.

2.1.2 Deep Representation Learning

The goal of deep representation learning is to automatically extract representa-
tions of the content by making the learning algorithms less dependent on manual
feature engineering. However, these representations are not extracted in a shal-
low manner, but by stacking multiple nonlinear transformation layers above one
another with a final goal of yielding more useful and abstract representations.
These representations have achieved state of the art results in several domains
such as speech recognition, computer vision, natural language processing and
semantic web.

One significant advantage observed when dealing with representations is that
they can express many general-purpose priors [25] such as smoothness, sparsity,
coherence, and manifolds. However, representation learning is usually achieved
with deep architectures which are often difficult to train effectively [70]. Never-
theless, deep architectures enable learning the hierarchy of features which are
found to be exponentially more efficient as shown in several theoretical and
empirical studies [227]. Also, deep representation learning provides abstract fea-
tures at higher layers of representations which make them invariant to most local
changes of the input. It also makes these representations behave as highly non-
linear functions of the raw input [25]. A learned representation is expected to
be good if it can distinguish between the related but distinct goals of learning
invariant features and extricate explanatory factors for preserving relevant infor-
mation needed for a specific task. However, it is often difficult to determine a
priori which set of features are useful.

Many methods are proposed to learn deep representations. We broadly divide
these methods into “Layerwise pretraining” and “Joint training” based on how new
transformations are generated for features at each level of deep architectures.
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The fundamental difference between “Layerwise pretraining” and “Joint training”
is that the former learn a hierarchy of features one level at a time, while later
train all levels jointly.

2.1.2.1 Layerwise Pretraining

The layerwise pretraining is a greedy approach to learn the hierarchy of features
one level at a time of a deep architecture and can be applied in the unsupervised
or supervised learning setting.

Unsupervised Setting: In this scenario, layerwise pretraining learns deep fea-
tures which can be used as an initialization to the standard prediction algorithms
(e.g., support vector machines (SVM) [101]), to supervised layers of a neural net-
work or a generative model (e.g., deep Boltzmann machine (DBM) [223]). How-
ever, stacking of pretrained layers can be approached in several ways. In the
following, we discuss some existing methods.

Deep Belief Network (DBN) [107] are built with pretrained Restricted Boltzmann
Machine (RBM) [104]. However, a standard belief network (BN) is a directed
acyclic graph composed of stochastic variables [192] which has a state of zero
or one. Similarly, RBM consists of stochastic variables and one hidden layer with
no connection between hidden units. The major difference between the standard
BN and RBM is that the former have directed edges between units, while RBM
consists of undirected edges. However, to build DBN, several RBM in a pretrain-
ing phase are stacked above one another with a directed connections between
the layers and a feed-forward network (e.g., multi -layer perceptron (MLP)) is
then used for fine-tuning.

Deep Boltzmann Machine (DBM) introduced by Salakhutdinov et al. [223] is a deep
multi-layer Boltzmann machine (BM) where each layer captures higher-order
correlations between the activities of hidden features in the layer below. It has
undirected connections in contrast with DBN directed connections for the better
flow of information [128]. Connections are present only between hidden units
in adjacent layers, as well as between visible and the hidden units in the first
hidden layer.

DBM has three major advantages.

À Similar to DBNs, the DBMs can learn internal representations by capturing
complex structure in the higher layers. Usually, these high-level represen-
tations are built with a large amount of unlabeled data and very limited
labeled dataset for fine-tuning the model for a specific discriminative task.

Á States of variables in DBM can be initialized efficiently by bottom-up pass
if DBMs are learned correctly.

Â As opposed to DBNs and other deep feature learning approaches, DBMs
approximate inference procedure can incorporate top-down feedback after
first bottom-up pass. It allows DBMs to better use higher-level knowledge
to resolve uncertainty about intermediate feature representations.
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Stacked Denoising Autoencoders (stacked-DAE) [260] are initialized as a deep net-
work using denoising Autoencoders [259] in the same manner as RBMs stacked
into DBNs. A denoising autoencoder (DAE) is a variant of autoencoders [23, 199]
that are trained to reconstruct a “repaired” input from the corrupted version of
it. It is achieved with an architecture that first corrupts the initial input into a
different representation using stochastic mapping. Furthermore, the corrupted
input is then mapped as in basic autoencoder into a hidden representation from
which the reconstruction of it is again obtained. Although the input is corrupted,
DAE still minimizes the same reconstruction loss between a uncorrupted input
and its reconstruction.

In stacked-DAE, it has to be noted that the corruption of input is only per-
formed for the initial denoising-training of each layer. Once the hidden represen-
tation is obtained, it will henceforth be used without corruption and is applied
to produce the representation that will serve as clean input for training the next
layer. Once the stacked encoder is built, its highest level output representation
(i.e., pretrained) can be used as input to a standard supervised learning method
(e.g., SVM) or can be leveraged for fine-tuning with a logistic regression layer
added on top of it.

In general, the significant difference observed between Autoencoders and RBMs
is that the Autoencoders consider the real-valued mean as their hidden represen-
tation whereas the stochastic RBMs sample a hidden binary representation from
that mean. However, after their initial pretraining, the way layers of RBMs are
typically used in practice may vary.

Supervised Setting: Observed in the previous sections show that training each
layer of deep architectures is performed in an unsupervised manner. However,
a surrogate method for building deep representations is to train in a supervised
manner with the greedy and layer-wise approach. In the following, we discuss
some of the existing methods.

Deep Network [23] is a multi-layer neural network, where each new hidden layer
is trained as the hidden layer of a one-hidden-layer supervised neural network.
Further, the output of the last of previously trained layers is considered as in-
put by throwing away the output layer of the supervised neural network. The
parameters of the hidden layer of a neural network are used as the pretraining
initialization of the new top layer of the deep network.

However, in different settings, it is observed that the purely supervised greedy
layer-wise pretraining performs significantly worse than the unsupervised greedy
layer-wise pretraining. A possible explanation is that the greedy supervised pro-
cedure is too greedy: in the learned hidden units representation, it may discard
some of the information about the target, information that cannot be captured
easily by a one-hidden-layer neural network but could be captured by compos-
ing more hidden layers.

Deep-Structured CRF [293] leverage probabilistic methods [215] to build super-
vised pretraining by using outputs of the previous layer which can be fed an
extra input for the next layer along with the raw input. Deep-structured CRF
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architecture is a hierarchy of linear-chain conditional random fields (CRFs) [139]
that do not use state transition features. The observation sequence at any layer is
augmented with both previous layer’s observation sequence and marginal poste-
rior probabilities. However, for many applications, the observation sequence of
previous layer’s and the present layer is usually enough.

Training of deep-structured CRF is achieved by fixing the trained lower-layer
CRF parameters and then computing corresponding marginal posterior proba-
bilities so that they can be further fed to the next layer. This process is contin-
ued until the model parameters of the highest or final layer of the model are
optimized. The inference process is similar, howbeit with slight modifications.
Deep-structured CRF make both train and inference on each layer independent
which make the computational complexity linear w.r.t the layers used.

Context-Dependent Deep-Neural-Network Hidden Markov Model (CD-DNN-HMM) [52]
pretrains in a supervised way all the previously added layers at each step of the
iteration. CD-DNN-HMM hybrid architecture contains a context-dependent Hid-
den Markov Model (HMM) [202] combined with deep neural network (DNN). A
generative model such as HMM has the observable features are assumed to be
generated from a hidden Markov process that transitions between states. While,
DNN is a conventional multi-layer perceptron (MLP) [216].

CD-DNN-HMM adopts a discriminative pretraining approach in contrast with
DBNs to reduce inaccuracies in the pretraining. They achieve it with a layer-
wise backpropagation. Initially, a one-hidden-layer DNN is trained to full con-
vergence using labels discriminatively with backpropagation. Then the softmax
layer is replaced by another randomly initialized hidden layer, and again a new
softmax layer is stacked on to the top so that it is again discriminatively trained
to full convergence. This process is repeated until the required number of hidden
layers is reached. However, this approach is similar to Deep Network [23], but
differs with it by adding updates only from newly added hidden layers achiev-
ing accuracies close to those obtained with DBN pretraining.

Also, CD-DNN-HMM is closer to the standard ANN-HMM [210] architecture
which replaces Gaussian mixtures with DNN and computes HMM’s state emis-
sion likelihoods by converting state posteriors from the DNN to likelihoods.

2.1.2.2 Joint Training

In the section mentioned above, we have seen how the layerwise pretraining
is leveraged in an unsupervised and supervised setting with different architec-
tures to learn deep representations. The success of layerwise pretraining (unsu-
pervised or supervised) can be attributed to intermediate representations, which
provide a more natural way to learn intermediary versions rather than learn-
ing everything at once in a single go. Also, especially unsupervised pretraining
additionally contributed to the regularization and optimization effect.

On the contrary, joint training of architectures which learn deep representa-
tions face challenges such as ill-conditioning (e.g., symmetry breaking in neural
networks [180]) and local minima (e.g., optimization difficulty [25]). Few stud-
ies [84] also highlighted other problems with joint training, mainly in the context
of neural networks and proposed few tricks for improvement. Howbeit, joint
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training also provide several advantages in a proper arrangement [45, 167, 85,
138, 246]. In the following, we explore advantages of architectures which learn
deep representations in one go by overcoming challenges as mentioned earlier.

Convolutional Neural Network (CNN) [148, 145, 147] are deep architectures which
are specifically designed to deal with the topological structure (e.g. domain
knowledge of the input) to learn better features. These multilayer networks can
learn complex, high-dimensional, nonlinear mappings from a large collection of
examples which make them a suitable candidate for joint training. Several re-
cent studies [138, 236, 248, 98, 113] have shown that in a supervised setting with
large quantities of labeled data, proper initialization and choice of non-linearity,
CNNs can outperform different approaches.

Conceptually, CNN exploits input topological structure and define local re-
ceptive fields [115] such that each low-level features are extracted only using a
subset of the input (e.g., image patch) by adding topological locality constraint.
It provides a gain of having a smaller number of parameters. Computation of
local features is expected to be relevant to all positions of the receptive field.
Therefore, a stride of such local low-level feature extractor over the subset of in-
put corresponds to the transformation of an input into a similarly shaped feature
map [146] leading to convolution and sharing of same parameters. Also, local fea-
tures computed in the neighboring input locations are then summarized through
an average [145, 147] or max [118] pooling operation supporting invariance to in-
put modifications.

Combination of convolution and pooling is crucial for the modern CNN archi-
tectures which have produced state of the art results in various domains (e.g.,
object classification [138], semantic segmentation [160] in computer vision, sen-
tence classification [131], sentiment analysis [63] in natural language processing,
knowledge base completion [226] in Semantic Web etc.). Few approaches went
beyond convolution and pooling and extended CNNs with several other tricks.
For example, usage of residual [98] and dense [113] connections or varied inputs
(e.g., character-level representations of the text [297]).

In general, final layers of CNN are fully connected after going through many
convolutional and pooling layers. Usually, neurons present in the fully connected
layer have connections to all activations in the previous layer, resembling stan-
dard neural networks. Finally, training of CNNs is usually achieved with the
forward pass over all layers and then backpropagation [220] to update parame-
ters.

Recurrent Neural Network (RNN) [69] was initially proposed to model time se-
ries or sequences. The network structure of RNN is similar to that of standard
multilayer perceptron, but connections are also allowed between hidden units
with a time delay. Hence, this network is capable of storing information emerg-
ing from the past and enables it to discover temporal correspondences between
events that are distant from each other in the data. Due to this memory efficiency,
RNNs have found its application to many tasks which require modeling sequen-
tial data such as Language Model (LM) [175], speech recognition [91], Machine
Translation (MT) [127] etc.
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Although RNNs were found to be very effective in dealing with sequences,
howbeit it has been found that they are difficult to train for long-term depen-
dencies due to issues such as exploding and vanishing gradient [21]. Variants
of RNN such as Long Short-term Memory (LSTM) [108] and Gated Recurrent
Unit (GRU) [44] have mitigated the problems persisting in RNN. LSTM and GRU
can handle long sequences with efficient memory management.

2.2 multi-view representation learning

Increase in the availability of data containing multiple views such as a combi-
nation of image+text, audio+video, and text translations have lead to heteroge-
neous and homogeneous representations. Different views usually contain infor-
mation which is complementary, consensus or combination of both. Exploiting
multiple views for learning representations is more expressive than separately
learning from either of views [186]. Therefore, representation learning with mul-
tiple views is very encouraging with broad applicability to many applications in
varied domains.

Multi-view representation learning is built on following multi-view data prin-
ciples [156]:

• Correlation – Aims to maximize the correlations among variables between
multiple heterogeneous views.

• Consensus – Aims to maximize the agreement on the representations learned
from multiple heterogeneous views.

• Complementarity – Aims to exploit the complementary knowledge contained
in multiple views to effectively represent the data.

• Consensus and Complementarity – In general, combining both of aforemen-
tioned principles simultaneously is required for better representations.

In comparison to the representation learning (with single-view), multi-view
representation learning acquires different representation (e.g., embedding) for
each view and then jointly optimize all representations from multiple views to
enhance succeeding learning tasks, such as retrieval, classification, and genera-
tion. Howbeit, there is also a possibility of degradation of performance [164], if
learning objective cannot correctly capture the properties of the multi-view data.
Therefore, careful selection of techniques is required based on characteristics of
the multi-view data satisfying aforementioned underlying principles.

Many techniques are proposed to handle multi-view data which leverage fun-
damentals of Probabilistic Graphical Model (PGM) [136], kernel machines [228]
and non-linear neural networks [92]. The fundamental difference between these
techniques is whether the architecture of learning models is to be interpreted as a
PGM or as a computation graph [25]. This difference has shown an impact when
building shallow and deep architectures, where an exact inference of probabilis-
tic models usually becomes intractable, while computation graphs have shown
significant impact for learning from large-scale data.
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In the following, we explore multi-view representation learning from the per-
spective of both paradigms as mentioned earlier and also multi-view data princi-
ples which they leverage to build learning models. Figure 11 provides the overall
view of the sections.

MVRL

Shallow Approaches
(Sec 2.2.1)

Joint Space 
Representation

Deep Approaches
(Sec 2.2.2)

Captures 
Correlation Information

(Sec 2.2.1.1)

Captures Consensus and 
Complementary Information

(Sec 2.2.1.2)

Captures Consensus and 
Complementary Information

(Sec 2.2.2.2)

Captures 
Correlation Information

(Sec 2.2.2.1)

Generative Joint Space 
Representation Generative Joint Space 

Representation Generative Joint Space 
Representation Generative

Figure 11: Organization of the Sections. The left part shows the architecture of multi-
view representation learning based on shallow approaches which is further
divided based on correlation as well as consensus and complementarity prin-
ciples. While on the right part displays the deep approaches.

2.2.1 Multi-View Shallow Representation Learning

Shallow approaches for multi-view representation learning do not leverage any
ideas from deep representation learning presented in the Section 2.1.2. However,
they are confined to the multi-view data principles and also partially affiliate
themselves to the paradigms as mentioned earlier. In the following, we divide
the techniques based on the multi-view data principles.

2.2.1.1 Correlation

As presented earlier, the goal of correlation principle is to maximize the correla-
tions of variables among multiple heterogeneous views. In the following, those
methods are presented which learn shallow representations by finding correla-
tions across views. These approaches are further divided into two categories
where the first set of methods learn direct joint representations, while the rest
learns a generative model.

Joint Space Representation: Goal of joint space representation approaches is
to build a stable deterministic shallow representation from the multiple views of
data. In the following, we explore some techniques that are based on the correla-
tion principles and achieve joint space representation.

Canonical Correlation Analysis (CCA) proposed by Hotelling [110] work with two
views for finding the linear transformations of each single view such that the cor-
relations between the transformed variables are mutually maximized. Consider-
ing a two view data {X, Y} = {(x1,y1), ...., (xn,yn)} where X ∈ Rd1×n, Y ∈ Rd2×n,
CCA aims to compute two linear projections Wx,Wy which makes the individ-
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ual instances in X, Y maximally correlated in the projected space and evaluated
using the following correlation coefficient ρ.

ρ =
WT
xCxyWy√

(WT
xCxxWx)(W

T
yCyyWy)

(1)

where Cxy is a cross-covariance matrix given by Equation 2.

Cxy =
1

n

n∑
i=1

(xi − µx)(yi − µy) (2)

Here, µx,µy represent mean of the two views X, Y and Cxx,Cyy are covariance
matrices.

Maximizing linear projections Wx,Wy of CCA is equivalent to solving a
pair of generalized eigenvalue problems [95] and optimization is posed as a
Lagrangian dual [245]. Finally, correlation between different views is provided
by the eigenvector corresponding to the largest eigenvalues. Besides successful
application of CCA to multi-view data, it still fails to deal with non-linearity and
sometimes overfit.

Kernel Canonical Correlation Analysis (KCCA) [3] provides a non-linear extension
of CCA and handle two views. Formalizing kernel CCA in line with CCA, dual
representation is leveraged for representing Wx,Wy using Xα, Yβ where α and
β are vectors of size n. Correlation coefficient ρ is now provided by Equation 3.

ρ =
αTXTXYTYβ√

αTXTXXTXα×βTYTYYTYβ
(3)

If kernel matrices Kx,Ky of X, Y are provided by (XTX, YTY) respectively. Then
the Equation 3 is rewritten as follows:

ρ =
αTKxKyβ√

αTK2xα×βTK2yβ
(4)

For maximizing linear projections, in contrast to the linear CCA which works
by carrying out an Eigen decomposition of the covariance matrix. The eigen-
value problem for kernel CCA degenerate solutions when either Kx or Ky is
invertible [95].

Regularized Canonical Correlation Analysis (regularized CCA) [54] adds regulariza-
tion to CCA. It can be seen as a way to deal with overfitting and assist to general-
ize better for the unseen samples. Now if CCA is observed from the perspective
of an estimator of a linear system consuming data from two different views X
and Y. Then regularized CCA aims to compute two normalized linear projections
Wx,Wy which makes the individual instances in X, Y maximally correlated in
the projected space and evaluated using the correlation coefficient ρ given by
Equation 5 and optimized with the maximum likelihood estimator.

ρ =
WT
xCxyWy√

(WT
xCxxWx + τx||Wx||2)(W

T
yCyyWy + τy||Wy||2)

(5)
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where τx, τy are the regularization parameters and are bounded between inter-
val [0,1]. Regularized CCA is also extended with kernel variations [233] and is
given by Equation 6.

ρ =
WT
xKxKyWy√

(WT
x(Kx + τxI)

2Wx)(W
T
y(Ky + τyI)

2Wy)
(6)

Rates of regularization parameter [81] in the regularized kernel CCA is investi-
gated with theoretical analysis to understand the optimal values.

Cluster Canonical Correlation Analysis (cluster CCA) extends CCA by first pro-
jecting multiple views of the data into the lower dimensional subspace before
clustering. Chaudhuri et al. [39] assumes that the each view is generated from
mixture of Gaussian [253] and are uncorrelated. To ensure a sufficient correla-
tion between views, CCA matrix across the views assumed to be at least k− 1,
when each view is in isotropic position and the (k− 1)th singular value of this
matrix to be at least minimum Eigen value. Now the correlation coefficient ρ is
provided by Equation 7.

ρ =
E[(Wx.X)(Wy.Y)]√

E[(Wx.X)2]E[(Wy.Y)2]
(7)

where Wx,Wy are the projections. In the dual formation, minimizing the Equa-
tion 7 provide the minimum Eigen value satisfying the aforementioned condi-
tions.

CCA was also combined with clustering algorithms like spectral clustering [27]
to realize the correlation spectral clustering. Other variations of cluster CCA also
exists such as the one proposed by Rasiwasia et al. [206] where discriminant low
dimensional representations are learned to maximize the correlation between the
two views.

Sparse Canonical Correlation Analysis (sparse CCA) [94] is designed to reduce the
dimensionality of vectors for attaining a stable solution with a sub selection pro-
cedure. Sparse CCA also aims to compute pair of linear projections Wx,Wy

who maximize the correlation coefficient ρ given by the Equation 1.
Although, this equation is same as CCA. The constraints for sparse CCA [276]

are different from those of CCA and are given by Equation 8.

s.t. ||Wx||
2 6 1, ||Wy||

2 6 1 Px(Wx) 6 cx,Py(Wy) 6 cy (8)

where Px and Py are convex penalty functions. For cx and cy small, this results
in Wx and Wy sparse: many of the elements of Wx and Wy will exactly equal
zero. Advantage of sparse CCA criterion is that it results in unique Wx and Wy

even when dimensions of each instance in X and Y are greater than total sample
size for certain choice of Px and Py.

Generalized Canonical Correlation Analysis (generalized CCA)) leverage more than
two views of the data as opposed to earlier approaches. Extending to multiple
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views is achieved with generalized version of CCA [130] by combining all the
pairwise correlations among each view through addition operation in the objec-
tive function [221].

Given an additional view {Z} = {z1, ...., zn} to the existing two view data {X, Y}
such that {X, Y,Z} = {(x1,y1, z1), ...., (xn,yn, zn)}, where X ∈ Rd1×n, Y ∈ Rd2×n

and Z ∈ Rd3×n form three parallel views. Then generalized CCA aims to com-
pute linear projections Wx,Wy,Wz which makes the individual instances in
X, Y,Z maximally correlated in the projected space and evaluated using the fol-
lowing correlation coefficient ρ.

ρ =

WT
xCxyWy√

(WT
xCxxWx)(W

T
yCyyWy)

+
WT
yCyzWz√

(WT
yCyyWz)(W

T
zCzzWz)

+
WT
xCxzWz√

(WT
xCxxWx)(W

T
zCzzWz)

(9)

Now, Maximizing linear projections Wx,Wy,Wz is equivalent that of two
view CCA. Hence, it makes CCA a merely the subset of the generalized CCA [234].
Also, there exists a regularized version of the generalized CCA [252] similar to
aforementioned regularized CCA.

Generative Model: Main aim of the generative approaches is to build proba-
bilistic models to learn a compact set of latent random variables that represent
a distribution over the observed multi-view data. In the following, we explore
some techniques that are based on the correlation principles and build a genera-
tive model.

Probabilistic Canonical Correlation Analysis (probabilistic CCA) is built on the prin-
ciples of CCA and probabilistic generative models [184]. In CCA, the canonical
correlation directions given by Wx and Wy are obtained by solving generalized
eigenvalue problem. While in the probabilistic CCA, latent variable interpreta-
tion and building a model is estimated with maximum likelihood estimate (MLE)
for computing canonical correlation directions [11].

Given latent variables z, x and y, then the Gaussian prior and conditional distri-
bution is given by z ∼ N(0, Id) and x|z ∼ N(Wxz+µx, θx),y|z ∼ N(Wyz+µy, θy)
respectively. Here, µx,µy represent mean of the two views X, Y. Projections
Wx,Wy are now estimated with MLE and is given by Equation 10 and Equa-
tion 11 respectively.

Wx =
∑
xx

uxP
1/2R (10)

Wy =
∑
yy

uyP
1/2R (11)
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where P is a diagonal matrix constituting canonical correlations, R is an arbi-
trary rotation matrix and ux,uy are canonical directions. Other variations of
probabilistic CCA also exist, where the Gaussian distributions are replaced with
Student-t distributions [10], hierarchical Bayesian model is used with variational
approximation [271] and noisy data is leveraged for learning using variational
Bayesian inference [258].

2.2.1.2 Consensus and Complementarity

We explore methods that combine the goal of consensus and complementarity prin-
ciples to effectively represent the multi-view data. However, we also have a brief
look at those methods that satisfy either of these principles separately.

Joint Space Representation: Goal of joint space representation approaches is
to build a stable deterministic shallow representation from the multiple views of
data. In the following, we explore some techniques that are based on the consen-
sus/complementarity principles and achieve a joint space representation.

Collective Matrix Factorization (CMF) [237] learns a joint representation from the
multi-view data by considering both consensus and complementarity principles.
Given multi-view data {X1,X2, ...,XI} where Xi ∈ Rdi×n with “I” views, where n
denotes the training sample size and d the concatenated dimensions of the data
from all “I” views, then CMF factorizes in a way as given by Equation 12.

Xi = U
TVi ∀i ∈ I (12)

where U ∈ Rk×d and V ∈ Rk×n. It can be observed that the collective factoriza-
tion has lead the data matrices Xi from multiple views to share a shallow joint
representation with the factor matrixU, while each data matrix is factorized into
a loading matrix V.

Standard approach for optimization is to minimize Bregman matrix factoriza-
tion [88] loss or leverage simpler loss such as regularized squared error w.r.t U
and {Vi}i∈I given by Equation 13.

min
U,Vi

∑
i∈I

αXi ||Xi −U
TVi||

2
F +αU||U||2F +

∑
i∈I

αVi ||Vi||
2
F (13)

where αXi ,αU and αVi are regularization parameters. It can be observed that U
is attained by leveraging Xi’s, where the consensus ensures the mutual agree-
ment on multiple views of data and the complementarity exploits the exclusive
information contained in different views for learning the joint space representa-
tion.

Partial Least Squares (PLS) [217] has been successfully applied to model relations
between sets of observed variables for building shallow joint representations.
Given two view data {X, Y}. PLS builds a k-dimensional solution with parameter
matrices Wx ∈ Rd1×k and Wy ∈ Rd2×k and are optimized to maximize the the
covariance between different sets of variables as given by the Equation 14.

max
Wx,Wy

tr(WT
xCxyWy) s.t. WT

xWx = I,WT
yWy = I (14)
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Close connections are found between PLS and CCA in varied aspects [15].
Nevertheless, CCA finds the directions of maximum correlation, while PLS finds
the directions of maximum covariance with consensus principles.

Generative Model: The main aim of the generative approaches is to build proba-
bilistic models for learning a fixed set of latent random variables that represent a
distribution over the observed multi-view data. Parameters of these probabilistic
models are in general estimated by maximizing the regularized likelihood of the
multi-view data. In the following, we explore some techniques that are based on
the consensus and complementarity principles and build a generative model.

Probabilistic Multi-View Sparse Coding [120, 159] learns a shallow joint represen-
tation by leveraging multi-view data with a set of linear mappings defined as
dictionaries. Goal of these dictionaries is to find a shared representation s∗ by se-
lecting the most appropriate bases and eliminating unwanted ones. Ultimately,
this leads to a high correlation within the multi-view data and also falls in-line
with directed graphical models explaining away effect [193].

Given two view data {X, Y}, non-probabilistic sparse coding is formulated to
learn a representation w.r.t a multi-view data sample and is given by the Equa-
tion 15.

s∗ = argmin
s

||X−Wxs||
2
2 + ||Y −Wys||

2
2 + λ||s||1 (15)

where Wx, Wy are dictionaries and λ denote the regularization constant. Learn-
ing the pair of dictionaries is achieved by optimizing the objective w.r.t Wx, Wy

and is given by the Equation 16.

∂

∂Wx

,
∂

∂Wy

=

n∑
i=1

(||xi −Wxs
∗
i ||
2
2 + ||yi −Wys

∗
i ||
2
2) (16)

UsuallyWx,Wy are regularized by the constraint of having unit-norm columns,
while xi and yi are input from the different views.

However, if the aforementioned regularized form can be generalized as a prob-
abilistic model. The probabilistic multi-view sparse coding then assume genera-
tive distributions with a prior p(s) given by the Equation 17 and its conditional
distributions are provided by the Equation 18.

p(s) =
∏
j

λ

2
exp(−λ|sj|) (17)

∀ni=1 : p(xi|s) = N(xi;Wxs+ µxi ,σ
2
xi
)

p(yi|s) = N(yi;Wys+ µyi ,σ
2
yi
)

(18)

For obtaining a sparse multi-view representation, maximum a posteriori (MAP)
value of s i.e., s∗ = argmax

h
p(s|x,y) is computed. Further to learn parameters

Wx and Wy, joint MAP values of s∗ as shown in the Equation 19 are leveraged
to maximize the likelihood of the data.

arg max
Wx,Wy

∏
i

p(xi|s
∗)p(yi|s

∗) (19)
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Alternatively, Expectation Maximization (EM) can be also exploited to learn
dictionaries Wx and Wy and shared representation s∗.

Multi-View Markov Random Field (Multi-view MRF) [155] is an undirected graphi-
cal model leveraged to learn shallow multi-view representation. However, these
models are not applied in their direct form but are modified into special cases.
For example, Xing et al. [285] leveraged exponential family Harmonium [275],
a known special case of Markov Random Field (MRF) to propose a multi-wing
harmonium model. It is a Multi-view MRF having an advantage of the faster
inference than the directed graphical models [183] due to the conditional inde-
pendence of the hidden units.

Given two view data {X, Y} with the set of hidden units H = {h1, ....,hn}. Multi-
wing harmonium take each view and hidden units to construct a complete bipar-
tite graph where units in the same set contain no connections, but are fully con-
nected across sets. Additionally, all the observed (i.e. input) and hidden variables
are from exponential family. Furthermore, random variables in the log-domain
are coupled with other terms to attain the joint distribution given by Equation 20.

p(X, Y,H) ∝

exp{
∑
i

αTi φ(xi) +β
T
i ψ(yi) + γ

T
i ϕ(hi)

+
∑
i

φ(xi)
TWiiϕ(hi)

+
∑
i

φ(yi)
TUiiϕ(hi)}

(20)

where αi,βi,γi are associated weights of clique potentials φ(·),ψ(·),ϕ(·), while
Wii,Uii are the associated weights of potentials over cliques consisting of pair-
wise linked nodes φ(xi)ϕ(hi),ψ(yi)ϕ(hi).

Training of model parameters is achieved with MLE on the training data. Up-
date rules are obtained by taking partial derivatives of the log-likelihood of the
Equation 20 w.r.t to model parameters.

Multi-View Hierarchical Bayesian Model (Multi-view HBM) [16, 29] is seen as an
extension to Latent Dirichlet Allocation (LDA) [30] which is a three-level hierar-
chical Bayesian network that models a sample from a single view (e.g. textual
document) as a finite mixture over an underlying set of topics. Multi-view HBM
has seen its applications mainly in the joint modeling of two different views
emerging from varied modalities (e.g. visual and textual data).

One such multi-view HBM model is “correspondence LDA” proposed by Blei
et al. [29]. Correspondence LDA allows simultaneous dimensionality reduction
in the joint representation and also models the conditional correspondence be-
tween their respectively reduced representations. During the generative process
it generates one view after another.

Given two view data X = {x1, ...., xN}, Y = {y1, ....,yM} without parallel views,
the pair (Xi,Yi) represents a combination from two varied views. If, Z = {z1, ...., zN}
denote latent variables that generate the view-1 andW = {w1, ....,wM} be the dis-
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crete indexing variables that take values from 1 to N. Then K-factor correspon-
dence LDA model assumes the following generative process for pairs (X, Y):

• Sample θ ∼ Dirichlet(θ|α)

• For each view Xn, where n ∈ {1, ...,N}

– Sample Zn ∼Multivariate(θ)

– Sample Xn ∼ p(X|Zn,µ,σ) from a multivariate Gaussian distribution
conditioned on Zn

• For each view Ym, where m ∈ {1, ...,M}

– Sample Wm ∼ Uniform(1, ...,N)

– Sample Ym ∼ p(Y|Wm,Z,β) from a multinomial distribution condi-
tioned on the ZWm

factor.

Furthermore, the joint distribution p(X, Y, θ,Z,W) of the correspondence LDA
is given by Equation 21.

p(θ|α)

(
N∏
n=1

p(Zn|θ)p(Xn|Zn,µ,σ)

)(
M∏
m=1

p(Wn|N)p(Ym|Wm,Z,β)

)
(21)

Since, exact probabilistic inference for the correspondence LDA is intractable,
variational inference method [124] is used to approximate the posterior distribu-
tion over the latent variables.

2.2.2 Multi-View Deep Representation Learning

The rise of deep representation learning approaches presented in the Section 2.1.2
also influenced shallow multi-view representation learning to build deep repre-
sentations by capturing the abstract relationship between the multi-view data. In
the following, we explore deep multi-view representation methods which lever-
age multi-view data principles presented in the Section 2.2 from the perspective
of both probabilistic and joint space representation.

2.2.2.1 Correlation

As discussed in sections mentioned above, the goal of correlation principle is to
maximize the correlations of variables among multiple heterogeneous views. In
the following, those methods are presented which learn deep representations by
finding correlations across views. Furthermore, approaches are divided into two
categories where the first set of methods learn direct joint representation, while
the rest learns a generative model.

Joint Space Representation: Goal of joint space representation approaches is
to build a stable deterministic deep representation from the multiple views of
data. In the following, we explore some techniques that are based on the correla-
tion principles and achieve a joint space representation.
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Deep CCA [9] learn non-linear mappings with multiple stacked layers between
two views which are maximally correlated. This setup resembles the objectives
of neural network based CCA-like approaches [19] for capturing high-level as-
sociations between data from the multiple views. Earlier, few approaches [140]
also investigated a neural network implementation of CCA by maximizing the
correlation between the outputs of networks for the different views. Another ap-
proach by Hsieh et al. [111] formulated a non-linear CCA method using three
feed-forward neural networks. The aim of the first network is to maximize the
correlation between canonical variates, while the remaining two networks were
aimed to map the canonical variates back to the original two sets of variables.

Coming back to Deep CCA, given two view data {X, Y}, it first learns deep rep-
resentations Fx(X),Fy(Y) for both views separately with a deep neural network.
Then the goal of deep CCA is to jointly learn parameters for both views such
that correlation between (Fx(X),Fy(Y)) is as high as possible. Let Θx be the vec-
tor constituting all parameters of the first view and similarly Θy for the another
view. Equation 22 maximizes the correlation.

(Θ∗x,Θ∗y) = arg max
Θx,Θy

Correlation(Fx(X;Θx),Fy(Y;Θy)) (22)

Parameters Θ∗x,Θ∗y are estimated on the training data by following the gradient
of the correlation objective, with stochastic optimization with mini-batches [274].

Deep Canonically Correlated Autoencoder (DCCAE) [273] is a deep neural network
based model which consists of two autoencoders and optimizes the combination
of canonical correlation between the learned bottleneck representations and the
reconstruction errors of the autoencoders. Objective which is optimized to learn
correlation between the input deep projections F(X),G(Y) for both views is given
by the Equation 23.

min
Wf,Wg,Wp,Wq,U,V

−
1

N
tr(UTF(X)G(Y)TV)

+
λ

N

N∑
i=1

(||xi − p(F(xi))||
2

+ ||yi − q(G(yi))||
2)

(23)

where λ > 0, Wf,Wg,Wp,Wq are set of learnable parameters and U,V are
canonically correlated directions that project the DNN outputs. This approach
is seen as an extension to Deep CCA by adding an autoencoder regularization.
For parameter estimation, stochastic optimization [71] is applied to the DCCAE
objective. Also, this objective offers a trade-off between the information captured
in the mapping within each view, while also finding relationship across views.

2.2.2.2 Consensus and Complementarity

We explore methods that combine the goal of consensus and complementarity
principles to effectively learn deep representations acquired from the multi-view
data. However, we also have a brief look at those methods that satisfy either of
these principles separately.
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Deep Multi-View Embeddings are inspired from the single view compositional dis-
tributional semantics [46] approaches which learn distributed representations
of a unit. Especially, it has been extensively applied to modalities such as tex-
tual corpora [17] to learn distributed representation of words a.k.a. embeddings.
Lately, interest has also increased to learn joint representations by leveraging
the multi-view input by modifying distributional semantics methods. The joint
representation has found its application to several cross-view tasks such as cross-
language [219] and cross-modal [33] tasks.

Methods which build upon deep multi-view embeddings are designed by
leveraging varied techniques such as learning to rank [158], manifold learn-
ing [38], neural language models [22] etc. However, the core goal of all methods
remains same, i.e., to map two or more views into a common space representa-
tion for supporting varied applications.

Deep Multi-View Autoencoders are good alternatives for learning a joint (or shared)
representation between different views due to the flexibility of their objectives.
Several autoencoder based approaches are proposed to extract shared represen-
tations. In the following, we discuss two such architectures.

– Two-view autoencoder by Ngiam et al. [186] uses two view dataset aug-
mented with additional examples from each of the single view as input. Idea is
to use a greedy layer-wise pretraining with an extension to RBMs with sparsity
followed by fine-tuning.

– Correspondence autoencoder (Corr-AE) [75] is another autoencoder based
approach which construct correlations between hidden representations of two
single views with two different deep autoencoders. Corr-AE architecture differs
from Ngiam et al. [186] as it consists of two deep autoencoders that are connected
by a predefined similarity measure on a specific internal (a.k.a code) layer.

Formally, given two view data {X, Y}. F(x;WF) and G(y;WG) denote mapping
of individual views X and Y respectively to the internal (or code) layers with
WF andWG representing the weights of two separate autoencoders constructed
from views X and Y respectively. The similarity measure between pairs of (xi,yi)
is now calculated with Equation 24 and the loss function used to learn joint
representation is given by the Equation 25.

Sim(xi,yi,WF,WG) = ||F(xi;WF) − G(yi;WG)||
2
2 (24)

L(xi,yi,WF,WG) =

(1−α)(LX(xi,yi,WF,WG) +LY(xi,yi,WF,WG))

+αLJ(xi,yi,WF,WG)

(25)

where LX(·) = ||xi − x̂i||
2
2 , LY(·) = ||yi − ŷi||

2
2 and LJ(·) is given by Equa-

tion 24. x̂i and ŷi are the reconstructions of xi and yi respectively. Usually, F
and G are chosen as logistic activation functions. LX(·) and LY(·) are the losses
caused by data reconstruction errors for the given inputs of two separated deep
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autoencoders. LJ(·) is the correlation loss and α is trade-off parameter between
two groups of objectives.

Multi-view Encoder-Decoder leverage multiple views of the data which are paral-
lel to build representations such that one view can generate another. Previously,
autoencoders are the preferred choice for encoding an input into a hidden rep-
resentation to reconstruct it back. However, with the rise of convolutional and
recurrent neural networks, encoder-decoder architectures are now dominated
with the combination of them if the views emerge from two different heteroge-
neous sources. Otherwise, the same type of networks is leveraged in such a way
that they support applications spawning across several domains.

For instance, multi-view encoder-decoder architectures are proven to be suc-
cessful for sequence-to-sequence tasks in the domain of NLP, where the sequence
from one view is encoded using an encoder (usually an RNN variant) to generate
another sequence emerging from another view (which also is an RNN variant).
Some of the tasks are neural machine translation (NMT) [247, 43] and question
answering [262]. Encoder-decoder architectures for sequence-to-sequence tasks
are improved with the attention mechanism [12] to handle lengthy sequences
especially in the case of NMT.

Generative Model: The main aim of the generative approaches is to build proba-
bilistic models for learning a fixed set of latent random variables that represent a
distribution over the observed multi-view data using deep architectures. Param-
eters of these probabilistic models are in general estimated by maximizing the
regularized likelihood of the multi-view data. In the following, we explore some
techniques that are based on the consensus and complementarity principles and
build a generative model.

Deep Multi-view Deep Boltzmann Machine (Deep Multi-view DBM) [243] is an ex-
tension to deep Boltzmann machine (DBM) (discussed in the Section 2.1.2.1) to
leverage multiple views of the data. Particularly, each data view is modeled us-
ing a separate two-layer DBM and then an additional layer of binary hidden
units on top of them is added to learn the shared representation.

Given two view data {X, Y}, the distribution for any sample x in the view-1 us-
ing a two-layer DBM with hidden layers h(1),h(2) is provided by the Equation 26

and expanded into the Equation 27.

P(x; θ) =
∑

h(1),h(2)

P(x;h(1),h(2); θ) (26)
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P(x; θ) =

1

Z(θ)

∑
h(1),h(2)

exp
(
−

dv1∑
i=1

(xi − bi)
2

2σ2i

+

dv1∑
i=1

dh1∑
j=1

xi
σi
W

(1)
ij

+

dh1∑
j=1

dh2∑
l=1

h
(1)
j W

(2)
jl h

(2)
l

)
(27)

where dv1 and dh1 ,dh2 represent the dimensions of input and hidden layers
respectively. Similar to view-1, two-layer DBM for the second view (i.e., view-2)
is leveraged and is defined by combining a replicated softmax model [105] with
a binary RBM. Consequently, the deep multi-view DBM has been presented by
combining the two-layer DBM of view-1 and view-2 with an additional layer of
binary hidden units on top of them. The joint distribution over multiple views is
given by the Equation 28.

P(x,y; θ) =
∑

h(1),h(2),h(3)

P(h
(1)
v1 ,h(2)v2 ,h(3))

(∑
h

(1)
v1

P(x,h(1)v1 ,h(2)v1 )
)(∑

h
(1)
v2

P(y,h(1)v2 ,h(2)v2 )
)

(28)

where hidden layers are represented accordingly to the view they belong to. For
example, h(1)v1 represent hidden layer-1 of the view-1.

Exact maximum likelihood learning in the deep multi-view DBM is intractable,
hence approximate learning is implemented using mean-field inference [212] to
estimate data-dependent expectations, and an MCMC based stochastic approxi-
mation procedure is used to approximate the model expectation.

Multi-view Generative Adversarial Networks [40] are the extension to Generative
Adversarial Networks (GAN) [87] where two neural networks compete with each
other. A generator neural network emulate the random noise into true distri-
bution of the data in an attempt to fool the discriminator neural network whose
goal is to distinguish genuine data from the imitation data created by the genera-
tor network. There are several variations14 of GANs exist. GAN which leverages
multi-view data is expected to perform density estimation from multi-view in-
puts and also can deal with missing views to update its prediction when more
views are provided.

Initially, looking into the GAN architecture. Given an input data x, prior pz(z)
over input noise variables is defined along with a differentiable generative func-
tion G(z; θg) and discriminator D(x; θd) function over input data x to predict a
single scalar. D and G are now trained to maximize and minimize the label pre-

14https://github.com/hindupuravinash/the-gan-zoo

https://github.com/hindupuravinash/the-gan-zoo
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diction and log(1−D(G(z))) respectively with two-player minimax game [254]
using a value function V(G,D) provided by the Equation 29.

min
G

max
D

V(D,G) = E
x∼pdata(x)

[log(D(x)] + E
z∼pz(z)

[log(1−D(G(z))] (29)

However, modeling multi-view GANs still require more sophistication than
the basic GAN provides. Thus, Bidirectional GANs (BiGANs) [60] are leveraged
as they can learn inverse mapping between feature representations and the input
noise variables. This helps to get back the learned latent feature representations
useful for many auxiliary tasks. The BiGAN introduces additional encoder E(x)

which induces distribution pE(z|x) along with generator G that models distribu-
tion pG(x|z). Discriminator D is modified now to take input from both x, z and
aim to comprehend whether the sample is generated from pE(z|x) or pG(x|z).
Thus the modified training objective is provided by Equation 30 and Equation 31.

min
G,E

max
D

V(D,E,G) =

E
x∼pdata(x)

[ E
z∼pE(.|x)

[log(D(x, z)]]

+ E
z∼pz(z)

[ E
z∼pG(.|z)

[log(1−D(x, z)]]

(30)

min
E,H

max
D ′

V(E,H,D ′) =

E
x̃∼pdata(x̃)

[ E
z∼pE(z|x)

[log(D ′(x, z)]]

+ E
x̃∼pdata(x̃)

[ E
z∼pH(z|x)

[1− log(D ′(x̃, z)]]

(31)

Combining the objective of BiGANs (i.e. V(D,G,E) with V(E,H,D ′)) provide
the final objective of single-view BiGAN and easily extended toN different views
(assuming all views are available) with the aggregation model provided by:

Ψ(x̃k) =

N∑
k=1

Φ(x̃k) (32)

where Φ(x̃k) represent the usage of different views from x̃.
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S TAT E O F T H E A RT

Context of this Chapter. In this chapter, we present those applications of MVRL

where their input views emerge from the textual and image modality. In general,
these applications can be broadly divided into two tasks: (1) Cross-lingual and
(2) Cross-modal. Furthermore, tasks are again divided based on their usage in
the real-world scenarios such as content-based retrieval, classification, and gen-
eration.

Although, cross-lingual and cross-modal tasks can be approached with varied
techniques. We present only those approaches that leverage techniques similar
to the ones presented in the Section 2.

3.1 mvrl for cross-lingual tasks

MVRL has shown its applicability for those views as well where they emerge
from the homogeneous content. However, it has found its actual usage when
views emerge from the homogeneous content belonging to different languages
text. Applications that are built utilizing such views can inherently support vari-
ous cross-lingual tasks such as cross-language text retrieval, cross-language text
classification, and cross-language text generation. In the following, overall aim
and state of the art for each of these tasks are explored separately.

3.1.1 Retrieval

Cross-language text retrieval [188] is of interest over past few decades to support
those languages that lack sufficient information in the query language. With the
advent of representation learning [25], deep architectures were utilized in the
Information Retrieval (IR) for tasks such as query-document matching and query
expansion [178]. However, for the cross-language text retrieval, representations
emerging from different languages depicting multiple views is learned either
with joint space or a generative model.

Cross-language text retrieval is also closely aligned with other similar prob-
lems that leverage structured knowledge. For instance, cross-language entity
linking [235] aims to link mentions written in the non-English documents to en-
tries in the English Wikipedia by comparison of textual clues across languages.
A neural network based model is designed by leveraging convolution and tensor
networks to train fine-grained similarities and dissimilarities between the query
and candidate document from the multiple perspectives.

40
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Problem similar to cross-language text retrieval [268] is question-question sim-
ilarity re-ranking in the community question answering [168] also leverage MVRL

techniques. A cross-language system is trained on the input language is ported
to another language given the labeled training data for the first language and
only unlabeled data for the second.

Adaptation of the MVRL technique of adversarial training using neural net-
works [87] for cross-language learning [126] is also explored. High-level features
that are discriminative for the primary learning task, and at the same time in-
variant across the input languages is used as the key component for building the
cross-language system.

3.1.2 Classification

Interest in the task of Cross-language Text Classification (CLTC) is driven by the
availability of human curated labels for rich resource languages and their un-
availability for the resource-poor languages. For instance, cross-language senti-
ment analysis [305] goal is to predict sentiment for those languages which lack
abundant training data by leveraging those languages which have it.

Approaches proposed initially for CLTC has only leveraged shallow MVRL gen-
erative techniques such as latent topics detection across languages with topic
models [28] extended to multilingual setting [176, 80]. In general, extraction of
the cross-language latent topics/concepts use either context-insensitive [296] or
context-sensitive methods [266] to build word co-occurrence statistics.

However, the rise of distributed representations of words a.k.a word embed-
dings [22, 173, 195] has shifted focus and created the need for utilizing deep
MVRL architectures for learning representations. Furthermore, it is extended to
learn from varied views by projecting pair or multiple languages into the shared
semantic space to create multilingual [103, 135, 50], bilingual [90, 267, 164] and
polylingual [4] word embeddings. Also, representations were extended beyond
words to meet the variable-length textual units such as phrases, sentences and
documents for both single view [239, 144] and multi-view [197] setting.

The dependency of shared representations has also been extended beyond
CLTC and has shown its applicability to other tasks such as cross-language POS
tagging [89].

3.1.3 Generation

In the sections mentioned above, we have discussed the cross-language tasks
such as retrieval and classification. However, cross-language text generation is
also an important paradigm where the text given in one language is translated
into another language. Hence, cross-language text generation can be otherwise
interpreted as the Machine Translation (MT) [238] problem.

The MT approaches initially designed are mostly shallow and are based on
statistical NLP [32]. Lately, they are dominated by the neural MT [280] which
leverage deep MVRL. These approaches use multi-view encoder-decoder based
architectures (refer the Section 2.2.2.2)and have shown tremendous improvement
in translating source to target language. Several variations of them are also ex-
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plored where they either handle only bilingual pairs or cater multiple languages
at once [77] by leveraging multi-task learning [62].

3.2 mvrl for cross-modal tasks

MVRL can provide a significant impact if the view emerges from the heteroge-
neous views content where each view belongs to different modalities such as
text and images. Applications that are built utilizing such views can inherently
support cross-modal tasks such as cross-modal retrieval, cross-modal classifica-
tion, and cross-modal generation. In the following, overall aim and state of the
art for each of these tasks are explored separately.

3.2.1 Retrieval

The goal of cross-modal retrieval is to retrieve a modality that is different from
the query modality. For instance, retrieving images that are similar to the textual
query is a plausible case of cross-modal retrieval. Over past decades, many ap-
proaches are proposed for cross-modal retrieval using images and textual data
(available in variable lengths such as phrases, sentences, and paragraphs) are
based on shallow and deep MVRL. Most of the shallow methods such as CCA,
Partial least square (PLS) and Bilinear Model (BLM) [54] aim at learning sub-
spaces [31] or a shared space from the cross-modal data, in which the similarity
between the modalities is measured using various distance metrics.

However, subspace learning methods are generally susceptible to scaling chal-
lenges. To overcome such issues, PGM based generative models are proposed
such as correspondence Latent Dirichlet Allocation (Corr-LDA) [29] (refer the
Section 2.2.1.2) and others which include topic-regression multi-modal Latent
Dirichlet Allocation (tr-mmLDA) [201] and Multi-modal Document Random Field
(MDRF) [121]. Howbeit these approaches depend on the exact inference and
are intractable. Hence, approximate inference methods such as variational infer-
ence [124] is adapted to provide partial solutions.

Deep MVRL methods overcame few challenges observed with shallow ones,
by designing robust techniques that can scale to large datasets and also avoid
intractable inference problems. Approaches discussed in the Chapter 2 such as
deep restricted Boltzmann machine (Deep RBM) [243], deep canonical correla-
tion analysis (DCCA) [9], correspondence autoencoder (Corr -AE) [75] and deep
visual-semantic embeddings [79, 133] used multimodal inputs to learn represen-
tations of common spaces.

With the availability of large-scale image-caption pair datasets [109, 292, 157]
has spawn interest in image to caption retrieval or vice versa either focused
purely on visual similarity based approaches [190] or learning of a multimodal
space [109]. However, initially only shallow methods were used such as distance
metrics to find textual captions when given image as a query.

However, the success of deep representation learning for image recognition
and language models has shifted the focus to learn multimodal representations
of images and their captions with deep MVRL techniques. For example, a recur-
sive neural network [241] was used to retrieve images for a given caption or vice
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versa. Although image to caption retrieval produced grammatically correct cap-
tions, they failed to generalize to the novel concepts. This drawback has shifted
the focus towards cross-modal generation approaches (see Section 3.2.3).

3.2.2 Classification

Interest in labeling one modality with an other is seen as the problem of cross-
modal classification. For instance, prediction of a textual label as annotation for
an image is a plausible case of the cross-modal classification. Previously, labeling
images with the textual annotations have been explored by several works from
diverse perspectives.

Automatically mining image data from the web [59, 41] and annotating them
with textual labels is an unsupervised way of providing classification. Other
approaches [281] have focused their efforts on cleaning the data acquired from
the web by leveraging pre-trained models built from datasets created with the
human supervision (e.g., ImageNet [55]).

Few aimed at directly training a classification model from the web data [301]
by automatically discovering the hidden patterns. Other objectives are also per-
ceived, where the label noise is tackled when building models such as by Sukhbaatar
et al. [244] and Xiao et al. [283]. They filtered the label noise when learning
a image-specific deep representation model. Here, an alternative case is also
possible, where instead of directly learning image representation models (e.g.,
CNNs [236, 98, 112]), leveraging multi-view data (e.g., images and text) is uti-
lized to address the challenge. As learning from CNN with noisy labeled data is
still an open problem.

Alternative for clean textual labels are hashtags 15 which are regularly ob-
served in the noisy environments such as social media (e.g., Twitter, Pinterest,
Facebook, Instagram) messages. They capture authors perspective on a particu-
lar topic. Sometimes messages also accompany images, and hashtags are usually
considered as weakly aligned labels for those images. Inspired from the appli-
cation of deep representation learning (see Section 2.1.2) [58, 86] for modeling
messages for prediction and recommendation. Hashtags are also explored for
image tagging by Denton et al. [56] and proposed a 3-way multiplicative gat-
ing approach, where the image model is conditioned on the user metadata on
Facebook16 dataset. While, Park et al. [191] proposed context sequence memory
network (CSMN) model mainly to built a personalized image captioning system
to predict hashtags on Instagram17 dataset. However, hashtags are usually illus-
trated with n-grams or abbreviations and sometimes difficult to interpret when
compared with semantically enriched clean textual labels.

Approaches presented above only operate with the single-label per image,
wherein real-world scenarios multiple labels are usually observed per image.

15https://en.wikipedia.org/wiki/Hashtag
16https://www.facebook.com/
17https://www.instagram.com/

https://en.wikipedia.org/wiki/Hashtag
https://www.facebook.com/
https://www.instagram.com/
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3.2.3 Generation

The goal of cross-modal generation is to generate one modality from another. For
instance, the application which has gained much attention in the recent years
is the generation of sentence-level textual descriptions for images. Approaches
have leveraged deep MVRL approaches such as encoder-decoder based architec-
tures [43, 12] where image is encoded to decode a textual sequence depicting
what is observed in an image. Similarly, vice versa is also investigated, where
given a sentence-level textual description, an image is generated [207] by match-
ing critical visual objects depicted in the description.

In the following, overall aim and state of the art for each of these tasks are
explored separately.

Image to Text Generation goal is to generate a variable length text conditioned
on an image. In general, approaches limit the generated textual descriptions to
a sentence. Initially, Kiros et al.[133] explored generation of text conditioned on
an image with multimodal neural language model (Neural LM), while Karpathy
et al. [129] and Chen et al. [42] used RNN. Mao et al.[166] proposed multimodal
variant of RNN that use the image at every time step. Vinyals et al. [262] and Don-
ahue et al. [61] introduced similar architectures but leverages LSTM. Jia et al.[119]
used LSTM and extra guidance from the correlated image and textual features
obtained using CCA.

Fang et al.[72] slightly deviated from RNN based approaches and used multi-
instance learning and maximum-entropy language model. Another noteworthy
improvement is seen with encoder-decoder frameworks for caption generation
by including semantic [291] and visual [286] attention along with a reviewer
module [288]. Lu et al. [163] explored attention mechanism with a visual sentinel,
while Anderson et al. [8] used region CNN (R-CNN) [209] visual features to cap-
ture visual attention. Few approaches [211] leveraged reinforcement learning to
optimize evaluation metric CIDEr [255] along with visual attention mechanism.
Another set of approaches [123] which annotate captions to individual regions
in an image, while some [102] expanded caption generation to novel objects not
seen in an image-sentence parallel corpus.

Approaches mentioned above are designed to handle single images only. How-
ever in real-world scenarios, a sequence of images are observed, and they illus-
trate a story. For tackling such scenarios, the entire order of images is considered
for generating descriptions. In general, generated descriptions resemble a para-
graph and is referred to as visual storytelling [114].

Text to Image Generation goal is to reverse the process of the image to text
generation by leveraging conditional generation, i.e., to generate an image given
the variable length text. Initially, Denton et al. [57] synthesized images at mul-
tiple resolutions by using a Laplacian pyramid [34] of an adversarial generator
and discriminators [87]. This work generated compelling high-resolution images
and could also condition on class labels for the controllable generation.

Going beyond the approach of Denton et al. [57], which build a model by con-
ditioning only on the class labels, Reed et al. [207] instead conditions to generate
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more substantial textual descriptions. It was the first end-to-end differentiable
architecture from the character-level to pixel-level. Furthermore, it introduces a
manifold interpolation regularizer for the GAN generator that significantly im-
proves the quality of generated samples, including on the held out zero-shot
categories.
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Context of this Chapter. In this chapter, we leverage multi-view shallow rep-
resentation learning and propose a novel approach for cross-modal retrieval to
retrieve images given the textual query in different languages and vice versa.
Our approach to retrieve semantically similar documents across modalities in
different languages is termed as correlated centroid space unsupervised retrieval
(C2SUR) and consists of two phases. In the first phase, we extract heterogeneous
features from a multimodal document and project it to a correlated space using
kernel canonical correlation analysis (KCCA). In the second phase, correlated
space centroids are obtained using clustering to retrieve cross-modal documents
with different similarity measures. Experimental results show that C2SUR out-
performs the existing state-of-the-art English cross-modal retrieval approaches
and achieve similar results for other languages.

Our main contributions of this chapter can be broadly summarized as:

À We designed a novel approach to link text in multiple languages with vi-
sual content (i.e. images) and vice versa to facilitate multilingual cross-
modal retrieval.

Á We extended an existing dataset 18 to multiple languages to facilitate mul-
tilingual cross-modal research.

Â We provide empirical evidence to show that C2SUR outperforms existing
state of the art monolingual (English) cross-modal retrieval approaches.

Outline. The remainder of this chapter is organized into following sections.
Initially, Section 4.1 presents the motivation in Section 4.1.1 and briefly introduce
existing multi-view shallow representation learning approaches in the context
of cross-modal retrieval in Section 4.1.2. Next Section 4.2 presents the research
question and describes our contribution to cross-modal retrieval. Our approach
i.e. C2SUR is then discussed in the Section 4.3. The dataset and metrics used
for evaluation of the approach are described in the Section 4.4. While in the
Section 4.4.2 details about the evaluation results are shown, which are further
analyzed in the Section 4.4.3. Summary of the chapter is presented in the Sec-
tion 4.5.

18http://www.svcl.ucsd.edu/projects/crossmodal/
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(a) (b) (c)

Figure 12: Images (i.e.,(a), (b), (c)) seen in the related news articles written in English,
German and Spanish languages respectively.

4.1 introduction

4.1.1 Motivation

Web often comprise information which is present in varied modalities such as
text, image, video or audio. Sometimes one or more modalities co-exist to rep-
resent a multimodal document as found in online news articles. They are either
embedded with a video or an image along with the text in different languages.
Figure 12 shows images19 taken from news articles describing the same inci-
dent written in English20, German21 and Spanish22 respectively. Similarly, multi-
modal articles are also found in other web sources such as blogs, social networks,
Wikipedia and personal websites.

Mining multimodal documents pose numerous challenges. In the recent years,
multimedia and computer vision communities have published considerable re-
search in bridging the gap between modalities to facilitate cross-modal appli-
cations [203]. Their research aims to address the problems of automatic image
tagging with class labels [181], usage of image queries for text retrieval [177]
or vice versa. From an old Chinese proverb and its interpretations [142], we un-
derstand that “A picture is worth 10,000 words”. Existing multimodal learning
approaches [205, 206] has well adopted this for cross-modal retrieval. They com-
bine visual information with text for both image and text-based retrievals. Other
cross-modal approaches [171] leverage other modalities such as video and audio.
However, most of the work about the text is limited to English.

Similarly, natural language processing(NLP) and information retrieval(IR) com-
munities which work on different cross-lingual applications [196] concentrate
only on text and diminish the importance of other modalities present in the
multimodal document. Also, some of the cross-language retrieval systems are
highly dependent on transliteration or translation tools [231] and support only
keyword-based queries.

In this chapter, we aim to tackle this problem of cross-modal retrieval in a
multilingual setting, by designing a cross-modal retrieval approach which is in-
variant to the languages present in a multimodal document. The method similar

19Images are of different resolution.
20http://bit.ly/1AUcpqG
21http://bit.ly/1rA3kCq
22https://tinyurl.com/yc24em9k
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to our objective is by Wu et al. [279] who propose to identify novelty and redun-
dancy with apparent duplicates in videos using cross-lingual news stories.

4.1.2 Background on Related Learning Methods

Our approach for cross-modal retrieval is dependent on the existing multi-view
shallow representation learning methods and is comparable to other related ap-
proaches. Here, we discuss about existing methods which are already presented
in the Section 2.2.1.1 and reiterate them in the context of cross-modal retrieval
task.

4.1.2.1 Text and Image as Input to CCA

To build a low-dimension correlated space representation of two different modal-
ities i.e text and image using CCA. Two sets of multivariate random variables
t ∈ Rdt and m ∈ Rdm representing text and image modality respectively is cho-
sen to find the projections U and V such that t and m are highly correlated in
the projected space. The transformation can be visualized in the Equation 33.

(tp,mp)→ (Ut,Vm) (33)

where Ut represents the text projection, while Vm represents an image projec-
tion. In order to maximize this correlation ρ, we build an optimization function
using Equation 34 with certain constraints as shown in Equation 35. We can ob-
serve that the optimization function is invariant to scaling. Also projections are
constrained to unit variance [9].

ρ = arg max
U,V

UTCtmV√
UTCttU

√
VTCmmV

(34)

ρ = arg max
UTCttU=VTCmmV=1

UTCtmV (35)

where Ctt represent covariance matrix of the text modality and Cmm represent
covariance matrix of the image modality; while Ctm is a cross-covariance matrix
between text and image modalities. Equation 34 is solved with a generalized
eigenvalue problem to maximize the correlation by learning projections U,V
and given by the Equation 36 and Equation 37 respectively. Here, λ represent an
eigenvalue.

C−1
tt CtmC

−1
mmCmtU = λ2U (36)

C−1
mmCtmC

−1
tt CtmV = λ2V (37)



4.2 research question and contributions 50

4.1.2.2 Text and Image as Input to KCCA

Kernelization of CCA is helpful in finding the correlation between non-linear
relationships [95]. Given any two sets of multivariate random variables t ∈ Rdt

and m ∈ Rdm representing text and image modalities respectively. We find the
kernel functions KT = kT (ti, tj) and KI = kI(mi,mj), such that KT ,KI ∈ Rn×n are
both positive semi-definite kernel matrices. To find the correlation ρkcca between
the transformed kernel matrices, we follow the similar optimization approach as
of CCA given by Equation 38 and Equation 39.

ρkcca = arg max
X,Y

XTKTKIY√
XTK2TX

√
YTK2IY

(38)

ρkcca = arg max
XTK2TX=YTK2IY=1

XTKTKIY (39)

where X and Y are the projections of t and m respectively in the projected
correlated space.

4.1.2.3 Other Related Approaches

Several approaches have been proposed in bridging modalities with joint dimen-
sionality reduction approaches [205, 206] using extended CCA with semantic
class labels. Some approaches formulate an optimization problem [232] where
the correlation between modalities is found by separating the classes in their
respective feature spaces. As cross-modal data involves heterogeneous features,
most of the approaches [294] aim in learning these features implicitly without
any external representation. Zhai et al. [295] focus on the joint representation
of multiple media types using joint representation learning which incorporates
sparse and graph regularization. We use KCCA for maximizing the pair-wise
correlation between different media as Blaschko et al. [27] used for correlational
spectral clustering.

4.2 research question and contributions

Let us outline the research questions, hypotheses, and contributions, which we
target throughout the chapter.

4.2.1 Research Question and Hypothesis

As presented in Section 1.3, our overall research question is: How to effectively
integrate multiple views of training instances depicting heterogeneous or homo-
geneous content into a common space representation for supporting applications
in different domains? In this chapter, we address the part, where learning corre-
lation among views emerging from different modalities by leveraging their input
representations. More specifically, we aim at Research Question 1:
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- Research Question 1

Given two different views of heterogeneous content depicting text and im-
age modality, how can we build a shared representation to assist search by
finding correlation among their input representations?

For addressing above research question, we verify hypothesis as follows:

2 Hypothesis 1

Leveraging shallow multi-view learning approaches such as kernel canoni-
cal correlation approaches (Kernel Canonical Correlation Analysis (KCCA))
can effectively learn the correlation between different modalities of the data
emerging from heterogeneous sources. However, it also can be extended
with more sophisticated approach (see Algorithm 1) for addressing applica-
tions such as the image to text retrieval or vice versa in multiple languages.

Intuitively, Hypothesis 1 states that the KCCA can be extended to useful capture
correlation among the heterogeneous data. In particular, we expect that the ex-
tended KCCA to effectively discriminate the cross-modal data such that similar
items are ranked closer while pushing away the dissimilar items. Further, we
expect that the extension of KCCA implementation is more straightforward and
computationally efficient.

To validate Hypothesis, we present our correlated centroid space unsuper-
vised retrieval (C2SUR) in Section 4.3 to support different languages. Moreover,
we implemented the approach and empirically show (see the evaluation in Sec-
tion 4.4) its effectiveness with state of the art.

4.2.2 Contributions

While being naturally appealing, KCCA and its extensions are not studied be-
fore in the context of cross-modal retrieval, where textual data can emerge from
multiple languages. Aiming at above hypotheses, we provide the following con-
tribution:

• Contribution for Hypothesis 1
Building common space representation from the heterogeneous data using
different principles of cross-modal association has been extensively studied
from the past decade [153]. However, closest to our work is the use of cor-
relation principles for English text and image retrieval or vice versa [205].

However, our usage of KCCA and its extended variant in the context of
retrieving images for a given query in different languages and vice versa
is unique. Also, tackling the challenge thrown by the data, where textual
data used has variable length queries, as opposed to short textual queries
used in the standard text-based information retrieval. Additionally, repre-
sentation of complex heterogeneous data requires a more lightweight im-
plementation, existing works either made complex implementations or do
not consider other nuances such as different languages.
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Facing these characteristics, we propose (C2SUR). To the best of our knowl-
edge, this is the first work of cross-modal retrieval in the multilingual set-
ting.

We conducted an evaluation using Wikipedia dataset in English, German
and Spanish to validate the Hypotheses 1. In these experiments, we could
achieve significant performance gains over the state of the art for English
cross-modal retrieval, and new scores are reported for German and Span-
ish. In fact, we could show that our proposed approach (C2SUR) leads to
an improvement in mean average precision (MAP) scores for the image to
text and vice versa retrieval.

4.3 correlated centroid space approach

In this section, we first formulate the problem and then present the foundation
to build correlated spaces using KCCA. Later, our approach C2SUR is discussed,
which is an extension to KCCA.

4.3.1 Problem Formulation

As discussed in the motivation Section 4.1.1, multimodal documents on the web
are found in the form of pairwise modalities. Sometimes, there can be multiple
instances of modalities present in a single document. To reduce the complexity,
we assume a multimodal document Di = (Text,Media) to contain a single me-
dia item either an image, video or audio embedded with a textual description.
A collection Cj = {D1,D2...Di...Dn} of these documents in different languages
L = {LC1 ,LC2 ...LCj ...LCm} are spread across web. Formally, our research question
is to find a cross-modal semantically similar document across language collec-
tions LCo using unsupervised similarity measures on low-dimension correlation
space representation. Figure 13 shows the broad visualization of approach.

4.3.2 Correlated Space

Initially, KCCA is utilized to attain correlated low-dimension space of heteroge-
neous representations. It is then used to find semantically similar cross-modal
documents using different unsupervised similarity measures. For instance, vari-
ous similarity measures such as Cosine Similarity, Normalized Correlation, Minkowski
distance, etc. have been well adopted for clustering and other semantic similar-
ity tasks. We leverage five such similarity measures, mainly Cosine, Correlation,
Minkowski, Mahalanobis and Chebyshev to build our baseline approach termed
as correlated space unsupervised retrieval (CSUR).

4.3.3 Correlated Centroid Space

In the correlated centroid space approach, we extend the aforementioned cor-
related space approach. Correlated low-dimension representation of text and
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Figure 13: Correlated Space Retrieval

images attained with correlated space approach is replaced with it’s closest cen-
troids obtained using k-means clustering [97].

Let mT = {mT1 ...mTk} and mI = {mI1 ...mIk} denote the initial k centroids for
the correlated text and image space respectively. Iterating over the samples of
the training data, we perform assignment and update steps to obtain final k
centroids. The assignment step assigns the each observed sample to its closest
mean, while the update step calculates the new means that will be a centroid.

Correlated low-dimension representation of text and image samples of the
training data is given by CSTrT and CSTrI respectively. Choice of k is dependent
on number of classes in the training data, while p represents the total training
samples. S(t)Ti and S(t)Ii denote new samples of text and image modalities assigned
to its closest mean. Algorithm 1 lists the procedure. Now the modified feature
space is used for cross-modal retrieval similar to CSUR and termed as C2SUR.

Algorithm 1: Correlated Centroid Space
Require: CSTrT = xT1 ...xTp , CSTrI = xI1 ...xIp
Ensure: p > 0 {Output: Final K-Centroids}

Assignment Step:
S
(t)
Ti

= xTj : ||xTj −mTi || 6 ||xTj −mTi∗ || ∀i
∗ = 1...k

S
(t)
Ii

= xIj : ||xIj −mIi || 6 ||xIj −mIi∗ || ∀i
∗ = 1...k

Update Step:

m
(t+1)
Ti

=

∑
xTj
∈S(t)
Ti

xTj

|S
(t)
Ti

|
, m(t+1)

Ii
=

∑
xIj
∈S(t)
Ii

xIj

|S
(t)
Ii

|
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4.4 evaluation

4.4.1 Evaluation Setup

In this section, we provide details about the dataset that is used and created
to perform the experiments. Also, we describe features that are extracted from
text and image modalities to learn a correlated space representation. It is then
followed by methods used to evaluate the approach.

4.4.1.1 Dataset Creation

We used Wiki dataset23 created for English texts and images using Wikipedia’s
featured articles. It has 2866 documents containing selected text paragraph and
image pairs belonging to 10 semantic categories taken from art, biology, sport etc.
We expanded the dataset into two more languages, mainly German and Spanish,
using the Yandex machine translation API24, while keeping the original images
for every language. Thus, the expanded dataset consists of text and image pairs
in three different languages. We relied on machine translation, as it is the most
efficient way to create such a corpus.25.

Figure 14 show the sample from the dataset representing category “art”.

The net research result of their excavations revealed Chichen 
Itza to be an unusual mixture of building styles: not only was 
there a wide variety of Maya styles such as Puuc, Rio Bec and 
Chenes, but a significant presence of Mexican influences such as 
El Tajín, but more particularly Toltec. The evidence indicated 
that the site had been inhabited since at least the mid-Classic, 
but that a particular florescence had occurred in the 
Post-Classic, when the site was apparently a major power. From 
the combined results of their work, that of others, and some 
documented tales of contact-era Maya peoples, a view was 
formed that Chichen Itza had actually been invaded and 
conquered sometime in the tenth century by Toltec warriors 
from the far west, who maintained their hold over the local Maya 
for another century or so, only in turn to be replaced by a later 
mixed Maya-Mexica group known as the Itza. Later evidence 
suggested that the actual year of this invasion was 987, and 
identified its leader with a legendary Toltec ruler called Topiltzin 
Ce Acatl Quetzalcoatl after the Mesoamerican deity 
Quetzalcoatl (''K'ulk'ulkan'' in Yucatec). Morley was in general 
opposed to ideas that other external groups had influenced the 
Maya, but in this case, since the conquest occurred in the 
"degenerate" Post-Classic phase he found it acceptable. This 
view of the Toltec invasion of Yucatán became the one 
maintained by the majority of Mayanists. However, recent 
research from the mid-1990s onwards has now questioned this 
orthodoxy, to the point where many now hold an actual invasion 
did not take place, but the similarities in style are largely due to 
cultural diffusion and trade, and that in fact there is evidence 
that the diffusion in this period flowed in both directions.Voss 
and Kremer (2000). The chronology of Chichen Itza continues to 
be a source of debate, and the hoped-for answers to the 
mystery of the Classic Maya decline elusive (wholesale 
"Mexicanisation" by invading forces ruled out by the lack of 
these indicators in the central and southern sites). However, the 
Carnegie excavations did add significantly to the corpus of 
available information, and are notable for their scope alone, if 
not for fine details and quality of research. The site's 
reconstruction by Carnegie has proved to be a lasting one, and 
the site today is among the most visited of pre-Columbian ruins 
in all of Central America and Mexico, with in excess of a million 
visitors per year.

Die net-Forschung aufgrund Ihrer Ausgrabungen ergaben Chichen Itza 
eine ungewöhnliche Mischung der Baustile: es wurde nicht nur eine 
Vielzahl von Maya Stile wie Puuc, Rio Bec und Chenes, aber eine 
deutliche Präsenz der mexikanischen Einflüsse wie El Tajin, aber 
insbesondere Tolteken. Die Beweise darauf hingewiesen, dass die 
Website hatte bewohnt seit mindestens Mitte der Klassiker, aber, dass 
eine bestimmte florescence stattgefunden hatte in der Post-Klassiker, 
wenn die Seite war offenbar eine große macht. Aus der kombinierten 
Ergebnisse Ihrer Arbeit, dass der andere, und manche dokumentiert 
Geschichten von Kontakt-ära Maya-Völker, eine Ansicht, gebildet , 
Chichen Itza war eigentlich überfallen und erobert irgendwann im zehnten 
Jahrhundert von Toltec Krieger aus dem Fernen Westen, wer behauptet, 
Ihre Kontrolle über die lokalen Maya für ein weiteres Jahrhundert oder so, 
nur wiederum ersetzt werden durch eine spätere gemischt 
Maya-Mexica-Gruppe, bekannt als Itza. Später Befunde legen nahe, dass 
die eigentliche Jahr der diese invasion war 987, identifiziert und Ihre 
Führer mit einem legendären Tolteken Herrscher namens Topiltzin Ce 
Acatl Quetzalcoatl nach dem mittelamerikanischen Gottheit Quetzalcoatl 
("K'ulk'ulkan" in Yucatec). Morley war im Allgemeinen im Gegensatz zu 
Ideen, die andere externe Gruppen beeinflusst hatten die Maya, aber in 
diesem Fall, seit der Eroberung traten in der "entarteten" Post-Klassiker 
phase fand er es akzeptabel. Diese Sicht der Tolteken invasion von 
Yucatán zu einem gepflegt von der Mehrheit der Mayanisten. Doch 
jüngste Forschungsergebnisse aus der Mitte der 1990er Jahre ab jetzt hat 
das in Frage gestellt Orthodoxie, bis zu dem Punkt, wo viele halten Sie 
nun eine tatsächliche invasion fand nicht statt, aber die ähnlichkeiten in 
der Art sind weitgehend durch kulturelle diffusion und Handel, und dass 
in der Tat gibt es Hinweise, dass die diffusion in dieser Zeit floss in beiden 
directions.Voss und Kremer (2000). Die Chronologie von Chichen Itza 
weiterhin eine Quelle der Debatte, und die erhofften Antworten auf die 
Rätsel der Klassischen Maya-Rückgang schwer (Großhandel 
"Mexicanisation" durch die eindringenden Kräfte ausgeschlossen, die 
durch den Mangel dieser Indikatoren in den zentralen und südlichen 
Seiten). Jedoch, die Carnegie Ausgrabungen habe noch erheblich zu den 
bereits verfügbaren Informationen, und zeichnen sich durch Ihren Umfang 
allein, wenn nicht für feine details und die Qualität der Forschung. Die 
Website der Rekonstruktion von Carnegie hat sich erwiesen, dass eine 
dauerhafte eins, und der Ort heute zu den meistbesuchten der 
präkolumbianischen Ruinen in ganz Zentralamerika und Mexiko, mit über 
eine million Besuchern pro Jahr.

La red de investigación de resultados de sus excavaciones revelaron a 
Chichen Itza con una inusual mezcla de estilos de construcción: no sólo 
existe una amplia variedad de Maya estilos Puuc, Río Bec y Chenes, pero 
hay una importante presencia de influencias Mexicanas, tales como El 
Tajín, pero más en particular de los Toltecas. La evidencia indica que el 
sitio había sido habitada desde al menos mediados de los Clásicos, pero 
que un particular de fluorescencia de la que se había producido en el 
Post-Clásico, cuando el sitio fue, aparentemente, una gran potencia. A 
partir de la combinación de los resultados de su trabajo, la de los demás, 
y algunos documentado cuentos de contacto de la época de los pueblos 
Mayas, a una vista que se formó que Chichén Itzá, en realidad, había sido 
invadido y conquistado en algún momento en el siglo x por los guerreros 
Toltecas desde el lejano oeste, que mantiene su control sobre el local 
Maya para el otro siglo o así, sólo en turno para ser reemplazado por una 
mezcla posteriormente Maya-Mexica grupo conocido como los Itzáes. 
Más tarde, la evidencia sugiere que el verdadero año de la invasión fue 
de 987, e identificó a su líder con un legendario gobernante Tolteca 
llamado Ce Acatl Topiltzin Quetzalcoatl después de la divinidad 
Mesoamericana Quetzalcóatl ("K'ulk'ulkan" en Yucateco). Morley fue, en 
general, se opuso a las ideas que otros grupos externos a la influencia de 
los Mayas, pero en este caso, desde la conquista se produjo en el 
"degenerado" Post-Clásico fase encontró aceptable. Este punto de vista 
de la invasión de los Toltecas de Yucatán se convirtió en el mantenido por 
la mayoría de los Mayistas. Sin embargo, una reciente investigación de 
mediados de la década de 1990 en adelante ha cuestionado esta 
ortodoxia, hasta el punto de que muchos ahora tienen una real invasión 
no tuvo lugar, pero las similitudes en el estilo son en gran parte debido a 
la difusión de la cultura y el comercio, y que de hecho, no hay evidencia 
de que la difusión de este período fluía en ambas directions.Voss y 
Kremer (2000). La cronología de Chichén Itzá, sigue siendo una fuente de 
debate, y a la espera de respuestas al misterio de los Mayas del Clásico 
declive difícil de conseguir (al por mayor "Mexicanisation" por las fuerzas 
invasoras descartado por la falta de estos indicadores en el centro y el sur 
de los sitios). Sin embargo, el Carnegie excavaciones añade 
significativamente que el corpus de la información disponible, y son 
notables por su ámbito de aplicación solo, si no para bien de la calidad y 
los detalles de la investigación. El sitio de la reconstrucción por el 
Carnegie ha demostrado ser duradera, y el sitio de hoy es uno de los más 
visitados de ruinas Precolombinas en América Central y México, con más 
de un millón de visitantes por año.

English

Art

GermanSpanish

Figure 14: Example showing the image and its textual description in English, German
and Spanish from the semantic category (“art”).

4.4.1.2 Text and Image Representation

To acquire representations for both text and images, different feature extrac-
tion approaches are adopted. For the text, we used polylingual topic models

23http://www.svcl.ucsd.edu/projects/crossmodal/
24http://api.yandex.com/translate/
25Please note, that the approach is invariant to machine translation and capable of cross-lingual

cross-modal retrieval
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(PTM) [176] to extract representation as a distribution of topics in multiple lan-
guages. We leveraged the large collections that have interlingual connections
like Wikipedia to train the PTM across languages. A trained PTM model on
Wikipedia provides the same topic distribution on English, German and Span-
ish. We have trained PTM model for 10, 100, and 200 topics using the text of
around 250k wikipedia articles in each language. The concentration parameter
α is initialized to 1T. Using the training and testing parts of our dataset, each
text document is represented as 10, 100 and 200 dimension topic distribution
vectors. Similarly, each image is represented as 128-dimension SIFT descriptor
histograms as used in earlier works [205, 206].

4.4.1.3 Evaluation Measures

We evaluated cross-modal retrieval using mean average precision (MAP) [205,
206] and mean reciprocal rank (MRR) [264] scores. Experiments were repeated 10

times with different combinations of training and testing data to reduce selection
bias. We used the same split as in Rasiwasia [205] for all languages to create 2173

training documents and 693 testing documents.

4.4.2 Evaluation Results

Using the dataset created for different languages, we segregate the tasks and
evaluate them separately. First, we attain the MAP and MRR scores obtained for
text and image queries using 10 text topics and 128-dimension SIFT descriptor
histograms. Then, we show the variation in MAP scores by changing the number
of topics.

4.4.2.1 Text Query - Image Retrieval

We used the text queries from testing data to find semantically similar images
present in testing data. Text from testing data is projected into correlated space
of images and text using the projection matrices trained with training data to
retrieve images belonging to the same semantic category. Table 1 and Table 2

shows the MAP and MRR results26 with standard deviation obtained for English,
German and Spanish using CCA, Polynomial kernel with degree 2(poly-2) CCA
and RBF kernel CCA with CSUR and C2SUR approach respectively.

For the text query, we performed ”unpaired t-test“ between best performing
methods of CSUR and C2SUR for testing statistical significance. The two-tailed
P value is less than 0.0001 for all languages, which is considered to be extremely
statistically significant.

4.4.2.2 Image Query - Text Retrieval

We used image queries from the testing data to find the semantically similar
text in the testing data. Image from the testing data is projected into common
space of images and text using the projection matrices trained with training data

26Tables show only those similarity measures which obtained best results for each of the given
kernels.



4.4 evaluation 56

Method MAP MRR

English CCA-Mahalanobis 0.224 ± 0.002 0.241 ± 0.001

(Poly-2)CCA-Correlation 0.233 ± 0.001 0.247 ± 0.002

(RBF)CCA-Correlation 0.235 ± 0.005 0.250 ± 0.003

German CCA-Cosine 0.219±0.003 0.242 ± 0.002

(Poly-2)CCA-Chybyshev 0.256 ± 0.001 0.308 ± 0.002

(RBF)CCA-Correlation 0.246 ± 0.003 0.272 ± 0.001

Spanish CCA-Cosine 0.208 ± 0.002 0.223 ± 0.001

(Poly-2)CCA-Cosine 0.249 ± 0.002 0.283 ± 0.003

(RBF)CCA-Correlation 0.229 ± 0.002 0.249 ± 0.003

Table 1: Text Query - Image Retrieval (CSUR)

Method MAP MRR

English CCA-Correlation 0.245 ± 0.003 0.273 ± 0.002

(Poly-2)CCA-Chebyshev 0.245 ± 0.002 0.259 ± 0.001

(RBF)CCA-Correlation 0.262 ± 0.003 0.277 ± 0.001

German CCA-Correlation 0.215 ± 0.001 0.246 ± 0.002

(Poly-2)CCA-Correlation 0.263 ± 0.003 0.265 ± 0.002

(RBF)CCA-Chebyshev 0.226 ± 0.002 0.255 ± 0.003

Spanish CCA-Chebyshev 0.230 ± 0.003 0.255 ± 0.002

(Poly-2)CCA-Chebyshev 0.259 ± 0.002 0.267 ± 0.001

(RBF)CCA-Correlation 0.268 ± 0.002 0.268 ± 0.002

Table 2: Text Query - Image Retrieval (C2SUR)

to retrieve images belonging to the same semantic category. Table 3 and Table 4

shows the MAP and MRR results27 with standard deviation obtained for English,
German and Spanish using CCA, Polynomial kernel with degree 2(poly-2) CCA
and RBF kernel CCA using CSUR and C2SUR approach respectively.

For the image query, ”unpaired t-test“ between best performing methods of
CSUR and C2SUR showed that two-tailed P value equals 0.0111 for German and
less than 0.0001 for Spanish. Although, there was no significant improvement
for English. Topic distribution of text can show influence on the cross-modal re-
trieval. To apprehend it, we evaluated C2SUR approach on various kernels with
different topic distributions. Figure 15, Figure 16 and Figure 17 shows the aver-
age of MAP scores obtained for text and image queries using different similarity
measures.

27Tables only show those similarity measures which obtained best results for each of the given
kernels.
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Method MAP MRR

English CCA-Minkowski 0.241 ± 0.002 0.263 ± 0.001

(Poly-2)CCA-Correlation 0.239 ± 0.002 0.256 ± 0.002

(RBF)CCA-Mahalanobis 0.273 ± 0.003 0.311 ± 0.002

German CCA-Mahalanobis 0.219 ± 0.001 0.233 ± 0.002

(Poly-2)CCA-Minkowski 0.282 ± 0.001 0.275 ± 0.001

(RBF)CCA-Mahalanobis 0.248 ± 0.002 0.271 ± 0.001

Spanish CCA-Chebyshev 0.220 ± 0.002 0.234 ± 0.001

(Poly-2)CCA-Cosine 0.238 ± 0.001 0.257 ± 0.003

(RBF)CCA-Cosine 0.225 ± 0.004 0.238 ± 0.002

Table 3: Image Query - Text Retrieval (CSUR)

Method MAP MRR

English CCA-Chebyshev 0.253 ± 0.002 0.257 ± 0.003

(Poly-2)CCA-Chebyshev 0.273 ± 0.002 0.293 ± 0.002

(RBF)CCA-Chebyshev 0.263 ± 0.003 0.287 ± 0.002

German CCA-Chebyshev 0.226 ± 0.003 0.252 ± 0.002

(Poly-2)CCA-Minkowski 0.231 ± 0.001 0.241 ± 0.002

(RBF)CCA-Correlation 0.284 ± 0.002 0.274 ± 0.001

Spanish CCA-Minkowski 0.250 ± 0.001 0.284 ± 0.002

(Poly-2)CCA-Correlation 0.231 ± 0.003 0.258 ± 0.002

(RBF)CCA-Chebyshev 0.219 ± 0.002 0.244 ± 0.003

Table 4: Image Query - Text Retrieval (C2SUR)

Figure 15: English-C2SUR

4.4.2.3 Cross-modal Retrieval Comparison

Most of the earlier works [205, 232, 206] performed cross-modal experiments
only on English text with 10-topics and 128-dimension SIFT image features. We
compared the best methods of CSUR and C2SUR with the existing approaches28.

28Cluster-CCA [206] and Cluster-KCCA [206] approaches are not directly comparable with
ours. They compare the cluster labels of instances, while we compare the original semantic cate-
gory labels
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Figure 16: German-C2SUR

Figure 17: Spanish-C2SUR

Table 5 shows the comparison on text and image queries for English, German
and Spanish on the Wiki dataset. We show the best MAP scores for CSUR and
C2SUR for German and Spanish with different topic variations. For Example,
CSUR-10 represent 10-topics. Please note, that the related work can only be ap-
plied to English text.

4.4.3 Evaluation Results Analyses

In this section, we analyzed the results obtained using our proposed approaches
to perform cross-modal retrieval.

Table 1 and Table 2 shows the results attained using text queries for image
retrieval with CSUR and C2SUR approaches respectively. It can be inferred that
kernel versions of CCA (KCCA) in both the approaches outperformed baseline
CCA on MAP scores. Best performing kCCA used in CSUR and C2SUR ap-
proaches had an average improvement of 0.029 and 0.034 respectively over base-
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Method Image Query Text Query Average (MAP)

English SM [205] 0.225 0.223 0.224

Mean-CCA [206] 0.246 ± 0.005 0.194 ± 0.005 0.220 ± 0.005

SCDL [272] 0.252 0.198 0.225

SliM2 [306] 0.255 0.202 0.229

GMLDA [232] 0.272 0.232 0.252

CSUR-10 0.273 ± 0.003 0.235 ± 0.005 0.254 ± 0.004

C2SUR-10 0.273 ± 0.002 0.262 ± 0.003 0.268 ± 0.003

German CSUR-10 0.282 ± 0.001 0.256 ± 0.001 0.269 ± 0.001

CSUR-100 0.230 ± 0.002 0.242 ± 0.004 0.236 ± 0.003

CSUR-200 0.240 ± 0.002 0.243 ± 0.004 0.241 ± 0.003

C2SUR-10 0.284 ± 0.002 0.263 ± 0.003 0.276 ± 0.003

C2SUR-100 0.236 ± 0.004 0.250 ± 0.008 0.243 ± 0.006

C2SUR-200 0.278 ± 0.002 0.253 ± 0.002 0.266 ± 0.002

Spanish CSUR-10 0.238 ± 0.001 0.249 ± 0.002 0.244 ± 0.002

CSUR-100 0.254 ± 0.003 0.236 ± 0.003 0.245 ± 0.003

CSUR-200 0.259 ± 0.002 0.231 ± 0.002 0.245 ± 0.002

C2SUR-10 0.250 ± 0.001 0.268 ± 0.002 0.259 ± 0.002

C2SUR-100 0.258 ± 0.008 0.243 ± 0.004 0.251 ± 0.006

C2SUR-200 0.267 ± 0.003 0.244 ± 0.002 0.256 ± 0.003

Table 5: Text and Image Query Comparison (Wiki)

line CCA in all languages. It shows the presence of non-linearity in the data.
Also, the best approach in C2SUR achieved an average improvement of 0.017

over the best approach of CSUR in all languages. It exhibits the efficiency of
C2SUR in eliminating the noisy information from the correlated space of text
and image. A similar analysis can be performed on the image queries.

Table 3 and Table 4 show the results obtained using image queries for text
retrieval with CSUR and C2SUR respectively. Similar to text query, best perform-
ing kCCA used in CSUR and C2SUR approaches had an average improvement
of 0.037 and 0.019 respectively over baseline CCA in all languages. Also, the best
performing approach of C2SUR attained an average improvement of 0.007 over
the best approach of CSUR in all languages.

Effect of text topic distribution on C2SUR approach is evaluated with different
text topic distributions and fixed 128-dimension SIFT image features. It can be
observed from the Figure 15 that increase in the number of topics can have an
adverse effect. A possible explanation is due to padding of zeros in the correlated
space of training data to carry out similarity measures with the testing data. For
negating the earlier mentioned behavior, dimensions also have to be increased
for image features.
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We also compared our best performing approach with the existing approaches
based on MAP scores for English cross-modal retrieval. Table 5 shows that
C2SUR outperforms existing approaches on the average MAP scores. We as-
sume this is due to the ability of C2SUR to efficiently reduce the error in cor-
relation space by improving the classification of borderline samples. Besides,
performance on German and Spanish was comparable to English in finding se-
mantically similar documents across modalities.

4.5 summary

In this chapter, we addressed the first research question:

- Research Question 1

Given two different views of heterogeneous content depicting text and im-
age modality, how can we build a shared representation to assist search by
finding correlation among their input representations?

For this, we validated Hypothesis 1 by proposing a novel a novel approach
C2SUR to perform the cross-modal retrieval in multiple languages. We built a
shared space for the heterogeneous representations of a multimodal document
using KCCA, which is further modified with K-Means centroids to retrieve sim-
ilar documents. We found that C2SUR is useful in finding semantically similar
multimodal documents across languages.

In the next chapter, we will present an approach to achieving multi-view repre-
sentation learning with consensus and complementarity principles and support
a different application where the heterogeneous data emerge from different lan-
guages.
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Context of this Chapter. In this chapter, we leverage multi-view shallow rep-
resentation learning and propose a novel approach for cross-language text clas-
sification. In many languages, sparse availability of resources causes numerous
challenges for textual analysis tasks. Text classification is one of such standard
tasks that hinders due to limited availability of label information in low-resource
languages. Transferring knowledge (i.e. label information) from high-resource
to low-resource languages might improve text classification as compared to the
other approaches like machine translation. We introduce BRAVE (Bilingual paRA-
graph VEctors), a model to learn bilingual distributed representations (i.e. embed-
dings) of words without word alignments either from sentence-aligned parallel
or label-aligned non-parallel document corpora to support cross-language text
classification. The empirical analysis shows that classification models trained
with our bilingual embeddings outperform other state-of-the-art systems on
three different cross-language text classification tasks.

Our main contributions presented in this chapter can be broadly summarized
as follows:

À We jointly train monolingual part of parallel corpora with the improved
cross-lingual alignment function that extends beyond bag-of-word models.

Á We introduced a novel approach to leverage non-parallel data sets such as
label or class aligned documents in different languages for learning bilin-
gual cues.

Â We performed an experimental evaluation on three different CLTC tasks,
namely cross-language document classification, multi-label classification
and cross-language sentiment classification using learned bilingual word
embeddings.

Outline. The remainder of this chapter is organized into following sections.
Initially, Section 5.1 presents the motivation in Section 5.1.1 and briefly introduce
existing multi-view shallow representation learning approaches in the context of
learning representations for variable length text in Section 5.1.2. Next Section 5.2
presents the research question and describes our contribution to cross-language
text classification. Our approach i.e. BRAVE and its variations are then discussed
in the Section 5.3. The dataset and metrics used for evaluation of the approach
are described in the Section 5.4. While in the Section 5.4.2 details about the
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evaluation results are shown, which are further analyzed in the Section 5.4.3.
Summary of the chapter is presented in the Section 5.5.

5.1 introduction

5.1.1 Motivation

The availability of language-specific annotated resources is crucial for the ef-
ficiency of natural language processing tasks. Still, many languages lack rich
annotated resources that support various tasks such as part-of-speech (POS) tag-
ging [265], dependency parsing [187] and text classification [1]. While the growth
of multilingual information on the web has provided an opportunity to build
these missing annotated resources, but still lots of manual effort is required to
achieve high-quality resources for every language separately.

Another possibility is to utilize the unlabeled data present in those languages
or transfer knowledge from annotation-rich languages. For the first alternative,
recent advancements made in learning monolingual distributed representations
of words [173, 195, 151] (i.e., monolingual word embeddings) capturing syntactic
and semantic information in an unsupervised manner was useful in numerous
NLP tasks [49]. However, this may not be sufficient for several other tasks such
as cross-language information retrieval [196], cross-language word semantic sim-
ilarity [266], cross-language text classification (CLTC, henceforth) [134, 282, 200,
250] and machine translation [300] due to irregularities across languages. In this
kind of scenarios, transfer of knowledge can be useful.

Several approaches [103, 225, 90, 50] induced monolingual distributed rep-
resentations into a language independent space (i.e., bilingual or multilingual
word embeddings) by jointly training on a pair of languages. Although the
overall goal of these approaches is to capture linguistic regularities in words
that share same semantic and syntactic space across languages, they differ in
their implementation. One set of methods either performed offline alignment of
trained monolingual embeddings or jointly-trained both the monolingual and
cross-lingual objectives, while the other set utilized only cross-lingual objective.
Jointly-trained or offline alignment methods can be further divided based on
the type of parallel corpus (e.g., word-aligned, sentence-aligned) they use for
learning the cross-lingual objective. Table 6 summarizes different setups to learn
bilingual or multilingual embeddings for the various tasks.

Methods in the Table 6 that use word-aligned parallel corpus as offline align-
ment [174, 73] assume the single correspondence between the words across
languages and ignore polysemy. While the jointly-train methods [134] that use
word-alignment parallel corpus and consider polysemy perform a computation-
ally expensive operation of considering all possible interactions between the
pairs of words in the vocabulary of two different languages. Methods [103, 225]
that overcame the complexity issues of word-aligned models by using sentence-
aligned parallel corpora limits themselves to only cross-lingual objective, thus
making these approaches unable to explore monolingual corpora. Jointly-trained
models [90, 50] overcame the issues of both word-aligned and purely cross-
lingual objective models by using monolingual and sentence-aligned parallel
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Cross-Language Setups

Objective Method Tasks Parallel Corpus

klementiev et al. [134] CLDC Word-Aligned

Zou et el. [308] MT,NER Word-Aligned

Monolingual+ Mikolov et al. [174] MT Word-Aligned

Cross-lingual Faruqi et al. [73] Word Similarity Word-Aligned

Lu et al. [162] Word Similarity Word-Aligned

Gouws et al. [89] POS,SuS Word-Aligned

Gouws et al. [90] CLDC,MT Sentence-Aligned

Coul et al. [50] CLDC,MT Sentence-Aligned

Cross-lingual Hermann et al. [103] CLDC Sentence-Aligned

Lauly et al. [225] CLDC Sentence-Aligned

Luong et al. [164] Word Similarity, CLDC Sentence-Aligned

Pham et al. [197] CLDC Sentence-Aligned

Table 6: Summary of bilingual or multilingual embedding methods that support Cross-
language Document Classification (CLDC), Machine Translation (MT), Named
Entity Recognition (NER), Part-of-Speech Tagging (POS), Super Sense Tagging
(SuS).

corpora. Nonetheless, these approaches still have certain drawbacks such as
usage of only bag-of-words from the parallel sentences ignoring the order of
words. Thus, they are missing to capture the non-compositional meaning of the
entire sentence. Also, learned bilingual embeddings were heavily biased towards
the sampled sentence-aligned parallel corpora. It is also sometimes hard to ac-
quire sentence-level parallel corpora for every language pair. To subdue this
concern, few approaches [204] used pivot languages like English or comparable
document-aligned corpora [267] to learn bilingual embeddings specific to only
one task.

This major downside can be observed in other methods above also, which
are inflexible to handle different types of parallel corpora and have a tight-
binding between cross-lingual objectives and the parallel corpora. For exam-
ple, a method using sentence-level parallel corpora cannot be altered to lever-
age document-level parallel corpora (if available) that might have better perfor-
mance for some tasks. Also, none of the approaches do leverage widely available
label/class-aligned non-parallel documents (e.g. sentiment labels, multi-class
datasets) across languages which share special semantics such as sentiment or
correlation between concepts as opposed to parallel texts.

In this chapter, we introduce BRAVE a shallow neural network based multi-
view representation learning approach. It is a jointly-trained flexible model to
learn bilingual embeddings based on the availability of the type of corpora
(e.g. sentence-aligned parallel or label/class-aligned non-parallel document) by
just altering the cross-lingual objective. BRAVE leverages paragraph vector em-
beddings [144] of the monolingual corpora to effectively conceal semantics of
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the text sequences across languages and build a cross-lingual objective. Method
closely related to our approach is by Pham et al. [197] who uses shared context
sentence vector across languages to learn multilingual text sequences.

5.1.2 Background on Variable Length Distributed Representations

Natural language text can be segmented into many meaningful units such as
words, phrases, sentences and paragraphs. For effective natural language under-
standing, depending on the domain and context, different type of segmentations
play a prominent role. Also for several other tasks of natural language process-
ing, building distributed representation [106] for each of these meaningful units
has become crucial. In the following, we discuss some related approaches.

5.1.2.1 Word Distributed Representation

The distributed representation is learned based on the usage of words. This al-
lows words that are used in similar manner to acquire similar representations,
naturally capturing their meaning. This has been supported by theoretical lin-
guistic studies based on distributional hypothesis [96]. Word distributed rep-
resentation a.k.a word embedding constitute real-valued vector representation
and words are usually obtained as fixed vocabulary of the textual corpus. Ap-
proaches [22, 173, 195, 151] which are proposed in the past few years mostly
leverage shallow neural network architectures and optimize for some task (e.g.
document classification or language modeling) or learn in an unsupervised man-
ner.

Out of existing approaches, we present here details about word2vec [173] and
discuss about its two different learning models 1) Continuous Bag-of-Words
(CBOW) and 2) Continuous Skip-Gram.

CBOW

Given the context, the CBOW model learns the embedding by predicting the
current word based on its context.

Skip-Gram

Alternative to CBOW, the continuous skip-gram model learns embedding by
predicting the surrounding words given a current word.

5.1.2.2 Beyond Word Distributed Representation

Requirement for representations that go beyond words and cater larger pieces of
text such as phrases, paragraphs and documents have spawn interest in build-
ing shallow and deep neural network architectures. Several approaches [144, 154,
249] are proposed either to optimize for a task (e.g. classification) or learn in an
unsupervised manner. Out of existing approaches, we present here details about
Paragraph Vectors [144] and discuss about its two different learning models 1)
A distributed memory and 2) Distributed bag of words.
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Distributed bag of words (PV-DBOW)

This approach is seen similar to the aforementioned CBOW model. This method
considers the concatenation of the paragraph vector with the word embeddings
to predict the next word in a text window.

Distributed Memory Model (PV-DM)

In this model, paragraph vectors are asked to contribute to the prediction task of
the next word given many contexts sampled from the paragraph. The paragraph
vector and word embeddings are averaged or concatenated to predict the next
word in a context.

5.2 research question and contributions

Let us outline the research questions, hypotheses, and contributions, which we
target throughout the chapter.

5.2.1 Research Question and Hypothesis

As presented in Section 1.3, our overall research question is: How to effectively
integrate multiple views of training instances depicting heterogeneous or homo-
geneous content into a common space representation for supporting applications
in different domains? In this chapter, we address the second part, i.e., learning
a common space representation among views emerging from the same modality
with consensus and complementarity principles by leveraging their input repre-
sentations. More specifically, we aim at Research Question 2:

- Research Question 2

Given two different views of homogeneous content depicting text from dif-
ferent languages, how can we build a shared representation to assist catego-
rization by learning a common space by capturing regularities?

For addressing above research question, we verify the hypothesis as follows:

2 Hypothesis 2

Leveraging shallow neural network architecture and manifold alignment
approach, we can efficiently and effectively learn a common space repre-
sentation between the data emerging from two different languages and cap-
ture their regularities. More specifically, by leveraging co-regularization ap-
proach which is built on the ideas of consensus and complementarity prin-
ciples will benefit to build bilingual distributed word representations, i.e.,
embeddings. Furthermore, the usefulness of these representations can be
optimized based on the cross-language textual classification task.

Intuitively, Hypothesis 2 states that the combination of shallow neural networks
with the manifold alignment techniques can effectively capture regularities across
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different languages text. In particular, we expect to extend the paragraph vector
approach with co-regularization to effectively learn common space representa-
tion of cross-language data such that similar words are aligned closer to each
other in a high dimensional space. Further, we expect that extension of this ap-
proach with manifold alignment technique can leverage pseudo-parallel data for
learning common space representation.

To validate Hypothesis, we present our BRAVE models in the Section 5.3 to
build bilingual distributed word representations. Moreover, we implemented the
approach and empirically show (see the evaluation in Section 5.4) its effective-
ness with state of the art.

5.2.2 Contributions

While being naturally appealing, usage of paragraph vectors and its combina-
tion with manifold alignment techniques are not studied before in the context
of cross-language text classification, where the textual data can emerge from
multiple languages. Aiming at above hypotheses, we provide the following con-
tribution:

• Contribution for Hypothesis 2
Building a common space representation from the data using different cor-
relation or consensus/complementarity principles is studied earlier.

However, our usage of paragraph vectors and its extension for building
common space representations for different languages is unique. Addition-
ally, handling cross-language data which is not parallel and of variable
length throws new challenges. Facing these characteristics, we propose
BRAVE and its variations. To the best of our knowledge, this is the first
work which utilizes manifold alignment techniques for building bilingual
distributed word representations that are useful for many cross-language
tasks (e.g., cross-language text classification).

Therefore, we picked one of many cross-language tasks, i.e., cross-language
text classification for evaluation and validated the Hypotheses 2. In these
experiments, we could achieve performance gains over state of the art for
cross-language document classification (CLDC), cross-language sentiment
classification (CLSC) and reported comparable results for the multi-label
CLDC. In fact, we could show that our proposed approach BRAVE was
useful for building bilingual word distributed representations.

5.3 brave models

In this section, we present our BRAVE model along with its variations whose aim
is to learn bilingual embeddings that can generalize across different languages.
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5.3.1 Bilingual Paragraph Vectors (BRAVE)

Most of the NLP tasks require fixed-length representations. Tasks like CLTC
also require fixed-length representation to incorporate inherent semantics of sen-
tences or documents. Distributed representation of sentences and documents i.e.
paragraph vectors [144] are designed to out-perform certain text classification
tasks by overcoming constraints posed by the bag-of-words models.

Here, we leverage paragraph vectors distributed memory model (PV-DM) as
the monolingual objective M(·) and jointly optimize with bilingual regulariza-
tion function ϕ(·) for learning bilingual embeddings similar to the earlier ap-
proaches [90, 50]. Equation 40 shows the formulation of the overall objective
function that is minimized.

L = min
θl1 ,θl2

∑
lε{l1,l2}

∑
Cl

Ml(wt,h; θl) +
λϕ(θl1 , θl2)

2
(40)

Here, Cl represent the corpus of individual languages (i.e. l1 or l2 ). Given any
sequence of words (wl1,wl2...wlT ) in Cl, wt is the predicted word in a context h
constrained on paragraph p (i.e. sentence or document) and sequence of words.

Formally, the first term (i.e. M(·)) in the Equation 40 maximizes the average
log probability based on word vector matrix Wl and a unique paragraph vector
matrix Pl. Equation 41 represents the average log probability.

Ml(wt,h; θl) =
ΣT−kt=k y

l
wt

− log(
∑
i e
yli)

T
(41)

where each yli is log-probability of predicted word i and is given by Equa-
tion 42.

yl = b+Uh(wlt−k....wlt+k;Wl,Pl) (42)

To optimize for efficiency, hierarchical softmax [179] is used in training with
U and b as parameters. Binary Huffmann tree is utilized to represent hierarchial
softmax [173]. Analogous to Pham et al., [197], we also derive h by concatenating
paragraph vector from Pl with the average of word vectors in Wl. This helps to
fine tune both word and paragraph vectors independently.

Now, to capture the bilingual cues, the regularization function (ϕ(·)) is learned
in two different ways. In the first approach a sentence-aligned parallel corpora
is used, while in the second approach a label-aligned document corpora.

5.3.2 BRAVE with Sentence-Aligned Parallel corpora (BRAVE-S)

To compute the bilingual regularization function ϕ(·), we slightly deviate from
earlier approaches [90]. Instead of simply performing L2-loss between the mean
of word vectors in each sentence pair (sl1j ,sl2j ) of the sentence-aligned parallel
corpus (PC) at each training step. We use the concept of elastic net regulariza-
tion [307] and employ linear combination of L2-loss between sentence paragraph
vectors spl1j and spl2j ∈ Rd precomputed from the monolingual term M(·) with
L2-loss between the mean of word vectors observed in sentences. This induces
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a constraint on the usage of monolingual part of parallel training data to learn
M(·). At the same time, it has an advantage of using combination of paragraph
and word vectors which combines compositional and non-compositional mean-
ings of sentences.

Also, it eliminates the need for word-alignment and makes an assumption
that each word observed in the sentence of language l1 can potentially find its
alignment in the sentence of language l2. Theoretically, low value of ϕ(·) ensures
that words across languages which are similar are embedded closer to each other.
Equation 43 shows the regularization term.

α||sp
l1
j − spl2j ||2 + (1−α)||

1

m

m∑
wiεs

l1
j

w
l1
i −

1

n

n∑
wkεs

l2
j

w
l2
k ||2 (43)

Where wl1i and wl2k represent word embeddings obtained for the words wi
and wk in each sentence (sj) of length m and n in languages l1 and l2 respec-
tively.

5.3.3 BRAVE with Non-Parallel Document Corpora (BRAVE-D)

Sometimes it is hard to acquire sentence-aligned parallel corpora for many lan-
guages. Availability of non-parallel corpora such as topic-aligned (e.g. Wikipedia)
or label/class-aligned document corpora (e.g. sentiment analysis and multi-class
classification data sets) in different languages can be leveraged to learn bilingual
embeddings for performing CLTC. Earlier approaches like CL-LSI [64] and CL-
KCCA [261] were used to learn bilingual document spaces for the tasks compara-
ble to CLTC. Although these approaches provide decent results, they face serious
scalability issues and are mostly limited to Wikipedia. Multi-view shallow gen-
erative models such as Cross-lingual latent topic extraction models [266] showed
promising results for the tasks like word-level or phrase-level translations, but
have certain drawbacks for CLTC tasks.

Here, we propose a two step approach to build bilingual embeddings with
label/class-aligned document corpora.

• In the first step, we perform manifold alignment using Procrustes anal-
ysis [269] between sets of documents belonging to same class/label in
different languages. This will help to identify the closest alignment of a
document in language l1 with a document in another language l2.

• In the second step, we use the pair of partially aligned documents belong-
ing to same class or label in different languages to extract bilingual cues
similar to the approach mentioned in the Section 5.3.2. Only difference
being paragraph vector is learned for the entire document.

Step-1:

Let Sl1 and Sl2 be the sets containing languages l1 and l2 training documents as-
sociated to label or a class. Below, we provide the three step procedure to attain
partial alignment between the documents present in these sets.
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• Learning low-dimensional embeddings of the sets (Sl1 ,Sl2) is key for align-
ment. We use document paragraph vectors [144] to learn low-dimensional
embeddings of the documents in each language. Let Xl1 and Xl2 be the
low-dimensional embeddings of Sl1 and Sl2 respectively.

• To find the optimal values of transformation, Procrustes superimposition
is done by translating, rotating and scaling the objects (i.e. rows of Xl2

is transformed to make it similar to the rows of Xl1). Transformation is
achieved by

– Translation: Taking mean of all the members of set to make centroids

(
∑|Sl1 |
i=1

Xl1

|Sl1 |
,
∑|Sl2 |
i=1

Xl2

|Sl2 |
) lie at origin.

– Scaling and Rotation: The rotation and scaling that maximizes the
alignment is given by orthogonal matrix (Q) and scaling factor (k).
They are obtained by minimizing orthogonal Procrustes problem [229]
and is provided by Equation 44.

arg min
k,Q

||Xl1 −Xl2∗ ||F (44)

where Xl2∗ a matrix of transformed Xl2 values given by kXl2Q and
||.||F is the Frobenius norm constrained over QTQ = I.

• If Sl2∗ represents the new document set obtained after identifying the close
alignment among documents in Sl1 and Sl2 with cosine similarity between
Xl1 and Xl2∗ , then the partially aligned corpora {Sl1 ,Sl2∗ } contains one-to-
one correspondence between the two languages documents that are used
to learn bilingual cues in the second step.

From perturbation theory of spectral spaces [137] it can be understood that
the difference between low-dimensional embedding subspaces (i.e. Xl1 and Xl2∗ )
is always bounded, thus the new alignment obtained between document sets
{Sl1 ,Sl2∗ } is insensitive to perturbations. Which also means that Procrustes analy-
sis has provided best possible document alignments.

Step-2:

Now, document pairs (dl1j ,dl2j ) of the partially-aligned corpus (PAC) is used to
compute bilingual regularization function ϕ(·). At each training step, L2-loss of
precomputed document paragraph vectors dpl1j and dpl2j ∈ Rd obtained from the
monolingual term M(·) is combined with the L2-loss between vector of words
weighted by the probability of their occurrence in a particular label/class of en-
tire PAC. Consideration of word probabilities will help to induce label/class
specific information. Equation 45 provides the regularization term.

α||dp
l1
j −dpl2j ||2

+ (1−α)||

m∑
wiεd

l1
j

pwiw
l1
i∑

m pwi
−

n∑
wkεd

l2
j

qwkw
l2
k∑

n qwk
||2

(45)
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Where wi,wk are words and their embeddings wl1i ,wl2k observed in each doc-
ument (dj) of length m and n in languages l1 and l2 respectively. While, pwi
and qwk represents probability of occurrence of words wi and wk in a specific
label/class of entire PAC. Figure- 18 shows overall goal of both the approaches.

Figure 18: Bilingual word embeddings learned using sentence or document paragraph
vectors (SP/DP) along with word vectors.

5.4 evaluation

In this section, we report results on three different CLTC tasks to comprehend
whether our learned bilingual embeddings are semantically useful across lan-
guages. First, cross-language document classification (CLDC) task proposed by
Klementiev et al. [134] using the subset of Reuters RCV1/RCV2 corpora [152].
Second, a multi-label CLDC task with more languages using TED corpus29 of
Hermann et al. [103] . Subsequently, a cross-language sentiment classification
(CLSC) proposed by Prettenhofer et al., [200] on a multi-domain sentiment dataset.

5.4.1 Evaluation Setup

In this section, details about the dataset, implementation and document repre-
sentation are presented.

5.4.1.1 Parallel and Non-Parallel Corpora

For sentence-aligned parallel corpora, Europarl-v7
30(EP) is used as both mono-

lingual and parallel training data. While for label-aligned non-parallel document
corpora, only training and testing collections of the cross-language multi-domain
Amazon product reviews(CL-APR) [200] corpus with sentiment labels is used.

5.4.1.2 Implementation

Our implementation launches monolingual paragraph vector [144] threads for
each language along with bilingual regularization thread. Word and paragraph

29http://www.clg.ox.ac.uk/tedcorpus
30http://www.statmt.org/europarl/
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embeddings matrices are initialized with normal distribution (µ = 0 and σ2 =

0.1) for each language and all threads access them asynchronously. Following
Pham et al. [197] suggested combination (P=5*W) of paragraph and word em-
beddings, we chose paragraph embeddings with dimensionality of 200 and 640

when word embeddings are of 40 and 128 dimensions respectively. Asynchronous
stochastic gradient descent (ASGD) is used to update parameters (i.e. Pl,Wl,U
and b) and train the model.

For each training pair in parallel or non-parallel corpora, initially monolin-
gual threads sample context h with window size of 8 from a random para-
graph (i.e. sentence or document) in each language. Then the bilingual regu-
larization thread along with monolingual threads make update to parameters
asynchronously. Learning rate is set to 0.001 which decrease with the increase
of epochs, while α is chosen to be 0.6 (can be fine tuned based on empirical
analysis) to give more weight to paragraph vectors. All models are trained for
50 epochs.

5.4.1.3 Document Representation

Documents are represented with tf-idf weighted sum of word embeddings that
are present in them.

5.4.2 Evaluation Results

The experimental results for each of the CLTC tasks are presented separately.

5.4.2.1 Cross-language Document Classification (CLDC) - RCV1/RCV2

Goal of this task is to classify target language documents with the labeled ex-
amples from the source language. To achieve it, we used the subset of Reuters
RCV1/RCV2 corpora as the training and evaluation sets and replicated the ex-
perimental setting of Klementiev et al. [134]. From the English, German, French
and Spanish collection of the dataset, only those documents are selected which
was labeled with a single topic (i.e. CCAT, ECAT, GCAT and MCAT). For the
classification experiments, 1000 labeled documents from source language are se-
lected to train a multi-class classifier using averaged perceptron [78, 48] and 5000

documents were used as the testing data.
English-German, English-French and English-Spanish portion of EP corpora

(i.e. each with around 1.9M sentence-pairs) is used both as monolingual and
parallel training data with BRAVE-S approach to build vocabulary of around
85k English, 144k German, 119k French and 118k Spanish. While training and
testing collections belonging to all domains in English-German, English-French
languages of CL-APR ((i.e. around 12,000 document-pairs)) was used both as
monolingual and partially aligned data with BRAVE-D approach to build vocab-
ulary of around 21k English, 22k German and 18k French. Further, documents
in the training and testing data of RCV1/RCV2 corpora are represented as de-
scribed in the Section 5.4.1.3 with the vocabulary built. Table 7 and Table 8 shows
the comparison of our approaches with the existing systems.
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Model en→ de de→ en en→ fr fr→ en en→ es es→ en

Majority class 46.8 46.8 22.5 25.0 15.3 22.2

MT 68.1 67.4 76.3 71.1 52.0 58.4

I-Matrix [134] 77.6 71.1 74.5 61.9 31.3 63.0

BAE-cr [225] 91.8 74.2 84.6 74.2 49.0 64.4

CVM-Add [103] 86.4 74.7 - - - -

DWA [135] 83.1 75.4 - - - -

BilBOWA [90] 86.5 75 - - - -

UnsupAlign [164] 87.6 77.8 - - - -

Trans-gram [50] 87.8 78.7 - - - -

BRAVE-S(EP) 88.1 78.9 79.2 77.8 56.9 67.6

BRAVE-D(CL-APR) 69.4 67.9 64.1 56.5 - -

Table 7: CLDC Accuracy with 1000 labeled examples on RCV1/RCV2 Corpus using 40

dimensional embeddings. en/de, en/fr and en/es results of Majority class, MT,
I-Matrix and BAE-cr are adopted from Lauly et al. [225]

Model en→ de de→ en en→ fr fr→ en en→ es es→ en

CVM-BI [103] 86.1 79.0 - - - -

UnsupAlign [164] 88.9 77.4 - - - -

BRAVE-S(EP) 89.7 80.1 82.5 79.5 60.2 70.4

BRAVE-D(CL-APR) 70.4 70.6 66.2 57.6 - -

Table 8: CLDC Accuracy with 1000 labeled examples on RCV1/RCV2 Corpus using 128

dimensional embeddings.

5.4.2.2 Multi-label CLDC - TED Corpus

To understand the applicability of our approaches to wider range of languages31

and class labels, we perform experiments with the subset of TED corpus [103].
Aim of this task is same as CLDC in Section 5.4.2.1, but experiments were con-
ducted with larger variety of languages and class labels. TED Corpus contains
English transcriptions and their sentence-aligned translations for 12 languages
from the TED conference. Entire corpus is further classified into 15 topics (i.e.
class labels) based on the most frequent keywords appearing in them.

To conduct our experiments, we follow the single mode setting of Hermann
et al. [103] (i.e. embeddings are learned only from a single language pair). En-
tire language pair (i.e. en→L2) training data of the TED corpus is used both as
monolingual and parallel training data to learn bilingual word embeddings with
dimensionality of 128 using BRAVE-S approach. Bilingual word embeddings
of 128 dimensions learned with EP and CL-APR are also used for comparison.
Documents in the training and testing data of TED corpus are represented as
described in the Section 5.4.1.3 using each of these embeddings. A multi-class

31Our goal is not to evaluate shared multilingual semantic representation.
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classifier using averaged perceptron is built using training documents in source
language to be applied on target language testing data for predicting the class
labels. Table 9 and Table 10 shows the cumulative F1-scores.

Method de es fr it nl

en→ L2

MT-Baseline 0.465 0.518 0.526 0.514 0.505

DOC/ADD 0.424 0.383 0.476 0.485 0.264

DOC/BI 0.428 0.416 0.445 0.473 0.219

BRAVE-S(TED) 0.484 0.436 0.456 0.507 0.328

BRAVE-S(EP) 0.418 0.365 0.387 0.418 0.284

BRAVE-D(CL-APR) 0.385 - 0.212 - -

L2→ en

MT-Baseline 0.469 0.486 0.358 0.481 0.463

DOC/ADD 0.476 0.422 0.464 0.461 0.251

DOC/BI 0.442 0.365 0.479 0.460 0.235

BRAVE-S(TED) 0.492 0.495 0.465 0.475 0.384

BRAVE-S(EP) 0.458 0.404 0.437 0.443 0.338

BRAVE-D(CL-APR) 0.366 - 0.278 - -

Table 9: Cumulative F1-scores on TED Corpus using training data in English language
and evaluation on other languages (i.e. German (de), Spanish (es), French (fr),
Italian (it), Dutch (nl)) and vice versa. MT-Baseline, DOC/ADD, DOC/BI repre-
sents single language pair of Hermann et al., [103] as document features. Un-
derline shows the best results amongst embedding models.

5.4.2.3 Cross-language Sentiment Classification (CLSC)

The objective of the third CLTC task is to identify sentiment polarity (e.g., posi-
tive or negative) of the data in target language by exploiting the labeled data in
source language. We chose subset of publicly available Amazon product reviews
(CL-APR) [200] dataset mainly English(E), German(G) and French(F) languages
belonging to three different product categories (books(B), dvds(D) and music(M))
to conduct our experiments. For each language-category pair, corpus consists of
training, testing sets comprising 1000 positive and 1000 negative reviews each
with an additional unlabeled reviews varying from 9,000 to 170,000.

We constructed 12 different CLSC tasks using different languages (i.e. E, G and
F) for three categories (i.e. B, D and M). For example, EFM refers English music
reviews as source language and French music reviews as target language. Bilin-
gual word embeddings with dimensionality of 128 learned with BRAVE-S and
BRAVE-D are used to represent each review as described in the Section 5.4.1.3.
To have fair comparison with earlier approaches, sentiment classification model
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Method pt po ro ru tr

en→ L2

MT-Baseline 0.470 0.445 0.493 0.432 0.409

DOC/ADD 0.354 0.402 0.418 0.448 0.452

DOC/BI 0.400 0.403 0.467 0.421 0.457

BRAVE-S(TED) 0.506 0.453 0.488 0.456 0.491

BRAVE-S(EP) 0.454 0.412 0.424 - -

BRAVE-D(CL-APR) - - - - -

L2→ en

MT-Baseline 0.374 0.460 0.486 0.404 0.441

DOC/ADD 0.338 0.400 0.407 0.471 0.435

DOC/BI 0.380 0.393 0.426 0.467 0.477

BRAVE-S(TED) 0.388 0.442 0.464 0.457 0.484

BRAVE-S(EP) 0.312 0.374 0.418 - -

BRAVE-D(CL-APR) - - - - -

Table 10: Cumulative F1-scores on TED Corpus using training data in English language
and evaluation on other languages (i.e. Portuguese (pt), Polish (po), Romanian
(ro), Russian (ru) and Turkish (tr)) and vice versa. MT-Baseline, DOC/ADD,
DOC/BI represents single language pair of Hermann et al., [103] as document
features. Underline shows the best results amongst embedding models.

is then trained with libsvm32 default parameter settings using source language
training reviews33 to classify target language test reviews. Table 11 shows the
accuracy and standard deviation results after we randomly chose subset of tar-
get language testing documents and repeated the experiment for 10 times for all
CLSC tasks.

5.4.3 Evaluation Results Analyses

First CLTC task (i.e., CLDC) results presented in the Table 7 and Table 8 shows
that BRAVE-S was able to outperform most of the existing systems. The success
of BRAVE-S can be attributed to its ability to incorporate both non-compositional
and compositional meaning observed in an entire sentence and the individual
words respectively. Thus making it different from other models which use only
bag-of -words [90] or bi-grams [103].

Similarly, second CLTC task (i.e. multi-label CLDC) results presented in the
Table 9 and Table 10 shows that BRAVE-S learned with the training data of
TED corpus outperformed single mode DOC/* embedding models [103], BRAVE-
S learned with EP and BRAVE-D. The BRAVE-S(TED) was able to capture bet-

32https://www.csie.ntu.edu.tw/~cjlin/libsvm/
33We do not use 100 labeled target language reviews in model training, as it was shown by

earlier approaches that 100 labeled target language reviews does not have much impact.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Cross-Language Sentiment Classification (en→L2 and Vice versa)

Task CL-SCL CL-SSMC CL-SLF BRAVE-S BRAVE-D

(EP) (CL-APR)

EFB 79.86±0.22 83.05±0.26 82.61±0.25 72.24±0.31 82.57±0.33

EFD 78.80±0.25 82.70±0.20 82.70±0.45 74.95±0.25 82.90±0.35

EFM 75.95±0.31 80.46±0.20 80.19±0.40 72.80±0.20 80.70±0.45

FEB 77.26±0.22 80.05±0.26 80.48±0.33 75.45±0.38 80.28±0.21

FED 76.57±0.20 79.40±0.28 78.76±0.38 73.75±0.26 79.80±0.15

FEM 76.76±0.25 78.82±0.17 79.18±0.33 73.66±0.17 78.56±0.33

EGB 77.77±0.28 81.88±0.42 79.91±0.47 75.95±0.16 81.75±0.45

EGD 79.93±0.23 82.25±0.20 81.86±0.31 78.30±0.42 81.56±0.26

EGM 73.95±0.30 81.30±0.20 79.59±0.42 75.95±0.33 81.20±0.17

GEB 77.85±0.27 79.06±0.23 78.61±0.34 72.25±0.20 80.23±0.17

GED 77.83±0.33 80.89±0.16 80.27±0.35 73.28±0.23 80.78±0.20

GEM 77.37±0.34 79.85±0.17 79.80±0.26 74.41±0.22 79.77±0.36

Table 11: Average classification accuracies and standard deviations for 12 CLSC tasks.
Results of other baselines are adopted from CL-SCL [200], CL-SSMC [284], CL-
SLF [304]

Top-3 Nearest Neighbors (Euclidean Distance)

English Words Models German French

great wachstum éminent

BRAVE-S super maintenus

spielen m’efforcerai

schärfe festival

BRAVE-D mögen interressante

kraftvolle attachant

bored boykottiert ennuyé

BRAVE-S leere précédera

ausgehen compromettent

ableben réserve

BRAVE-D lichtblick intensité

traurigen consterné

Table 12: Nearest Neighbors for English Words in German and French.

ter linguistic regularities across languages that are more specific to the corpus,
than the general purpose bilingual embeddings learned with EP. Though in
some cases, all our embedding models could not outperform machine transla-
tion baseline. It can be due to the asymmetry between languages induced by the
language-specific words which could not find its equivalents in English.
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Also, it can be apprehended from both CLDC and multi-label CLDC that
BRAVE-D results are not as expected. Though being a general approach like
BRAVE-S which can capture both non-compositional and compositional mean-
ing from larger pieces of texts, a minimal overlap of vocabulary learned with
BRAVE-D using cross-language sentiment label-aligned corpora with other do-
mains (i.e., Reuters and TED) produce unfavorable results. Thus, we understand
that the choice of label/class-aligned corpora is crucial.

Final CLTC task (i.e., CLSC) results presented in the Table 11 shows that
BRAVE-D outperforms other baseline approaches in most of the cases. As BRAVE-
D learns bilingual word embeddings using CL-APR, it was able to inherently en-
compass sentiment label information effectively like previous approaches [250,
305] than the general purpose embeddings learned using BRAVE-S with EP and
similar approaches [170]. Thus making it more suitable for sentiment classifica-
tion task. Also, unlike CL-SSMC [284] and CL-SLF [304], BRAVE-D is not highly
parameter dependent where the results of the former approaches show signif-
icant variance based on the parameter settings. To visualize the difference in
embeddings learned with BRAVE-S and BRAVE-D, we selected sentiment words
and identified cross-language nearest neighbors in Table 12. It can be observed
that BRAVE-D was able to identify better sentiment (either positive or negative)
word neighbors than BRAVE-S.

5.5 summary

In this chapter, we addressed the second research question:

- Research Question 2

Given two different views of homogeneous content depicting text from dif-
ferent languages, how can we build a shared representation to assist catego-
rization by learning a common space by capturing regularities?

For this, we validated Hypothesis 2 by proposing an approach that leverages
paragraph vectors and manifold alignment technique to learn bilingual word
embeddings with sentence-aligned parallel and label-aligned non-parallel cor-
pora. Empirical analysis exhibited that embeddings learned from both of these
types of corpora have shown the remarkable impact on CLTC tasks.

In the next chapter, we will present an approach for achieving multi-view
deep representation learning with consensus and complementarity principles
and support an application where the heterogeneous data emerge from three
views, i.e., different languages and image.
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Context of this Chapter. In this chapter, we leverage multi-view deep rep-
resentation learning along with the multi-task learning to propose a novel ap-
proach for multi-language consistent image caption generation. Lately, genera-
tion of natural language descriptions at sentence-level for an image has received
significant attention. Most of the earlier proposed approaches accomplish this
task only with datasets that align images with English sentences. At present,
descriptions are already available in more than one language. Porting models
that are built for English to other languages can lead to the generation of de-
scriptions which are very different from English and also irrelevant to an image.
A possible solution to minimize such issues is by controlling the diversity of
the other language caption by leveraging correspondences between languages
when building the image caption generation model. To realize this, we intro-
duce a multi-task learning based image caption generation model that helps
to control cross-language diversity and incorporates correspondences between
different language captions aligned to an image. The empirical analyses show
that the proposed model can effectively control the diversity of closely related
languages.

Our main contributions presented in this chapter can be broadly summarized
as follows:

À We proposed a framework to leverage inter-language correspondences as the
initial input to an image caption model for controlling diversity and mak-
ing semantically similar descriptions across languages.

Á We explored two different architecture variations of proposed model that
leverage multi-task learning.

Â We showed using two different datasets that it is less complicated to control
the diversity of generated captions for closely related languages in contrast
with distantly related languages.

Outline. The remainder of this chapter is organized into following sections.
Initially, Section 6.1 presents the motivation in Section 6.1.1 and briefly intro-
duce existing multilingual multimodal representations methods in Section 6.1.2.
Next Section 6.2 presents the research question and describes our contribution
to multi-language image caption generation. Our approach i.e. multi-task atten-
tion (MTA) and its variations are then discussed in the Section 6.3. The dataset
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and metrics used for evaluation of the approach are described in the Section 6.4.
While in the Section 6.4.2 details about the evaluation results are shown, which
are further analyzed in the Section 6.4.3. Summary of the chapter is presented in
the Section 6.5.

6.1 introduction

6.1.1 Motivation

Generation of natural language text from the input data is of interest over past
few decades [208]. This data-to-text generation is an instance of Natural Lan-
guage Generation (NLG) and has leveraged different types of input data, i.e, lin-
guistic or non-linguistic to develop systems such as weather and financial report
generation [198], summaries of patient information in clinical contexts [13], gen-
eration of paraphrases of input sentences [14] and many more. According to Gatt
et al. [82], NLG system target subproblems such as:

À Content determination

• Decides what information has to be included in the generated text.

Á Text structuring

• Determines the order of information that needs to be presented in the
text.

Â Sentence aggregation

• If more than one sentence is generated, it determines the distribution
of information in the sentences.

Ã Lexicalization

• Identification of the words and phrases to express information.

Ä Referring expression generation

• Those words and phrases are selected which represent the domain
objects.

Å Linguistic realization

• Words and phrases are combined such that they are well-formed sen-
tences.

However in the past few years, there is a significant interest in designing sys-
tems where input data emerge from the visual information. These systems are
also expected to face similar subproblems as the traditional data-to-text genera-
tion systems. One such application of vision-to-text generation is image descrip-
tion generation at the sentence-level [129, 286]. Howbeit, most of the proposed
approaches are fine-tuned to corpora such as Flickr8K [109], Flickr30K [292] and
MSCOCO [157] that contain only English descriptions.

Generating descriptions in languages other than English requires translation
of the generated English descriptions. Observation from the previous research [290]
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STA(En): A group of people are 
sitting on the ground
STA(De): Eine gruppe junger 
leute auf einer treppe (A group 
of young people sitting on stairs)
MTA (En): A group of people are 
sitting on a bench
MTA (De): Eine Gruppe von 
Menschen auf einer Bank (A 
group of people on a bench)
   

Figure 19: Example image from the Multi30K dataset with generated descriptions in
English (En) and German (De) using single-task (STA) and multi-task (MTA)
models.

show that the translation of English descriptions propagates errors into the target
language. This scenario motivates us to create separate models and datasets for
each language. Corpora’s such as IAPR-TC12 [93], Multi30K [67], and STAIR [290]
are extended using English description datasets to capture image descriptions
in multiple languages and facilitate the creation of separate caption generation
models. Howbeit, there are circumstances where models trained separately per
language can lead to inconsistent caption generation across languages.

To visualize the challenge, Figure 19 shows an example image with generated
descriptions across languages. It can be observed that the generated descriptions
are very diverse and vary across languages. This is counter-intuitive, as we ex-
pect the same model trained on two different language descriptions of an image
to generate semantically similar and consistent captions across languages.

This behavior exhibits that the description generation across languages is non-
trivial and demand additional anticipation from the description models. They
are currently confined to generating concise descriptions by covering all possi-
ble interactions between objects/attributes present in an image. Consequently,
we append a supplemental criterion of generating less diverse and semantically
similar descriptions for models that aim to generate descriptions in multiple
languages.34

Existing methods for image description generation can be broadly divided into
two categories (1) template-based and (2) encoder-decoder framework based. We
further divide the encoder-decoder framework based methods into those who
use attention mechanisms [12] and those who do not. Table 13 summarizes the
different setups for generating image captions either in one or more languages
using the encoder-decoder framework.

It can be observed in the Table 13 that most of the earlier proposed methods
do not generate image descriptions in more than one language. Two potential
reasons for that could be:

34The expectation here is distinct from other objectives such as multimodal machine translation
or cross-lingual caption generation [68].
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Approach LM Dataset Language

MLBL [133] LBL 4 En

m-RNN [166] RNN 1,2,3,4 En

Minds Eye [41] RNN+MELM 1,2,3 En

BRNN [129] biRNN 1,2,3 En

NIC [262] LSTM 1,2,3 En

LRCN [61] LSTM 2,3 En

Guided LSTM [119] guided-LSTM 1,2,3 En

Multilingual Multimodal LM [66] LSTM 4 En,De

Deep Bidirectional LSTM [270] biLSTM 1,2,3 En

Regional Visual Attributes [278] LSTM 1,2,3 En

Japanese-Generator [290] LSTM 6 Ja

Visual Attention [286] Att-LSTM 1,2,3 En

Region-based Attention [122] SF-LSTM 1,2,3 En

Attribute Attention [291] Att-LSTM 2,3 En

Review Attention [288] Review-Att-LSTM 3 En

Adaptive Attention [163] Sentinel-LSTM 2,3 En

Self-Critical Attention [211] Att-LSTM 3 En

Areas of Attention [194] Att-RNN 3 En

Contrastive Adaptive Attention [53] CL-Sentinel-LSTM 3 En

Up-Down Attention [8] Att-LSTM+LSTM 3 En

Table 13: Summary of Encoder-Decoder based Image caption generation methods using
different datasets: (1) Flickr8K (2) Flickr30K (3) MSCOCO (4) IAPR-TC12 (5)
Multi30K (6) STAIR and language models (LM). Att-LSTM→ Attention based
LSTM, biLSTM→ Bidirectional LSTM and rest are other variations.

À Unavailability of the corpora containing captions in more than one lan-
guage.

Á Inflexibility of the approaches to leverage more than one language caption
to build a single model that could generate semantically similar and con-
sistent captions across languages.

We intend to address the later with the help of corpora that provide captions
in more than one language. Given such a challenge, we understand that for
consistent caption generation across languages, it is essential to jointly consider
different language captions of an image while building the description genera-
tion models. Recently, multi-task learning has been leveraged to address similar
problems for varied tasks such as neural machine translation [77], discourse rep-
resentation and identification [141] and sequence to sequence learning [164].

In this chapter, we introduce a novel multi-task attention-based image caption
model for generating consistent descriptions across languages. The underlying
assumption of our proposed framework is that different languages that describe
an image may differ lexically, but share same semantics. Hence, we explore such
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correspondences across languages and realize it with multi-task learning for pro-
viding transfer which introduces inductive bias [219]. In this way, our proposed
model makes full use of different language captions given for each image. Thus,
making the model generalize better by preferring hypotheses that explain more
than one task. Furthermore, we only require a single model for multiple lan-
guages.

6.1.2 Background on Multilingual Multimodal Representations

Recently, learning a multilingual multimodal space has shown to achieve image
caption generation [204] with parallel corpora and multimodal machine transla-
tion [242, 68]. Later, image caption retrieval [83, 36] was also explored in mul-
tiple languages with multilingual multimodal embeddings. However, such ap-
proaches restrict corpora to be parallel and perform only caption retrieval.

6.2 research question and contributions

Let us outline the research questions, hypotheses, and contributions, which we
target throughout the chapter.

6.2.1 Research Question and Hypothesis

As presented in Section 1.3, our overall research question is: How to effectively
integrate multiple views of training instances depicting heterogeneous or homo-
geneous content into a common space representation for supporting applications
in different domains? In this chapter, we address the third part, i.e., learning a
common space representation among views emerging from the same modality
with consensus and complementarity principles by leveraging their input repre-
sentations. More specifically, we aim at Research Question 3:

- Research Question 3

Given two different views of heterogeneous content depicting text and im-
age modality, how can we build a shared representation of all views if an
auxiliary view depicting text in multiple languages is added to assist the
generation of text from an image?

For addressing above research question, we verify the hypothesis as follows:

2 Hypothesis 3

Leveraging deep neural network architectures and multi-task learning, we
can effectively learn a common space representation of all views emerging
from heterogeneous data to generate one modality from another, i.e., espe-
cially generating text from an image. Multi-task learning has proven to be
effective in capturing knowledge across shared tasks. We can leverage its po-
tential and design a shared layer in deep neural network architecture with a
multi-task loss for generating consistent caption text in multiple languages
for a given image.
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Intuitively, Hypothesis 3 states that the combination of deep neural networks
with multi-task learning can effectively capture common space representation
across different languages text and image to generate consistent text in multiple
languages for a given image. Mainly, we expect to extend the image to caption
(i.e., text) generation model with our proposed LSTM shared layer for effectively
capturing the common space representation of the different languages text and
an image. Further, we expect to use a multi-task loss for learning parameters.

To validate Hypothesis, we present our multi-task attention model in the Sec-
tion 6.3 to build a consistent multi-language image caption generation model.
Moreover, we implemented the approach and empirically show (see the evalua-
tion in Section 6.4) its effectiveness in contrast with other state of the art.

6.2.2 Contributions

While being naturally appealing, usage of deep neural networks and its com-
bination with multi-task learning is not studied before in the context of image
caption generation, where the caption data can emerge from multiple languages.
Aiming at above hypotheses, we provide the following contribution:

• Contribution for Hypothesis 3
Building a common space representation from the heterogeneous data de-
picting only two views using either correlation or consensus/complemen-
tarity principles is studied earlier. However, our usage of deep encoder-
decoder architecture and its extension in the multi-task learning setting
for building common space representation for more than two views is
unique. Additionally, designing a LSTM shared layer for leveraging shared
information from two deep encoder-decoder architectures throws diverse
challenges. Facing these characteristics, we propose a multi-task attention
model and its variations. To the best of our knowledge, this is the first work
which utilizes multi-task learning for image caption generation across lan-
guages which are highly consistent.

We conducted an evaluation using different language image-caption datasets
and validated the Hypotheses 3. In these experiments, we could achieve
performance comparable to the English state of the art caption generation
models and reported new results for other languages. In fact, we could
show that our proposed approach was useful for building multilingual
multimodal representation.

6.3 consistent caption generation in multiple languages

In this section, we propose our models for transforming the source image into
captions in many languages.
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6.3.1 Objective

Let {In,Sn}Nn=1 be our dataset containing an image with more than one language

caption, where Sn ⊆ S and S
∆
= {1, 2, ...,K} is set of existing language captions.

Each image have same number of captions In = |Sn|. Our goal now is to build a
image caption joint-model for multiple languages.

6.3.2 Single-task Attention-Based Image Description Model

The aim of single-task approach is to build image caption model separately for
each language. Given an image I, its global visual features Iv ∈ RV represent
the encoding of full image and av = {av1 , ...,avL},avj ∈ RD the spatial attention
features set. Similar to previous works [163, 8], our proposed image description
model also leverages soft attention mechanism to weigh each spatial attention
feature during description generation using the partial output sequence as con-
text.

Specifically, our image description generation model is built with two-layers
i.e. layer-1 (L-1) and layer-2 (L-2) using long short-term memory (LSTM) [108]
with no peepholes. At any given time step t, LSTM obtain inputwt, the previous
hidden state ht−1 and the memory cell ct−1 that store previous state information
for updating the input gate it, forget gate ft and output gate ot given as follows:

it = σ(Wwiwt +Whiht−1) (46)

ft = σ(Wwfwt +Whfht−1) (47)

ot = σ(Wwowt +Whoht−1) (48)

c̃t = tanh(Wwcwt +Whcht−1) (49)

ct = ft � ct−1 + it � c̃t (50)

ht = ot � tanh(ct) (51)

Here, Ww,h(i,f,o,c) represent the LSTM weights. σ represents the sigmoid activa-
tion function and � represents the element-wise multiplication.

Initially, L-1 of the model receives input from the textual sequence, where
each word (wt ∈ RT ) at time step t in the textual sequence is initialized with
the pretrained word embeddings. Now, visual context provided by global visual
features Iv can be either provided along with the input words wt or can be
leveraged during prediction of the next word in sequence.
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Figure 20: Illustration of Single-task architecture→ STA-GVC-I.

If (h1t ∈ RH1) and (h2t ∈ RH2) represent forward hidden vectors at the time
step t of L-1 and L-2 respectively. In the following, we present two scenarios
where global visual context can be incorporated and later provide details about
the inclusion of spatial attention features followed by our final model. For conve-
nience and to reduce many parameter names, we use Θ as the reference for the
parameters of LSTM.

6.3.2.1 Global Visual Context at Input (GVC-I)

In the first scenario, wt is concatenated with the global visual features Iv at
each time step t to provide as an input to the L-1 for generating hidden vectors
encoded as follows:

xt = Iv ⊕wt (52)

h1t = L-1(xt,h1t−1;Θ) (53)

where ⊕ represents concatenation. Figure 20 illustrates the GVC-I based single-
task attention-based image caption generation model.

6.3.2.2 Global Visual Context at Output (GVC-O)

Global visual features can also be used to provide visual context before predic-
tion of next word in the sequence. Hence, Iv is concatenated with the hidden
vectors (h2t ) of L-2 at any time step t before passing on to the final softmax layer
for the next word prediction.

h ′t = Iv ⊕h2t (54)
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Figure 21: Illustration of Single-task architecture→ STA-GVC-O.

pt+1 = softmax(Wvocabh ′t) (55)

where Wvocab ∈ Rvocab×(V+H2) and vocab refers to vocabulary of the caption
dataset. Figure 21 illustrates the GVC-O based single-task attention-based image
caption generation model.

6.3.2.3 Spatial Attention Features

Formerly, we only presented the utilization of Iv. To leverage spatial attention
features set av, hidden sequences h1t at each time step t is used to generate a
normalized attention weight αt for each of the spatial attention features (avj)
given as follows:

αtj =
exp(etj)∑L
k=1 exp(etk)

(56)

etj = tanh(Waeavj +Wheh
1
t ) (57)

where L represent cardinality of set av, Wae ∈ RM×D, Whe ∈ RM×H1 are
learned parameters. The attended spatial features (ât) which are used as input
along with h1t to the L-2 at every time step t is calculated as:

ât =

L∑
j=1

αtjavj (58)
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6.3.2.4 Final Models

Our final models include two variations due to the usage of global visual context
at varied locations as presented in the Section 6.3.2.1 and Section 6.3.2.2. How-
ever, usage of spatial attention features av remains equivalent for both.

STA-GVC-I

It uses xt as input to L-1, while h1t given by Equation 64 and ât is concate-
nated using Equation 59 is provided as input to L-2 to generate h2t at any time
step t given by Equation 60. Further, h2t is used to predict next words in the
sequence with Equation 61.

x ′t = ât +h
1
t (59)

h2t = L-2(x ′t,h
2
t−1;Θ) (60)

pt+1 = softmax(Wvocabh2t ) (61)

STA-GVC-O

It uses wt as input to L-1, while h1t given in Equation 62 and ât is concate-
nated using Equation 59 is provided as input to L-2 to generate h2t at any time
step t provided by Equation 60. Further, h2t is modified with Equation 54 and is
used to predict next words in the sequence with Equation 55.

h1t = L-1(wt,h1t−1;Θ) (62)

6.3.3 Multi-task Attention-Based Image Description Model

The models presented in the Section 6.3.2 are built separately for each language.
Howbeit, for consistent description across languages it is essential to simulta-
neously capture intrinsic relatedness between the generated descriptions across
languages. Therefore, we propose a joint model by integrating the aforemen-
tioned models into multi-task learning (MTL) framework [37].

In the joint model, we introduce a shared LSTM layer after L-1 to enhance
the interaction between task-specific layers of different languages. Figure 22 and
Figure 23 illustrates the two variations of the proposed multi-task approach lever-
aged over single-task models GVC-I and GVC-O respectively.

6.3.3.1 Shared LSTM Layer

Aim of the shared LSTM layer is to receive input from multiple tasks in the joint
model to capture their shared information. If x

′(l1)
t and x

′(l2)
t denote the output
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Figure 22: Illustration of Multi-task architecture→ MTA-GVC-I.
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Figure 23: Illustration of Multi-task architecture→ MTA-GVC-O.
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of task-specific (henceforth, language-1 (l1) and language-2 (l2)) L-1 layer and
their spatial attentions. Input (Int ∈ RN) to the shared LSTM layer and its
hidden layer output (h(s)

t ∈ RHs) is given by:

Int =Wh(l1)in
x
′(l1)
t +W

h(l2)in
x
′(l2)
t (63)

h
(s)
t = LSTM(Int,h

(s)
t−1;Θ) (64)

where Wh(l1)in ∈ RN×(H1+D), Wh(l2)in ∈ RN×(H1+D).

6.3.3.2 Combination LSTM (Comb-LSTM)

Output from the L-1 layer of language-1 and language-2 is combined with the
hidden layer output (h(s)

t ) of the shared LSTM layer using combination LSTM
(Comb-LSTM). The Comb-LSTM achieves this at the input stage where the out-
put of the L-1 layer (x ′t) is merged with the hidden layer output (h(s)

t ) of the
shared LSTM layer using Equation 65 for language-1.

Input =Wh(l1)x ′x
′(l1)
t +W

h(l1)s
hst (65)

Rest of the settings are same as standard LSTM. Hidden layer output h(l1)
2

t

of the Comb-LSTM specific to each language is further fed into softmax layer
provided by the Equation 66.

p
(l1)
t+1 = softmax(Wvocabh

2(l1)
t ) (66)

Similar interpretation can be made for language-2.

6.3.4 Training and Inference

6.3.4.1 Training

Parameters of our multi-task models with parameters θ are trained to optimize
the cost function (C) which minimizes the weighted cross-entropy loss of appro-
priate ground truth word (y∗t) at each time step t of each individual task.

C(θ) =

−
1

N

N∑
n=1

(λ(l1)
T (n)∑
t=0

logpθ(y
∗(l1)
t )

+ λ(l2)
T (n)∑
t=0

logpθ(y
∗(l2)
t ))

(67)

Where (λ(l1), λ(l2)) ∈ (0, 1] is weight hyper-parameter, T (n) represents the length
of sentence at n-th training sample and N denote the number of samples used
for training. In contrast with multi-task models, single-task models use seperate
cost function for each task which minimizes the cross-entropy loss of appropriate
ground truth word (y∗t) at each time step t.
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6.3.4.2 Inference

As in earlier approaches [129] we also leverage beam search for decoding. How-
ever, our multi-task model uses l1 and l2 simultaneously in the training phrase.
Leveraging beam search still require a prior understanding of the target direc-
tion (i.e. l1 or l2) it should take to decode a given image. Hence, although we
decode l1 and l2 simultaneously. We prior decide the target decoder that will
be considered (i.e. l1 or l2) and decode it until the end-of-sentence (eos) symbol
is generated. This means, if there are two tasks we generate twice. The size of
beam is set to 5 in our experiments.

6.4 evaluation

6.4.1 Evaluation Setup

In this section, we present the datasets and measures used for performing exper-
iments.

6.4.1.1 Datasets

We leverage those datasets that provide image captions in more than one lan-
guage and are of different sizes.

Multi30K

A multilingual multimodal dataset created to serve tasks such as image descrip-
tion and multimodal machine translation. Multi30K extends Flickr30K dataset
with German sentences. We use the dataset from task of Cross-lingual image
description35, where any English-German pair of descriptions for a given image
is considered a comparable translation pair.

STAIR

It constitute Japanese captions for the MSCOCO images. For each image in
MSCOCO, five Japanese captions are created in similar manner as English cap-
tions. Overall, 820,310 captions were created for 164,062 images. However in con-
trast with MSCOCO annotation format, STAIR annotation provide an additional
field of “tokenized_caption” where Japanese words are tokenized with spaces.
Here, we assume any English-Japanese pair of descriptions for a given image as
comparable translation pair. For the experimental evaluation, we use the splits
of Karpathy et al. [129].

Table 14 summarizes the training, validation and test splits of all datasets,
while Figure 24 shows the sample image and its descriptions in English and
Japanese taken from MSCOCO and STAIR respectively.

Cross-Language Out-of-Domain Resources

35http://www.statmt.org/wmt16/multimodal-task.html

http://www.statmt.org/wmt16/multimodal-task.html
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Multi30K MSCOCO&STAIR

Languages En,De En,Ja

Sentences 5 5

Training 29,000 113,287

Validation 1014 5000

Test 1000 5000

Sentence-Length 12.3,9.6 11.3,12.54

Vocabulary 7471,8514 9989, 12534

Table 14: Statistics of the datasets

MSCOCO (English)

➔ A long restaurant table with rattan rounded back chairs
➔ A long table with a plant on top of it surrounded with 

wooden chairs
➔ A long table with a flower arrangement in the middle for 

meetings
➔ A table is adorned with wooden chairs with blue accents
➔ A restaurant has modern wooden tables and chairs

➔ 長い 机 と 椅子 が 、 並ん で 置い て ある
➔ テーブル  の 上 に 、 植物 が 置い て ある
➔ 背もたれ  が 丸い 椅子 が たくさん 並べ られ て いる テーブ

ル の 真ん中 に 大きな ガラス の 花瓶 に 活け られ た 花 が 
飾ら れ て いる

➔ 長い テーブル  に お 揃い の イス が 置か れ て いる
➔ 10 人 掛け の テーブル  の 上 に は 分厚い 本 や フラワー 

アレンジメント  が 置か れ て いる

STAIR (Japanese)

Figure 24: An example image and its five descriptions. Please note that English and
Japenese descriptions are non-parallel.

To check consistency across languages, we use those out-of-domain resources
that contain parallel data such as machine translation 36 for learning cross-language
word embeddings. Only those corpora’s are selected which contains at-least one
European and Asian language in addition to English. Table 15 presents the avail-
able corpora belonging to diverse domains and genres. Selecting different cor-
pora will help us to adequately asses the knowledge transfer provided by such
domains to the caption generation in different languages.

Dataset Parallel-Sentences Languages

OpenSubtitles2018 22512639, 2083600 En-De, En-Ja

Table 15: Out-of-Domain Parallel Sentence Data.

36http://www.statmt.org/wmt17/translation-task.html

http://www.statmt.org/wmt17/translation-task.html
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Open subtitles contain parallel sentence-data from the movie subtitles. They
cover various genres and time periods and combine features from spoken lan-
guage corpora and narrative texts including many dialogs, idiomatic expressions,
dialectal expressions and slang.

6.4.1.2 Evaluation Measures

The goal of evaluation measures is to analyze the two essential expectations from
CBL models, i.e., the efficaciousness of generated caption and its consistency
across languages.

À To evaluate the effectiveness, we use evaluation measures such as BLEU,
METEOR, CIDEr and SPICE37 as in earlier approaches [8] and calculate
them using extended Microsoft evaluation server38 by adapting it to multi-
lingual caption datasets.

Á For measuring consistency, we measure average cosine similarity (CosSim)
to report variance in the generated captions. Zero indicates that semantics
of the sentences across languages are wholly independent and one denotes
their semantic uniformity.

6.4.2 Evaluation Results

6.4.2.1 Implementation

In the following, we present the implementation details of each component uti-
lized in the caption generation model.

Spatial Attention Features

Set av is extracted in two different ways. (1) Extracted from images using the
Faster R-CNN [209] in conjunction with the ResNet-101 [98] trained on visual
genome data by Anderson et al. [8]. Only top 36 image region features are
selected with each region feature avj of dimension 2048. We refer this set to
Att→RCNN (2) Spatial feature outputs of the last convolutional layer of ResNet-
101 pretrained on ImageNet is used, which have a dimension of 2048 × 7 × 7.
This means 49 image region features are selected with each region feature avj of
dimension 2048. We refer this set to Att→Spatial.

Global Visual Features

Iv of dimension 2048 is extracted using the average pooling of the aforemen-
tioned image region features.

Description Generation Model

It is initialized with 512 dimensions word embeddings wt pre-trained using
37Only for English, as the approach is tightly coupled with English parser.
38https://github.com/peteanderson80/coco-caption.git

https://github.com/peteanderson80/coco-caption.git
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Glove [195] with the image-caption training corpora of English and other lan-
guages separately. The dimensions of hidden units h1t ,h2t in L-1 and L-2 of mod-
els are set to 512. Also, hidden units of shared layer h(s)

t is set to 512. All models
are then trained with Adam optimizer [132] with gradient clipping having max-
imum norm of 1.0 and mini-batch size of 50 for 25 epochs. Initially, learning is
set to 0.001 and is reduced by factor of 10 if there is no improvement in the val-
idation loss for 3 continuous epochs. For the multi-task models, λ(l1) and λ(l2)

are set to 0.5.

6.4.2.2 Baselines

We compared our approaches with existing methods that provide open source
implementations.

Visual Attention

Proposed by Xu et al. [286], visual attention model (Visual-Att) is used for train-
ing separate English, German and Japanese captions models. We regenerated the
test descriptions using publicly available code39. Furthermore, machine transla-
tion is used to translate English captions to other languages using Google trans-
late 40 and is denoted with MT-Visual-Att.

Japanese Generator (Ja-Gen)

Japanese descriptions dataset of MSCOCO images proposed by Yoshikawa et
al [290] is also used as another baseline.

6.4.2.3 Quantitative Results

We compared our proposed models with aforementioned baselines in the Sec-
tion 6.4.2.2. Results attained are shown in the Table 16 and Table 17. It can be ob-
served that the multi-task models were comparable to the state of the art English
generation model results while generating consistent caption across languages.

6.4.2.4 Qualitative Results

We performed qualitative analysis by finding the overlap of frequent starting bi-
grams, and also verbs of generated captions across languages.

Frequent Words

To understand the language differences, we examine the generated descriptions
by our best model (i.e., MTA-GVC-O) across languages by extracting Top-5
highly frequent starting bigrams in different languages as shown in the Table 18.
We can observe that there is a considerable overlap of English and German usage
in the Multi30K dataset.

39https://github.com/kelvinxu/arctic-captions
40https://translate.google.com

https://github.com/kelvinxu/arctic-captions
https://translate.google.com
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Multi30K

BLEU-4 CIDEr SPICE CosSim

Model En,De En,De En

Ja-Gen -,- -,- - -

Visual-Att 16.9,9.4 35.7,22.3 11.3 0.525

MT-Visual-Att 16.9,8.5 35.7,16.9 11.3 0.553

MTA-GVC-I

+Att→Spatial 17.8,10.4 36.7,27.6 12.0 0.614

+Att→RCNN -,- -,- - -

MTA-GVC-O

+Att→Spatial 17.9,10.5 37.2,27.7 12.1 0.628

+Att→RCNN -,- -,- - -

Table 16: Results achieved with our models in comparison with baseline approaches.
For future comparisons, our MTA-GVCO+Att→Spatial model METEOR score
for Multi30k English captions is 18.0.

MSCOCO&STAIR

BLEU-4 CIDEr SPICE CosSim

Model En,Ja En,Ja En

Ja-Gen -,38.5 -,83.3 - -

Visual-Att 25.0,29.0 89.2,77.4 17.2 0.453

MT-Visual-Att 25.0,25.8 89.2,58.0 17.2 0.489

MTA-GVC-I

+Att→Spatial 30.5,35.4 92.4, 83.1 17.6 0.490

+Att→RCNN 31.3,36.6 94.9,88.9 18.1 0.522

MTA-GVC-O

+Att→Spatial 30.6,35.6 92.8,83.8 17.8 0.498

+Att→RCNN 31.6,37.4 95.3,90.3 18.2 0.525

Table 17: Results achieved with our models in comparison with baseline approaches.
For future comparisons, our MTA-GVCO+Att→RCNN model METEOR score
for MSCOCO English captions is 30.1.
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Multi30K

English Count German Count

A man 487 Ein Mann 458

(A man)

A group 178 Eine Frau 118

(A woman)

A woman 81 Ein paar 53

(A few)

A little 49 Eine gruppe 34

(A group)

A young 30 Ein hund 32

(A dog)

Table 18: Frequent bigrams as starting tokens used in the generated captions along with
their translations. Number of captions in each dataset is: Multi30K→ 1000

This shows that a jointly trained model can make closely related languages
(e.g., West Germanic languages) generated captions closer to each other result-
ing in semantically similar captions.

Frequent Part-of-Speech (POS)

We also analyzed the POS tags mainly verbs generated across languages in the
Table 19. Analyzing verbs will help to understand the actions that are captured
in the generated captions across languages. It can be observed that there is an
overlap of verbs (considering root verbs and removing conjugation in German)
showing that image descriptions use similar verbs across languages.

Out-of-Vocabulary (OOV)

To induce embeddings for the words present in the generated captions to evalu-
ate cross-language semantic similarity. We leverage the embeddings of the out-
of-domain dataset vocabulary. Percentage of OOV words for each in-domain
dataset is presented in Table 20.

6.4.3 Evaluation Results Analyses

We first start our analysis with the effect of image features on the models. Ob-
serving Table 16 and Table 17 shows that the models trained with Att→RCNN
features were comparatively better than the models trained with spatial image
features. We also comprehend from the results that the position (i.e., Input or
Output) at which global image features are provided in the model also play a
crucial for consistent caption generation across languages.

Furthermore, when results across languages are compared for effectiveness,
we observed that the high BLEU-4 scores are obtained for German, Japanese
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Verbs

English Count German Count

is 525 sitzt 159

(sitting)

are 331 steht 112

(standing)

playing 153 stehen 67

(stand)

sitting 147 spielt 65

(play)

standing 110 sitzen 61

(sit)

walking 96 springt 52

(jump)

riding 59 spielen 33

(play)

running 36 tanzen 28

(dancing)

holding 34 gehen 23

(walk)

dancing 32 läuft 20

(running)

Table 19: Frequent Top-10 verbs observed in generated captions of Multi30K
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Dataset Language %

MSCOCO English 0.499

STAIR Japanese 5.190

Multi30K English 0.184

Multi30K German 2.581

Table 20: Out-of-Vocabulary (OOV) Percentange.

when compared against English. We attribute this outcome mostly to the dif-
ference in length of descriptions that are generated. In most cases, English had
shorter descriptions than German and Japanese. Since BLEU weighs recall over
precision, it shows that English descriptions are more coherent than German and
Japanese.

The variance among generated captions across languages is also examined
with the cosine similarity (CosSim). It is also observed that an improvement in
the similarity assessment is achieved with our best MTA model when compared
with the Visual-Att and MT-Visual-Att. It shows that MTA models were able to
generate semantically closer captions across languages. Also, it is perceived that
the machine translation of English captions degraded the performance measures.
It conveys that the machine translation (MT) can induce errors and not a right
approach for generating multi-language image captions.

6.5 summary

In this chapter, we addressed the third research question:

- Research Question 3

Given two different views of heterogeneous content depicting text and im-
age modality, how can we build a shared representation of all views if an
auxiliary view depicting text in multiple languages is added to assist the
generation of text from an image?

For this, we validated Hypothesis 3 by proposing models to generate consistent
image captions across languages. We built these models by jointly optimizing
two different language captions of an image by leveraging multi-task learning.
Empirical analyses exhibited that single-task models generate different captions
for a given image and this can be mitigated with joint learned models and knowl-
edge sharing from different languages.

In the next chapter, we will present an approach to achieving multi-view deep
representation learning with consensus and complementarity principles and sup-
port an application where the heterogeneous data has missing views.
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M V R L W I T H M I S S I N G V I E W S A N D K N O W L E D G E G U I D E D
A S S I S TA N C E

Context of this Chapter. In this chapter, we leverage multi-view deep repre-
sentation learning along with knowledge guided assistance to propose a novel
approach for unseen visual object categories caption generation. More specifi-
cally, our approach for unseen or novel image caption generation is guided by
an external resource such as knowledge graph (KG). Entities in KG are lever-
aged to identify the critical regions of an image for attention mechanism and
also serve as image labels for caption generation during training and inference.
Moreover, KG entities as image labels are also used while inference to constrain
visual object categories. In particular, this work will allow us to scale the image
caption generation to unseen or novel objects categories present on the web.

Our main contributions presented in this chapter can be broadly summarized
as follows:

À We designed a novel approach, called Knowledge Guided Assistance (KGA),
to improve the task of generating captions for images which contain visual
objects that are not seen in the training data.

Á We created a image classifier for linking the depicted visual objects to KG
entities. Based on that, we introduce the first mechanism that exploits the
relational structure of entities in KGs for guiding the attention of a caption
generator towards picking the correct KG entity to mention in its descrip-
tions.

Â We conducted an extensive experimental evaluation showing the effective-
ness of our KGA method. Both, regarding generating effectual captions
and also scaling it to more than 600 visual objects.

Outline. The remainder of this chapter is organized into following sections.
Initially, Section 7.1 presents the motivation in Section 7.1.1 and briefly intro-
duce existing unseen or novel image caption generation methods in Section 7.1.2.
Next Section 7.2 presents the research question and describes our contribution
to unseen visual object categories caption generation. Our approach knowledge
guided assitance is then discussed in the Section 7.3. The dataset and metrics
used for evaluation of the approach are described in the Section 7.4. While in
the Section 7.4.2 details about the evaluation results are shown, which are fur-
ther analyzed in the Section 7.4.3. Summary of the chapter is presented in the
Section 7.5.

100
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7.1 introduction

7.1.1 Motivation

Content on the Web is highly heterogeneous and consists mostly of visual and
textual information. In most cases, these different modalities complement each
other, which complicates the capturing of the full meaning of automated knowl-
edge extraction techniques. An approach for making information in all modali-
ties accessible to automated processing is linking the information represented in
the different modalities (e.g., images and text) into a shared conceptualization,
like entities in a Knowledge Graph (KG). However, obtaining a robust formal
representation of textual and visual content has remained a research challenge
for many years.

Recently, a different approach has shown impressive results, namely the trans-
formation of one unstructured representation into another. Specifically, the task
of generating natural language descriptions of images or videos [256, 263] has
gained much attention. While such approaches are not relying on formal con-
ceptualizations of the domain to cover, the systems that have been proposed so
far are limited by a tiny number of objects that they can describe (less than 100).
Such methods – as they need to be trained on manually crafted image-caption
parallel data – do not scale to real-world applications, and can’t be applied to
the cross-domain web-scale content.

In contrast, visual object classification techniques have improved considerably,
and they are now scaling to thousands of objects more than the ones covered
by caption training data [55]. Also, KGs have grown to cover all of those objects
plus millions more accompanied by billions of facts describing relations between
those objects. Thus, it appears that those information sources are the missing link
to make existing image captioning models scale to a more significant number of
objects without having to create additional image-caption training pairs with
those missing objects.

In this chapter, we investigate the hypothesis, which conceptual relations of
entities – as represented in KGs – can provide information to enable caption gen-
eration models to generalize to objects that they have not seen during training in
the image-caption parallel data. While there are existing methods that are tack-
ling this task, none of them have exploited any form of conceptual knowledge so
far. In our model, we use KG entity embeddings to guide the attention of caption
generator to the correct (unseen) object that is depicted in the image.

The contribution of this work on a broader scope is its progress towards the
integration of the visual (and textual) information available on the Web with
KGs.

7.1.2 Background on Describing Images with Unseen Objects

Existing methods such as Deep Compositional Captioning (DCC) [102], Novel
object Captioner (NOC) [257], Constrained Beam Search (CBS) [7] and LSTM-
C [289] address the challenge by transferring information between seen and un-
seen objects either before inference (i.e. before testing) or by keeping constraints
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on the generation of caption words during inference (i.e. during testing). Fig-
ure 25 provides a broad overview of those approaches.

Image containing Unseen Object 
(pizza) 

No Attention 
+ 

Transfer Before Inference

KGA
(ours)

A man is making a sandwich in a 
restaurant.

No Attention 
+ 

Transfer During Inference

No Attention 
+ 

No Transfer

Knowledge Assisted Attention
         + 

Transfer Before and During Inference

CBS,LSTM-C

DCC,NOC

Base 
CNN-LSTM

A man is holding a pizza in his 
hands.

A man standing next to a table 
with a pizza in front of it.

Figure 25: KGA goal is to describe images containing unseen objects by building on the
existing methods i.e. DCC [102], NOC [257], CBS [7] and LSTM-C [289] and
going beyond them by adding relational knowledge assistance. Base refers to
our base description generation model built with CNN [236] - LSTM [108].

In DCC, an approach which performs information transfer only before infer-
ence, the training of the caption generation model is solely dependent on the
corpus constituting words which may appear in the similar context as of unseen
objects. Hence, explicit transfer of learned parameters is required between seen
and unseen object categories before inference which limits DCC from scaling to
a wide variety of unseen objects. NOC tries to overcame such issues by adopting
a end-to-end trainable framework which incorporates auxiliary training objec-
tives during training and detaching the need for explicit transfer of parameters
between seen and unseen objects before inference. However, NOC training can
result in sub-optimal solutions as the additional training attempts to optimize
three different loss functions simultaneously. CBS, leverages an approximate
search algorithm to guarantee the inclusion of selected words during inference
of a caption generation model. These words are however only constrained on the
image tags produced by a image classifier. And the vocabulary used to find sim-
ilar words as candidates for replacement during inference is usually kept very
large, hence adding extra computational complexity. LSTM-C avoids the limita-
tion of finding similar words during inference by adding a copying mechanism
into caption training. This assists the model during inference to decide whether
a word is to be generated or copied from a dictionary. However, LSTM-C suffers
from confusion problems since probabilities during word generation tend to get
very low.

In general, aforementioned approaches also have the following limitations: (1)
The image classifiers used cannot predict abstract meaning, like “hope”, as ob-
served in many web images. (2) Visual features extracted from images are con-
fined to the probability of occurrence of a fixed set of labels (i.e. nouns, verbs
and adjectives) observed in a restricted dataset and cannot be easily extended to
varied categories for large-scale experiments. (3) Since an attention mechanism is
missing, important regions in an image are never attended. While, the attention
mechanism in our model helps to scale down all possible identified concepts
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to the relevant concepts during caption generation. For large-scale applications,
this plays a crucial role.

We introduce a new model called Knowledge Guided Assistance (KGA) that
exploits conceptual knowledge provided by a knowledge graph (KG) [150] as
external semantic attention throughout training and also to aid as a dynamic
constraint before and during inference. Hence, it augments an auxiliary view
as done in multi-view learning scenarios. Usage of KGs has already shown im-
provements in other tasks, such as in question answering over structured data,
language modeling [2], and generation of factoid questions [230].

7.2 research questions and contributions

Let us outline the research question, hypothesis, and contributions, which we
target throughout the chapter.

7.2.1 Research Question and Hypothesis

As presented in Section 1.3, our overall research question is: How to effectively
integrate multiple views of training instances depicting heterogeneous or homo-
geneous content into a common space representation for supporting applications
in different domains? In this chapter, we address the fourth part, i.e., learning a
common space representation among views emerging from the same modality
with consensus and complementarity principles by leveraging their input repre-
sentations. More specifically, we aim at Research Question 4:

- Research Question 4

Given two different views of heterogeneous content depicting text and im-
age modality, how can we build a shared representation to assist the genera-
tion of text from an image if there are missing views?

For addressing above research question, we verify the hypothesis as follows:

2 Hypothesis 4

Leveraging deep neural network architecture with knowledge guided as-
sistance, we can effectively learn a common space representation emerging
from the heterogeneous data to generate one modality from another, i.e.,
especially generating text from an image containing unseen visual object
categories. Knowledge guidance can be used in two ways. First, as an atten-
tion mechanism to identify import entities observed in the image modality.
Second during inference to guide the generation of caption text.

Intuitively, Hypothesis 4 states that the combination of deep neural networks
with knowledge graph embeddings can be used to adequately capture common
space representation between entities observed in a knowledge graph and the
spatial observed visual content. Mainly, we expect to provide an explicit knowl-
edge graph grounding of entities observed in the visual content. Further, we
expect to use knowledge graph entity embeddings and labels for image caption
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generation in the form of attention mechanism and as a constraint during infer-
ence respectively.

To validate Hypothesis, we present our KGA caption generation model in the
Section 7.3 to generate captions for the unseen visual object categories. More-
over, we implemented the approach and empirically show (see the evaluation in
Section 7.4) its effectiveness with state of the art.

7.2.2 Contributions

While being naturally appealing, usage of deep neural networks and its com-
bination with knowledge graph entity embeddings is not studied before in the
context of image caption generation, where the visual object categories are un-
seen before in the training data. Aiming at above hypotheses, we provide the
following contribution:

• Contribution for Hypothesis 4
Building a common space representation from the heterogeneous data de-
picting two views using either correlation or consensus/complementarity
principles is studied earlier.

However, our usage of deep encoder-decoder architecture and its extension
with knowledge guided assistance for building a common space represen-
tation for those samples which has missing views in the training data is
unique. Additionally, designing a caption generation approach by leverag-
ing knowledge graph entity annotation on images and knowledge graph
entity embeddings has new challenges. Facing these characteristics, we pro-
pose a knowledge-guided assistance caption generation model which uses
entity embeddings to calculate attention score, while entity labels are used
as constraints for guiding caption generation during inference. To the best
of our knowledge, this is the first work which utilizes knowledge guided
assistance for caption generation for images containing unseen visual ob-
ject categories.

We conducted an evaluation using out-of-domain image-caption dataset
and ImageNet images to validate the Hypotheses 4. In these experiments,
we could achieve performance comparable to state of the art for caption
generation for images containing unseen visual object categories. In fact,
we could show that our proposed approach progress towards the integra-
tion of the visual (and textual) information available on the Web with KGs.

7.3 describing images with unseen objects using kga

In this section, we present our caption generation model to generate captions for
unseen visual object categories with knowledge guided assistance (KGA). Core
goal of KGA is to introduce external semantic attention (ESA) into the learn-
ing and also work as a constraint before and during inference for transferring
information between seen words and unseen visual object categories.
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7.3.1 Caption Generation Model

Our image caption generation model (henceforth, KGA-CGM) combines three
important components: a language model pretrained on unpaired textual cor-
pora, external semantic attention (ESA) and image features with a textual (T),
semantic (S) and visual (V) layer (i.e. TSV layer) for predicting the next word
in the sequence when learned using image-caption pairs. In the following, we
present each of these components separately while Figure 26 presents the overall
architecture of KGA-CGM.
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Figure 26: KGA-CGM is built with three components. A language model implemented
with a 2-layer forward LSTM where L1-F and L2-F represents layer-1 and
layer-2 respectively, a multi-word-label classifier to generate image visual fea-
tures and a multi-entity-label classifier that generates entity-labels linked to
a KG serving as a partial image specific scene graph. This information is fur-
ther leveraged to acquire entity vectors for supporting ESA. wt represents
the input caption word, ct the semantic attention, pt the output of probabil-
ity distribution over all words and yt the predicted word at each time step
t. BOS and EOS represent the special beginning and end of sentence tokens
respectively.

7.3.1.1 Language Model

This component is crucial to transfer the sentence structure for unseen visual
object categories. Language model is implemented with two long short-term
memory (LSTM) [108] layers to predict the next word given previous words
in a sentence. If −−−→w1:L represent the input to the forward LSTM of layer-1 for

capturing forward input sequences into hidden sequence vectors (
−−→
h11:L ∈ RH),

where L is the final time step. Then encoding of input word sequences into
hidden layer-1 and then into layer-2 at each time step t is achieved as follows:

−→
h1t = L1-F(−→wt;Θ) (68)

−→
h2t = L2-F(

−→
h1t ;Θ) (69)
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where Θ represent hidden layer parameters. The encoded final hidden sequence

(
−→
h2t ∈ RH) at time step t is then used for predicting the probability distribution

of the next word given by pt+1 = softmax(h2t). The softmax layer is only used
while training with unpaired textual corpora and not used when learned with
image captions.

7.3.1.2 External Semantic Attention (ESA)

Our objective in ESA is to extract semantic attention from an image by leveraging
relational knowledge in KG as entity-labels obtained using a multi-entity-label
image classifier (presented in the Section 7.4.1.2). Here, entity-labels are analo-
gous to patches or attributes of an image. In formal terms, if eai is an entity-label
and ei ∈ RE the entity-label vector among set of entity-label vectors (i = 1, ..,L)
and βi the attention weight of ei then βi is calculated at each time step t using
Equation 70.

βti =
exp(Oti)∑L
j=1 exp(Otj)

(70)

whereOti = f(ei,h2t) represent scoring function which conditions on the layer-2
hidden state (h2t ) of a caption language model. It can be observed that the scoring
function f(ei,h2t) is crucial for deciding attention weights. Also, relevance of the
hidden state with each entity-label is calculated using Equation 71.

f(ei,h2t) = tanh((h
2
t)
TWheei) (71)

where Whe ∈ RH×E is a bilinear parameter matrix. Once the attention weights
are calculated, the soft attention weighted vector of the context c, which is a
dynamic representation of the caption at time step t is given by Equation 72

ct =

L∑
i=1

βtiei (72)

Here, ct ∈ RE and L represent the cardinality of entity-labels per image-caption
pair instance.

7.3.1.3 Image Features & TSV Layer & Next Word Prediction

Visual features for an image are extracted using multi-word-label image classifier
(discussed in the Section 7.4.1.2). To be consistent with other approaches [102,
257] and for a fair comparison, our visual features (I) also have objects that
we aim to describe outside of the caption datasets besides having word-labels
observed in paired image-caption data.

Once the output from all components is acquired, the TSV layer is employed
to integrate their features i.e. textual (T ), semantic (S) and visual (V) yielded by
language model, ESA and images respectively. Thus, TSV acts as a transforma-
tion layer for molding three different feature spaces into a single common space
for prediction of next word in the sequence.
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If h2t ∈ RH, ct ∈ RE and It ∈ RI represent vectors acquired at each time step
t from language model, ESA and images respectively. Then the integration at
TSV layer of KGA-CGM is provided by Equation 73.

TSVt =Wh2t
h2t +Wctct +WItIt (73)

where Wh2t
∈ Rvs×H,Wct ∈ Rvs×E and WIt ∈ Rvs×I are linear conversion

matrices and vs is the image-caption pair training dataset vocabulary size.
The output from the TSV layer at each time step t is further used for pre-

dicting the next word in the sequence using a softmax layer given by pt+1 =

softmax(TSVt).

7.3.2 KGA-CGM Training

To learn parameters of KGA-CGM, first we freeze the parameters of the language
model trained using unpaired textual corpora. Thus, enabling only those param-
eters to be learned with image-caption pairs emerging from ESA and TSV layer
such as Whe,Wh2t

,Wct and WIt . KGA-CGM is now trained to optimize the cost
function that minimizes the sum of the negative log likelihood of the appropriate
word at each time step given by Equation 74.

min
θ

−
1

N

N∑
n=1

L(n)∑
t=0

log(p(y
(n)
t )) (74)

Where L(n) represent the length of sentence (i.e. caption) with beginning of sen-
tence (BOS), end of sentence (EOS) tokens at n-th training sample and N as a
number of samples used for training.

7.3.3 KGA-CGM Constrained Inference

Inference in KGA-CGM refer to the generation of descriptions for test images.
Here, inference is not straightforward as in the standard image caption genera-
tion approaches [263] because unseen visual object categories have no parallel
captions throughout training. Hence they will never be generated in a caption.
Thus, unseen visual object categories require guidance either before or during in-
ference from similar seen words that appear in the paired image-caption dataset
and likely also from image labels. In our case, we achieve the guidance both be-
fore and during inference with varied techniques.

Guidance before Inference

We first identify the seen words in the paired image-caption dataset similar
to the visual object categories unseen in image-caption dataset by estimating
the semantic similarity using their Glove embeddings [195] learned using un-
paired textual corpora (more details in Section 7.4.1.1). Furthermore, we uti-
lize this information to perform dynamic transfer between seen words visual
features (WI), language model (Wh2t

) and external semantic attention (Wct)
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weights and unseen visual object categories. To illustrate, if (vunseen, iunseen)
and (vclosest, iclosest) denote the indexes of unseen visual object category “ze-
bra” and its semantically similar known word “giraffe” in a vocabulary (vs) and
visual features (is) respectively. Then to describe images with “zebra” in the sim-
ilar manner as of “giraffe”, the transfer of weights is performed between them by
assigning Wct[vunseen,:], Wh2t

[vunseen,:] and WIt[vunseen,:] to Wct[vclosest,:],
Wh2t

[vclosest,:] and WIt[vclosest,:] respectively.
Furthermore, WIt[iunseen,iclosest], WIt[iclosest,iunseen] is set to zero for re-

moving mutual dependencies of seen and unseen words presence in an image.
Hence, aforementioned procedure will update the KGA-CGM trained model be-
fore inference to assist the generation of unseen visual object categories during
inference as given by Algorithm 2.

Algorithm 2: Constrained Inference Overview (Before)
Input: M={Whe,Wh2t

,Wct , WIt}
Output: Mnew

1 Initialize List(closest) = cosine_distance(List(unseen),vocabulary) ;
2 Initialize Wct[vunseen,:], Wh2t

[vunseen,:], WIt[vunseen,:] = 0 ;
3 Function Before Inference
4 forall items T in closest and Z in unseen do
5 if T and Z is vocabulary then
6 Wct[vZ,:] = Wct[vT ,:] ;
7 Wh2t

[vZ,:] = Wh2t
[vT ,:] ;

8 WIt[vZ,:] = WIt[vT ,:] ;
9 end

10 if iT and iZ in visual features then
11 WIt[iZ,iT ]=0 ;
12 WIt[iT ,iZ]=0 ;
13 end
14 end
15 Mnew = M ;
16 return Mnew ;
17 end

Guidance during Inference

The updated KGA-CGM model is used for generating descriptions of unseen
visual object categories. However, in the before-inference procedure, the closest
words to unseen visual object categories are identified using embeddings that
are learned only using textual corpora and are never constrained on images.
This obstructs the view from an image leading to spurious results. We resolve
such nuances during inference by constraining the beam search used for descrip-
tion generation with image entity-labels (ea). In general, beam search is used to
consider the best k sentences at time t to identify the sentence at the next time
step. Our modification to beam search is achieved by adding a extra constraint
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to check if a generated unseen visual object category is part of the entity-labels.
If it’s not, unseen visual object categories are never replaced with their closest
seen words. Algorithm 3 presents the overview of KGA-CGM guidance during
inference.

Algorithm 3: Constrained Inference Overview (During)
Input: Mnew, Imlabels, beam-size k, word w
Output: best k successors

1 Initialize Imlabels = Top-5 (ea) ;
2 Initialize beam-size k ;
3 Initialize word w=null ;
4 Function During Inference
5 forall State st of k do
6 w=st ;
7 if closest[w] in ea then
8 st = closest[w];
9 end

10 else
11 st = w ;
12 end
13 end
14 return best k successors ;
15 end

7.4 evaluation

7.4.1 Evaluation Setup

7.4.1.1 Resources and Datasets

Our approach is dependent on several resources and datasets.

Knowledge Graphs (KGs) and Unpaired Textual Corpora

There are several openly available KGs such as DBpedia41, Wikidata42, and YAGO43

which provide relational knowledge encapsulated in entities and their relation-
ships. We choose DBpedia as our KG for entity annotation, as it is one of the
extensively used resource for semantic annotation and disambiguation [150]44.

For learning weights of the language model and also Glove word embeddings,
we have explored different unpaired textual corpora from out-of-domain sources
(i.e. out of image-caption parallel corpora) such as the British National Corpus

41http://wiki.dbpedia.org/
42https://www.wikidata.org/wiki/Wikidata:Main_Page
43http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/

research/yago-naga/yago/downloads/
44we presume other KGs also have high quality information and do not distinguish them based

on qualitative measures. DBpedia is chosen for convenience.

http://wiki.dbpedia.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads/
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(BNC)45, Wikipedia (Wiki) and subset of SBU1M46 caption text containing 947

categories of ILSVRC12 dataset [222]. NLTK47 sentence tokenizer is used to ex-
tract tokenizations and around 70k+ words vocabulary is extracted with Glove
embeddings.

Unseen Objects Description (Out-of-Domain MSCOCO & ImageNet)

To evaluate KGA-CGM, we use the subset of MSCOCO dataset [157] proposed
by Hendricks et al. [102]. The dataset is obtained by clustering 80 image object
category labels into 8 clusters and then selecting one object from each cluster
to be held out from the training set. Now the training set does not contain the
images and sentences of those 8 objects represented by bottle, bus, couch, mi-
crowave, pizza, racket, suitcase and zebra. Thus making the MSCOCO training
dataset to constitute 70,194 image-caption pairs. While validation set of 40504

image-caption pairs are again divided into 20252 each for testing and validation.
Now, the goal of KGA-CGM is to generate caption for those test images which
contain these 8 unseen object categories. Henceforth, we refer this dataset as
“out-of-domain MSCOCO”.

To evaluate KGA-CGM on a more challenging task, we attempt to describe im-
ages that contain wide variety of objects as observed on the web. To imitate such
a scenario, we collected images from collections containing images with wide va-
riety of objects. First, we used same set of images as earlier approaches [257, 289]
which are subset of ImageNet [55] constituting 642 object categories used in Hen-
dricks et al. [102] who do not occur in MSCOCO. However, 120 out of those 642

object categories are part of ILSVRC12.

7.4.1.2 Multi-Label Image Classifiers

The important constituents that influence KGA-CGM are the image entity-labels
and visual features. Identified objects/actions etc. in an image are embodied in
visual features, while entity-labels capture the relational knowledge in an image
grounded in KG. In this section, we present the approach to extract both visual
features and entity-labels.

Multi-Word-label Image Classifier

To extract visual features of out-of-domain MSCOCO images, emulating Hen-
dricks et al. [102] a multi-word-label classifier is built using the captions aligned
to an image by extracting part-of-speech (POS) tags such as nouns, verbs and ad-
jectives attained for each word in the entire MSCOCO dataset. For example, the
caption “A young child brushes his teeth at the sink” contains word-labels such
as “young (JJ)”, “child (NN)”, “teeth (NN)” etc., that represent concepts in an
image. An image classifier is trained now with 471 word-labels using a sigmoid
cross-entropy loss by fine-tuning VGG-16 [236] pre-trained on the training part
of the ILSVRC12. The visual features extracted for a new image represent the

45http://www.natcorp.ox.ac.uk/
46http://vision.cs.stonybrook.edu/~vicente/sbucaptions/
47http://www.nltk.org/

http://www.natcorp.ox.ac.uk/
http://vision.cs.stonybrook.edu/~vicente/sbucaptions/
http://www.nltk.org/
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probabilities of 471 image labels observed in that image. For extracting visual
features from ImageNet images, we replace the multi-word-label classifier with
the lexical classifier [102] learned with 642 ImageNet object categories.

Multi-Entity-label Image Classifier (MSCOCO)

To extract relational knowledge for out-of-domain MSCOCO images analogous
to the word-labels, a multi-entity-label classifier is build with entity-labels at-
tained from a knowledge graph annotation tool such as DBpedia spotlight48 on
training set of MSCOCO constituting 82,783 training image-caption pairs. In to-
tal around 812 unique labels are extracted with an average of 3.2 labels annotated
per image. To illustrate, considering the caption presented in the aforementioned
section, entity labels extracted are “Brush49” and “Tooth50”. An image classifier
is now trained with multiple entity-labels using sigmoid cross-entropy loss by
fine-tuning VGG-16 [236] pre-trained on the training part of the ILSVRC12.

Fine-tuning with entity labels is explored with varied feature representation
of images extracted using three different layers such as pool5, fc6 and fc7 of
VGG-16 [236] pre-trained on ILSVRC12. Furthermore, we analyzed image classi-
fiers built separately using pool5, fc6 and fc7. Our analysis revealed that pool5
features overfit even with regularization.

To address this challenge, we trained a classifier with Caffe51 by fine-tuning
the layers above fc6 and fc7 which gave us an improvement in the accuracy as
observed in the Table 21.

The classifier fine-tuned on fc6 features constitute two fully connected layers
of dimensions 4096 and an output layer comprising a sigmoid activation with
812 dimensions. Similarly, the classifier fine-tuned with fc7 features have an out-
put layer of 812 dimensions comprising a sigmoid activation. The loss function
used during training is sigmoid cross-entropy, while only sigmoid is used during
prediction for exhibiting the presence of label probabilities.

Figure 27 shows the predictions on the test dataset. It can be observed that fc6

gave the best result with an accuracy around 70% for top-12 and 74.4% top-16

label predictions. Table 22 shows sample entity-label predictions on MSCOCO
test images with our multi entity-label image classifier fine-tuned on VGG-16 fc6

layer. Visual object categories used are subset of MSCOCO objects (i.e. book, bed,
carrot, elephant, spoon, toilet, truck and umbrella) mainly used by NOC [257] as
alternate set of “out of domain” MSCOCO objects.

Multi-Entity-label Image Classifier (ImageNet)

For extracting entity-labels from ImageNet images, we again leveraged lexical
classifier [102] learned with 642 ImageNet object categories. However, as all 642

categories denote WordNet synsets, we build a connection between these cate-
gories and DBpedia by leveraging BabelNet [185] for multi-entity-label classifier.

48https://github.com/dbpedia-spotlight/
49http://dbpedia.org/resource/Brush
50http://dbpedia.org/resource/Tooth
51http://caffe.berkeleyvision.org/

https://github.com/dbpedia-spotlight/
http://dbpedia.org/resource/Brush
http://dbpedia.org/resource/Tooth
http://caffe.berkeleyvision.org/
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Model

Hyper Parameters pool5 fc6 fc7

weight_decay 0.05 0.03 0.01

base_lr 0.001 0.0003 0.003

gamma 0.5 0.5 0.33

stepsize 7.5K 10K 8K

maxiter 60K 50K 40K

momentum 0.9 0.9 0.9

batch_size 256 256 256

Results

Validation Loss 11.0035 10.1152 10.3372

Accuracy@12 0.6572 0.7018 0.6868

Accuracy@K 0.4526 0.4892 0.4778

Table 21: Validation results of different VGG-16 layers. Hyper parameters are used to
fine-tune Caffe VGG-16 model. Accuracy@K is calculated by predicting as
many labels as in ground truth for each image.

Figure 27: Accuracy of the predicted labels on the test set by Multi Entity-Label Classi-
fier.

To illustrate, for visual object category “wombat” (wordnetid: n1883070) in Ima-
geNet can be linked to DBpedia Wombat52. Hence, this makes our method very
modular for building new image classifiers to incorporate relational knowledge.

7.4.1.3 Entity-Label Embeddings

We presented earlier that the acquisition of entity-labels for training multi-entity-
label classifiers were obtained using DBpedia spotlight entity annotation and
disambiguation tool. Hence, entity-labels are expected to encapsulate relational
knowledge grounded in KB. Approaches [240] earlier have transformed such en-
tities in a KB into embeddings to capture their relational information for tasks
such as knowledge base completion. In our work, we see the efficacy of these
embeddings for caption generation. We leverage entity-label embeddings for

52http://dbpedia.org/page/Wombat

http://dbpedia.org/page/Wombat
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Image
MSCOCO

Object
Labels

book

Plant, Television,
Coffee_table_book (Original)
[Furniture, Television,Couch]

(Predicted)

bed

[Bedding, Wood, Textile
Canopy_(biology)] (Original)

[Pillow, Canopy, Hanging]
(Predicted)

carrot

Knife, Vegetable, Meat, Wine,
Potato, Fork, Glass, Carrot
(Original) [Vegetable, Meat,

Carrot] (Predicted)

elephant
Poaceae, Elephant, Grass

(Original) [Elephant, Enclosure,
Poaceae] (Predicted)

spoon
Grape, Milk, Spoon, Fruit

(Original) [Fruit, Spoon, Apple]
(Predicted)

toilet
Light, Cabinetry, Pedestal,

Medicine, Toilet (Original) [Toilet,
Mirror, Hanging] (Predicted)

truck
Truck, Straw (Original) [Truck,

Poaceae, Bus] (Predicted)

umbrella
Light, Umbrella (Original) [Light,

Umbrella, Light_fixture]
(Predicted)

Table 22: Sample predictions of Multi entity-label classifier (MSCOCO).

computing semantic attention observed in an image with respect to the cap-
tion as observed from KB. To obtain entity-label embeddings, we adopted the
RDF2Vec [214] approach and generated 500 dimensional vector representations
for 812 and 642 entity-labels to describe out-of-domain MSCOCO and ImageNet
images respectively.

Furthermore, we qualitatively evaluate the entity-label embeddings. There are
total 812 entity-labels in total used to represent images in the entire MSCOCO.
Most of these images are represented with more than one entity-label, thus pro-
viding multi-label information for each image. However, directly using their em-
beddings for ESA can affect caption generation if the label embeddings are not
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closely related. To check for their closely relatedness, we perform entity similar-
ity. Table 23 shows the results of unseen or novel mscoco objects.

Unseen Object Top-5 Closely Related Entities

Bottle Wine_bottle, Wine_glass, Table_setting

Nap_(textile), Tablecloth

Bus Truck, Double-decker_bus, Transit_bus

Cargo, Tram

Couch Pillow, Cupboard, Bathtub

Hair_dryer, Living_room

Microwave Blender, Oven, Paper_bag

Dishwasher, Refrigerator

Pizza Pasta, Pepperoni, Salad

Sauce, Grilling

Racket Ball, Flying_disc, Snowboard

Glove, Cricket_ball

Suitcase Baggage, Backpack, Hair_dryer

Apron, Bathtub

Zebra Giraffe, Elephant, Horn_(anatomy)

Calf, Ox

Table 23: Top-5 closely related entities of unseen MSCOCO Objects

It can be perceived from the Table 23 that most of the closely related entities
always co-occur in an image as shown with few examples in the paper. Thus
enhancing the caption generation model with ESA proven to be effective. We
also performed t-SNE visualization of all entity-labels to check how they cluster
together. It can be seen from the Figure 28 that some of the closely related objects
that occur in the same context cluster close to each other.

Figure 28: t-SNE visualization of the entity-label embeddings.
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7.4.1.4 Evaluation Measures

To evaluate generated descriptions for the unseen MSCOCO visual object cate-
gories, we use similar evaluation metrics as earlier approaches [102, 257, 289]
such as METEOR and also SPICE [6]. However, CIDEr [255] metric is not used
as it is required to calculate the inverse document frequency used by this met-
ric across the entire test set and not just unseen object subsets. F1 score is also
calculated to measure the presence of unseen objects in the generated captions
when compared against reference captions. Furthermore, to evaluate ImageNet
object categories description generation: we leveraged F1 and also other metrics
such as Unseen and Accuracy scores [257, 289]. The Unseen score measures the
percentage of all novel objects mentioned in generated descriptions, while accu-
racy measure percentage of image descriptions correctly addressed the unseen
objects.

7.4.2 Evaluation Results

The experiments are conducted to evaluate the efficacy of KGA-CGM model for
describing out-of-domain MSCOCO and ImageNet images.

7.4.2.1 Implementation

KGA-CGM model constitutes three important components i.e. language model,
visual features and entity-labels. Before learning KGA-CGM model with image-
caption pairs, we first learn the weights of language model and keep it fixed
during the training of KGA-CGM model. To learn language model, we lever-
age unpaired textual corpora and provide input word embeddings represent-
ing 256 dimensions pre-trained with Glove [195] on the same unpaired textual
corpora. However, different hidden layer dimensions are explored to see their
consequences on caption generation. KGM-CGM model is then trained using
image-caption pairs with Adam optimizer [132] with gradient clipping having
maximum norm of 1.0 for about 15∼50 epochs. Validation data is used for fine
tuning parameters and model selection.

7.4.2.2 Describing Out-of-Domain MSCOCO Images

In this section, we evaluate KGA-CGM using out-of-domain MSCOCO dataset
described in the Section 7.4.1.1.

Quantitative Analysis

We compared our complete KGA-CGM model with the other existing models
that generated image descriptions on out-of-domain MSCOCO. To have a fair
comparison, only those results are compared that used VGG-16 to generate im-
age features. Table 24 and Table 25 shows the comparison of individual and
average scores based on METEOR, SPICE and F1 on all 8 unseen visual object
categories with beam size 1.
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F1

Model Beam microwave racket bottle zebra

DCC [102] 1 28.1 52.2 4.6 79.9

NOC [257] >1 24.7 55.3 17.7 89.0

CBS(T4) [7] >1 29.7 57.1 16.3 85.7

LSTM-C [289] >1 27.8 70.2 29.6 91.4

KGA-CGM 1 50.0 75.3 29.9 92.1

METEOR

DCC [102] 1 22.1 20.3 18.1 22.3

NOC [257] >1 21.5 24.6 21.2 21.8

LSTM-C [289] >1 - - - -

CBS(T4) [7] >1 - - - -

KGA-CGM 1 22.6 25.1 21.5 22.8

SPICE

DCC [102] >1 - - - -

CBS(T4) [7] >1 - - - -

KGA-CGM 1 13.3 16.8 13.1 19.6

Table 24: Individual measures for four unseen objects. Best results are highlighted, while
underline shows second best.

It can be noticed that KGA-CGM with beam size 1 was comparable to other
approaches even though it used fixed vocabulary from image-caption pairs. For
example, CBS [7] used expanded vocabulary of 21,689 when compared to 8802

by us. Also, our word-labels per image are fixed, while CBS uses a varying size
of predicted image tags (T1-4). This makes it non-deterministic and can increase
uncertainty, as varying tags will either increase or decrease the performance.
Furthermore, we also evaluated KGA-CGM for the rest of seen visual object cat-
egories in the Table 26. It can be observed that our KGA-CGM outperforms ex-
isting approaches as it did not undermine the in-domain description generation,
although it was tuned for out-of-domain description generation.

7.4.2.3 Ablation Study

To understand how different components of KGA-CGM influence the unseen
visual object categories caption generation, we perform ablation study by remov-
ing different components of KGA-CGM. Table 27 present the results obtained.
All reported scores are average of 8 unseen visual object categories. It can be no-
ticed that None, which refers to our base CNN-LSTM model which did not use
either ESA or constrained inference (CI) in the KGA-CGM model has F1 mea-
sure of zero. Enabling ESA into our base CNN-LSTM model (i.e. Attention + No
CI) has shown an increase in the METEOR and SPICE as observed in Only ESA.
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F1

Model Beam pizza couch bus suitcase Average

DCC [102] 1 64.6 45.9 29.8 13.2 39.7

NOC [257] >1 69.3 25.5 68.7 39.8 48.8

CBS(T4) [7] >1 77.2 48.2 67.8 49.9 54.0

LSTM-C [289] >1 68.1 38.7 74.4 44.7 55.6

KGA-CGM 1 70.6 42.1 54.2 25.6 55.0

METEOR

DCC [102] 1 22.2 23.1 21.6 18.3 21.0

NOC [257] >1 21.8 21.4 20.4 18.0 21.3

LSTM-C [289] >1 - - - - 23.0

CBS(T4) [7] >1 - - - - 23.3

KGA-CGM 1 21.4 23.0 20.3 18.7 22.0

SPICE

DCC [102] >1 - - - - 13.4

CBS(T4) [7] >1 - - - - 15.9

KGA-CGM 1 13.2 14.9 12.6 10.6 14.3

Table 25: Individual and Average measures for all 8 unseen objects. Best results are high-
lighted, while underline shows second best.

Seen Objects

Model Beam METEOR SPICE

DCC [102] 1 23.0 15.9

CBS(T4) [7] >1 24.5 18.0

KGA-CGM 1 24.1 17.2

KGA-CGM >1 25.1 18.2

Table 26: Average measures of MSCOCO seen objects.

Model Beam METEOR SPICE F1

None 1 19.7 11.7 0

Only ESA 1 20.5 12.8 0

Only CI 1 20.1 12.3 39.8

ESA+CI 1 22.0 14.3 55.0

Table 27: KGA-CGM Ablation Study
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However, the F1 measure has remained zero due to no transfer of information
between seen words and unseen visual object categories. Alternatively, enabling
CI showed a jump in F1 measure as seen in Only CI. However, both METEOR
and SPICE are lower than Only ESA due to missing attention from ESA. Enabling
both ESA and CI make our complete KGA-CGM model equipped with both ex-
ternal semantic attention from the image as well as the constrained transfer of
information between seen words and unseen visual object categories providing
highest METEOR and SPICE scores of 22.0 and 14.3 respectively as observed
in ESA+CI. Also, it has an increased F1 measure when compared to Only CI.
This shows that the coherent and accurately generated caption is important for
presence of an object in the caption.

7.4.2.4 Language Model Hidden Layers Influence

The language model in KGA-CGM is a 2-layer forward LSTM. For learning KGA-
CGM with image-caption pairs, input caption word embeddings are chosen to
be 256 dimensions, while the LSTM hidden layer dimensions for both layer-1
and layer-2 is selected as 512. However, varying hidden layer dimensions can
show an influence on the caption generation results. In this section, we vary
the hidden layer dimensions and analyze the consequences. Table 28 shows the
METEOR, SPICE and F1 average measures on 8 unseen MSCOCO visual object
categories.

Layer-1 Layer-2 Beam METEOR SPICE F1-score

256 256 1 20.9 13.5 50.8

256 512 1 21.1 13.6 48.2

512 512 1 22.0 14.3 55.0

256 256 >1 20.2 13.2 42.9

256 512 >1 20.2 13.1 41.8

512 512 >1 21.5 13.9 48.9

Table 28: Effect on KGA-CGM with varying LSTM hidden layer dimensions in Language
model.

7.4.2.5 Qualitative Analysis

In Figure 29, sample predictions of our best KGA-CGM model is presented. It
can be observed that entity-labels has shown an influence for caption genera-
tion. Since, entities as image labels are already disambiguated, it attained high
similarity in the prediction of a word thus adding useful semantics. Figure 29

presents the example unseen visual objects descriptions.

7.4.2.6 Describing ImageNet Images

ImageNet images do not contain any ground-truth captions and contain exactly
one unseen visual object category per image. Initially, we first retrain different
language models using unpaired textual data (Section 7.4.1.1) and also the entire
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Unseen Object: Bottle

Predicted Entity-Labels (Top-3): Wine_glass, Wine_bottle, 
Bottle
Base:  A vase with a flower in it sitting on a table
NOC: A wine bottle sitting on a table next to a wine bottle
KGA-CGM :  A bottle of wine sitting on top of a table

Unseen Object: Bus

Predicted Entity-Labels (Top-3): Bus,Public_Transport,Transit_Bus
Base: A car is parked on the side of the street 
NOC: Bus driving down a street next to a bus stop.
KGA-CGM: A white bus is parked on the street

Unseen Object: Couch

Predicted Entity-Labels (Top-3): Cake,Couch,Glass
Base: A person is laying down on a bed  
NOC: A woman sitting on a chair with a large piece of cake on 
her arm
KGA-CGM :  A woman sitting on a couch with a remote

Unseen Object: Microwave

Predicted Entity-Labels (Top-3):Refrigerator,Oven,Microwave_Oven
Base: A wooden table with a refrigerator and a brown cabinet  
NOC: A kitchen with a refrigerator, refrigerator, and refrigerator.
KGA-CGM:  A kitchen with a microwave, oven and a refrigerator

Unseen Object: Pizza

Predicted Entity-Labels (Top-3): Pizza,Restaurant,Hat
Base: A man is making a sandwich in a restaurant
NOC: A man standing next to a table with a pizza in front of it.
KGA-CGM:  A man is holding a pizza in his hands

Unseen Object: Racket

Predicted Entity-Labels (Top-3):Tennis, Racket_(sports_equipment), Court
Base: A tennis player getting ready to serve the ball
NOC: A woman court holding a tennis racket on a court.
KGA-CGM:  A woman playing tennis on a tennis court with a racket.

 Unseen Object: Suitcase

Predicted Entity-Labels (Top-3): Cat,Baggage,Black_Cat
Base: A cat laying on top of a pile of books  
NOC: A cat laying on a suitcase on a bed
KGA-CGM:  A cat laying inside of a suitcase on a bed

Unseen Object: Zebra

Predicted Entity-Labels (Top-3):Zebra,Enclosure,Zoo
Base: A couple of animals that are standing in a field
NOC: Zebras standing together in a field with zebras
KGA-CGM:  A group of zebras standing in a line

Figure 29: Sample predictions of KGA-CGM on out-of-domain MSCOCO Images with
Beam Size 1 when compared against base model and NOC [257]

MSCOCO training set. Furthermore, the KGA-CGM model is rebuilt for each one
of them separately. To describe ImageNet images, image classifiers presented in
the Section 7.4.1.2 are leveraged. Table 29 summarizes the experimental results
attained on 634 categories (i.e. not all 642) to have fair comparison with other
approaches. By adopting only MSCOCO training data for language model, our
KGA-CGM makes the relative improvement over NOC and LSTM-C in all cat-
egories i.e. unseen, F1 and accuracy. Figure 30 shows few sample descriptions.

Model Unpaired Text Unseen F1 Accuracy

NOC [257] MSCOCO 69.1 15.6 10.0

BNC&Wiki 87.7 31.2 22.0

LSTM-C [289] MSCOCO 72.1 16.4 11.8

BNC&Wiki 89.1 33.6 31.1

KGA-CGM MSCOCO 74.1 17.4 12.2

BNC&Wiki 90.2 34.4 33.1

BNC&Wiki&SBU1M 90.8 35.8 34.2

Table 29: Describing ImageNet Images with Beam size 1. Results of NOC and LSTM-C
(with Glove) are adopted from Yao et al. [289]

7.4.2.7 KGA-CGM More Qualitative Results

Earlier, we presented caption generation qualitative results only with beam size
1. In this section, more results of unseen/novel MSCOCO objects is presented
in Table 30 and Table 31 with both beam 1 and > 1. Also Table 32 and Table 33

demonstrates some failure instances of generated captions which lack either se-
mantics, grammar or unseen objects.
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Unseen Object: Truffle
Guidance Before Inference: food → truffle
Base:  A person holding a piece of paper.
KGA-CGM:  A close up of a person holding truffle

Unseen Object: Papaya
Guidance Before Inference: banana → papaya
Base:  A woman standing in a garden.

KGA-CGM:  These are ripe papaya hanging on a tree

Unseen Object: Mammoth
Guidance Before Inference: elephant → mammoth
Base:  A baby elephant standing in water
KGA-CGM:  A herd of mammoth standing on top of a 
green field

Unseen Object: Blackbird
Guidance Before Inference: bird → blackbird
Base:  A bird standing in a field of green grass
KGA-CGM:  A blackbird standing in the grass

Figure 30: ImageNet images with best KGA-CGM model from Table 29. Guided before
inference shows which words are used for transfer between seen and unseen.

7.4.3 Evaluation Results Analyses

The critical observations of our research are:

À The ablation study conducted to understand the influence of different com-
ponents in KGA-CGM has shown that using external semantic attention
and constrained inference has superior performance when compared to
using only either of them. Also, increasing the beam size during inference
has shown a drop in all measures. It primarily adheres to the influence of
multiple words on unseen objects.

Á Observations show that the performance advantage becomes more explicit
if the domain of unseen objects is broadened. In other words: KGA-CGM
improves explicitly over state of the art in settings that are larger and less
controlled. At this moment, KGA-CGM scales to one order of magnitude
more unseen objects with moderate performance decreases.

Â The influence of the closest seen words (i.e., observed in image-caption
pairs) and the unseen visual object categories played a prominent role in
generating descriptions. For example in out-of-domain MSCOCO, words
such as “suitcase”/“bag”, “bottle”/“glass” and “bus/truck” are seman-
tically similar and are also used similarly in a sentence added excellent
value. However, some words usually cooccur such as “racket”/“court” and
“pizza”/“plate” played different roles in sentences and led to few grammat-
ical errors.

Ã The decrease in performance has a high correlation with the discrepancy
between the domain where seen and unseen objects come.

7.5 summary

In this chapter, we addressed the fourth research question:

- Research Question 4

Given two different views of heterogeneous content depicting text and im-
age modality, how can we build a shared representation to assist the genera-
tion of text from an image if there are missing views?
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MSCOCO
Unseen
Object

Images and Predicted
Captions

bottle

Beam(1): A bottle of
wine sitting on a table

next to a bottle of
wine Beam(>1): A

bottle of wine sitting
on top of a table

Beam(1): A woman is
sitting at a table with

a bottle of wine
Beam(>1): A woman
sitting at a table with

a bottle of wine

Beam(1): A bottle of
beer and a beer are
sitting on a counter

Beam(>1): A bottle of
beer next to a bottle

of beer

bus

Beam(1): A white bus
is parked in a lot

Beam(>1): A white
buses parked in a

parking lot

Beam(1): A large bus
is parked on the side

of the street
Beam(>1): A large

bus is parked on the
street

Beam(1): A red bus
driving down a street

next to a building
Beam(>1): A red bus
driving down a street

next to buildings

couch

Beam(1): A room
with a tv and a couch

Beam(>1): A living
room with a tv and a

couch

Beam(1): A cat sitting
on a couch in a room

Beam(>1): A cat
sitting on a couch in a

room

Beam(1): A man
sitting on a couch

using a laptop
computer Beam(>1):
A man sitting on a

couch using a laptop

microwave

Beam(1): A kitchen
with a microwave

oven and a microwave
Beam(>1): A kitchen

with a microwave and
a refrigerator

Beam(1): A kitchen
with a microwave
oven and a black

microwave Beam(>1):
A kitchen with a

microwave oven and a
black microwave

Beam(1): A kitchen
with a microwave
oven and a sink

Beam(>1): A kitchen
with a microwave
oven and a sink

Table 30: Positive predictions of KGA-CGM

For this, we validated Hypothesis 4 by proposing an approach to generate cap-
tions for images that lack parallel captions during training with the assistance of
knowledge encapsulated in KGs.
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MSCOCO
Unseen
Object

Images and Predicted
Captions

pizza

Beam(1): A pizza
covered in cheese and
tomatoes on top of a
table Beam(>1): A

close up of a pizza on
a table

Beam(1): A woman
sitting at a table with
a pizza in front of her
Beam(>1): A woman

sitting at a table in
front of a pizza

Beam(1): A cat is
sitting on a white and
black pizza Beam(>1):
A cat sitting on top of

a white pizza

racket

Beam(1): A woman is
playing tennis on a
court with a racket

Beam(>1): A woman
is playing tennis with

a racket

Beam(1): A man
playing tennis on a
tennis court with a
racket Beam(>1): A
man playing tennis

with a tennis rackets

Beam(1): A tennis
player is hitting the

ball on the court with
a racket Beam(>1): A
tennis player hitting a

tennis ball with a
rackets

suitcase

Beam(1): A woman
holding a luggage

Beam(>1): A woman
holding a luggage

Beam(1): A black cat
laying on top of a

suitcase Beam(>1): A
black and white cat
laying on top of a

luggage

Beam(1): A suitcase
Beam(>1): A luggage

and bags

zebra

Beam(1): A zebra
standing in a field of
grass Beam(>1): A
zebra standing in a

field of grass

Beam(1): A group of
zebras standing in

front of a wall
Beam(>1): A group of

zebras standing in
front of a building

Beam(1): A herd of
zebra walking across
a dirt field Beam(>1):

A herd of zebra
walking across a field

Table 31: More positive predictions of KGA-CGM
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Hallucination Grammar No object Semantics

Beam(1): a table
with a laptop and a

bottle of water

Beam(1): A table with
many

bottles of wine bottles

Beam(1): A child is
laying down on a bed

Beam(1): A person is
holding a

pizza in a bottle

Beam(1): A food bus
parked in front of a

building

Beam(1): A
blue and white buses
parked in front of a

blue building

Beam(1): A street sign
that is on a pole

Beam(1): A bus
driving down a street

with
cars driving down it

Beam(1): A cat sitting
on a couch

next to a person

Beam(1): A room
with a

bed couch and a couch

Beam(1): A dog
laying on a bed

Beam(1): A dog is
sitting in the

living room couch

Beam(1): A kitchen
with a sink and a

microwave

Beam(1): A kitchen
with a

microwave and a microwave

Beam(1): A cat is
standing on a table in

a kitchen

Beam(1): A
pan of food that is on

a microwave

Table 32: Failure instances of our best KGA-CGM Model (Beam(1)) with failures under-
lined of objects Bottle, Bus, Couch and Microwave
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Hallucination Grammar No object Semantics

Beam(1): A close up
of a pizza on a pizza

Beam(1): A close up
of a pizza on a pizza

covered in cheese

Beam(1): A
salad and a salad on a

white plate

Beam(1): A pizza
with meat and cheese

on a pizza

Beam(1):
A man is standing on
a tennis court with a

racket

Beam(1): A man
playing tennis on a

court with a
racket with a crowd

Beam(1): A man is
playing tennis

Beam(1): A man
standing on a tennis

court with a
racket holding a tennis

Beam(1): A cat laying
on a bed next to a

luggage

Beam(1): a woman
standing next to a

man in a
suit and a luggage

Beam(1): A cat laying
on top of a bed

Beam(1): A
woman laying in a

pink suitcase with a
suitcase

Beam(1): Two zebras
stand together in the

dirt near a fence

Beam(1): Two zebras
stand in the

water near some water

Beam(1): A couple of
animals that are

standing in the grass

Beam(1): Two zebras
are standing in a

fenced in area

Table 33: Failure instances of our best KGA-CGM Model (Beam(1)) with failures under-
lined of objects Pizza, Racket, Suitcase and Zebra
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8
C O N C L U S I O N

8.1 summary

In this thesis, we addressed the following research question:

- Overall Research Question

How to unify subset of text, Entity Relationship graph, and image modality
representing languages, relational knowledge, and vision respectively into
a shared representation to assist homogeneous or heterogeneous content
search, categorization, and generation.

We identified content characteristics, which are crucial for the above research
question: different modalities, different languages, parallel and non-parallel.

Based on these content characteristics, we split the overall research question
into four subquestions, which we addressed in Chapter 4, Chapter 5,Chapter 6

and Chapter 7.

- Research Question 1

Given two different views of heterogeneous content depicting text and im-
age modality, how can we build a shared representation to assist search by
finding correlation among their input representations?

In Chapter 4, we aimed at Research Question 1 – targeting an approach for
learning shallow common space representation of two different heterogeneous
sources mainly text and images by leveraging correlation principle of multi-view
representation learning. From the data perspective it satisfies two heterogeneous
content characteristics, mainly characteristic 1 and characteristic 3, see Figure 10).

For this, we provided Contribution 1.

+ Contribution for Research Question 1

Cross-modal retrieval to assist content search by leveraging correlated cen-
troid space.

Our unsupervised cross-modal retrieval approach, correlated centroid space
(C2SUR) builds on KCCA to effectively capture correlation among the hetero-
geneous data. In particular, C2SUR can effectively discriminate the cross-modal
data such that similar items are ranked closer while pushing away the dissimi-
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lar items. Also, its implementation is more straightforward and computationally
efficient than other methods.

Moreover, C2SUR has been proven to be useful if the text emerges from dif-
ferent languages for cross-modal retrieval. It is a significant advantage about the
growth of non-English content and their need of applications.

- Research Question 2

Given two different views of homogeneous content depicting text from dif-
ferent languages, how can we build a shared representation to assist catego-
rization by learning a common space by capturing regularities?

In Chapter 5, we proposed a shallow neural network approach combined with
manifold alignment techniques for the above Research Question 2. More specifi-
cally, we provided a tailored solution for tackling different cross-language data
which is either parallel or non-parallel (Characteristic 2, Characteristic 3, and
Characteristic 4, see Figure 10). Employing such a approach, we build bilingual
word embeddings for supporting cross-lingual task such as cross-language text
classification.

+ Contribution for Research Question 2

Cross-language text classification to assist content categorization by lever-
aging Bilingual Paragraph Vectors.

We proposed the BRAVE approach for Research Question 2. Here, we ex-
tended technique called Paragraph Vectors to compactly model textual content
with multiple views emerging from different languages. In contrast to previous
works, our BRAVE approach was explored for both parallel and non-parallel
cross-language content.

Moreover, for the non-parallel content, one of the manifold alignment tech-
nique called Procrustes analysis was leveraged to create pseudo-parallel content.
Furthermore, both parallel and pseudo-parallel content is used to build bilin-
gual word embeddings by capturing regularities across languages. Uniformly
capturing these inter-language dependencies was shown to be essential for cross-
language text classification.

- Research Question 3

Given two different views of heterogeneous content depicting text and im-
age modality, how can we build a shared representation of all views if an
auxiliary view depicting text in multiple languages is added to assist the
generation of text from an image?

In Chapter 6, we targeted an approach for multi-language image caption gener-
ation using parallel image and language content (Characteristic 1 and Characteristic-
3 in Figure 10). This way, a single caption model could be built for different
languages and an image.
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+ Contribution for Research Question 3

Consistent multi-language image caption generation to assist content gen-
eration given auxiliary views by leveraging multi-task attention.

Concerning Research Question 3, we proposed a multi-task attention model
by leveraging deep neural network architectures and multi-task learning. We
learned a common space representation of all views emerging from both ho-
mogeneous and heterogeneous data to generate one modality from another, i.e.,
especially generating text from an image.

In particular, multi-task learning was used to share knowledge across lan-
guages, such that one language guides another when building a caption model.
Shared layer in CNN-LSTM architecture having a multi-task loss is designed
to achieve sharing. Furthermore, LSTM is extended with combination LSTM to
capture information from the shared layer.

- Research Question 4

Given two different views of heterogeneous content depicting text and im-
age modality, how can we build a shared representation to assist the genera-
tion of text from an image if there are missing views?

Last, we addressed Research Question 4 in Chapter 7. Here, we are concerned
with generating captions for those images which contain unseen visual object
categories. More specifically, images which are observed in the testing phase
contain visual object categories that are unseen during training. For this, we ex-
ploited non-parallel knowledge graph entity data and the image-caption parallel
data along with unpaired textual resource data (Characteristic 1, Characteristic 3,
and Characteristic-4 in Figure 10).

+ Contribution for Research Question 4

Unseen visual object categories caption generation to assist content genera-
tion given missing views by leveraging knowledge guided assistance.

We introduced a novel knowledge guided assistance approach for the above
Research Question 4. Within our approach, conceptual knowledge provided by a
knowledge graph is utilized as external semantic attention throughout training
and also to aid as a dynamic constraint before and during inference. Hence, it
augments an auxiliary view as done in multi-view learning scenarios.

Mainly, this explicit knowledge graph grounding of entities observed in the
visual content and usage of knowledge graph entity embeddings and labels has
shown to be useful for image caption generation where image contain unseen
object categories. The contribution of this work on a broader scope is also seen as
a sign of progress towards the integration of the visual (and textual) information
available on the Web with KGs.
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8.2 future work

In the following, we will briefly outline relevant future work concerning our
overall research question.

R Future Work – FW1

Joint correlation analysis of different languages along with an image for
multilingual cross-modal retrieval.

We proposed a MVRL approach for performing cross-modal retrieval using
shallow representations of language content from multiple languages and an
image separately in the Chapter 4. Intuitively speaking, we built separate models
for each language.

However, for adequate representation, jointly exploiting correlation across lan-
guages and an image is necessary. It is achieved by building a shared represen-
tation of multiple views with joint analysis.

It can also offer other intriguing possibilities:

À For example, it can support machine translation by translating a word/phrase
never seen in the parallel data by seeking help from an image, provided
that the representations be learned from both language corpora and limited
image-text parallel corpora.

Á It can provide a possibility to create multilingual multimodal embeddings
for supporting tasks beyond cross-modal retrieval.

In our future work, we concentrate on expanding correlated centroid space ap-
proach to cater more than two views at once. Also, instead of utilizing shallow
image and language representations, we build on the work done in Chapter 6

and Chapter 7 and leverage deep representations. It will be an exciting direction
to explore where we evaluate and see how deep representations from heteroge-
neous sources correlate and contribute.

R Future Work – FW2

Extension of bilingual to multilingual embeddings.

In the Chapter 5, we proposed a MVRL approach based on neural network and
manifold alignment technique for performing cross-language text classification
using language content from multiple languages. Intuitively speaking, we built
an approach which can leverage only two languages at once.

However, for adequate representation, jointly exploiting regularities across
many languages is necessary. It is achieved by building a shared multilingual
representation of views emerging from multiple languages with joint analysis.

It can also offer other intriguing possibilities:

À Multilingual embeddings for words, entities, and concepts built by combin-
ing many languages into a shared space representation can support natural
language processing applications.

Á Massive monolingual corpora can be leveraged easily along with limited
parallel corpora which usually exists pairwise. It will help to build a single
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model for transfer learning, in which model can be fine-tuned per lan-
guage.

In our future work, we concentrate on expanding our approach which cur-
rently leverages only two views to more with a simple extension such as sum-
ming up individual bilingual objectives.

R Future Work – FW3

Improvement of image caption generation in multiple languages by incor-
porating annotators translation preferences.

In the Chapter 6, we proposed a MVRL approach based on deep neural net-
works for generation of descriptions (i.e., caption) for an image in multiple lan-
guages such that they are consistent across languages. At present, our work
leverage only parallel data without understanding the intricacies involved in the
creation of such data.

However, for an adequate language generation, the background preferences of
annotators who may belong to diverse communities and the choices they make
in the translation of captions from one language to other has to be taken into
consideration. Also, choice of vocabulary they use in the creation of caption in
multiple languages.

It can also offer other intriguing possibilities:

À Based on personal preferences of the audience, a personalized image cap-
tion generation can be attained for each language.

Á Analysis of the independently collected annotations for the image in a new
language, when compared against the English translation can provide new
insights about crowdsourcing. It will explore different cultures and shared
bodies of knowledge among them.

In our future work, we concentrate on understanding the shared knowledge
observed in the form of concrete entities and objects across different language
descriptions when building image caption generation models.

R Future Work – FW4

Extension of caption generation to images found in the wild.

In the Chapter 7, we proposed a MVRL approach based on deep neural net-
works for generation of descriptions (i.e. caption) for images containing novel
objects. Currently, we built an approach which can only comprehend limited
visual objects that are observed in hand curated datasets (e.g., MSCOCO and
ImageNet).

However, to assist in generating descriptions for images in large-scale, we need
robust generative models which can detect visual objects in the wild.

It can also offer other intriguing possibilities:

À Large-scale object recognition has been a long-standing goal of computer
vision and related fields. With advancements of multimodal language pro-
cessing, generation of captions for images at large-scale is also sought-after
by leveraging external knowledge.
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Á Machine learning models usually fail to predict for those examples it has
never seen before. Zero-shot or one-shot prediction of visual objects in
images is of interest to improve the caption models so that they can work
with less image-caption parallel data.

In our future work, we concentrate on leveraging external knowledge for im-
proving caption generation models especially for those visual objects which lack
clean and annotated training data.
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M AT H E M AT I C A L N O TAT I O N

In this thesis, author would like to make mathematical notations consistent. How-
ever, in some places they may look different from how they are generally used
in the literature.

Parameters and Variables

Usually, lower-case Greek letters are used to denote hyper parameters and vari-
ables. For example, λ is used for the regularization constant and η is used for
learning rate. Parameters of different shallow and deep architectures are defined
by Θ.

Other variables like a vector used is always denoted by a bold lower-case Ro-
man letter such as x. While, matrix by a bold upper-case Roman letter such as
X. A component of a vector is denoted by a lower-case non-bold letter with the
index of the component as a subscript. Similarly, an element of a matrix is de-
noted by a lower-case non-bold letter with a pair of the indices of the component
as a subscript. For example, xi and Xij indicate the i-th component of x and the
element of X on its i-th row and j-th column, respectively.

Subscripts and Superscripts

In data-driven learning, a set of training examples are given. Assuming the train-
ing size as N, usually each sample in the training set is denoted by its index in
the superscript such that x(n) represent the n-th training sample. Howbeit, it
should be understood that the order of elements in the set can be arbitrary.

Sub- or superscripts are also used when designing different layers of deep ar-
chitectures. For example, h(l) andW(l) respectively denote the vector of hidden
units and matrix of weight parameters in the l-th layer.

Functions

All functions are denoted with a upper-case letter. Similar to the vector nota-
tion, a subscript is used to denote a component of a function such that Fi(x) is
the i-th component of a function F. For instance, in neural networks, commonly
used functions for non-linear activations such as sigmoid (σ), hyperbolic tangent
(tanh) etc., are commonly represented with either ψ, φ or ϕ. Similarly, for rep-
resenting clique potentials in the graphical models ψ, φ or ϕ are again leveraged.

Data Distribution

Type of distribution that will be discussed in this thesis is mostly about data
distribution. Training samples are sampled with i.i.d assumption and the hetero-
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mathematical notation 162

geneous data belongs to either text or images. The data distribution is denoted
by p(·) and its distribution is selected based on application.



G L O S S A RY

À View

A single view is a modality represented by either image, text, video or
audio.

Á Multi-view

Combination of different views.

Â Representation Learning

Representation to identify and extricate the underlying multiple explana-
tory factors of variation behind the content.

Ã Data instance

A single sample from the content.

Ä Varied form

Different types of modalities.

Å Heterogeneous Content

Data instances containing views from different modalities.

Æ Homogeneous Content

Data instance containing views from the same modality.
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