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Abstract

This thesis presents new methods for unsupervised learning of distributed rep-

resentations of words and entities from text and knowledge bases. The first

algorithm presented in the thesis is a multi-view algorithm for learning repre-

sentations of words called Multiview Latent Semantic Analysis (MVLSA). By

incorporating up to 46 different types of co-occurrence statistics for the same

vocabulary of english words, I show that MVLSA outperforms other state-of-the-

art word embedding models. Next, I focus on learning entity representations

for search and recommendation and present the second method of this the-

sis, Neural Variational Set Expansion (NVSE). NVSE is also an unsupervised

learning method, but it is based on the Variational Autoencoder framework.

Evaluations with human annotators show that NVSE can facilitate better search

and recommendation of information gathered from noisy, automatic annotation

of unstructured natural language corpora. Finally, I move from unstructured

data and focus on structured knowledge graphs. I present novel approaches

for learning embeddings of vertices and edges in a knowledge graph that obey

logical constraints.
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Chapter 1

Introduction

People communicate with each other about entities in the real world using

natural language. Due to the increasing digitization of communication and

advancement of the internet, large natural language corpora are now available for

computational analysis. Beneath the sizeable natural language corpora composed

of words and sentences, lie pools of information about real-world entities, such

as the names and affiliations of people, and details about states and nations. My

goal for this thesis is to develop methods for learning distributed representation

of words, and entities, that can improve Natural Language Processing (NLP)

systems, and facilitate better search and presentation of information inside

unstructured natural language data.

Words are a fundamental unit of natural language. Automatically learn-

ing about words, and quantifying this information, can ultimately help many

NLP tasks. One of the earliest methods for learning dense representations of

words was the linguistic vector space model called Latent Semantic Analysis

(LSA) (Landauer and Dumais 1997). LSA has been successfully used for infor-

mation retrieval, but it has a limitation because it uses only a single view of
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the data via a single word co-occurrence matrix. My first contribution in this

thesis is an algorithm called MultiView LSA (MVLSA) (Rastogi, Van Durme,

and Arora 2015). MVLSA overcomes the limitation of LSA to a single view

because it can use an arbitrary number of views of data.

Generally speaking MVLSA is a multi-view algorithm and multiple view

of data can help learning algorithms in two principle ways. First, the access

to multiple views can help a learning algorithm to extract useful features that

generalize across tasks and suppress spurious correlations that are dominant in

one view and missing from the other. Second, multiple views may bring together

complementary sources of information which a learning algorithm can combine

to better learn the similarity between entities. More specifically, MVLSA is

invariant to linear transformations of the data and this can also be considered as

an advantage of MVLSA in comparison to LSA. I show that using a large number

of views containing diverse sources of information improves the quality of the

MVLSA word representations on many NLP tasks and makes them competitive

with other popular word representation learning methods.

On the surface level, natural language is composed of words and sentences,

but at a deeper, more conceptual, level these words and sentences convey

information about real-world entities. Therefore, I claim that learning about

entities can be even more useful than learning word representations in some

fields of application. Consider the field of Information Retrieval for example.

Information Retrieval (IR) is concerned with the search and presentation of

information inside semi-structured and unstructured sources of data. Even

though Keyword based IR, in which a user inputs a query in the form of a

list of keywords, is the standard way of interacting with industrial IR systems
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such as Google and Bing, the field of IR is not restricted to keyword-based

retrieval of documents. In the IR community, Entity Set Expansion (ESE) 1 is

an established task of recommending entities2 in a knowledge graph that are

similar to a provided seed set of entities. Even small improvements in this task

can have a tremendous impact on many fields.

For instance, imagine a physician trying to pinpoint a specific diagnosis or a

security analyst investigating a terrorist network. In both scenarios, a domain

expert may try to find answers based on prior known, relevant entities – such as a

list of diagnoses with similar symptoms that a patient is experiencing or, a list of

known terrorists. Instead of manually looking for connections between the known

entities, searchers can save time by using an automatic Recommender that can

recommend relevant entities to them. My second contribution in this thesis

is the Neural Variational Set Expansion (NVSE) algorithm (Rastogi et

al. 2018) that can operate on noisy knowledge graphs constructed automatically

from a natural text document and recommend relevant entities. NVSE learns a

probabilistic representation of an arbitrary subset of knowledge graph entities

and uses this representation for the task of Entity Set Expansion. Through

extensive experiments against existing state-of-the-art methods, I show that the

NVSE algorithm can outperform existing methods for Entity Set Expansion.

Although one can learn much about entities in the world by the computational

analysis of words associated to them – indeed, the NVSE method was based

on this intuition – but there are important cases where the information about

entities is stored in the form of a knowledge graph. A Knowledge Graph (KG)
1ESE is also called Entity Recommendation in literature.
2Entities are also called Items or Elements in the literature.
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is a collection of relations of inter-connected entities. Large-scale semi-manually

constructed KGs such as Freebase and YAGO2 have been heavily used for NLP

tasks such as Relation Extraction, Question Answering, and Entity Recognition

in Informal Domains. In the final part of this thesis, I consider the task of

Knowledge Base Completion and propose methods for learning representations

of knowledge graph entities that are not derived from the text. My third

contribution is a method for learning embeddings of entities in Knowledge

Bases that obey logical constraints (Rastogi, Poliak, and Van Durme 2017). I

show that the proposed algorithm performs better than other baseline systems.

1.1 Thesis Outline

Chapter 3 presents the MVLSA algorithm for learning word embeddings from

multiple sources of data and compares its performance to other state-

of-the-art methods. Through experiments on a large number of word-

similarity and word-analogy tasks, I show that the MVLSA embeddings

are competitive with other methods for learning word embeddings.

Chapter 4 describes the NVSE algorithm for recommending entities grounded

in natural language text. This task is called Entity Set Expansion (ESE).

The NVSE algorithm is based on the Variational-Autoencoder (VAE)

framework for training deep-generative models. Through human evalua-

tions conducted on the Mechanical Turk platform, we verified that the

NVSE algorithm outperforms pre-existing state of the art ESE methods.

Chapter 5 presents the logically constrained representation learning algorithm

and compares it to other methods for learning representations of KB

4



entities.

Chapter 6 This chapter compares the various word-level and entity level al-

gorithms developed in the previous chapters with each other on a few

benchmark tasks.

Chapter 7 This chapter summarizes the contributions of the thesis and outlines

directions for future work.

1.2 Thesis Statement

In this thesis, I present new algorithms for learning representation of words

and entities from multiple views of data. I show that the proposed MVLSA

algorithm is a generalization of the classical LSA method to multiple views of

data and that incorporating various co-occurrence matrices for learning word

representations improves the quality of the learned word representations. I then

present a deep generative model for learning representations of entities present in

natural language text and I also present the results of an approach I developed

for enforcing logical constraints on the representations learned for representing

entities in a knowledge base. Finally, I compare the algorithms developed in

the thesis on the benchmark tasks of Contextual Mention Retrieval and Entity

Disambiguation.
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Chapter 2

Background and Motivation

This chapter provides the background and terminology necessary for understand-

ing the methods used throughout this thesis. Since later chapters will refer back

to these sections, one may choose to skim this chapter and refer back to it as a

reference.

2.1 Unsupervised Representation Learning

At a high-level machine learning algorithms can be divided into two classes based

on the available data and the type of task that is being performed, Supervised

Learning and Unsupervised Learning. Supervised machine learning methods

receive a labeled dataset containing pairs of inputs and outputs, and the goal

is to construct a decision rule, that has high accuracy, based on the labeled

data. On the other hand, unsupervised learning receives only a large dataset of

input data, and the goal is to learn the regularities and patterns in the input

data. The learned representations can be evaluated either by using the learned

representations in a downstream task or by evaluating intrinsic properties of the

representations such as invariances and nearest neighbors in the space of the

6



learned representations.

Unsupervised learning can be highly beneficial, in comparison to supervised

learning, because of the abscence of a single task and lack of sufficient labeled data.

In such scenarios, learning the similarity between instances through unsupervised

learning and leveraging that information can help to significantly reduce the

sample complexity of learning. There are numerous examples of such applications.

For example, (Nigam et al. 1998) used the expectation maximization algorithm

over unlabeled data to learn feature weights for a Naive-Bayes classifier and

showed that the number of samples required to achieve the same accuracy as a

fully supervised naive bayes classifier decreased by as much as 50%.

Besides the obvious benefit of reducing the requirement on the number

of labeled samples, unsupervised learning can also help by making the learnt

features more task-agnostic. This is because, in contrast to supervised learning,

unsupervised learning does not fit its features to the labels provided for a single

task. Therefore the representations learnt during unsupervised learning can help

in scenarios such as multi-task learning (Liu et al. 2016b; He and Lawrence 2011)

and few shot learning (Fu et al. 2015).

2.1.1 Shallow Representation Learning

Principal Component Analysis (PCA) is one of the earliest statistical methods

for unsupervised representation learning. Commonly PCA is known to be just

an algorithm for linear dimensionality reduction shown in Algorithm 1. However,

PCA models the data with a single latent subspace, and it can be interpreted

not just as a procedure for linear dimensionality reduction but also as a shallow

unsupervised representation learning algorithm, because the singular vectors
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Algorithm 1 The PCA Algorithm
1: Given: We are given N data points each of which is d dimensional.

Let the ith observation be called xi and, let X be a d×N real matrix whose ith
column contains xi.
Finally, let 1 be a column vector with N rows whose elements are all 1.

2: function PCA(X, k)
3: Let x = 1

N
1TX ▷ x is simply the sample average, i.e. x = 1

N

∑︁N
i=1 xi.

4: Let Σ(k), U (k) equal the top k singular values and corresponding left singular
vectors of X − 1x.

5: return x, U (k),Σ(k)

6: end function

U (k) constitute an orthogonal basis for the optimal k dimensional linear subspace

that best encodes X − 1x according to the Frobenius norm of the total training

error matrix. This interpretation of PCA as the solution of the optimal subspace

learning problem is also referred to as the Geometric View or Synthesis View of

PCA in the literature.

2.1.1.0.1 Probabilistic PCA Although, the Geometric View of PCA

shows us that the projection matrix output by PCA maps a datapoint to a

subspace which is closest to the training data, and therefore it motivates PCA

as a representation learning algorithm. However, there is a more modern,

probabilistic view of PCA, which frames PCA as a latent variable model and

gives excellent insight into the type of representations that PCA learns. The

probabilistic view of PCA was simultaneously introduced by (Tipping and

Bishop 1999) and (Roweis 1998) where they showed that the output of the

PCA algorithm could be used to estimate the parameters of a particular type of

directed graphical model. Specifically, they considered the problem of parameter

estimation for the following model.
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Assume that the ith observation is generated as follows, first a latent variable

zi ∈ Rk is sampled from a normal distribution N (0, I). Then conditioned on the

value of zi, the vector xi ∈ RD is drawn from N (Mzi + ν, σ2I). Here M is the

transformation matrix, ν is a vector and σ is a positive scalar. In other words

p(xi|zi,M, ν, σ2) = N (Mzi + ν, σ2I). (2.1)

According to the above model the observed data is drawn from a continuous

mixture model and since this is an unsupervised probabilistic model it makes

sense to talk about the MLE estimate of M , M̂ . (Tipping and Bishop 1999)

showed that M̂ can be computed as:

M̂ = U (k)(Σ(k)

N
− σ2I)1/2R,

where R is an arbitrary orthonormal matrix, U (k) is an orthogonal matrix

containing the top k eigen vectors, and Σ(k) is a diagonal matrix containing the

top k eigen-values, of the empirical covariance matrix 1/nXTX. Therefore, if σ =

0 then U (k)(Σ(k)

N
)1/2 is the maximum likelihood estimator of M and U (k)(Σ(k)

N
)1/2x

is the plugin estimate of z. This interpretation also clarifies the relation between

PCA and other probabilistic methods such as factor analysis (Spearman 1904;

Thurstone 1947). For example we can easily see from Eq. 2.1 that probabilistic

PCA is just a more restricted form of factor analysis where the error variance

along each dimension is assumed to be the same. In contrast to Eq. 2.1 factor

analysis () assumes that the errors along each dimension can have different

variance but are still uncorrelated, i.e.

p(xi|zi,M, ν, σ2) = N (Mzi + ν,

⎡⎢⎢⎢⎢⎣
σ1

1 0 0 . . .

0 σ2
2 0 . . .

0 0 σ2
3 . . .

0 . . . 0 σ2
d

⎤⎥⎥⎥⎥⎦). (2.2)
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2.1.2 Deep Representation Learning

Pedagogically simple examples of the utility of unsupervised learning arise

in learning disentangled representations of low dimensional manifolds such as

the swiss-roll dataset shown in Figure 2.1. Figure 2.1 shows that learning a

−10 −5 0 5 10 02
46

810
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0
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10

15
x = t cos(t) + ε1

y = ε2

z = t sin(t) + ε3

The Swiss Roll Dataset.

Figure 2.1: The Swiss-Roll Dataset, where 3 features x, y, z are observed. x, z depend
on a single underlying parameter t, and y is just noise. Learning a map from x, y, z to
t from unsupervised data can decrease the number of samples needed to discriminate
between green and blue points accurately.

good representation of the observed data can be fruitful later on for supervised

learning. Locally Linear Embeddings (LLE) (Saul and Roweis 2003), Laplacian

Eigenmaps (Belkin and Niyogi 2003) and IsoMaps (Tenenbaum, De Silva, and

Langford 2000) are a few of the best-known unsupervised machine learning

algorithms that work on this principle. A seminal paper by (Bengio et al. 2004)

unified these three algorithms – amongst several others – by recasting the

problem of unsupervised learning of embeddings to learning eigenfunctions of a

10



data-dependent kernel.

After the success of these early algorithms, the field of unsupervised repre-

sentation learning grew rapidly. A significant development was the construction

of algorithms such as the Restricted Boltzmann Machine (RBM) (Hinton and

Salakhutdinov 2006) and Deep Belief Networks (Hinton, Osindero, and Teh 2006)

for training deep neural networks from unsupervised data. These methods learned

the parameters of neural networks which can convert sparse input data to dense,

distributed, vector representations. Moreover, these representations were proved

to be useful for real-world tasks such as Collaborative Filtering (Salakhutdinov,

Mnih, and Hinton 2007).

More recently, a new method called the Variational Autoencoder (VAE) (Kingma

and Welling 2014a; Rezende, Mohamed, and Wierstra 2014) for learning deep,

non-linear, generative models from unlabeled data was proposed, which has

resulted in tremendous advancements in unsupervised and semi-supervised ma-

chine learning (Kingma et al. 2014; Miao, Yu, and Blunsom 2016). In the

following section, I give an overview of the VAE framework.

2.1.2.1 Variational Autoencoders

Generative modeling of data is a broad topic in data science. A generative

model of a dataset can make its underlying factors of variations more explicit,

and it can help us summarize and understand large amounts of data quickly.

An example of a generative model of data is the Latent Dirichlet Allocation

Topic Model (Blei, Ng, and Jordan 2003). A topic model can summarize a

large dataset by discovering clusters of commonly co-occurring features. Many

“component analysis” methods such as PCA and CCA discussed in previous
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sections can be interpreted as statistical generative models as well (Tipping and

Bishop 1999; Bach and Jordan 2005).

Latent variable models are a useful sub-type of generative model that can

be useful in situations where the observed data lies in a high-dimensional space,

but the elements of the data contain strong inter-dependencies. In common

parlance, such data is said to lie on a low-dimensional manifold. If the inter-

dependencies between the components can be de-coupled by introducing a small

number of latent variables without introducing too much error, then such a

latent variable model can be useful both for its predictive accuracy and also

for its explanatory power. For example, suppose that we are trying to learn

a generative model of human face images. The observed pixels in an image

have to satisfy many constraints such as bi-lateral symmetry across the face,

consistent skin coloring and relative proportion of eyes, nose, and ears. Because

of all these constraints, the pixel intensity at the top-right corner of a face image

may be highly correlated to the pixel intensity at the bottom-left corner in the

general population of the entire dataset. However now consider a situation where

we can stratify the dataset by the gender, age, race, and weight of the person.

Within each stratum, the correlation between the top-left pixel intensity and

the bottom-right pixel intensity will be closer to zero than the correlation in

the general population. Even though these 4 variables are not observed in the

dataset, by introducing these 4 factors as latent variables and then adding a

conditional independence assumption amongst the observed variables given these

unobserved variables we can make the model better suited to the data. Another

motivation for latent variable models is that they are a mixture model and can

approximate multi-modal distributions easily. Many excellent books on machine
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learning – such as (Murphy 2012; Bishop 2006; MacKay 2002) – expand upon

this point of view, and I will not expand upon this more.

The Variational Autoencoder is a framework for learning the parameters of

a latent variable generative model from i.i.d. unlabeled data samples. Formally,

say that we are given a dataset D containing n i.i.d. samples of a random

variable X. We posit that there exists a latent random variable Z such that

instances of X are conditionally independent given Z. In other words we posit

the following generative story:

Z ∼ π(z), X|Z ∼ pθ(x|z) (2.3)

Here θ parameterizes the conditional probability distribution of X given Z.

According to this model the marginal distribution of X is given as

p(X) =
∫︂

z
pθ(x|z)π(z)dz (2.4)

Maximum Likelihood Estimation (MLE) with regularization is perhaps the

most common method for learning the parameters θ for a statistical model

given D. For simplicity I will omit discussion of the regularization for now and

focus only on the likelihood function itself. The MLE procedure maximizes

the likelihood of the parameters θ for a given dataset D. Therefore the MLE

procedure maximized the following objective:

JMLE(θ) =
n∑︂

i=1
log pθ(xi) =

n∑︂
i=1

log
∫︂
pθ(xi|z)π(z)dz.

In some situations it may be possible to compute the above objective, for example

in a discrete mixture model without priors on the mixture parameters but in

general it is not possible to compute the above sum over the dataset. A common

solution for such problems utilizes the following identity called the Variational
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Identity which introduces a new distribution over the latent variables that I

denote q(Z)

log p(X) = EZ∼q(Z)

[︄
log p(X,Z)

q(Z)

]︄
+ KL(q(Z) || p(Z | X)) (2.5a)

log p(X) = EZ∼q(Z) [log p(X,Z)] + H[q(Z)] + KL(q(Z) || p(Z | X)) (2.5b)

log p(X) = EZ∼q(Z) [log p(X|Z)]−KL[q(Z) || π(Z)] + KL(q(Z) || p(Z | X))
(2.5c)

Identity (2.5a) can be easily verified simply by expanding the definition of the KL

divergence. In the above indentities, q(Z) is actually shorthand for q(Z | X,ϕ)

i.e., q(Z) is an arbitrary distribution over the latent variables that can freely

depend on the values of X and other parameters ϕ. The variational auto-encoder

specifies a special type of q(Z | X,ϕ) which is parameterized as a differentiable

neural network. I will give more details about specific architectures in Chapter 4.

2.1.2.1.1 Relation to Expectation Maximization Consider iden-

tity (2.5b) and note that if q(Z) exactly equals p(Z|X) then the KL(q(Z) ||

p(Z | X)) term becomes zero. Moreover we get the formula that

p(X) = EZ∼p(Z|X) [log p(X,Z)] +H[p(Z|X)] (2.6)

Here the H operator computes the entropy of a distribution. The EM procedure

discards the entropy of p(Z|X) and optimizes the Joint Likelihood with Current

Parameters to get the following iterative learning rule:

θt+1 = arg max
θ
EZ∼pθt

(Z|X) [log pθ(X,Z)] ,

So we can see that the Expectation Maximization procedure is simply a special

case of the variational optimization procedure. However, this special case of
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variational optimization enjoys a wonderful property of Monotonicity, i.e. the

value of the objective EZ∼pθt
(Z|X) [log pθ(X,Z)] increases with t. Figure 2.2 gives

a graphical explanation of the EM procedure described above.

θt θt+1

log(p(X|θt))

= L(p(Z|X,θt),θt)

L(p(Z|X,θt),θt+1)

log(p(X|θt+1))
KL(p(Z|X,θt)||p(Z|X,θt+1))

L(q,θt)
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Figure 2.2: A graphical depiction of the EM iteration as coordinate ascent in the
space of probabilities and parameters. Let L(q, θ) denote

∫︂
z

q(Z) log p(X, Z|θ)
q(Z) . In

the so-called E-step we optimize by setting qt = p(Z|X, θt) and in the M-step we set θ
by maximizing L(qt, θt).

2.1.3 Multiview Representation Learning

The goal of multi-view representation learning is to learn a single unified repre-

sentation for data that is observed via multiple views/channels, but that has a

single underlying source. There is no standard definition of a “view” in multiview

learning and it can even overlap with multimodal learning (Ngiam et al. 2011)

to some extent. Multiview learning can refer to any technique that learns one

15



classifier/regressor per view and a common underlying representation, that is

unknown apriori. (Sridharan and Kakade 2008) state that the fundamental

assumption underlying multi-view learning is that any of the views used for

learning alone has sufficient information about the target.

There are two natural classes of multi-view learning algorithms that utilize this

assumption. The first class comprises the algorithms such as Co-Training (Blum

and Mitchell 1998) and co-regularization (Sindhwani, Niyogi, and Belkin 2005)

which regularize the predictions of classifiers learnt from separate views of data

to agree with each other. The second class of algorithms based on correlation

analysis such as (Kakade and Foster 2007) and (Wang et al. 2015) focus on

learning correlated representations of data using unsupervised learning methods

and these correlation analysis based methods will be the focus of this thesis.1

There are many natural applications for unsupervised multi-view learning

especially in the field of natural language processing (NLP) because of the high

dimensionality and sparsity of the bag-of-words feature representation that is

typically employed for many NLP tasks. By properly utilizing multiple view of

data we can learn better representations of data which can even provably reduce

the number of samples required for learning. For example, consider models such

as Glove (Pennington, Socher, and Manning 2014) and Word2Vec (Mikolov,

Yih, and Zweig 2013) that learn a dense vector representation of a word from

a single view of linguistic data such as a large corpus of natural language text

sequences. However these methods are not able to distinguish between antonyms
1We note that correlation analysis is not the sole method for unsupervised multi-view

learning. A good example of such a technique is the work by (Ngiam et al. 2011) who presented
an auto-encoder based framework for learning feature extractors that work well for feature
learning from multimodal data.
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such as the words good and bad because both the antonyms are used in very

similar contexts. On the other hand by using an external view such as the

dictionary entries for a word we can learn to distinguish between two antonyms.

In this sense, the two views bring complementary information that a multi-view

learning algorithms can utilize. Other successful applications include multiclass

classification (Arora and Livescu 2014), clustering (Chaudhuri et al. 2009; Zhang

et al. 2016) and ranking/retrieval (Vinokourov, Cristianini, and Shawe-Taylor

2003; Cao et al. 2018). Another application of multiview learning for natural

language processing was presented by (Benton, Arora, and Dredze 2016) who

also released a dataset for learning multiview representations of twitter users.2

There has also been work done on providing guarantees for performance im-

provement so that multiple views can be guaranteed to not hurt the performance

of a regressor or classifier. A typical assumption that is utilized in Multiview

learning in order to improve the sample complexity of a learning method is that

the views of data are conditionally independent given the underlying common

representation. Conventional methods for machine learning do not make this

assumption, and they may concatenate all the features from the different views

and treat the multi-view dataset as a single-view dataset. For example (Kakade

and Foster 2007) showed that using unlabeled data from two views can reduce

the sample complexity of prediction problems. Specifically they provided a

semi-supervised algorithm which first uses unlabeled data to learn a kernel, and

then regularized a ridge-regression classifier according to the learnt norm.

In the remaining part of this section, I describe a few classical multiview

representation learning techniques that are pertinent to this thesis.
2https://www.cs.jhu.edu/~mdredze/datasets/multiview_embeddings
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2.1.3.1 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA), first proposed by (Hotelling 1935), is a

procedure that finds linear projections of two datasets such that the correlation

between the two projections is maximized. Let X1, X2 be two centered and

standardized matrices denoting two views of the data with n rows and d1, d2

columns respectively. Let Pj = XjUj where Uj ∈ Rdj×d is a linear projection

matrix and j ∈ {1, 2}. d1, d2 are the dimensionalities of X1, X2 respectively,

and d is the dimensionality of the latent space. Let Σ̂jj′ = 1
n
XT

j Xj′ . The

CCA procedure determines projection matrices U1, U2 according to the following

optimization problem

arg max
U1,U2

U1Σ̂12U2

subject to U1Σ̂11U1 = 1 and U2Σ̂22U2 = 1 (2.7)

(Hardoon, Szedmak, and Shawe-Taylor 2004) highlight two of the most impor-

tant ways to motivate the CCA objective and to derive its solution and (Hastie,

Buja, and Tibshirani 1995) highlight an interesting connections between CCA

and Fisher’s Linear Discriminant Analysis in the case of categorical classification,

which I will not repeat here. Instead I list some of the important properties of

the CCA procedure that are most relevant to us

• The CCA projections Pj are invariant to shifting and scaling the data.

• Let A, S,B denote the singular value decompotion of Σ̂−1/2
11 Σ̂12Σ̂22

−1/2
. I.e.

Σ̂−1/2
11 Σ̂12Σ̂22

−1/2
= ASBT ,

then U1 = Σ̂−1/2
11 A and U2 = Σ̂−1/2

22 B.
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2.1.3.1.1 Computational Aspect: Algorithms for CCA As de-

scribed above the CCA learning problem can be reduced to solving a singular

value decomposition problem of an asymmetric matrix Σ̂−1/2
11 Σ̂12Σ̂22

−1/2
. How-

ever, empirically computing this matrix may be intractable because of the

quadratically increasing memory requirement as the number of examples in

the dataset increases. More recently a number of works have proposed more

scalable methods for computing CCA such as (Ge et al. 2016; Arora et al. 2017;

Gao et al. 2017; Allen-Zhu and Li 2017). For example, (Arora et al. 2017)

proposed a convex relaxation of the original CCA optimization problem and

they prosented stochastic approximation algorithms for optimizing the resulting

objective in a streaming setting. And they showed that their proposed stochastic

approximation algorithm outperformed existing state-of-the-art methods for

CCA on a real dataset.

2.1.3.1.2 Nonlinear CCA An interesting direction for generalizing

Canonical Correlation is to use non-linear functions for projecting the views.

Kernel CCA (AKAHO 2001; Hardoon, Szedmak, and Shawe-Taylor 2004) and

Deep Canonical Correlation Analysis (DCCA) by (Andrew et al. 2013) were two

efforts in this direction. KCCA is a nonparametric method for learning non-

linear transformations that produce high correlated projection in a reproducing

kernel Hilbert space. On the other hand, DCCA trains two deep-neural networks

to learn nonlinear transformations of respective data views by optimizing a

regularized correlation objective.

19



2.1.3.2 Generalized CCA

Canonical Correlation Analysis is one of the earliest multiview learning algo-

rithms; however, it is limited to only two views by construction. In order to

remove this limitation, several generalizations of CCA have been proposed in

the literature. (Kettenring 1971) proposed 5 possible ways of generalizing CCA,

and all of those 5 methods possessed the special property that they reduced

to standard CCA when using only two views of data. (Asendorf 2015) further

extended the work by (Kettenring 1971) and proposed 20 possible generalization

of CCA. Instead of reviewing all of the possible generalizations of the CCA

objective I will focus on one particular variant of Generalized CCA – introduced

by (Carroll 1968) – which Kettenring called the MaxVar generalized CCA

method. Like all the other variants studied by Kettenring MaxVar GCCA

projections are also equivalent to the standard CCA projections in the case that

there are only two views of the data.

Let X1, . . . , XJ be J observed views of the same underlying data, with J ≥ 2.

The MaxVar GCCA procedure – which I will call GCCA from now on – finds

J projection matrices Uj | j ∈ {1, . . . , J}, and a common latent representation G

such that the sum of the squared correlations between the view-projections XjUj

and the latent representation G is maximized. Formally, the GCCA objective is:

arg max
Y,U1,...,UJ

J∑︂
j=1

trace(Y T (XjUj)) subject to Y TY = I

This constrained maximization can be reframed as least squared error minimiza-

tion optimization problem as follows

arg min
Y,U1,...,UJ

J∑︂
j=1

trace((Y −XjUj)T (Y − (XjUj))) subject to Y TY = I (2.8)
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I will refer to this objective in Chapter 3.

2.2 Information Retrieval and Set Completion

The field of Information Retrieval (IR) is concerned with the search and presenta-

tion of information inside semi-structured sources. Examples of semi-structured

information sources are web pages, images, research papers, and résumés. IR

is different from querying databases because of the lack of precise semantics of

data. For example, IR systems, such as Internet search engines, need to answer

queries like, “What is the largest city in the world?” without asking the user,

which attribute of a city should be used to sort the cities, or what is the precise

definition of a “city”.3

Instead of asking for all sorts of clarifications IR systems work intelligently

and they find documents that are most likely to contain the answer for a

query. Therefore, IR systems are best thought of as fast and efficient statistical

prediction engines which incorporate:

1. A document level prior about the importance of a document. For example,

the Pagerank algorithm is an unsupervised method that utilizes the hy-

perlinks in web-pages to learn the prior probability of the importance of a

web-page (Brin and Page 1998; Yin et al. 2016).4

2. The probability of a document’s relevance to a query. Search Engine Click-

Logs that contain the URL that a person clicked amongst the search results
3Clearly not all users will be satisfied with the results, in which case they will modify the

query and retrieve a new set of web pages.
4If the document collection does not contain hyperlinks, then other meta-data such as the

length of the document, author information and last modification time can be used to model
the importance of a document.
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in response to a query provide a useful signal for estimating this. Finally,

the document’s content can be analyzed to predict whether it is relevant

to a question.

Even though Keyword based IR, in which a user inputs a query in the form

of a few keywords is the standard method for interacting with well known IR

systems such as Google and Bing, research in IR has not restricted to keyword-

based retrieval, nor has it restricted to the retrieval of documents (Manning,

Raghavan, and Schütze 2010). Recommender Systems on e-commerce websites

that retrieve items, or entities, relevant to a customer, from a customer’s profile

and a large corpus of customer-item interactions are examples of non-keyword

IR systems that return items from a catalog without any textual query.5

Let us consider another application of non-keyword, non-document IR systems

which will also motivate my research problem: Consider the situation of a

recruiter who needs to find suitable candidates for a job from a large corpus

of candidates. Moreover, the recruiter has access to the candidates’ friendship

network, résumés, personal statements and publications. More specifically, the

job may require people who possess a good understanding of “information

retrieval” techniques and the “Hindi” language. However, it is possible that not

every candidate’s profile contains that information. Instead, publishing in the

SIGIR conference, or being a citizen of India, or being friends with multiple

people like that may be good indicators of the above qualities. These correlated

qualities could be inferred from examples of desirable entities. This example

suggests that:
5Other examples of non-keyword IR systems are multimedia retrieval systems that allow

users to use an audio recording or an image for retrieving the results. I will not focus on
multimedia retrieval.
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1. Graph structured side information about entities can be useful for IR.

2. Examples of relevant entities provide useful feedback to an IR system.

3. Entity retrieval is a useful task.

The problem of finding more items that are similar to a given set of items

and the problem of finding items in response to a keyword query have both

been studied extensively. In case the user does not provide any keyword query

and only provides examples of items to be retrieved then the problem will be

considered as the problem of Set Completion

2.2.1 Set Completion and Variants

Retrieving entities that are similar to a few example entities is an artificial

intelligence task with broad utility.

2.2.1.1 Examples of Set Completion Tasks

The problem of finding a suitable candidate for a job can be framed as the

problem of Set Completion if a few examples of suitable candidates are given and

the system needs to rank the unknown candidates in a database according to

their suitability for the job. This task of finding suitable candidates for a task is

broadly referred to as the problem of Expertise Retrieval and it operationalized

and evaluated in various ways (Balog 2012). Expert Retrieval is a special case

of a more general problem called Entity Retrieval in which, a seed entity, a

description of the relations between the target entity and the seed entity, and a

few examples of the target entities are provided as inputs. Variants of this task,
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depending on whether entities are provided as examples or not, have been run

multiple times in the annual TREC conference (Balog 2012).

Another example of a set completion task is the Document Routing problem, in

which documents related to a topic need to be retrieved given a natural language

text describing a user’s information need and some example documents is another

example of the set completion task. Document Routing was an important shared

task evaluated during the early annual TREC conferences (Schütze, Hull, and

Pedersen 1995).

A third example of the set completion problem is the task of Item Recom-

mendation to customers from their purchase history and profile. If information

about the purchase history of other customers is also available then the problem

is called Collaborative Filtering otherwise the problem is called Content Based

Recommendation. Note that technically the term filtering should be used if the

task is to classify whether an entity lies in a set instead of ranking the remaining

entities. Such a problem, where the set of example entities needs to be increased

is also called the Set Expansion problem.

Set completion tasks where relational information amongst the entities is

available were called the Vertex Nomination (VN) task by (Fishkind et al. 2015)

and Class-Instance acquisition by (Talukdar and Pereira 2010). The Vertex

Nomination terminology is apter in situations where the graphs are more homo-

geneous with lesser entity level features, and the edges between the entities are

not too sparse.6 In the case where additional meta-data is available, and the

graph is sparse, and there can be multiple possible types that a particular vertex
6Note that the research on VN is evolving and more algorithms are being introduced which

get rid of some of these assumptions, and therefore these distinctions are not strict.
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can take on then the terminology of Class-Instance acquisition is perhaps apter.

Finally, the task of Query By Entity, or Query By Examples has been studied

in the database community and the semantic web community as a way of helping

user’s interact with databases or knowledge graphs (Metzger, Schenkel, and

Sydow 2013). In these tasks, a computer system needs to infer and execute an

unknown query on the basis of a few examples of the results, and therefore this

task too can be considered to be a set completion task.

2.2.1.2 Methods for Set Completion

One of the earliest methods for set completion was a patented approach called

“Google Sets” (Tong and Dean 2008)7 that performed set completion by modeling

the input examples as samples from a mixture of distributions over pre-existing

lists. After receiving a few examples of entities, the mixture components were

estimated and then new entities were generated from this distribution. Inspired

by this approach (Ghahramani and Heller 2005) introduced the method of

“Bayesian Sets”. The Bayesian Sets method ranks the entities by the ratio of two

probabilities. The first probability measures whether the entity and the data

were generated from the same parameters and the second probability measures

whether the data and the entity were generated independently. Some theoretical

results about the stability of the method in the presence of correlated features

were presented in (Letham, Rudin, and Heller 2013). However, the method by

itself does not provide guarantees about the quality of the rankings.

A different approach than the Bayesian sets method which creates a “profile”

of the criterion for being in a set is to define a similarity function such that
7Note that although the patent application was filed in 2003 it was only granted in 2008.
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new items that are most similar to the example entities get a high rank. SEAL

and its variants (Wang and Cohen 2007, 2008) were early approaches that

learned the similarity between the new entities and example entities using

methods like “Random Walks”, and “Random Walks With Restart”. Other

methods for computing similarity have also been explored such as the sum of

cosine similarities amongst others. In modern parlance, any kernel method

that computes similarities between two entities can be used for ranking the

entities. The hyper-parameters for the kernel methods can be trained via 5-fold

cross-validation on the training data.

A very different approach to this problem is to treat the problem as a binary

classification task, where only positively labeled examples and unlabeled data is

available. Viewed this way any generative probabilistic model usable for binary

classification can be applied in a principled manner to this problem, for example,

the generative Naive Bayes algorithm was applied for binary classification.

(Nigam et al. 1998, 2000) used precisely this model with the EM algorithm to

utilize unlabeled data to learn the parameters of a naive Bayes text classifier.

A different principled approach is to apply the PU learning framework (Denis

1998). Under the PU learning framework, the learning algorithm tries to minimize

the total probability of labeling the unlabeled data as positive while holding the

probability of correctly labeling the labeled data above the desired recall rate (Liu

et al. 2002; Liu et al. 2016a). (Li et al. 2010b) compared the performance

of a PU learning-based classifier to distributional similarity based methods

and the Bayesian Sets method on the problem of entity set expansion. The

distributional similarity based method ranks entities from the cosine similarity

of its distributional signature (PMI features). They showed that their PU
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learning method outperformed both distributional methods and the Bayesian

Sets method. Recent work by (Natarajan 2015) and (Rao et al. 2015) amongst

others applied PU learning methods to problems of matrix completion and

collaborative filtering while incorporating additional graph information as well.

Note that PU Learning is a very active research area and activity in this area is

accelerating.

The problem of set completion can also be solved using the learning to rank

approach (Li 2014). In the learning to rank framework, the set completion

algorithm learns a pairwise decision function that receives two entities as inputs

and decides which of those two entities is more likely to be a member of the set.

This function can be trained so that it always picks the input labeled entities

to be members of the set in comparison to unlabeled entities. Learning to rank

methods are very popular in the Information Retrieval community (Manning,

Raghavan, and Schütze 2008).

The problem of vertex nomination was tackled using the Adjacency Spectral

Embedding method and its extensions by (Sussman et al. 2012; Fishkind et

al. 2015) on communication graphs where the Stochastic Block Model is a

reasonable approximation to the generative process for the observed graph. On

the other hand, when the graphs were manually created knowledge graphs such

as Freebase, or automatically extracted OpenIE knowledge graphs such as the

Textrunner graph, which naturally exhibits sparsity, and bipartiteness, then

this problem has been tackled using Graph Based Semi-Supervised Learning

algorithms such as the Label Propagation algorithm, the Adsorption, and the

Modified Adsorption algorithm by (Talukdar and Pereira 2010).8

8The framework of querying by examples on RDF triples provides a useful framework for
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Finally, set completion can be reduced to the problem of Link Prediction or

Knowledge Base Completion by adding a new meta-vertex that represents the set

and then connecting the labeled entities in the training set to the meta-vertex. I

can represent the likelihood of an unlabeled entity being part of the group as

the score assigned to an edge that connects the meta-vertex to the unlabeled

entity. See (Nickel et al. 2016) for a review of this area.

2.2.2 Existing Work on Entity Search

Research in entity search over large text corpora was accelerated with the start

of the TREC entity retrieval and expertise retrieval tracks (Balog, Serdyukov,

and Vries 2012; Balog 2012). These shared tasks considered the same problem as

us, where a query was a bag of keywords, and the result of a query was a ranked

list of individual entities, each of which was an answer. (Dalton, Dietz, and

Allan 2014) further used knowledge graphs for feature expansion. One of the

dominant methods was introduced by (Balog, Bron, and De Rijke 2011), which

is based on entity language models and harnesses entity categories for ranking

and for restricting answers to the desired type. However, these methods have

been tested only on situations where large Wikipedia pages were available for

estimating the language models associated with an entity. A similar approach,

of creating entity language models, using only the text surrounding the mentions

of an entity was earlier explored by (Raghavan, Allan, and Mccallum 2004).

However, they did not consider how to incorporate side information or relevance

feedback.
framing the problem of set completion. This is also a large area, and I leave it out of this
review.
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Searching and exploring text corpora that are annotated with entities and

linked to a KG has been addressed in various projects, most notably the Broccoli

system (Bast et al. 2014), Facetedpedia (Li et al. 2010a), ERQ (Li, Li, and Yu

2012), STICS (Hoffart, Milchevski, and Weikum 2014), and DeepLife (Ernst

et al. 2016). The work by (Agrawal et al. 2012) Expanded upon the work by (Li,

Li, and Yu 2012) and added a notion of similarity between entities, which they

called “near” queries. Additionally, they utilized the “Spreading Activation”

method for including graph structure into the ranking of entities. Furthermore,

they only considered the Wikipedia graph as an example.

(Sawant and Chakrabarti 2013) and (Joshi, Sawant, and Chakrabarti 2014)

considered the problem of answering short keyword-based text queries over a

combination of textual and structured data. Their approach was to jointly learn

the segmentation, the entity, class and predicate interpretation of the input

query (in text form), and the ranking of candidate results. They did not consider

the problem of entity-based relevance feedback, however. (Yahya 2016) worked

on supporting complex queries on knowledge bases that also contain textual web

content in their fields. They called such knowledge graphs “Extended Knowledge

Base”.

Recently (Savenkov and Agichtein 2016) and (Xu et al. 2016) considered the

extended knowledge graph as a starting model for performing question answering

over knowledge bases. Specifically, they showed that access to related text could

improve the performance of various sub-components in information extraction

and semantic parsing pipelines, such as entity linking and coreference resolution.
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2.2.3 Distributed Representations of Knowledge Graphs

The singular vectors of word-document co-occurrence matrices were one of the

first vector representations of words and documents used in the field of NLP

and Information Retrieval. After the work of (Mikolov, Yih, and Zweig 2013;

Mikolov et al. 2013) there was an explosion of activity in the area of learning

vector representations of words, graphs, and other discrete structures. Interesting

new directions were proposed by (Vilnis and McCallum 2015) and (Rudolph

et al. 2016). (Vilnis and McCallum 2015) proposed to represent each word in a

sequence by a Gaussian distribution, and this work was extended to learning

representations for entities in a knowledge graph by (He et al. 2015). On the

other hand, (Rudolph et al. 2016) proposed the EF-EMB model to represent

the conditional distribution of a “related” entity given a “base” entity using

exponential family distributions. They applied their model to the task of

predicting a neuron’s activity from its neighbors’ activities.

Recently (He et al. 2015) applied the Gaussian Embedding method presented

by (Vilnis and McCallum 2015) to learn vector representations of graph vertices,

and they tested their learned representations on tasks such as link prediction.9

9The link prediction task aims to find the correct entity that should be linked to a given
entity with a given relation and measures performance using IR metrics.
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Chapter 3

Multiview LSA

The primary goal of this chapter1 is to motivate and describe the Multiview LSA

(MVLSA) algorithm which is a significant generalization of classical methods

such as LSA. To that end, I compared the performance of MVLSA against single

view LSA as well as other contemporary methods such as Glove (Pennington,

Socher, and Manning 2014) and SkipGram Word2Vec (Mikolov et al. 2013) on

the tasks of word-similarity and word-analogy. These tasks measure whether

the representation of words learned from an unsupervised text corpus contains

information about the semantic similarity between words or not.

A possible criticism of this choice of task for evaluation is that word-similarity

and analogy do not represent an end-task. To that end, I will present experiments

on the downstream tasks of Contextual Mention Retrieval and Entity Linking in

Chapter 6. In this chapter I focus on the tasks of word similarity and analogy

for two main reasons:
1A previous version of this work was published in (Rastogi, Van Durme, and Arora 2015).
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1. A large number of resources exist for extracting word co-occurrence matri-

ces, and therefore it is possible to evaluate large-scale multi-view embed-

dings of words.

2. Words form the basis of language, and a large number of downstream

NLP models benefit when initialized via word-embeddings, especially in

low-resource scenarios. Therefore, the performance of a method on tasks

such as analogy and similarity is important in its own right.

3.1 Introduction

(Winograd 1972) wrote that: “Two sentences are paraphrases if they produce

the same representation in the internal formalism for meaning”. This intuition

is made soft in vector-space models (Turney and Pantel 2010), where one says

that expressions in language are paraphrases if their representations are close

under some distance measure.

One of the earliest linguistic vector space models was Latent Semantic

Analysis (LSA). LSA has been successfully used for Information Retrieval, but

it is limited in its reliance on a single matrix, or view, of term co-occurrences.

In this chapter, I address the single-view limitation of LSA by demonstrating

that the framework of Generalized Canonical Correlation Analysis (GCCA) can

be used to perform Multiview LSA (MVLSA). This approach allows for the use

of an arbitrary number of views in the induction process, including embeddings

induced using other algorithms. I also present a fast approximate method for

performing GCCA and approximately recover the objective of (Pennington,

Socher, and Manning 2014) while accounting for missing values.
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My experiments show that MVLSA is competitive with state of the art

approaches for inducing vector representations of words and phrases. As a

methodological aside, I discuss the (in-)significance of conclusions being drawn

from comparisons done on small sized datasets.

3.2 Motivation

LSA is an application of Principal Component Analysis (PCA) to a term-

document cooccurrence matrix. The principal directions found by PCA form

the basis of the vector space in which to represent the input terms (Landauer

and Dumais 1997). A drawback of PCA is that it can leverage only a single

source of data and it is sensitive to scaling.

An arguably better approach to representation learning is Canonical Correla-

tion Analysis (CCA) that induces representations that are maximally correlated

across two views, allowing the utilization of two distinct sources of data. While

an improvement over PCA, being limited to only two views is unfortunate

because many sources of data (perspectives) are frequently available in practice.

In such cases, it is natural to extend CCA’s original objective of maximizing

the correlation between two views by maximizing some measure of the matrix

Φ that contains all the pairwise correlations between linear projections of the

covariates. This is how Generalized Canonical Correlation Analysis (GCCA) was

first derived by (Horst 1961). Recently these intuitive ideas about benefits of

leveraging multiple sources of data have received strong theoretical backing due

to work by (Sridharan and Kakade 2008) who showed that learning with multiple

views is beneficial since it reduces the complexity of the learning problem by
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restricting the search space. Recent work by (Anandkumar et al. 2014) showed

that at least three views are necessary for recovering hidden variable models.

Note that there exist different variants of GCCA depending on the measure

of Φ that one chooses to maximize. (Kettenring 1971) enumerated a variety

of possible measures, such as the spectral-norm of Φ. Kettenring noted that

maximizing this spectral-norm is equivalent to finding linear projections of the

covariates that are most amenable to rank-one PCA, or that can be best explained

by a single term factor model. This variant was named MAX-VAR GCCA and

was shown to be equivalent to a proposal by (Carroll 1968), which searched

for an auxiliary orthogonal representation G that was maximally correlated to

the linear projections of the covariates. Carroll’s objective targets the intuition

that representations leveraging multiple views should correlate with all provided

views as much as possible.

3.3 Proposed Method: MVLSA

Let Xj ∈ RN×dj ∀j ∈ [1, . . . , J ] be the mean centered matrix containing data

from view j such that row i of Xj contains the information for word wi. Let the

number of words in the vocabulary be N and number of contexts (columns in

Xj) be dj. Note that N remains the same and dj varies across views. Following

standard notation (Hastie, Tibshirani, and Friedman 2009) I call X⊤
j Xj the

scatter matrix and Xj(X⊤
j Xj)−1X⊤

j the projection matrix.
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The objective of MAX-VAR GCCA can be written as the following optimiza-

tion problem: Find G ∈ RN×r and Uj ∈ Rdj×r that solve:

arg min
G,Uj

J∑︂
j=1

⃦⃦⃦
G−XjUj

⃦⃦⃦2

F

subject to G⊤G = I.

(3.1)

The matrix G that solves problem (3.1) is my vector representation of the

vocabulary. Finding G reduces to spectral decomposition of sum of projection

matrices of different views: Define

Pj =Xj(X⊤
j Xj)−1X⊤

j , (3.2)

M =
J∑︂

j=1
Pj. (3.3)

Then, for some positive diagonal matrix Λ, G and Uj satisfy:

MG =GΛ, (3.4)

Uj =
(︂
X⊤

j Xj

)︂−1
X⊤

j G. (3.5)

The above expressions tell us that my word representations are the eigenvec-

tors of the sum of J projection matrices. Also, note that the dimensions of G are

orthogonal to each other. Orthogonality of representations can be a desirable

property that I will discuss in more detail at the end of this chapter.

Computationally storing Pj ∈ RN×N is problematic owing to memory con-

straints. Further, the scatter matrices may be non-singular leading to an ill-posed

procedure. I now describe a novel scalable GCCA with ℓ2-regularization to ad-

dress these issues.

Approximate Regularized GCCA: GCCA can be regularized by adding rjI

to scatter matrix X⊤
j Xj before doing the inversion where rj is a small constant
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e.g. 10−8. Projection matrices in (3.2) and (3.3) can then be written as

˜︁Pj =Xj(X⊤
j Xj + rjI)−1X⊤

j , (3.6)

M =
J∑︂

j=1

˜︁Pj. (3.7)

Next, to scale up GCCA to large datasets, I first form a rank-m approximation

of projection matrices (Arora and Livescu 2012) and then extend it to an

eigendecomposition for M following ideas by (Savostyanov 2014). Consider the

rank-m SVD of Xj:

Xj = AjSjB
⊤
j ,

where Sj ∈ Rm×m is the diagonal matrix with m-largest singular values of Xj

and Aj ∈ RN×m and Bj ∈ Rm×dj are the corresponding left and right singular

vectors. Given this SVD, write the jth projection matrix as

˜︁Pj = AjS
⊤
j (rjI + SjS

⊤
J )−1SjA

⊤
j ,

= AjTjT
⊤
j A

⊤
j ,

where Tj ∈ Rm×m is a diagonal matrix such that TjT
⊤
j = S⊤

j (rjI + SjS
⊤
J )−1Sj.

Finally, I note that the sum of projection matrices can be expressed as M =

M̃M̃⊤ where

M̃ = [A1T1 . . . AJTJ ] ∈ RN×mJ .

Therefore, eigenvectors of matrix M , i.e. the matrix G that I am interested in

finding, are the left singular vectors of M̃ , i.e. M̃ = GSV ⊤. These left singular

vectors can be computed by using Incremental PCA (Brand 2002) since M̃ may

be too large to fit in memory.
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Let SV Dm denote a partial SVD where Sj is a rectangular diagonal ma-

trix that contains only the m largest singular values and Aj, Bj are square,

orthonormal, unitary matrices. Defining SV Dm like this ensures correctness but

in practice one only needs to compute m columns of Aj. Take the SVD of Xj:

AjSjB
⊤
j

SV Dm←−−−− Xj

and substitute the above in equation 3.6 to get

˜︁Pj = AjS
⊤
j (rjI + SjS

⊤
J )−1SjA

⊤
j

. Define Tj ∈ Rm×m to be the diagonal matrix such that TjT
⊤
j = S⊤

j (rjI +

SjS
⊤
J )−1Sj then

˜︁Pj = AjTjT
⊤
j A

⊤
j

. Now M̃ = [A1T1 . . . AJTJ ] ∈ RN×mJ , then

M = M̃M̃⊤.

Performing QR decomposition of M̃ gives

M = QRR⊤Q

. Eigen decomposition of RR⊤ ∈ RmJ×mJ results in eigen vectors U and eigen

values S.

M = QUSU⊤Q⊤

which implies G = QU .

3.3.1 Computing SVD of mean centered Xj

Recall that I assumed Xj to be mean centered matrices. Let Zj ∈ RN×dj be

sparse matrices containing mean-uncentered cooccurrence counts. Let fj = nj ◦tj
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be the preprocessing function that I will apply to Zj:

Yj =fj(Zj), (3.8)

Xj =Yj − 1(1⊤Yj). (3.9)

To compute the SVD of mean-centered matrices Xj I first compute the partial

SVD of an uncentered matrix Yj and then update it ((Brand 2006) provides

details). I experimented with representations created from the uncentered

matrices Yj and found that they performed as well as the mean centered versions,

but I will not mention them further since it is computationally efficient to

follow the principled approach. I should note, however, that even the method of

mean-centering the SVD produces an approximation.

3.3.2 Handling missing rows across views

With real data, it may happen that a term was not observed in a view at all. A

large number of missing rows can corrupt the learned representations since the

rows in the left singular matrix become zero. The procedure described above

can not recover from this, and the representation for those words may become a

one-hot vector. To counter this problem, I adopt a variant of the “missing-data

passive” algorithm from (Van De Velden and Bijmolt 2006) who modified the

GCCA objective to counter the problem of missing rows.2 The objective now
2A more recent effort, by (Velden and Takane 2012), describes newer iterative and non-

iterative (Test-Equating Method) approaches for handling missing values. It is possible that
using one of those methods could improve performance.
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becomes:

arg min
G,Uj

J∑︂
j=1

⃦⃦⃦
Kj(G−XjUj)

⃦⃦⃦2

F

subject to G⊤G = I,

(3.10)

where [Kj ]ii = 1 if row i of view j is observed and zero otherwise. Essentially Kj

is a diagonal row-selection matrix which ensures that I will optimize the GCCA

representations only on the observed rows. Note that Xj = KjXj since the rows

that Kj removed were already zero. Let, K = ∑︁
j Kj then the optima of the

objective can be computed by modifying equation (3.7) as:

M =K− 1
2 (

J∑︂
j=1

Pj)K− 1
2 . (3.11)

Again, if I regularize and approximate the GCCA solution then I get G as the left

singular vectors of K− 1
2M̃ . I mean center the matrices using only the observed

rows.

Also note that other heuristic weighting schemes could be used here. For

example if I modify my objective as follows then I will approximately recover

the objective of (Pennington, Socher, and Manning 2014):

minimize:
G,Uj

J∑︂
j=1

⃦⃦⃦
WjKj(G−XjUj)

⃦⃦⃦2

F

subject to: G⊤G = I

(3.12)

where

[Wj]ii =
(︃
wi

wmax

)︃ 3
4

if wi < wmax else 1,

and wi =
∑︂

k

[Xj]ik.
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3.4 Data

Training Data I used the English portion of the Polyglot Wikipedia dataset

released by (Al-Rfou, Perozzi, and Skiena 2013) to create 15 irredundant views

of co-occurrence statistics where element [z]ij of view Zk represents that number

of times word wj occurred k words behind wi. I selected the top 500K words

by occurrence to create my vocabulary for the rest of the chapter. I lowercased

all the words and discarded all words which were longer than 5 characters and

contained more than 3 non-alphabetical symbols. This was done to preserves

years and smaller numbers.

I extracted co-occurrence statistics from a large bitext corpus that was made

by combining a number of parallel bilingual corpora as part of the ParaPhrase

DataBase (PPDB) project: Table 3.1 gives a summary, (Ganitkevitch, Van

Durme, and Callison-Burch 2013) provides further details. Element [z]ij of the

bitext matrix represents the number of times English word wi was automatically

aligned to the foreign word wj.

I also used the dependency relations in the Annotated Gigaword Corpus (Napoles,

Gormley, and Van Durme 2012) to create 21 views3 where element [z]ij of view

Zd represents the number of times word wj occurred as the governor of word wi

under dependency relation d.

I selected these dependency relations since they seemed to be particularly

interesting which could capture different aspects of similarity.

I combined the knowledge of paraphrases present in FrameNet and PPDB
3Dependency relations employed: nsubj, amod, advmod, rcmod, dobj, prep of, prep in,

prep to, prep on, prep for, prep with, prep from, prep at, prep by, prep as, prep between, xsubj,
agent, conj and, conj but, pobj.
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Figure 3.1: An illustration of datasets used.

by using the dataset created by (Rastogi and Van Durme 2014) to construct a

FrameNet view. Element [z]ij of the FrameNet view represents whether word

wi was present in frame fj. Similarly I combined the knowledge of morphology

present in the CatVar database released by (Habash and Dorr 2003) and morpha

released by (Minnen, Carroll, and Pearce 2001) along with morphy that is a

part of WordNet. The morphological views and the frame semantic views were

especially sparse with densities of 0.0003% and 0.03%. While the approach

allows for an arbitrary number of distinct sources of semantic information, such

as going further to include cooccurrence in WordNet synsets, I considered the

described views to be representative, with further improvements possible as

future work.

Test Data I evaluated the representations on the word similarity datasets listed

in Table 3.2. The first 10 datasets in Table 3.2 were annotated with different
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Language Sentences English Tokens
Bitext-Arabic 8.8M 190M
Bitext-Czech 7.3M 17M
Bitext-German 1.8M 44M
Bitext-Spanish 11.1M 241M
Bitext-French 30.9M 671M
Bitext-Chinese 10.3M 215M
Monotext-En-Wiki 75M 1700M

Table 3.1: Portion of data used to create GCCA representations (in millions).

rubrics and rated on different scales. However, broadly they all contain human

judgments about how similar two words are. The “AN-SYN” and “AN-SEM”

datasets contain 4-tuples of analogous words, and the task is to predict the

missing word given the first three. Both of these are open vocabulary tasks while

TOEFL is a closed vocabulary task.

Acronym Size σ0.5
0.01 σ0.7

0.01 σ0.9
0.01 σ0.5

0.05 σ0.7
0.05 σ0.9

0.05 Reference
MEN 3000 4.2 3.2 1.8 3.0 2.3 1.3 (Bruni et al. 2012)
RW 2034 5.1 3.9 2.3 3.6 2.8 1.6 (Luong, Socher, and Manning 2013)
SCWS 2003 5.1 4.0 2.3 3.6 2.8 1.6 (Huang et al. 2012)
SIMLEX 999 7.3 5.7 3.2 5.2 4.0 2.3 (Hill, Reichart, and Korhonen 2014)
WS 353 12.3 9.5 5.5 8.7 6.7 3.9 (Finkelstein et al. 2001)
MTURK 287 13.7 10.6 6.1 9.7 7.5 4.3 (Radinsky et al. 2011)
WS-REL 252 14.6 11.3 6.5 10.3 8.0 4.6 (Agirre et al. 2009)
WS-SEM 203 16.2 12.6 7.3 11.5 8.9 5.1 -Same-As-Above-
RG 65 28.6 22.3 12.9 20.6 16.0 9.2 (Rubenstein and Goodenough 1965)
MC 30 41.7 32.7 19.0 30.6 23.9 13.8 (Miller and Charles 1991)
AN-SYN 10675 - - 0.95 - - 0.68 (Mikolov et al. 2013)
AN-SEM 8869 - - 1.03 - - 0.74 -Same-As-Above-
TOEFL 80 - - 8.13 - - 6.63 (Landauer and Dumais 1997)

Table 3.2: List of test datasets used. The columns headed σr
p0 contain MRDS values. The

rows for accuracy based test sets contain σp0 which does not depend on r. See § 3.4.1 for
details.
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3.4.1 Significance of comparison

While surveying the literature, I found that performance on word similarity

datasets is typically reported in terms of the Spearman correlation between the

gold ratings and the cosine distance between normalized embeddings. However,

researchers do not report measures of significance of the difference between

the Spearman Correlations even for comparisons on small evaluation sets.4

This motivated me to define a method for calculating the Minimum Required

Difference for Significance (MRDS).

Minimum Required Difference for Significance (MRDS): Imagine two

lists of ratings over the same items, produced respectively by algorithms A and

B, and then a list of gold ratings T . Let rAT , rBT and rAB denote the Spearman

correlations between A : T , B : T and A : B respectively. Let r̂AT , r̂BT , r̂AB be

their empirical estimates and assume that r̂BT > r̂AT without loss of generality.
For word similarity datasets I define σr

p0 as the MRDS, such that it satisfies
the following proposition:

(rAB < r) ∧ (|r̂BT − r̂AT |<σr
p0) =⇒ pval > p0

. Here pval is the probability of the test statistic under the null hypothesis that

rAT = rBT found using the Steiger’s test (Steiger 1980). The above constraint

ensures that as long as the correlation between the competing methods is less

than r and the difference between the correlations of the scores of the competing

methods to the gold ratings is less than σr
p0 , then the p-value of the null hypothesis

will be greater than p0. Now let us ask what is a reasonable upper bound on
4For example, the relative difference between competing algorithms reported by (Faruqui

et al. 2014) could not be significant for the Word Similarity test set released by (Finkelstein
et al. 2001), even if I assumed a correlation between competing methods as high as 0.9, with a
p-value threshold of 0.05. Similar such comparisons on small datasets are performed by (Hill
et al. 2014).
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the agreement of ratings produced by competing algorithms: for instance, two

algorithms correlating above 0.9 might not be considered meaningfully different.

That leaves us with the second part of the predicate which ensures that as long

as the difference between the correlations of the competing algorithms to the

gold scores is less than σr
p0 then the null hypothesis is more likely than p0.

I can find σr
p0 as follows: Let stest denote Steiger’s test predicate which

satisfies the following:

stest-p(r̂AT , r̂BT , rAB, p0, n) =⇒ pval < p0

Once I define this predicate then I can use it to set up an optimistic problem
where my aim is to find σr

p0 by solving the following:

σr
p0 = min{σ|∀ 0<r′<1 stest-p(r′, min(r′ + σ, 1), r, p0, n)}

Note that MRDS is a liberal threshold and it only guarantees that differences in

correlations below that threshold can never be statistically significant (under the

given parameter settings). MRDS might optimistically consider some differences

as significant when they are not, but it is at least useful in reducing some of the

noise in the evaluations. The values of σr
p0 are shown in Table 3.2.

For the accuracy based test-sets I found MRDS= σp0 that satisfied the

following:

0 < (θ̂B − θ̂A) < σp0 =⇒ p(θB ≤ θA) > p0

Specifically, I calculated the posterior probability p(θB ≤ θA) with a flat

prior of β(1, 1) to solve the following:5 σp0 = min{σ|∀ 0<θ<min(1−σ, 0.9)

p(θB≤θA|θ̂A=θ, θ̂B=θ+σ, n) < p0} Here θA and θB are probability of correctness
5This instead of using McNemar’s test (McNemar 1947) since the Bayesian approach is

tractable and more direct. A calculation with β(0.5, 0.5) as the prior changed σ0.5 from 6.63 to
6.38 for the TOEFL dataset but did not affect MRDS for the AN-SEM and AN-SYN datasets.
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of algorithms A, B and θ̂A, θ̂B are observed empirical accuracies.

Unfortunately, there are no widely reported train-test splits of the above

datasets, leading to potential concerns of soft supervision (hyper-parameter

tuning) on these evaluations throughout the existing literature. I report on the

resulting impact of various parameterizations, and my final results are based on

a single set of parameters used across all evaluation sets.

3.5 Experiments and Results

I wanted to answer the following questions through my experiments: (1) How

do hyper-parameters affect performance? (2) What is the contribution of the

multiple sources of data to performance? (3) How does the performance of

MVLSA compare with other methods? I show the tuning runs on both larger

and smaller datasets. I also highlight the top performing configurations in bold

using the small threshold values in column σ0.09
0.05 of Table 3.2.

Effect of Hyper-parameters fj: I modeled the preprocessing function fj

as the composition of two functions, fj = nj ◦ tj. nj represents nonlinear

preprocessing that is usually employed with LSA. I experimented by setting nj

to be: identity; logarithm of count plus one; and the fourth root of the count.6

tj represents the truncation of columns and can be interpreted as a type of

regularization of the raw counts themselves through which I prune away the

noisy contexts. The decrease in tj also reduces the influence of views that have

a large number of context columns and emphasizes the sparser views. Table 3.3

and Table 3.4 show the results.
6I also experimented with other powers of the counts (0.12, 0.5 and 0.75) on a smaller

dataset and found that the fourth root performed the best.
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Test Set Log Count Count 1
4

MEN 67.5 59.7 70.7
RW 31.1 25.3 37.8
SCWS 64.2 58.2 66.6
SIMLEX 36.7 27.0 38.0
WS 68.0 60.4 70.5
MTURK 57.3 55.2 60.8
WS-REL 60.4 52.7 62.9
WS-SEM 75.0 67.2 76.2
RG 69.1 55.3 75.9
MC 70.5 67.6 80.9
AN-SYN 45.7 21.1 53.6
AN-SEM 25.4 15.9 38.7
TOEFL 81.2 70.0 81.2

Table 3.3: Performance versus nj , the non linear processing of cooccurrence counts. t =
200K, m = 500, v = 16, k = 300. All the top configurations determined by σ0.09

0.05 are
in bold font.

Test Set 6.25K 12.5K 25K 50K 100K 200K
MEN 70.2 71.2 71.5 71.6 71.2 70.7
RW 41.8 41.7 41.5 40.9 39.6 37.8
SCWS 67.1 67.3 67.1 67.0 66.9 66.6
SIMLEX 42.7 42.4 41.9 41.3 39.5 38.0
WS 68.1 70.8 71.6 71.2 70.2 70.5
MTURK 62.5 59.7 59.2 58.6 60.3 60.8
WS-REL 60.8 65.1 65.7 64.8 63.7 62.9
WS-SEM 77.8 78.8 78.8 78.2 76.5 76.2
RG 72.7 74.4 74.7 75.0 74.3 75.9
MC 75.2 75.9 79.9 80.3 76.9 80.9
AN-SYN 59.2 60.0 59.5 58.4 56.1 53.6
AN-SEM 37.7 38.6 39.4 39.2 38.4 38.7
TOEFL 88.8 87.5 85.0 83.8 83.8 81.2

Table 3.4: Performance versus the truncation threshold, t, of raw cooccurrence counts.
I used nj = Count

1
4 and other settings were the same as Table 3.3.
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m: The number of left singular vectors extracted after SVD of the prepro-

cessed cooccurrence matrices can again be interpreted as a type of regularization,

since the result of this truncation is that I find cooccurrence patterns only between

the top left singular vectors. I set mj = max(dj,m) with m = [100, 300, 500].

See table 3.5.

Test Set 100 200 300 500
MEN 65.6 68.5 70.1 71.1
RW 34.6 36.0 37.2 37.1
SCWS 64.2 65.4 66.4 66.5
SIMLEX 38.4 40.6 41.1 40.3
WS 60.4 67.1 69.4 71.1
MTURK 51.3 58.3 58.4 58.9
WS-REL 49.0 58.2 61.6 65.1
WS-SEM 73.6 76.8 76.8 78.0
RG 61.6 69.7 73.2 74.6
MC 65.6 74.1 78.3 77.7
AN-SYN 50.5 56.2 56.4 56.4
AN-SEM 24.3 31.4 34.3 40.6
TOEFL 80.0 81.2 82.5 80.0

Table 3.5: Performance versus m, the number of left singular vectors extracted from
raw cooccurrence counts. I set nj = Count

1
4 , t = 100K, v = 25, k = 300.

k: Table 3.6 demonstrates the variation in performance versus the dimension-

ality of the learned vector representations of the words. Since the dimensions

of the MVLSA representations are orthogonal to each other therefore creating

lower dimensional representations is a trivial matrix slicing operation and does

not require retraining.

v: Expression 3.12 describes a method to set Wj. I experimented with a

different, more global, heuristic to set [Wj]ii = (Kww ≥ v), essentially removing

all words that did not appear in v views before doing GCCA. Table 3.7 shows

that changes in v are largely inconsequential for performance. In absence of clear
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Test Set 10 50 100 200 300 500
MEN 49.0 67.0 69.7 70.2 70.1 69.8
RW 28.8 33.3 35.0 35.2 37.2 38.3
SCWS 57.8 64.4 65.2 66.1 66.4 65.1
SIMLEX 24.0 33.9 36.1 38.9 41.1 42.0
WS 46.8 63.4 69.5 69.5 69.4 66.0
MTURK 54.6 67.7 61.6 60.5 58.4 57.4
WS-REL 38.4 55.8 63.1 62.4 61.6 56.3
WS-SEM 55.3 69.9 76.9 77.1 76.8 75.6
RG 48.8 66.1 69.7 75.1 73.2 72.5
MC 37.0 59.0 71.3 79.1 78.3 75.7
AN-SYN 9.0 41.2 52.2 55.4 56.4 54.4
AN-SEM 2.5 21.8 34.8 35.8 34.3 33.8
TOEFL 57.5 72.5 76.2 81.2 82.5 85.0

Table 3.6: Performance versus k, the final dimensionality of the embeddings. I set
m = 300 and other settings were same as Table 3.5.

evidence in favor of regularization I decided to regularize as little as possible

and chose v = 16.

rj: The regularization parameter ensures that all the inverses exist at all

points in my method. I found that the performance of my procedure was

invariant to r over a broad range from 1 to 1e-10. This was because even the

1000th singular value of my data was much higher than 1.

Contribution of different sources of data Table 3.8 shows an ablative

analysis of performance where I remove individual views or some combination of

them and measure the performance. It is clear by comparing the last column to

the second column that adding in more views improves performance. Also I can

see that the Dependency based views and the Bitext based views give a larger

boost than the morphology and FrameNet based views, probably because the

latter are so sparse. Comparison to other word representation creation

methods There are a large number of methods of creating representations both
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Test Set 16 17 21 25 29
MEN 70.4 70.4 70.2 70.1 70.0
RW 39.9 38.8 39.7 37.2 33.5
SCWS 67.0 66.8 66.5 66.4 65.7
SIMLEX 40.7 41.0 41.2 41.1 41.0
WS 69.5 69.4 69.5 69.4 69.1
MTURK 59.4 59.2 59.2 58.4 58.0
WS-REL 62.1 61.9 62.3 61.6 61.1
WS-SEM 76.8 76.8 77.0 76.8 76.8
RG 73.0 72.8 72.8 73.2 73.7
MC 75.0 76.0 76.5 78.3 78.6
AN-SYN 56.0 55.8 55.9 56.4 56.0
AN-SEM 34.6 34.3 34.0 34.3 34.3
TOEFL 85.0 85.0 83.8 82.5 80.0

Table 3.7: Performance versus minimum view support threshold v, The other hyper-
parameters were nj = Count

1
4 , m = 300, t = 100K. Though a clear best setting did

not emerge, I chose v = 25 as the middle ground.

multilingual and monolingual. There are many new methods such as by (Yu and

Dredze 2014), (Faruqui et al. 2014), (Hill and Korhonen 2014), and (Weston,

Chopra, and Adams 2014) that are performing multiview learning and could

be considered here as baselines: however it is not straight-forward to use those

systems to handle the variety of data that I am using. Therefore, I directly

compare my method to the Glove and the SkipGram model of Word2Vec as

the performance of those systems is considered state of the art. I trained these

two systems on the English portion of the Polyglot Wikipedia dataset.7 I also

combined their outputs using MVLSA to create MV-G-WSGembeddings.

I trained my best MVLSA system with data from all views and by using the

individual best settings of the hyper-parameters. Specifically the configuration I
7I explicitly provided the vocabulary file to Glove and Word2Vec and set the truncation

threshold for Word2Vec to 10. Glove was trained for 25 iterations. Glove was provided a
window of 15 previous words, and Word2Vec used a symmetric window of 10 words.
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Test Set All
Views

!Fram-
enet

!Morph-
ology

!Bitext !Wiki-
pedia

!Depen-
dency

!Morphology
!Framenet

!Morphology
!Framenet
!Bitext

MEN 70.1 69.8 70.1 69.9 46.4 68.4 69.5 68.4
RW 37.2 36.4 36.1 32.2 11.6 34.9 34.1 27.1
SCWS 66.4 65.8 66.3 64.2 54.5 65.5 65.2 60.8
SIMLEX 41.1 40.1 41.1 37.8 32.4 44.1 38.9 34.4
WS 69.4 69.1 69.2 67.6 43.1 70.5 69.3 66.6
MTURK 58.4 58.3 58.6 55.9 52.7 59.8 57.9 55.3
WS-REL 61.6 61.5 61.4 59.4 38.2 63.5 62.5 58.8
WS-SEM 76.8 76.3 76.7 75.9 48.1 75.7 75.8 73.1
RG 73.2 72.0 73.2 73.7 45.0 70.8 71.9 74.0
MC 78.3 75.7 78.2 78.2 46.5 77.5 76.0 80.2
AN-SYN 56.4 56.3 56.2 51.2 37.6 50.5 54.4 46.0
AN-SEM 34.3 34.3 34.3 36.2 4.1 35.3 34.5 30.6
TOEFL 82.5 82.5 82.5 71.2 45.0 85.0 82.5 65.0

Table 3.8: Performance versus views removed from the multiview GCCA procedure.
!Framenet means that the view containing counts derived from Frame semantic dataset
was removed. Other columns are named similarly. The other hyperparameters were
nj = Count

1
4 , m = 300, t = 100K, v = 25, k = 300.

used was as follows: nj = Count 1
4 , t = 12.5K,m = 500, k = 300, v = 16. To make

a fair comparison, I also provide results where I used only the views derived from

the Polyglot Wikipedia corpus. See column MVLSA (All Views) and MVLSA

(Wiki) respectively. It is visible that MVLSA on the monolingual data itself

is competitive with Glove but worse than Word2Vec on the word similarity

datasets and it is substantially worse than both the systems on the AN-SYN

and AN-SEM datasets. However with the addition of multiple views, MVLSA

makes substantial gains, shown in column MV Gain, and after consuming the

Glove and WSG embeddings, it again improves performance by some margins,

as shown in column G-WSG Gain, and outperforms the original systems. Using

GCCA itself for system combination provides closure for the MVLSA algorithm
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since multiple distinct approaches can now be simply fused using this method.

Finally, I contrast the Spearman correlations rs with Glove and Word2Vec before

and after including them in the GCCA procedure. The values demonstrate

that including Glove and WSG during GCCA increased the correlation between

them and the learned embeddings, which supports my motivation for performing

GCCA in the first place.

Test Set Glove WSG MV MVLSA MVLSA MVLSA MV G-WSG rs MVLSA rs MV-G-WSG
G-WSG Wiki All Views Combined Gain Gain Glove WSG Glove WSG

MEN 70.4 73.9 76.0 71.4 71.2 75.8 −0.2 4.6† 71.9 89.1 85.8 92.3
RW 28.1 32.9 37.2 29.0 41.7 40.5 12.7† −1.2 72.3 74.2 80.2 75.6
SCWS 54.1 65.6 60.7 61.8 67.3 66.4 5.5† −0.9 87.1 94.5 91.3 96.3
SIMLEX 33.7 36.7 41.1 34.5 42.4 43.9 7.9† 1.5 62.4 78.2 79.3 86.0
WS 58.6 70.8 67.4 68.0 70.8 70.1 2.8† −0.7 72.3 88.1 81.8 91.8
MTURK 61.7 65.1 59.8 59.1 59.7 62.9 0.6 3.2 80.0 87.7 87.3 92.5
WS-REL 53.4 63.6 59.6 60.1 65.1 63.5 5.0† −1.6 58.2 81.0 69.6 85.3
WS-SEM 69.0 78.4 76.1 76.8 78.8 79.2 2.0 0.4 74.4 90.6 83.9 94.0
RG 73.8 78.2 80.4 71.2 74.4 80.8 3.2 6.4† 80.3 90.6 91.8 92.9
MC 70.5 78.5 82.7 76.6 75.9 77.7 −0.7 2.8 80.1 94.1 91.4 95.8
AN-SYN 61.8 59.8 51.0 42.7 60.0 64.3 17.3† 4.3†

AN-SEM 80.9 73.7 73.5 36.2 38.6 77.2 2.4† 38.6†

TOEFL 83.8 81.2 86.2 78.8 87.5 88.8 8.7† 1.3

Table 3.9: Comparison of Multiview LSA against Glove and WSG(Word2Vec Skip
Gram). Using σ0.9

0.05 as the threshold I highlighted the top performing systems in bold
font. † marks significant increments in performance due to use of multiple views in the
Gain columns. The rs columns demonstrate that GCCA increased Pearson correlation.

3.6 Previous Work

Vector space representations of words have been created using diverse frameworks

including Spectral methods (Dhillon, Foster, and Ungar 2011; Dhillon et al. 2012),
8 Neural Networks (Mikolov, Yih, and Zweig 2013; Collobert and Lebret 2013),

8cis.upenn.edu/~ungar/eigenwords
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and Random Projections (Ravichandran, Pantel, and Hovy 2005; Bhagat and

Ravichandran 2008; Chan, Callison-Burch, and Van Durme 2011). 9 They

have been trained using either one (Pennington, Socher, and Manning 2014)
10 or two sources of cooccurrence statistics (Zou et al. 2013; Faruqui and Dyer

2014; Bansal, Gimpel, and Livescu 2014; Levy and Goldberg 2014) 11 or using

multi-modal data (Hill and Korhonen 2014; Bruni et al. 2012).

(Dhillon, Foster, and Ungar 2011) and (Dhillon et al. 2012) were the first to

use CCA as the primary method to learn vector representations and (Faruqui and

Dyer 2014) further demonstrated that incorporating bilingual data through CCA

improved performance. More recently this same phenomenon was reported by

(Hill et al. 2014) through their experiments over neural representations learned

from MT systems. Outside of the NLP community (Sun, Priebe, and Tang

2013; Tripathi 2011) are examples of works that have used GCCA for “data

fusion”. Various other researchers have tried to improve the performance of

their paraphrase systems or vector space models by using diverse sources of

information such as bilingual corpora (Bannard and Callison-Burch 2005; Huang

et al. 2012; Zou et al. 2013),12 structured datasets (Yu and Dredze 2014; Faruqui

et al. 2014) or even tagged images (Bruni et al. 2012). However, most previous

work13 did not adopt the general, simplifying view that all of these sources of data
9code.google.com/p/word2vec,metaoptimize.com/projects/wordreprs

10nlp.stanford.edu/projects/glove
11ttic.uchicago.edu/~mbansal/data/syntacticEmbeddings.zip,cs.cmu.edu/

~mfaruqui/soft.html
12An example of complementary views: (Chan, Callison-Burch, and Van Durme 2011)

observed that monolingual distributional statistics are susceptible to conflating antonyms,
where bilingual data is not; on the other hand, bilingual statistics are susceptible to noisy
alignments, where monolingual data is not.

13(Ganitkevitch, Van Durme, and Callison-Burch 2013) did employ a rich set of diverse
cooccurrence statistics in constructing the initial PPDB, but without a notion of “training” a
joint representation beyond random projection to a binary vector subspace (bit-signatures).
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are just cooccurrence statistics coming from different sources with underlying

latent factors.14

(Bach and Jordan 2005) presented a probabilistic interpretation for CCA.

Though they did not generalize it to include GCCA, I believe that one could

give a probabilistic interpretation of MAX-VAR GCCA. Such a probabilistic

interpretation would allow for an online-generative model of lexical represen-

tations, which unlike methods like Glove or LSA would allow us to naturally

perplexity or generate sequences. I also note that (Vía, Santamaría, and Pérez

2007) presented a neural network model of GCCA and adaptive/incremental

GCCA. To the best of my knowledge, both of these approaches have not been

used for word representation learning.

CCA is also an algorithm for multi-view learning (Kakade and Foster 2007;

Ganchev et al. 2008) and when I view my work as an application of multiview

learning to NLP, this follows a long chain of effort started by (Yarowsky 1995)

and continued with Co-Training (Blum and Mitchell 1998), CoBoosting (Collins

and Singer 1999) and 2 view perceptrons (Brefeld et al. 2006).

3.7 Conclusion

This chapter is based on the following published paper:

Rastogi, Pushpendre, Benjamin Van Durme, and Raman Arora (2015).

“Multi- view LSA: Representation Learning Via Generalized CCA”. In:

Proceedings of NAACL.
14Note that while (Faruqui et al. 2014) performed belief propagation over a graph represen-

tation of their data, such an undirected weighted graph can be viewed as an adjacency matrix,
which is then also a co-occurrence matrix.
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The main ideas and scientific contribution of this chapter are:

• The first to construct word embeddings from massively multi-view datasets.

• The first algorithm for scaling Generalized CCA to large datasets via a

novel approximation technique.

• A new procedure, MRDS, for measuring the significance of results, based

only on the spearman-correlation values and dataset size.

While previous efforts demonstrated that incorporating two views is beneficial

in word-representation learning, I extended that thread of work to a logical

extreme and created MVLSA to learn distributed representations using data

from 46 views!15 Through evaluation of my induced representations, shown

in Table 3.9, I demonstrated that the MVLSA algorithm could leverage the

information present in multiple data sources to improve performance on a

battery of tests against state of the art baselines. To perform MVLSA on large

vocabularies with up to 500K words, I presented a fast, scalable algorithm. I

also showed that a close variant of the Glove objective proposed by (Pennington,

Socher, and Manning 2014) could be derived as a heuristic for handling missing

data under the MVLSA framework. To better understand the benefit of using

multiple sources of data, I performed MVLSA using views derived only from the

monolingual Wikipedia dataset thereby providing a more principled alternative of

LSA that removes the need for heuristically combining word-word cooccurrence

matrices into a single matrix. Finally, while surveying the literature I noticed

that not enough emphasis was being given towards establishing the significance of
15Code and data available at www.cs.jhu.edu/~prastog3/mvlsa
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comparative results and proposed a method, (MRDS), to filter out insignificant

comparative gains between competing algorithms.

Future Work Column MVLSA Wiki of Table 3.9 shows us that MVLSA applied

to monolingual data has mediocre performance compared to the baselines of Glove

and Word2Vec on word similarity tasks and performs surprisingly worse on the

AN-SEM dataset. I believe that the results could be improved by (1) either using

recent methods for handling missing values mentioned in footnote 2 or by using

the heuristic count dependent non-linear weighting mentioned by (Pennington,

Socher, and Manning 2014) and that sits well within my framework as exemplified

in Expression 3.12 (2) by using even more views, which look at the future words

as well as views that contain PMI values. Finally, I note that Table 3.8 shows

that certain datasets can actually degrade performance over certain metrics.

Therefore I am exploring methods for performing discriminative optimization of

weights assigned to views, for purposes of task-based customization of learned

representations.
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Chapter 4

Neural Variational Set
Expansion

People use words and sentences to communicate with each other about real-world

entities. In the previous chapter, I presented a “shallow” algorithm MVLSA

for learning representations of words. In this chapter, I go deeper and present

a novel “deep” representation learning method for learning representations of

entities grounded in natural language text.1 For this chapter an entity is a set

of mentions across multiple documents that refer to the same real-world object.

Distributed representations of such mention-sets can aid Information extraction

and retrieval systems. To that end, I focus on the task of Entity Recommendation.

Many existing information retrieval systems that operate on entities rely on

clean, manually curated sets of entities for their operation. Because users often

work with unclean, automatically generated KGs and require interpretable tools;

therefore, they are often unable to incorporate such algorithms in their workflow

fully. I propose Neural Variational Set Expansion to extract actionable informa-

tion from a noisy knowledge graph (KG) grounded in natural language and also
1A previous version of this work was published in (Rastogi et al. 2018).
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propose a general approach for increasing the interpretability of recommendation

systems.

Akin to prior entity-focused retrieval definitions, a query consists of one or

more entities, with the intent of retrieving similar entities. Differing from prior

work, I focus neither on manually curated knowledge bases, nor collections of

entity-labeled documents such as Wikipedia. I demonstrate the usefulness of

applying a variational autoencoder to the Entity Set Expansion task based on a

realistic automatically generated KG. Further, I describe an approach for ESE,

Neural Variational Set Expansion, which supports humanly interpretable query

rationales, and outperforms baselines such as Bayesian Sets and BM25.

4.1 Introduction

Imagine a physician trying to pinpoint a specific diagnosis or a security analyst

attempting to uncover a terrorist network. In both scenarios, a domain expert

may try to find answers based on prior known, relevant entities – either a list

of diagnoses of with similar symptoms that a patient is experiencing or a list

of known conspirators. Instead of manually looking for connections between

potential answers and prior knowledge, a searcher would like to rely on an

automatic Recommender to find the connections and answers for them, i.e.,

related entities.

In the information retrieval (IR) community, Entity Set Expansion (ESE) is

the established task of recommending entities that are similar to a provided seed

of entities.2 ESE has been applied in Question Answering (Wang et al. 2008),
2I refer to the items in the seed as entities, but they can also be referred to as items or

elements
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Relation Extraction (Lang and Henderson 2013) and Information Extraction (He

and Grishman 2015) settings. The physician and journalist in my example

cannot fully take advantage of IR advances in ESE for two main reasons. Recent

advances 1) often assume access to a clean, large Knowledge Graph and 2) are

uninterpretable.

Many advanced ESE algorithms rely on manually curated, clean Knowledge

Graphs (KG), e.g. DBpedia (Auer et al. 2007) and Freebase (Bollacker et

al. 2008). In clean KGs duplicate entities are merged, entities rarely are isolated,

and entities with similar names are properly disambiguated. However, in real-

world settings, users do not always have access to clean KGs, and instead, they

may rely on automatically generated KGs. Such KGs are often noisy because

they are created from complicated and error-prone NLP processes – illustrated

in Figure 4.1. For example, automatic KGs may include duplicate entities,

associations (relations) between entities may be missing, and entities with similar

names may be incorrectly disambiguated. Similarly, faulty coreference or entity

linking may fail to merge duplicate entities, may create many isolated entities,

and may poorly disambiguate entities with similar names. These imperfections

prevent machine learning approaches from performing well on automatically

generated KGs. Furthermore, many ESE algorithm’s performance degrades as

the sparsity and unreliability of KGs increases (Pujara, Augustine, and Getoor

2017; Rastogi, Lyzinski, and Van Durme 2017). Therefore, in practice, users

working with large KGs even now only rely on weighted boolean and keyword

searches (Jin, French, and Michel 2005; Gadepally et al. 2016) instead of advanced

KG completion algorithms

Advanced ESE methods, especially those that rely on neural networks, are
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Figure 4.1: My Entity Set Expansion (ESE) system assumes a corpus that has been
labeled with entity mentions which are clustered via cross-document co-reference and
linking to a knowledge base; together known as entity discovery and linking (EDL).
Given a query containing Obama, Bush, and Clinton, the ESE system returns other
U.S. presidents found in the KG.

uninterpretable (Mitra and Craswell 2017). If a physician can not explain

decisions, patients may not trust her, and if a journalist can not demonstrate

how a certain individual is acting unethically or above the law, a resulting article

may lack credibility. Furthermore, uniterpretability may limit the applications of

advancements in IR, and more broadly artificial intelligence, as humans “won’t

trust an A.I. unless it can explain itself.”3

I introduce Neural Variational Set Expansion (NVSE) to advance the appli-

cability of ESE research. NVSE is an unsupervised model based on Variational

Autoencoders (VAEs) that receives a query, consisting of a small set of entities

and uses a Bayesian approach to determine a latent concept that unifies entities

in the query, and returns a ranked list of similar entities based on the previously

determined unified latent concept. I refer to my method as Neural Variational

Set Expansion since NVSE uses a VAE to model the latent concept as a Gaussian

distributed random variable for the task of Set Expansion.

NVSE does not require supervised examples of queries and responses, nor a

manually curated KG. It also does not require nor pre-built clusters of entities.

Instead, my method only requires sentences with linked entity mentions, i.e.,
3https://nyti.ms/2hR1S15
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spans of tokens associated with a KG entity, often included in automatically

generated KGs.

NVSE is robust to noisy automatically generated KGs, thus removing the

need to rely on manually curated, clean KGs. I evaluate NVSE on the ESE task

using Tinkerbell (Al-Badrashiny et al. 2017), an automatically generated KG

that placed first in the TAC KGP shared-task. Unlike how ESE has been used

to improve entity linking for KG construction (Gottipati and Jiang 2011), my

goal is the opposite: I leverage noisy automatically generated KGs to perform

ESE. NVSE is interpretable; it outputs query rationales – a summarization of

features the model associated with the query – and result justifications – an

ordered list of sentences from the underlying corpus that justify why my method

returned that entity. Query rationales and result justifications are reminiscent

of annotator rationales (Zaidan, Eisner, and Piatko 2007).

To my knowledge, this is the first unsupervised neural approach for ESE as

opposed to neural methods for supervised collaborative filtering (Lee, Song, and

Moon 2017). All code and data is available at github.com/se4u/nvse and a

video demonstration of the system is available at youtu.be/sGO_wvuPIzM.

4.2 Related Work

Methods dependent on external information. Since automatically gener-

ated KGs can be noisy, some methods utilize information beyond entity links

and mentions to aid ESE. (Paşca and Van Durme 2007) use search engine query

logs to extract attributes related to entities and (Paşca and Van Durme 2008)

extract sets of instances associated with class labels based on web documents
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and queries. (Pantel et al. 2009) use a large amount of web data as they apply

a learned word similarity matrix extracted from a 200 billion word Internet

crawl to the ESE task. Both (He and Xin 2011)’s SEISA system and (Tong

and Dean 2008)’s Google Sets use lists of items from the Internet and try to

determine which elements in the lists are most relevant to a query. (Sadamitsu

et al. 2011a) rely on given topic information about the queried entities to train

a discriminative system. More recent approaches also use external information.

(Zaheer et al. 2017) use LDA (Blei, Ng, and Jordan 2003) to create word clusters

for supervision, and (Vartak et al. 2017) use manual annotations by Twitter

users. (Zheng et al. 2017) uses inter-entity links in knowledge graphs which are

very sparse in automatically generated KGs (Pujara, Augustine, and Getoor

2017; Rastogi, Lyzinski, and Van Durme 2017). All of these approaches use

more information than just entity links and mentions.

Methods for comparing entities. Set Expander for Any Language

(SEAL) (Wang and Cohen 2007) and its variants (Wang and Cohen 2008;

Wang and Cohen 2009) learn similarities between new words and example words

using methods like Random Walks and Random Walks With Restart. Similar

to (Lin 1998)’s using cosine and Jaccard similarity to find similar words, SEISA

uses these metrics to expand sets. These methods are limited to only extracting

words that co-occur. Because they are applied to web-scale data, SEAL and

SEISA assume entities will eventually co-occur. This assumption might not be

valid in an underlying corpus used to generate a KG automatically. In contrast

to those approaches, NVSE finds similar entities based on a kernel between

distributions.

Queries as natural language. In the INEX-XER shared-task, queries
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were represented as natural language questions (Demartini, Iofciu, and De Vries

2010). (Metzger, Schenkel, and Sydow 2014) and (Zhang et al. 2017) propose

methods to extract related entities in a KG based on a natural language query.

This scenario is similar to a person interacting with a system like Amazon Alexa.

However, my setup better reflects users searching for similar entities in a KG

as it is more efficient for users to type entities of interest instead of natural

language text.

Neural Collaborative Filtering. I am not the first to incorporate neural

methods in a recommendation system. Recently, (He et al. 2017) and (Lee,

Song, and Moon 2017) presented deep auto-encoders for collaborative filtering.

Collaborative Filtering assumes a large dataset of previous user interactions

with the search engine. For many domains, it is not possible to create such a

dataset since new data is added every day and queries change rapidly based

on different users and domains. Therefore, I propose the first neural method

which does not use supervision for Entity Set Expansion. (Li and She 2017) use

a citation dataset and their recommendations only include users with less than

ten articles. They only gave recommendations for entities that appeared in at

least 10 articles in the corpus.

Unsupervised Clustering for Entity Resolution (Sadamitsu et al. 2011b)

proposed to learn the latent topics of documents for alleviating problems of

“semantic drift” in Entity Set Expansion. Semantic drift refers to the common

problem faced by entity set expansion algorithms of changes in the extraction

criteria. In order to combat this problem they modeled the latent topics with

LDA (Latent Dirichlet Allocation) (Blei, Ng, and Jordan 2003) and utilized the

topic information in three ways:
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• First they used the topic distribution of documents to generate features

for their set expansion system.

• Second, they selected negative examples for training a discriminative

system.

• And third they pruned certain examples in their iterative training method.

Instead of creating a pipelined approach using a pre-existing topic model, our

approach allows us to create a topic model that can be trained end-to-end

and which is directly amenable to learning non-linear features of the data. A

similarity between the two methods is that variational inference can be used for

learning the parameters of both the models.

4.3 Notation

Let D be the corpus of documents and V be the vocabulary of tokens that

appear in D. I define a document as a sequence of sentences and a sentence as a

sequence of tokens. Let X be the set of entities discovered in D and I refer to its

size as X. Each entity x ∈ X is linked to the tokens that mention x.4 Let V ′ be

the set of tokens linked to any x ∈ X , and let Mx be the multiset of sentences

that mention x in the corpus. For example, consider an entity named “Batman”

and a document containing three sentences {Batman is good., He is smart. Life

is good.}. “Batman” is linked to tokens Batman and He,

In ESE, a system receives query Q – a subset of X – and has to sort the

elements remaining in R = X \ Q. The elements that are most similar to Q
4I ignore confidence scores that entity linking systems often assign to a link because

confidence scores will prevent us from using a multinomial distribution to model a document
as a bag-of-words.
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should appear higher in the sorted order and elements dissimilar to Q should be

ranked lower.

4.4 Baseline Methods

Before introducing NVSE, I describe the four baselines systems: BM25, Bayesian

Sets, Word2Vecf, and SetExpan. I do not compare to DeepSets (Zaheer et

al. 2017), as it is a supervised method that requires entity clusters.

For each x, I create a feature vector fx ∈ ZF from Mx, by concatenating

three vectors that count how many times 1) a token in V appeared in Mx 2)

a document in D mentioned x and 3) a token in V ′ appeared in Mx. Thus,

F = V + D + V′.

4.4.1 BM25

Best Match 25 (BM25) is “one of the most successful text-retrieval algorithms”

(Robertson and Zaragoza 2009). 5 BM25 ranks remaining entities in R according

to the score function

score
BM

(Q, x) =
F∑︂

i=1

IDF[i]fx[i]f̄Q[i](k1 + 1)
fx[i]+k1(1−b+b

∑︁
j fx[j]/L̄)

,

where fx[j] denotes the j-th feature value in fx, f̄Q is the sum of fx∀x ∈ Q

and I is the indicator function. k1 and b are hyperparameters that commonly

set to 1.5 and 0.75 (Manning, Raghavan, and Schütze 2008). L̄ is the average

total count of a feature in the entire corpus and IDF[i] is the inverse document
5Lucene replaced tf-idf with BM25 as its default algorithm: https://issues.apache.org/

jira/browse/LUCENE-6789
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frequency of the ith feature. They are computed as,

L̄ =
∑︂
x∈X

∑︂
j

fx[j]/X

IDF[i] = log X−DF[i] + 0.5
DF[i] + 0.5

DF[i] =
∑︂
x∈X

I[fx[i] > 0].

4.4.2 Bayesian Sets

(Ghahramani and Heller 2006) introduced the Bayesian Sets (BS) method which

converts ESE into a bayesian model selection problem. BS compares the prob-

abilities that the query entities are generated from a single sample of a latent

variable z ∈ ∆F with the probability that the entities were generated from

independent samples. ∆F is the F− 1 dimensional probability simplex. Note

that z has the same dimensionality as the observed features. Given Q and π,

the prior distribution of z, BS infers the posterior distribution of z, p(z|Q), and

computes the following score

score
BS

(Q, x) = log Ep(z|Q)[p(x|z)]
Eπ(z)[p(x|z)]

. (4.1)

(Ghahramani and Heller 2006) computed scoreBS in close form by selecting

the conditional probability, p(x|z), from an exponential family distribution and

setting π to be its conjugate prior. They showed that if p(x|z) is multivariate

Bernoulli then BS requires a single matrix multiplication (Appendix A.1) and I

use this setting for my experiments.
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4.4.3 Word2Vecf

(Levy and Goldberg 2014) generalize (Mikolov et al. 2013)’s Skip-Gram model

as Word2Vecf to include arbitrary contexts. I embed entities with Word2Vecf

by using the entity IDs as words 6 and the tokens in the sentences mentioning

those entities as contexts. Note that all tokens in the sentence, except for some

stop words, are used as contexts and not just co-occurrent entities. I rank the

entities in the order of their total distance to the entities in the query set as

score
W 2V

(Q, x) = −
∑︂
x̃∈Q

(vx − vx̃)2. (4.2)

Here, vx represents the L2-normalized embedding for x.

4.4.4 SetExpan

(Shen et al. 2017) introduce SetExpan, a SOTA framework combining context

feature selection with ranking ensembles, for set expansion. SetExpan out-

performed other SE methods such as SEISA in their evaluation. SetExpan

represents entities by the contexts that they are mentioned in. For example, the

context features for Batman from § 4.3 will be {__ is good, __ is smart}. The

contexts are used to create a large feature vector which can be used to compute

the inter-entity similarity. The authors argue that using all possible features for

computing entity similarity can lead to overfitting and semantic drift. To combat

these problems, SetExpan builds the entity set iteratively by cycling between a

context feature selection step and an entity selection step. In context feature

selection, each context feature is assigned a score based on the set of currently

expanded entities. Based on these scores, the context-features are reranked, and
6Converting entity mentions to entity IDs allows us to overcome issues related to embedding

multi-word expressions as explained in (Poliak et al. 2017).
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the top few context features are selected. The entity selection proceeds by the

bootstrap sampling of the chosen context features and using those features to

create multiple different ranked lists of entities. Multiple different ranked lists

are finally combined via a heuristic method for ensembling different ranked lists

to create a new set of expanded entities. This process is repeated to convergence

to get the final list of expanded entities.

4.5 Neural Variational Set Expansion

Like BS, Neural Variational Set Expansion first determines the underlying

concept, or topic, underlying the query and then ranks entities based on that

concept. My method differs from BS because I use a deep generative model

with a low dimensional concept representation, to simulate how a concept may

generate a query. Also I use a “distance” (§ 4.5.2) between posterior distributions

for ranking entities in lieu of bayesian model comparison.

4.5.1 Inference Step 1: Concept Discovery

My model (Fig. 4.2) is as follows: z ∈ Rd is a low dimensional latent gaussian

random variable representing the concept of a query. z is sampled from a fixed

prior distribution π = N (0, σ2I), i.e. z ∼ π. The members of Q are sampled

conditionally independently given z. z is mapped via a multi layer perceptron

(MLP), called NN(g)
θ , to g, the p.m.f. of a multinomial distribution that generates

fx, the features of x. NN(g)
θ is a neural network with a softmax output layer and

parameters θ. fx ∈ ZF are sampled i.i.d. from p(f |z, θ) = NN(g)
θ (z).7

7My generative model is inspired by (Miao, Yu, and Blunsom 2016)’s NVDM. They assume
that a single latent variable generates only one observation, but I posit that the same latent
variable z generates all observations in Q.
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Figure 4.2: The generative model of query generation is on the left and the variational
inference network is on the right. Small nodes denote probability distributions, gray
nodes are observations and the black node π is the known prior. NN(g)

θ transforms z

to g and the NN(i)
ϕ transforms fx to qϕ(z|x).

In other words, the vector fx contains the counts of observed features for

x that were sampled from g, and g was itself sampled by passing a Gaussian

random variable through a neural network.

Under this deep-generative model, a concept vector can simultaneously

trigger multiple observed features. This allows us to capture the correlations

amongst features triggered by a concept. For example, the concept of president

can simultaneously trigger features such as white house, executive order, or

airforce one.

To infer the latent variable z ideally, I should compute pθ(z|Q), the posterior

distribution of z given the observations Q. Unfortunately, this computation

is intractable because the prior is not conjugate to the likelihood that has a

neural network. Another problem is that it is unrealistic to assume access to a

large set of ESE queries at training time, because user’s information needs keep

changing; therefore the approach used by (Zaheer et al. 2017) in DeepSets to

discriminatively learn a neural scoring function is impractical for set expansion.

For the same reason, it is also not possible to learn a single neural network whose
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input is Q and which directly approximates pθ(z|Q). Therefore it is non-trivial

to apply the VAE framework to ESE. To overcomes these problems I make the

assumption that a query Q is conjunctive in nature, i.e. if entity x1 and x2 are

present in Q then results that are relevant to both x1 and x2 simultaneously

should be given a higher ranking than results that are related to x1 but not x2 or

vice-versa. I implement the conjunction of entities in a query by combining the

Product of Experts (Hinton 1999) approach with the Variational Autoencoder

(VAE) (Kingma and Welling 2014a) method to approximate pθ(z|Q).

I first map each x to an approximate posterior qϕ(z|x) via a neural network

NN(i)
ϕ and then I take their product to approximate pθ(z|Q).

pθ(z|Q) ≈ qϕ(z|Q) ∝
∏︂

x∈Q
qϕ(z|x).

The ϕ parameters are estimated by minimizing KL(q(z|x) || p(z|x)) as shown in

§ 4.5.3.8 The benefit of the POE approximation is that the posterior approxima-

tion qϕ(.|x) for each entity x in Q acts as an expert and the product of these

experts will assign a high value to only that region where all the posteriors assign

a high value. Therefore the POE approximation is a way of implementing con-

junctive semantics for a query. Another benefit is that if qϕ(.|x) is an exponential

family distribution with a constant base measure whose natural parameters

are the output of NN(i)
ϕ , then the product of the distributions ∏︁x qϕ(·|x) lies

in the same exponential family whose natural parameters are simply the sum

of individual neural network outputs. Also, notice that the POE approach

recommends adding the outputs of the neural networks which is different than
8 This is a generalization of (Bouchacourt, Tomioka, and Nowozin 2017) combining varia-

tional approximations of posterior distributions since the product of Gaussians is a Gaussian
distribution.
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concatenating the features for all x in Q or naively adding the inputs of the

neural network.9

I now show in more detail how the product of experts can be computed

simply by adding the output of the neural networks in the special case that the

variational approximation has the following form:

qϕ(z|x) ∝ h(z) exp(⟨ψ(z),NN(i)
ϕ (x)⟩) (4.3)

where ψ(z) are the features of z. If h is constant – which is true for many

exponential family distributions such as the Bernoulli, Exponential, Pareto,

Laplace, Gaussian, Gamma, and the Wishart distributions – then:

qϕ(z|x) ∝ exp(⟨ψ(z),NN(i)
ϕ (x)⟩).

In turn,
∏︂

x∈Q
qϕ(z|x) ∝ exp(⟨ψ(z),

∑︂
x∈Q

NN(i)
ϕ (x)⟩).

This shows that the product of experts can be computed simply by summing

the outputs of the neural network activations for such deep-exponential families

with constant base measure.

I use NN(i)
ϕ to compute the mean and log-variance of the gaussian distribution

qϕ(z|x) (4.4) that I then convert to the natural parameters of a Gaussian (4.5).

Next, I add the natural parameters of the individual variational approximations

ξx,Γx to compute the parameters ξQ,ΓQ for qϕ(z|Q) (4.6). Finally, I compute
9Recently, (Zaheer et al. 2017) gave a theorem that any permutation invariant function of

sets must be representable as the function of a sum of features of elements of the set. I note
that my POE approximation also has a similar form and is permutation invariant.
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qϕ(z|Q) (4.7).

µx,Σx = NN(i)
ϕ (fx) (4.4)

ξx, Γx = µxΣ−1
x , Σ−1

x . (4.5)

ξQ, ΓQ =
∑︂
x∈Q

ξx,
∑︂
x∈Q

Γx. (4.6)

qϕ(z|Q) = Nc(z|ξQ,ΓQ) (4.7)

As explained above, the benefit of using the natural parameterization is

that I can simply add the natural parameters of the individual variational

approximations ξx,Γx to compute the parameters ξQ,ΓQ for qϕ(z|Q) as

ξQ,ΓQ =
∑︂
x∈Q

ξx,
∑︂
x∈Q

Γx. (4.8)

Finally, I compute qϕ(z|Q) such that

qϕ(z|Q) = Nc(z|ξQ,ΓQ),

where Nc(z|ξ,Γ) is the multi-variate Gaussian distribution in terms of its natural

parameters –

|Γ|1/2

(2π)D/2 exp
(︄
−(zT Γz − 2ξT z + ξT Γ−1ξ)

2

)︄
.

4.5.2 Inference Step 2: Entity Ranking

In order to rank the entities x ∈ R, I design a similarity score between the prob-

ability distributions qϕ(z|Q) and qϕ(z|x) as an efficient substitute for bayesian

model comparison. I use the distance between precision weighted means ξQ and

ξx to define my “distance” function as

score
NV SE

(Q, x) = −||ξQ − ξx||2. (4.9)

71



My inter-distribution “distance” is not a proper distance because it changes as

the location of both the input distributions is shifted by the same amount. I

experimented with more standard, reparameterization invariant, divergences and

kernels such as the KL-divergence and the Probability Product Kernel (Jebara,

Kondor, and Howard 2004), see (Appendix A.2), but I found my approach to

be faster and more accurate. I believe this is because the regularization from

the prior that encourages the posteriors to be close to the origin makes shift

invariance unnecessary.

4.5.3 Unsupervised Training

In general VAEs are a combination of deep neural generative models and deep

approximations of posterior distributions of such generative models. NVSE is

trained in an unsupervised fashion to learn its parameters θ and ϕ. (Kingma

and Welling 2014a; Rezende, Mohamed, and Wierstra 2014) proposed the VAE

framework for learning richly parameterized conditional distributions pθ(x|z)

from unlabeled data. I follow (Kingma and Welling 2014a)’s reparameterization

trick to train a VAE and maximize the Evidence Lower Bound:

Eqϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x)||p(z)). (4.10)

During training, I do not have access to any clustering information or side

information that tells us which entities can be grouped. Therefore I assume that

the entities x ∈ X were generated i.i.d. The model during training looks the same

as Figure 4.2 but with one difference: Q is a singleton set of just one entity.10

Note that my learning method requires no supervision in contrast to methods
10More informally, I remove the plates from Figure 4.2.
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like Deep Sets which require cluster information, or Neural Collaborative filtering

methods which require a large dataset of user interactions.

To learn the parameters during training, I update ϕ and θ using stochastic

back-propagation.

4.5.4 Support for weighted queries

Useful recommendation systems for users should be tunable. If a recommendation

system returns undesirable entities in response to the query, then the user should

be able to easily tune the query so that the system excludes the undesirable

results. Most search engines allow boolean exclusion operators or weighted query

terms, but in the ESE systems presented so far, a user can only change a query

by either removing or adding entities. Furthermore, Weighted-queries enable

users to tell the system what aspects of the query to focus on or ignore.

To apply user provided weights as the amount of influence that an entity

should have on the final posterior over topics, I integrate the weights directly

into the computation of the topic posteriors. If the user provides weights

τ = {τx | x ∈ Q}, I compute the query features as

ξQ,τ , ΓQ,τ =
∑︂
x∈Q

τxξx,
∑︂
x∈Q
|τx|Γx. (4.11)

BM25 supports weights by multiplying each fx by x’s weights when computing

f̄Q. It is not clear how to incorporate weights in Bayesian Sets. instead of

computing ΓQ = ∑︁
x∈Q NN(i)

ϕ (x) in (4.6), I perform a weighted sum

Γ(τ,Q) =
∑︂
x∈Q
|τx|NN(i)

ϕ (x)

Note that in computing the precision Γ I only use the magnitude of the provided
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weights. To allow a user to tell the system to focus specificially on entities NOT

similar to a specific x, I enable a user to add negative weights. The signed

weights are used for computing ξ as follows:

ξ(τ,Q) =
∑︂
x∈Q

τxξx

4.6 Interpretability

I introduce a general approach for interpreting ESE models based on query ratio-

nales to explain the latent concept the model discovered and result justifications

to provide evidence for why the system ranked an entity highly.

Useful recommendation systems for users should be tunable. If a recommen-

dation system returns undesirable entities in response to the query, then the

user should be able to quickly tune the query so that the system excludes the

undesirable results. Most search engines allow boolean exclusion operators or

weighted query terms, but in the ESE systems presented so far, a user can only

change a query by either removing or adding entities. However, with the NVSE

system, based on query rationales and result justifications, users can add weights

to entities in a query to tell the system what aspects of the query to focus on or

ignore.

4.6.1 Query Rationale

A Query Rationale is a visualization of the latent beliefs of the ESE system

given the query Q. Given Q, I constructed a feature-importance-map γQ that

measures the relative importance of the features in fx and I show the top features

according to γQ as “Query Rationales”. Recall that the jth component of fx,
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associated with entity x, measures how often the jth feature co-occurred with x.

I now present how I constructed γQ for NVSE and the baselines.

For BM25, γQ is simply f̄Q. In BS, γQ is the weights from (A.1b): for each

jth component of fx,

γQ[j] = log α̃Q[j]β[j]
α[j]β̃Q[j]

.

The benefit of generative methods such as BS and NVSE is that for them query

rationales can be computed as a natural by-product of the generative process

instead of as ad-hoc post-processing steps. For NVSE, ideally γQ should be

the posterior distribution pθ(f |Q). Since this is intractable I approximate it by

sampling the inference network:

pθ(f |Q) = Epθ(z|Q)[pθ(f |z,Q)] ≈ Eqϕ(z|Q)[pθ(f |z)].

I further approximate the expectation with a single sample of the mean of

qϕ(z|Q). Finally the feature importance map for NVSE is:

γQ = pθ(f |E[qϕ(z|Q)]).

Because Word2Vecf finds the nearest-neighbor between entity embeddings, which

are produced through a complicated learning process operating on the whole

text corpus, it does not provide a natural way to determine the importance of a

single sentence and therefore it is not possible to say what was the effect of a

particular sentence on the query results. Similarly, since the SetExpan method

works by extracting context features and iteratively expanding this feature set,

it is not possible to determine the effect of a single sentence on the final search

results.
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4.6.2 Result Justifications

I define result justifications as sentences in Mx that justify why an entity was

ranked highly for a given query. Ranking the sentences that mention an entity

is similar to ranking entities in R. Just as I create a feature vector for each

x, I create a feature vector for each sentence in Mx and use the same scoring

function to rank the sentences based on the query. While computing a score for

entity x based on a query, I also score each sentence in Mx. My approach to

generating interpretable result justifications is agnostic to ESE methods with the

caveat that for methods like Word2Vecf and SetExpan this will require retraining

or reindexing over the corpus for each query. My approach will not be feasible

for such methods.

4.6.3 Weighted queries

Any recommendation system can occasionally fail to provide good results for a

query. To improve a system’s responses in such cases, I enable users to guide

NVSE’s results by using entity weights to influence the posterior distribution

over topics.

If a user provides weights τ = {τx | x ∈ Q}, I compute the query features

via Eq. 4.11. The above formulae have an intuitive explanation that when an

entity has a higher weight, then the precision over the concepts activated by

that entity is increased according to the magnitude of the weight, and the value

of the precision weighted mean is also weighted by the user-supplied weights. In

turn, an entity with zero weight has zero effect on the final search result and

entities with a high negative weight return entities diametrically opposite to
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that entity with higher confidence.

Weights can be applied to other methods as well. BM25 can multiply each fx

by x’s weights when computing f̄Q, and Word2Vecf can use a weighted average.

It is not straight-forward to incorporate weights in BS and SetExpan systems.

One possible way is to use bootstrap resampling of the query entities according to

a softmax distribution over entity weights, but bootstrapping makes the system

non-deterministic and therefore even more opaque for a user. Also, bootstrap

resampling requires multiple query executions, and it is not straight-forward to

combine the outputs of different search queries; therefore I do not advocate for

bootstrapping.

4.7 Comparative Experiments

My proposed method determines the latent random variable responsible for

generating the query and then ranks the entities in R by computing a distance

between the probability of the latent variable given the given query and the

probability of the latent variable given each entity. I test the hypothesis that

NVSE can help bridge the gap between advances in IR and real-world use cases.

I use human annotators on Amazon Mechanical Turk (AMT) to determine

whether NVSE finds more relevant entities than my baseline methods in a real

world, automatically generated KG.
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4.7.1 Dataset

TinkerBell (Al-Badrashiny et al. 2017) is a KG construction system that achieved

top performance in TAC-KGP2017 evaluation.11 I used it as my automatic KG.

For each entity e in TinkerBell I create Me by concatenating all sentences that

mention e and remove the top 100 most frequent features in the corpus from

Me to clean stop words. Tinkerbell was constructed from the TAC KGP 2017

evaluation source corpus, LDC2017E25, that contains 30K English documents and

60K Spanish and Chinese documents. 12 Half of the English documents come

from online discussion forums and the other half from news sources, e.g., Reuters

or the New York Times. My experiments only use the 77,845 EDL entities

within TinkerBell that are assigned the type Person. I use these links to create

a map from DBPedia categories to entities in TinkerBell, say M . Each entity

in TinkerBell is associated with spans of characters that mention that entity. I

tokenize and sentence segment the documents in LDC2017E25 and associate

sentences to each entity corresponding to mentions. In the end, I get 344,735

sentences associated with the 77K entities. The median number of sentences

associated with an entity is 1, and the maximum number of sentences is 4638 for

the Barack Obama entity.13 This is a good example of how automatic KGs differ

from manually curated KGs. In TinkerBell most of the entities appear in only

a single sentence so only a single fact may be known about them. In contrast,
11Tinkerbell constructed a KG from LDC2017E25 that contains 30K English documents.

Half of them are from online forums and the other half from Reuters and NYT. I focused on
the 77, 845 entities from English documents appearing in 344, 735 sentences. 25, 149 entities
were also linked to DBpedia.

12tac.nist.gov/2017/KGP/data.html
13The Mean is 4.43, the standard deviation is 29.19, the minimum number of sentences for

an entity is 1, the maximum number of sentences is 4638, and the median is 1 (44,317 entities).
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KGs like FreeBase and DBpedia have a more uniform coverage of facts for

entities present in them. Another difference is that relational information such

as ancestry relations between entities are noisier in an automatically generated

KB than in DBpedia which relies on manually curated information present in

Wikipedia.

4.7.2 Implementation Details

I prune the vocabulary by removing any tokens that occur less than 5 times

across all entities. I end up with, F=105448,V = 61311, D = 24661, and

V′ = 19476. I used BM25 implemented in Gensim (Řehůřek and Sojka 2010)

and I implemented BS myself. I choose λ = 0.5, out of 0, 0.5, or 1, after visual

inspection. I used Word2Vecf and SetExpan codebases released by the authors.14

For NVSE, I set d=50, σ=1. The generative network NN(g)
θ does not have hidden

layers and the inference network NN(i)
ϕ has 1 hidden layer of size 500 with a tanh

non-linearity and two output layers for the mean µx and log of the diagonal

of the variance Σx. I use a diagonal Σx. 15 For Word2Vecf, I used d = 100

to use the same number of parameters per entity as in NVSE. I trained with

default hyperparameters for 100 iterations. I used SetExpan with the default

hyperparameters as well except that I limited the number of maximum iterations

to 3 since I only needed top 4 entities for my experiments.
14https://bitbucket.org/yoavgo/word2vecf, github.com/mickeystroller/SetExpan
15Training NVSE on 1 Tesla K80 using the Adam optimizer with learning rate 5e−5 and

minibatch size 64 took 12 hours.
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4.7.3 Experimental Design

Prior work typically evaluates ESE on a small number of queries, constituting the

most frequent entities, e.g., (Ghahramani and Heller 2006) reported results for

10 queries with highly cited authors and (Shen et al. 2017) used 20 test queries

created of 2000 most frequent entities in Wikipedia. However, in automatic

KGs, most entities are mentioned only a few times. For example, 60% of the

entities in TinkerBell are mentioned once. I am primarily interested in unbiased

evaluation over such entities; therefore I stratified the evaluation queries into

three types.

The 1st type contains entities mentioned in only 1 sentence, the 2nd contains

entities appearing in 2− 10 sentences, and the 3rd contains entities mentioned

in 11− 100 sentences. I also stratified queries based on whether they had 3, or 5

entities. For each query type, I randomly generate 80 queries by first sampling

80 Wikipedia categories and then sampling entities from those categories that

were also part of the TinkerBell KG. This results in 480 queries. See Table 4.1

for examples.

For each query, I showed the names and first paragraphs from the Wikipedia

abstracts of the query’s entities, to help the AMT workers disambiguate entities

unfamiliar to them. Then I showed the workers the top 4 entities returned by

each system. Each resultant entity was shown with up to 3 justification sentences.

Figure 4.3 illustrates the AMT interface.

Since SetExpan and Word2Vecf do not return justifications, I used NVSE

to extract justifications for their results. I asked workers to rank the systems

between 1, the best system, to 3, the worst; and I allowed for ties. The
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Figure 4.3: Example of task shown to a crowd-source worker on Amazon Mechanical
Turk.
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Category Entities
(1 Sent./Ent.) American
Jazz Singers

Paula West, Natalie Cole, Chaka Khan

(2-10 Sent.) Australian Ma-
jor Golfers

Marc Leishman, David Graham, James Nit-
ties

(11-100 Sent.) The Appren-
tice (U.S) Contestants

Maria, Rod Blagojevich, Dennis Rodman,
Joan Rivers, Piers Morgan

Table 4.1: Examples of randomly created queries

Ents. In Sents. Group 1 Group 2
Query Per Ent. NVSE BM25 BS NVSE SetEx W2Vecf

1 27 38 15 51 14 15
3 2-10 29 25 26 49 13 18

11-100 35 23 22 44 10 26
1 38 25 17 58 19 3

5 2-10 40 27 13 53 19 8
11-100 24 33 24 52 11 17
Total 193 171 117 307 86 87

Table 4.2: The number of times a system was ranked 1st over 80 queries compared to
other systems in the same group. Ties were allowed so some rows may not sum to
80. Bold highlights the system with the most 1st in its group. Extended results with
second and third place rankings of the system are shown in Table 4.3.

annotators found it difficult to compare results from 5 systems at a time, so I

split my evaluation into two groups. Group 1 compared NVSE to BS and BM25,

and group 2 compared NVSE to SetExpan and Word2Vecf. I randomized the

placement of the lists so that the workers could not figure out which system

created which list.

4.7.4 Results

Table 4.2 shows the number of times the annotators ranked each system as

the best out of the 80 queries. Over all queries, NVSE returned better results

compared to the 4 baselines systems. It performed best with 5 entities in the
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query where each entity was only mentioned up to 10 times in the corpus. This

shows that NVSE can discern better quality topics from multiple entities with

sparse data. Extended results showing second and third place rankings of the

systems are given in Table 4.3 which show that in cases that when NVSE does

not rank first, it is typically chosen as the second-ranking system.

Table 4.3 shows the second and third place rankings of the systems and

extends the results shown in Table 4.2.

Ents. In Sents. Group 1 Group 2 Group 1 Group 2
Query Per Ent. NVSE BM25 BS NVSE SetEx W2Vecf NVSE BM25 BS NVSE SetEx W2Vecf

1 36 28 16 20 21 39 17 14 49 9 45 26
3 2-10 22 36 22 26 22 32 29 19 32 5 45 30

11-100 24 26 30 23 22 34 21 31 28 12 48 20
1 28 37 15 20 47 13 14 18 48 2 14 64

5 2-10 22 27 31 21 50 9 18 26 36 6 10 63
11-100 20 27 32 17 29 34 36 20 24 11 40 29

Table 4.3: The number of times a system was ranked 2nd (left subtable) and 3rd (right
subtable) over 80 queries.

The IR method BM25 was the strongest baseline, outperforming BS and

SetExpan, and even NVSE in two settings. I believe that this is because of the

low-resource conditions of my evaluation where ad-hoc IR methods can have

an advantage. Another reason why BM25 worked very well in my evaluation

was the lack of auxiliary signals such as entity inter-relations and entity links

and because all the entities were of type person. This makes my task different

from the entity list completion (ELC) task (BALOG 2009) and a bit simpler

for methods that focus heavily on lexical overlap. Another difference between

the ESE task and the ELC task was that in the ELC task a descriptive prompt

describing the query was also given to the users while evaluating the relevance of
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the returned results whereas no such prompt was given in the ESE task. I also

found that sometimes BM25 was rated highly because it returned results that

were highly relevant to a single query entity instead of being topically similar

to all entities. For example, on the query associated with “The Apprentice

Contestants” BM25’s results solely focused on Dennis Rodman, but NVSE tried

to infer a common topic amongst entities and returned generic celebrities which

annotators did not prefer.

On entities with little data, Word2Vecf and SetExpan perform poorly.

Word2Vecf requires large amounts of data for learning useful representations (Alt-

szyler, Sigman, and Slezak 2016) which explains why it performs poorly in my

evaluation. The SetExpan algorithm directly uses context features extracted

from the mentions of an entity and returns entities with the same context

features. This approach can overfit with low data. Even though SetExpan

uses an ensembling method to reduce the variance of the algorithm, I believe

using context-features causes overfitting when an entity appears in only a few

sentences. Lastly, I believe that BS suffers because its impoverished genera-

tive model has neither non-linearities nor low-dimensional topics for modeling

correlations amongst tokens.

4.8 Analyzing Interpretability

I now attempt to understand the similarity relations encoded in NVSE’s internal

concept representations to understand what it is learning. I also provide examples

of how query rationales and query weights can help users fine-tune their queries.
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column 3 column 14 column 20 column 33 column 37
merger procurement husband iii best very game tackle wild lighting

industry securities sister house its most drill fuzzy holly costumes
premiers AP-doc1 she labor good end offensive 21 exhibit fashion

NYT-doc2 analyst her king some do coach doc martin’s nightclub
protection founders daughter church only such artur doc3 thriller theatrical

business finance family royalty qualifier words football sports entertainment movie

Table 4.4: The first row contains top 10 features most similar to zj . The bottom row
contains labels agreed upon by the authors; I loosely refer to the group where j = 20
as “qualifiers”. Underscored words signify that the feature came from V ′.

Abu Bakr
Baghdadi (1)

Osama Bin
Laden (1)

O.B. Laden (1.5)
A.B. Baghdadi (1)

O.B. Laden (0.5)
A.B. Baghdadi (2)

O.B. Laden (-0.2)
A.B. Baghdadi (1)

qaida, iraq,
abu, baghdadi,
bakr, al, leader,
attacks

bin, laden,
osama, al,
cia, pakistani,
afridi, qaida

qaida, al, u, pak-
istani, cia, qaeda,
government,
killed

qaida, al, leader,
attacks, u, killed,
officials, islamic

bakr, baghdadi,
abu, iraq, al, sec-
tarian, nuri, kur-
dish

Table 4.5: The top row represents a query with weights in parentheses and the bottom
row lists corresponding query rationales.

4.8.1 Understanding the concept space

To gain some insight into the distribution over concepts inferred by NVSE I

determined the top 10 words activated by individual dimension of z by computing

NN(g)
θ (ej) where ej is a one-hot vector in R50. Table 4.4 shows the top 10 words

for selected components of z. I can easily recognize that dimensions 3, 33 and

37 of z represent finance, sports, and entertainment. Even though I did not

constrain z to be component-wise interpretable, this structure naturally emerged

after training.
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4.8.2 Weights & Query Rationale

Table 4.5 depicts how the query rationale returned by NVSE changes in response

to entity weights. In the first column the query is {Abu Bakr Baghdadi} and

the query rationale tells us that NVSE focuses on iraq, baghdadi etc. The second

column shows a different query {Osama Bin Laden} and the query rationales

changes accordingly to pakistani and osama. The third and fourth column show

rationales when the weights on “Laden” and “Baghdadi” are varied. When more

weight is put on “Laden” then the query rationales contain more features that

are associated to him, and when more weight is put on “Baghdadi”, then features

such as “islamic” which is a token from his organization are returned. The last

column shows an interesting configuration where a user is effectively asking for

results that are similar to “Baghdadi” but dissimilar to “Laden” and the feature

for kurdish gets activated. Since the system returns results in under 100ms, the

user can fine-tune her query in real-time with the help of these query rationales.

I give one more example of the utility of negative weights: When Q =

{Brady}, NVSE’s rationale is [brady, game, patriots, left, knee, field, tackle],

indicating that NVSE associated the “Brady” entity with Tom Brady who is a

member of the Patriots football team. When I added “Wes Welker” to Q with a

negative weight, the query rationale changed to [brady, game, left, tackle, knee,

back, field]. Since Wes is a Patriots receiver who received a negative weight

in the query, NVSE deactivated the patriots feature and activated the tackle

feature, opposite to a receiver.
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4.9 Conclusion

This chapter is based on the following journal publication:

Rastogi, Pushpendre, Adam Poliak, Vince Lyzinski, and Benjamin Van

Durme (2018). “Neural variational entity set expansion for automatically

populated knowledge graphs”. In: Information Retrieval Journal.

The main ideas and scientific contributions are:

• The first to learn Deep Representation of entities grounded in natural text

for the task of Set Expansion.

• The first to propose an efficient way of combining the posterior outputs

of a VAE’s inference network from multiple observations by summing the

natural parameters.

• One of the first methods for extracting query rationales for entity recom-

mendations given a set expansion query.

I introduced NVSE as a step towards making advances in entity set expansion

useful to real-world settings. NVSE is a novel unsupervised approach based on

the VAE framework that discovers related entities from noisy knowledge graphs.

NVSE ranks entities in a KG using an efficient and fast scoring function (4.9),

ranking 80K entities on a commodity laptop in 100 milliseconds.

My experiments demonstrated that NVSE could be applied in real-world

settings where automatically generated KGs are noisy. NVSE outperformed

state of the art ESE systems and other strong baselines on a real-world KG. I
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also presented a flexible approach to interpret ESE methods and justify their

recommendations.

In future work, I will extend my work by improving my model using more

powerful auto-encoders such as the Ladder VAE (Sønderby et al. 2016); secondly

I will experiment with the use of side information such as links from a KG through

the use of Graph Convolutional Networks (Kipf and Welling 2017). Third, I will

like to quantitatively measure how query rationales and justifications help users

in accomplishing their search task. Finally, I will incorporate confidence scores

from the KG in my model. Although there may be future work to improve my

ESE method, I believe that NVSE serves as a significant step towards utilizing

KGs and semantics for information retrieval and understanding in real-world

settings.
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Chapter 5

Knowledge Base Embeddings
under Logical Constraints

Knowledge bases are large repositories of information about the entities in the real

world and the relations between them. They can be thought of as large graphs

marking the relations between real-world entities as the edges between its vertices.

In the previous chapters, I presented algorithms for learning representation of

words and entities from unlabeled, unstructured textual corpora. In this chapter,

I shift focus from embedding the components of unstructured text to representing

the structured information present in knowledge bases. To that end, I follow a

two-pronged approach.1

First, I scrutinize an existing method for embedding knowledge bases and

demonstrate its shortcomings in accurately representing asymmetric-transitive

relations both theoretically and empirically. I study the effect of the transitivity

of a relation on the performance of the RESCAL algorithm by (Nickel, Tresp,

and Kriegel 2011), and I demonstrate via a theorem and empirical results that

RESCAL is inappropriate for representing transitive-asymmetric relations in a
1Previous versions of this work were published in (Rastogi, Poliak, and Van Durme 2017)

and (Rastogi and Van Durme 2017)
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KB.

Second, I present new objectives and training algorithms for encouraging

logical consistency in the predictions by a knowledge base completion algorithm

by incorporating logical constraints into the learning of entity and relation

representations during the training of a Knowledge Base Completion (KBC)

system. Enforcing logical consistency in the predictions of a KBC system

guarantees that the predictions comply with logical rules such as symmetry,

implication and generalized transitivity. My method encodes logical rules about

entities and relations as convex constraints in the embedding space to enforce the

condition that the score of a logically entailed fact must never be less than the

minimum score of an antecedent fact. Such constraints provide a weak guarantee

that the predictions made by a KBC model will match the output of a logical

knowledge base for many types of logical inferences.

5.1 Introduction

Large-scale and highly accurate knowledge bases (KB) such as Freebase and

YAGO2 (Hoffart et al. 2013) have been recognized as essential for high perfor-

mance on natural language processing tasks such as Relation extraction (Dalton,

Dietz, and Allan 2014), Question Answering (Yao and Van Durme 2014), and

Entity Recognition in informal domains (Ritter et al. 2011). Because of this

importance of large scale KBs and since the recall of even Freebase, one of the

largest open source KBs, is low2 a large number of researchers have presented

models for knowledge base completion (KBC). Knowledge Base Completion
2It was reported by Dong et al. in October 2013, that 71% of people in Freebase had no

known place of birth and that 75% had no known nationality.
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(KBC), or link prediction, is the task of inferring missing edges in an existing

knowledge graph.

A popular strategy for KBC is to embed the entities and relations in low

dimensional continuous vector spaces and to then use the learned embeddings for

link prediction. In other words, continuous real-valued vectors and matrices are

automatically learned that can represent the entities and edges in a knowledge

base, and at the time of inference, these real-valued representations are used

to predict whether a particular edge exists between two entities. This general

strategy can be implemented in many different ways, and I refer the reader to

the survey by (Nickel et al. 2016) for more details. Even though the strategy of

embedding the elements of a graph is popular for knowledge base completion,

theoretical studies of such methods are scarce. More specifically, although many

methods have been evaluated empirically on select datasets for KBC, much less

attention has been paid to understanding the relationship between the logical

properties encoded by a given KB and the KBC method being evaluated.

In this chapter, I demonstrate theoretically, and experimentally, the adverse

effect that asymmetric, transitive relations can have on a KBC method that relies

on a single vector embedding of a KB entity. Transitive-asymmetric relations

such as the type of relation in Freebase (Bollacker et al. 2008) and, the hyponym

relation in WordNet (Miller 1995) are ubiquitous in KBs and therefore very

important (Guha 2015). For my theoretical result, I analyze a widely cited

KBC algorithm called RESCAL (Nickel, Tresp, and Kriegel 2011; Toutanova

et al. 2015) and I prove that on large KBs that contain a large proportion of

asymmetric, transitive relations, methods such as RESCAL will wrongly predict

the existence of edges that are the reverse of edges in the training data. I also
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present a way to mitigate this problem, by using role sensitive embeddings for

entities and I empirically verify that my proposed solution improves performance.

Through my experiments, I also discover a drawback in the prevalent evaluation

methodology, of randomly sampling unseen edges, for testing KBC models and

show that random sampling can overlook errors on special types of edges.

A number of state of the art methods for Knowledge Base Completion

(KBC) utilize a representation learning framework and learn distributed vector

representations, i.e., embeddings, of the entities and relations in a Knowledge

Base (KB). Although such models make correct predictions on a sizable portion

of the data, they cannot guarantee to follow logical rules and to make inferences

consistent with those rules. For example, there is no way to guarantee in existing

KBC methods that if an embeddings based KB predicts the fact that Alice

murdered Bob (Murdered,(Alice, Bob)) then it will also predict that Alice

Killed Bob, even though it is very simple to enforce this in a traditional logical

inference system by specifying the rule that Murdered implies Killed. Consider

another example, if a KB knows that AliceIsAWoman and that BobIsSonOf

Alice, but the KBC method cannot guarantee to infer that AliceIsMotherOf

Bob then such a method will have limited use in real applications.

In the second half of this chapter, I present a novel method for directly

encoding logical rules via convex constraints on the embeddings. Such methods

for directly “shaping” the feasible subspaces of embeddings based on logical

properties of relations have not been deeply explored before, and I will show

through my experiments that such a method can improve the performance of an

existing KBC system. I validate my method via experiments on a knowledge

graph derived from WordNet.
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5.2 Related Work

Due to the large body of work that has been done for the task of KBC, it is not

possible to cover all of the related work on KBC in this section. Instead, I refer

the reader to the survey (Nickel et al. 2016) for an overview of the empirical

work that has been done in the area of KBC and link prediction. Similarly, The

problem of enforcing consistency between the predictions made by a machine

learning system and a first-order logic system, which is what my work attempts

to do, has a large history of research but I will only be able to review recent

work on learning representations of entities and relations of a knowledge graph

and refer the reader to reviews of neural-symbolic systems (Garcez, Gabbay,

and Broda 2002; Hammer and Hitzler 2007) for more references.

5.2.1 Methods for Knowledge Base Completion

Since I focus on the analysis of RESCAL, my work is most closely related to

the paper (Nickel, Jiang, and Tresp 2014). This chapter proves an important

theorem that shows that the dimensionality required by the RESCAL model3

for exactly representing a weighted adjacency matrix of a knowledge graph must

be greater than the number of strongly connected components in the graph. In

my setting where I consider data sets that contain only transitive-asymmetric

relations, the number of strongly connected components in the graph equal

the number of vertices in the graph. Therefore their theorem proves that the

dimensionality required for exactly representing a dataset such as WordNet using

an algorithm such as RESCAL must be greater than the number of entities in
3Actually their theorem provides a lower bound for a more general model than RESCAL

which automatically applies to RESCAL.
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the knowledge graph. In contrast to this result, my analysis gives an explicit

example of a type of query for which the RESCAL algorithm will make wrong

inferences.

My analysis trivially extends to a few other factorization based algorithms,

e.g. the Holographic embedding algorithm by (Nickel, Rosasco, and Poggio 2016).

The holographic embedding method can be rewritten as a constrained form of

RESCAL with a “holographically constrained” matrix M . Figure 5.1 shows an

example of a 3× 3 holographically constrained matrix with the constraint that

elements with the same color must hold the same value. Since such a matrix

is asymmetric by construction, my theorem proves that there will exist vectors

a, b, and c for which M will violate transitivity.

m1

m1

m1m2

m2

m2m3

m3

m3

Figure 5.1: An illustration of a “holographically constrained” matrix.

Recently (Bouchard, Singh, and Trouillon 2015) argued that the phenomenon

of transitivity of relations between vertices in a knowledge graph could be

modeled with high accuracy if the knowledge graph is modeled as a thresholded

version of a latent low-rank real matrix, and the vertex embeddings are learned

as a low-rank factorization of that latent matrix. Based on this argument
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they claimed that factorizing a knowledge graph with a squared loss was less

appropriate in comparison to factorizing it with a hinge loss or logistic loss. In

this work, I provide an argument based on the symmetry of transitive matrices to

show that the method of RESCAL which minimizes the squared reconstruction

error must fail to capture phenomenon like transitivity in large knowledge bases.

In this way, my results complement the work by Bouchard, Singh, and Trouillon.

5.2.1.1 Logically Constrained Representations for KBC

(Grefenstette 2013) presented a novel model for simulating propositional logic

with the help of tensors; however, their model relied on high-dimensional boolean

embeddings of the entities and relations, and it only guaranteed adherence to the

RelImp rule out of the ones presented in this chapter. (Rocktäschel et al. 2014;

Rocktäschel, Singh, and Riedel 2015) generalized Grefenstette’s work learning

embeddings of entities and relations that were real-valued and low dimensional

and their learning mechanism could accommodate arbitrary first-order logic

formulae into the parameter learning objective by propositionalizing the formulae.

Their method has two drawbacks in comparison to my proposal — 1. The process

of propositionalization can be very expensive, especially for rules like ProTrans

and TypeImp that quantify over tuples of entities, and 2. Their method of

differentiation through logic does not guarantee that the learned embeddings will

always be able to predict unseen relations that are logically entailed given the

rules and the training data.

(Bowman, Potts, and Manning 2015; Bowman and Potts 2015) presented

a neural network-based method for predicting the existence of natural logic

relations between two entities. Their approach too had the drawback that it
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could not guarantee the inference of logically entailed facts.

(Wang, Wang, and Guo 2015) presented an interesting approach for “batch-

mode” knowledge base completion. They proposed to perform KBC in two

steps – First, they learned a distributional model of the entities and relations

in a KB to predict the likelihood of unobserved facts. In the second step,

they optimized a global objective with logical constraints using an ILP solver.

Their approach is very different from ours since I present an online method for

performing knowledge base completion and I directly translate the logical rules

into constraints on the parameters instead of relying on a black box ILP solver.

(Guo et al. 2015) presented a method based on LLE (Roweis and Saul

2000) for incorporating side information in the form of semantic categories of

entities, but their method is not capable of incorporating the range of logical

rules that I can. (Demeester, Rocktäschel, and Riedel 2016) and (Vendrov

et al. 2016) proposed an approach to constrain the learnt embeddings in a way

that is identical to the method prescribed by us in Subsection 5.4.1. Our work

generalizes their approach in two ways — Firstly, I generalize their proposed

constraints by using the language of convex geometry, and secondly, I propose

constraints for many more logical rules and score functions than either of the

previous two papers.

(Hu et al. 2016) presented an adversarial setup with a teacher neural network

co-operating with a student neural network to regularize the predictions of

the student network to follow logical rules; however, their method amounts to

propositionalization of the logical rules. Their method is more general than ours

since it can be used to train neural networks however again it lacks guarantees

during inference. (Wang and Cohen 2016) presented a novel method of factorizing
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the adjacency matrix of a proof graph of a probabilistic logic language to learn

embeddings of first-order logic formulas. My method is conceptually simpler than

theirs and requires fewer training stages. Finally, (Guo et al. 2016) proposed an

alternative method for embedding rules and entities based on t-norm fuzzy logics

which was very similar to (Rocktäschel, Singh, and Riedel 2015)’s approach.

5.3 Theoretical Analysis of RESCAL

Notation: A KB contains (subject, relation, object) triples. Each triple encodes

the fact that a subject entity is related to an object through a particular relation.

Let V andR denote the set of entities and relationships. I use V to denote entities

to evoke the notion that an entity corresponds to a vertex in the knowledge

graph. I assume that R includes a type for the null relation or no relation.

Let V = |V| and R = |R| denote the number of entities and relations. I use

v and r to denote a generic entity and relation respectively. The shorthand

[n] denotes {x|1 ≤ x ≤ n, x ∈ N}. Let E denote the entire collection of facts

and let e denote a generic element of E . Each instance of e is an edge in the

knowledge graph. I refer to the subject, object and relation of e as esub, eobj ∈ V

and erel ∈ R respectively. E = |E| is the number of known triples.

RESCAL: The RESCAL model associates each entity v with the vector

av ∈ Rd and it represents the relation r through the matrix Mr ∈ Rd×d. Let v

and v′ denote two entities whose relationship is unknown, and let s(v, r, v′) =

aT
v Mrav′ , then the RESCAL model predicts the relation between v and v′ to be:

r̂ = argmaxr∈R s(v, r, v′). Note that in general if the matrix Mr is asymmetric

then the score function s would also be asymmetric, i.e., s(v, r, v′) ̸= s(v′, r, v).
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Let Θ = {av|v ∈ V} ∪ {Mr|r ∈ R}.

Transitive Relations and RESCAL: In addition to relational information

about the binary connections between entities, many KBs contain information

about the relations themselves. For example, consider the toy knowledge base

depicted in Figure 5.2. Based on the information that Fluffy is-a Dog and

that a Dog is-a Animal and that is-a is a transitive relations I can infer missing

relations such as Fluffy is-a Animal.

Let us now analyze what happens when I encode a transitive, asymmetric

relation. Consider the situation where the set R only contains two relations

{r0, r1}. r1 denotes the presence of the is-a relation and r0 denotes the absence of

that relation. The embedding based model can only follow the chain of transitive

relations and infer missing edges using existing information in the graph if for

all triples of vertices v, v′, v′′ in V for which I have observed (v, is-a, v′) and (v′,

is-a, v′′) the following holds true:

s(v, r1, v
′)>s(v, r0, v

′)ands(v′, r1, v
′′)>s(v′, r0, v

′′) =⇒ s(v, r1, v
′′)>s(v, r0, v

′′)

I.e. aT
v (Mr1 −Mr0)av′ > 0andaT

v′(Mr1 −Mr0)av′′ > 0 =⇒ aT
v (Mr1 −Mr0)av′′ > 0

(5.1)
I now define a transitive matrix and state a theorem that I prove in § 5.3.1.

Definition A matrix M ∈ Rd×d is transitive if aTMb > 0 and bTMc > 0 implies

aTMc > 0.

Theorem 1. Every transitive matrix is symmetric.

If I enforce the constraint in Equation 5.1 to hold for all possible vectors and

not just a finite number of vectors then Mr1 − Mr0 is a transitive matrix.
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By Theorem 1, Mr1 −Mr0 must be symmetric. This further implies that if

s(v, r1, v
′) > s(v, r0, v

′) then s(v′, r1, v) > s(v′, r0, v). In terms of the toy KB

shown in Figure 5.2; if the RESCAL model predicts that Fluffy is-a Animal

then it will also predict that Animal is-a Fluffy.

Augmenting RESCAL to Encode Transitive Relations: The analysis

above points to a simple way for improving RESCAL’s performance on asymmet-

ric, transitive relations. The reason that the original method fails to satisfactorily

encode transitive asymmetric relations is because if the score s(v, r1, v
′) is high

then s(v′, r1, v) will also be high. I can avoid this situation by using two different

embeddings for all the entities and compute the score of a relation through those

role specific embeddings; i.e. I can use the embeddings a1
v, a

2
v to represent vertex

v and let s(v, r1, v
′) = a1

vMr1a
2
v′ and s(v′, r1, v) = a1

v′Mr1a
2
v. This idea of using

role-specific embeddings has been known for a long time starting from (Tucker

1966). 4 The specific method that I have just explained is generally known to

KBC researchers as the Tucker2 decomposition (Singh, Rocktäschel, and Riedel

2015). To encode more than one relations, only the matrix Mr needs to change,

but the entity embeddings can be shared across all relations.

5.3.1 Proof of Theorem 1

I now present my novel proof of Theorem 1 beginning with a lemma. 5

Lemma 2. Every transitive matrix is PSD.

Proof. Consider the triplet of vectors c := x, b := Mc, a := Mb. Then aT (Mb) =
4Recently (Yoon et al. 2016) used this idea of using role-specific embeddings to preserve

the properties of symmetry and transitivity in translation based knowledge base embeddings.
5Theorem 1 was first proven by (Grinberg 2015)(unpublished). My proof is more elementary

and direct.
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Fluffy

Dog


Animal

Organism


Figure 5.2: A toy knowledge base containing only is-a relations. The dashed edges
indicate unobserved relations that can be recovered using the observed edges and the
fact that is-a is a transitive relation.

||Mb||2 ≥ 0 and bT (Mc) = ||b||2 ≥ 0 and aTMc = bTMb. Three cases are

possible, either b = 0, or Mb = 0, or both Mb ̸= 0 and b ̸= 0. In the third case

transitivity applies and I conclude that bTMb > 0. In all cases bTMb ≥ 0 which

implies M is PSD.

The next lemma proves that if M is transitive then xTMy and xTMTy must

have the same sign.

Lemma 3. If ∃x, y xTMy > 0 but xTMTy < 0 then M is not transitive.

Proof. Let x, y be two vectors that satisfy xTMy > 0 and xTMTy < 0. Since

xTMTy = yTMx therefore yTM(−x) > 0. If I assume M is transitive, then

xTM(−x) > 0 by transitivity, but Lemma 2 shows such an x cannot exist.

Lemma 4 is a general statement about all matrices which states that if the

two bilinear forms have the same sign for all inputs then they have to be scalar

multiples of each other. I omit its proof due to space constraint.

Lemma 4. Let M1,M2 ∈ Rd×d \ {0}. If xTM1y>0 =⇒ xTM2y>0 then M1 =

λM2 for some λ > 0.
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Finally I use Lemma 3–4 to prove Theorem 1.

Proof. Let M be a transitive matrix and let x, y be two vectors such that

xTMy > 0. By transitivity of M and Lemma 3 xTMTy > 0. Therefore by

Lemma 4 I get M = λMT for some λ > 0. Clearly λ = 1, this concludes the

proof that M is symmetric.

5.3.2 Experimental Results

My theoretical result in § 5.3 was derived under the assumption that the

constraint 5.1 held over all vectors in Rd instead of just the finite number of

vector triples used to encode the KB triples. It is intuitive that as the number of

entities inside a KB increases my assumption will become an increasingly better

approximation of reality. Therefore my theory predicts that the performance

of the RESCAL model will degrade as the number of entities inside the KB

increases and the dimensionality of the embeddings remains constant. I perform

experiments to test this prediction of my theory.

5.3.2.1 Experiments On Simulated Data

I tested the applicability of my analysis by the following experiments: I started

with a complete, balanced, rooted, directed binary tree T , with edges directed

from the root to its children. I then augmented T as follows: For every tuple of

distinct vertices v, v′ I added a new edge to T if there already existed a directed

path starting at v and ending at v′ in T . I stopped when I could not add any

more edges without creating multi-edges. For the rest of the chapter, I denote

this resulting set of ordered pairs of vertices as E and those pairs of vertices
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that are not in E as Ec. For a tree of depth 11, V = 2047,E = 18, 434 and

|Ec| = 4, 171, 775. See Figure 5.3 for an example of E , Ec.

Figure 5.3: Assume that the black edges constitute E and the red dotted denote Ec,
then Erev contains the edges (v4, v1), (v4, v2), (v2, v1), and (v3, v1).

I trained the RESCAL model under two settings: In the first setting, called

FullSet, I used entire E and Ec for training. In the second setting, called SubSet,

I randomly sample Ec and select only E = |E| edges from Ec. All the edges in E

including all the edges in the original tree are always used during both FullSet

and SubSet. For both the settings of FullSet and SubSet I trained RESCAL

5 times and evaluated the models’ predictions on E , Ec and E (rev). E , Ec have

already been defined, and E (rev) is the set of reversed ordered pairs in E . I.e.,

Erev = {(u, v)|(v, u) ∈ E}

For every edge in these three subsets, I evaluated the model’s performance

under 0−1 loss. Specifically, to evaluate the performance of RESCAL on an edge

(v, v′) ∈ E I checked whether the model assigns a higher score to (v, r1, v
′) than

(v, r0, v
′) and rewarded the model by 1 point if it made the right prediction and 0
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otherwise. As before, r1 and r0 denote the presence and absence of relationship

respectively.

Note that low performance on Erev and high performance on E will indicate

exactly the type of failure predicted from my analysis. I vary the dimensionality

of the embedding d, and the number of entities V, since they influence the

performance of the model, and present the results in Table 5.1a–5.1b. The

rightmost column of Table 5.1b is the most direct empirical evidence of my

theoretical analysis. The performance of RESCAL embeddings is substantially

lower on Erev in comparison to E , Ec. The last row with d = 400, however, shows

a very sharp drop in the accuracy on Ec while the performance of Erev increases

slightly. I believe that this happens because of higher overfitting to the forward

edges as the number of parameters increases.

5.3.2.2 Experiments On WordNet

WordNet is a KB that contains vertices called synsets that are arranged in a

tree-like hierarchy under the hyponymy relation. The hyponym of a synset is

another synset that contains elements that have a more specific meaning. For

example, the dog synset6 is a hyponym of the animal synset and an animal

is a hyponym of living_thing therefore a dog is a hyponym of living_thing. I

extracted all the hyponyms of the living_thing.n.01 synset as the vertices of T

and I used the transitive closure of the direct hyponym relationship between

two synsets as the edges of T . Quantitatively, the living_thing synset contained

16, 255 hyponyms, and 16, 489 edges. After performing the transitive closure E
6A synset must be qualified by the word sense and the part of speech. So a valid synset

called dog.n.01. For simplicity I skip this detail in my explanation but my implementation
distinguishes between the synset dog.n.01 and dog.n.02.
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FullSet
d V = 2047 4095 8191

E Ec Erev E Ec Erev E Ec Erev

50 66 100 100 60 100 100 54 100 100
100 76 100 100 69 100 100 63 100 100
200 86 100 100 79 100 100 72 100 100
400 94 100 100 88 100 100 81 100 100

(a) Accuracy in percentage of RESCAL with all the edges as training data (denoted
as FullSet) on E , Ec, Erev.

SubSet
d V = 2047 4095 8191

E Ec Erev E Ec Erev E Ec Erev

50 100 93 52 100 91 48 100 89 44
100 100 78 58 100 92 56 100 89 52
200 100 60 72 100 71 61 100 90 59
400 100 54 67 100 57 70 100 65 62

(b) Accuracy in percentage of RESCAL trained with all positive edges and subsampled
negative edges as training data (together called SubSet).

Table 5.1: V denotes the number of nodes in the tree. d denotes the number of
dimensions.
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became 128, 241.

I performed two experiments with the WordNet graphs, using the same

FullSet and SubSet protocols described earlier. The results are in the left half

of Table 5.2. I see that even though the accuracy on E and Ec is high, the

performance on Erev is much lower. This trend is in line with my theoretical

prediction that the RESCAL model will fail on “reverse relations” as the KB’s

size increases.

d FullSet SubSet SubSet
E Ec Erev E Ec Erev E Ec Erev

50 71 100 100 100 93 58 100 55 65
100 79 100 100 100 94 60 100 56 56
200 84 100 100 100 93 63 100 56 75
400 89 100 100 100 68 69 100 97 91

Table 5.2: Results from experiments on WordNet. I used the subtree rooted at the
living_things synset from the WordNet hierarchy. d indicates the dimensionality of
the embeddings used and the triple of numbers under FullSet and SubSet indicates the
accuracy of RESCAL on E , Ec, Erev. V is 16, 255 for all columns. The right half shows
results from experiments on WordNet with role dependent embeddings for entities.

Finally, I present the results of augmenting RESCAL with role-specific

embeddings in the right half of Table 5.2. The results show that using role-

specific embeddings increases the performance over the performance of the

RESCAL algorithm and with a high dimensionality of embeddings it is possible

to encode both the forward and the reverse relations in the embeddings. Please

note that I do not claim that my proposed augmentation for RESCAL will

empirically be any better than the much more recently proposed methods such

as ARE (Nickel, Jiang, and Tresp 2014), or Poincaré embeddings (Nickel and

Kiela 2017). I leave a careful empirical comparison of these techniques for future

work.
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5.3.3 Discussion

The information present in large scale knowledge bases has helped in moving

information retrieval beyond retrieval of documents to more specific entities

and objects. And in order to further improve coverage of knowledge bases,

it is important to research knowledge base completion methods. Since many

knowledge bases contain information about real-world artifacts that obey hierar-

chical relations and logical properties, it is important to keep such properties in

mind while designing knowledge base completion algorithms. In this chapter, I

demonstrate a close connection between the logical properties of relations such

as asymmetry, and transitivity, and the performance of KBC algorithms used

to predict those relations. Specifically, I theoretically analyzed a popular KBC

algorithm named RESCAL, and my analysis showed that the performance of

that model in encoding transitive and asymmetric relations must degrade as the

size of the KB increases. My experimental results in Table 5.1a,5.1b and 5.2

confirmed my theoretical hypothesis, and most strikingly I observed that the

accuracy of RESCAL on Erev was substantially lower than its performance on

either E or Ec, even though Erev is a subset of Ec.

In Table 5.3, I visualize the errors made by RESCAL by listing a few edges

in Erev that were wrongly predicted as true edges. These examples show that

the trained RESCAL model can predict that fruit tree is a hyponym of mango or

that every accountant is a bean counter. Such wrong predictions can be harmful.

Based on my analysis, I advocated for role-specific embeddings as a way of

alleviating this shortcoming of RESCAL, and I empirically showed its efficacy

in Table 5.2.
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My results also highlight a problem with the commonly employed KBC

evaluation protocol of randomly dividing the edge set of a graph into train and

test sets for measuring knowledge base completion accuracy. For example with

d = 50 the average accuracy on both E and Ec is quite high but on Erev accuracy

is low even though Erev is a subset of Ec. Such a failure will stay undetected

with existing evaluation methods.

Argument 1 Argument 2
draftsman.n.02 cartoonist
fruit tree mango
taster wine taster
accountant bean counter
scholar.n.03 rhodes scholar

Table 5.3: Examples of wrong predictions for the hyponym relations by the RESCAL
model with d = 400 when trained under the SubSet setting. The default synset is
n.01. i.e. the default synset in this table is the sense 1 for nouns.

5.4 Training Relation Embeddings under Logi-
cal Constraints

Let a knowledge base be defined as a tuple (F ,L), with F a set of statements,

and a set of first order logic rules L. Every element f ∈ F is itself a nested tuple

(r, (e, e′)) which states that the entities e and e′ are connected via the relation r.

Let E and R be the set of all entities and relations respectively. Let T be the

set of all entity tuples that appear in F , and let U denote the universe of all

possible facts, i.e. T = {t | (r, t) ∈ F}, and U = {(r, (e, e′)) | r ∈ R, e, e′ ∈ E}.

Note that T ≤ F.7 Finally, F c = U \ F is the set of unknown facts. The goal
7 Per standard convention I denote the size of a set using the corresponding roman symbol.

E.g. E is the size of E .
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of a KBC system is to rank the elements of F c so that facts that are correct

receive a smaller rank than incorrect facts.

Embedding Model: I assume that every relation r ∈ R and entity e ∈ E

can be represented using real valued vectors r ∈ Rd and e ∈ Rd̃; d and d̃ may

have different values. The vector representation of each tuple t is computed

from its constituent entities via a composition function c : Rd̃×Rd̃→Rd, i.e.

t = c(e, e′). For example c may denote vector concatenation, in which case

t = [eT , e′T ]T . I will use the semicolon symbol ; as an infix operator to denote

vector concatenation, i.e. (x; y) = [xT ,yT ]T . Finally, x ≥ y denotes that the

vector x is elementwise larger than y and B(x, r) denotes the L2 ball centered

at x with radius r.

Score Function: A majority of the existing work on embedding based KBC

measures the correctness of a fact via a scoring function, score : R×E×E→R,

with the property that when score(f) > score(f ′), fact f is more likely to be

correct than f ′. The two major classes of score functions are:

score(f) = ⟨r, t⟩ (5.2)

score(f) = −||r− t||2 (5.3)

In Equations (5.2–5.3), r and t are vector representations of r and t = (e, e′),

respectively, that are constituents of f = (r, (e, e′)). For brevity, I will omit this

expansion from here onwards.

Unconstrained Objectives for Learning Score Function (Rendle et

al. 2009) proposed the Bayesian Personalized Ranking (BPR) objective as a

way of tuning recommendation systems when a user can only observe positive

training data, such as correct facts, but the facts that are absent may be either
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correct or incorrect. in this chapter I will focus on the BPR objective since this

objective has been used for learning the parameters of a KBC system by various

researchers (Rendle et al. 2009; Demeester, Rocktäschel, and Riedel 2016; Riedel

et al. 2013). (Wang and Cohen 2016) experimentally showed that the BPR

objective outperforms other objectives such as Hinge Loss and Log Loss.

BPR posits that the training data is a single joint sample of U(U−1) bernoulli

random variables {bff ′ | f ∈ U , f ′ ∈ U , f ′ ≠ f}. bff ′ equals 1 when f is in F and

f ′ is in F c and 0 otherwise. bff ′ is parameterized by its probability pff ′ and all

bff ′ are conditionally independent given the probabilities pff ′ . The probability

values must obey the reasonable condition that pff ′ = 1−pf ′f . A natural way to

satisfy this condition is to parameterize pff ′ as σ(score(f)− score(f ′)) where σ

is the sigmoid function.8 The BPR estimator is simply the L2 regularized MLE

estimator of this probabilistic model, with regularization strength α. Table 5.4

lists instances of the BPR objective that arise with different score functions.

Logical Consistency of Embeddings through Constraints My general

scheme for incorporating logical relations into embeddings is to ensure that during

the learning of the vector representation of entities and relations, the score of

a consequent fact will be greater than the score of any of its antecedents. In

other words if f1, . . . , fn−1 =⇒ fn then score(fn) ≥ mini∈[1,n−1](score(fi)). If

this does not hold, then it will be possible for my KB to assign a low score to a

logically entailed fact even though all of its antecedents have a high score.

I analyzed common logical rules found in large scale KBs, and for different

combinations of a logical rule and scoring function, I devised inequalities that
8The sigmoid function, σ(x) = 1

1+exp(−x) , has the useful properties that σ(x) + σ(−x) = 1
and dσ(x)

dx = σ(x)σ(−x).
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Model score Minimization Objective (J)
A | t = (e; e′)
R | t = e⊗ e′ (5.2) −

∑︂
(f,f̄)∈F×Fc

log(σ(⟨r, t⟩ − ⟨r̄, t̄⟩)) + α(
∑︂
r∈R
||r||2 +

∑︂
t∈E
||e||2)

B
t = (e; e′; eT e′) (5.2) −∑︁ (f,f̄)∈F×Fc log σ

⎛⎝⟨r1, e⟩+ ⟨r2, e′⟩+ ⟨e, e′⟩
− ⟨r̄1, ē⟩ − ⟨r̄2, ē′⟩ − ⟨ē, ē′⟩

⎞⎠
+α(∑︁r∈R ||r||2 +∑︁

t∈E ||e||2)

C | t = (e; e′)
T | t = e− e′ (5.3) −∑︁(f,f̄)∈F×Fc log(σ(||̄r− t̄||2 − ||r− t||2))

+α(∑︁r∈R ||r||2 +∑︁
t∈E ||e||2)

D
t = (e; e′||e− e′||) (5.3) −

∑︂
(f,f̄)∈F×Fc

log σ
(︄
||̄r1 − ē||2 + ||̄r2 − ē′||2 + ||ē− ē′||2

−||r1 − e||2 − ||r2 − e′||2 − ||e− e′||2

)︄
+α (∑︁r∈R ||r||2 +∑︁

t∈E ||e||2)

Table 5.4: Instances of the BPR objective corresponding to different choices of
composition and score functions. For example, if c(e, e′) = (e; e′) and Eq. 5.2 is used
as the score function then I need to minimize the function in the first row with respect
to r, e. In the first and third row, r = (r1; r2), in the second row r = (r1; r2; 1) and
in last row r = (r1; r2; 0). The symbol ⊗ refers to the vector outer product operator
that takes two vectors of size d̃ and produces a vector of size d̃2. Since this scoring
function is equivalent to the score function of RESCAL I call the model R. Similarly
the scoring function for T is the same as TransE (Bordes et al. 2013) .
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the score function should satisfy. I translated those inequalities into constraints

that restrict the entity and relation representations in a KB.

I use the projected subgradient descent algorithm for learning the parameters

of my KBS system. Algorithm 2 shows a specific instance, for Model A and

batch size 1, of my parameter learning algorithm with a general set of rules L. I

now show how to construct convex constraints from logical rules.

5.4.1 Constraints for Logical Consistency: Relational Im-
plication

I now present the constraints for guaranteeing that the predictions from embed-

dings based KBC systems are consistent with logical rules starting with implica-

tion rules. An implication rule of the form, RelImp(r, r′), specifies that if a fact

f = (r, t) is correct, then (r′, t) must also be correct. For example, the rule Re-

lImp(HusbandOf,SpouseOf) enforces that if my KB predicts the fact, (Husband

Of,(Don,Mel)), then it will also predict (SpouseOf,(Don,Mel)). As explained

above I can enforce such a rule by ensuring that score(r′, t) ≥ score(r, t) ∀t ∈ T .
9

When I use the inner product score function (5.2) then this inequality can

be enforced by ensuring that ⟨r′ − r, t⟩ ≥ 0 for all t ∈ T . I constrain t to lie in

a subset of Rd, say T, then the implication rule can be enforced by constraining

r′ − r to lie in the dual cone of T, denoted T∗. A very convenient special case

arises when I chose T to be a “self dual cone” for which T = T∗. The set of

positive real vectors Rd
+ is one example of such a self-dual cone. 10

9I abuse notation in saying that score(r, (x, y)) = score(r, x, y).
10Other self-dual cones, distinct from Rd

+ also exist such as the Lorentz cone {x ∈ Rd | xd ≥√︂∑︁d−1
i=1 x2

i }. I refer the reader to (Gruber 2007) for more details on the geometry of closed
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When I use the L2 distance score function (5.3) then the restriction on

the score function translates into the following constraints on the vector rep-

resentations: ||r − t||2 − ||r′ − t||2 ≥ 0 =⇒ ⟨r − r′, r′ + r − 2t⟩ ≥ 0

=⇒ ⟨r − r′, r′ + r⟩/2 ≥ hT(r − r′). Here hT(x) is the value of the support

function of T at x which is defined as hT(x) = supt∈T⟨x, t⟩. It is necessary and

sufficient for the feasibility of this constraint that the hT function should be

finite for at least one value of x = r− r′. Once I have fixed r− r′ then r + r′

can be easily chosen from the halfspace H−(r′ − r, 2hT(r− r′)). Note that if hT

is difficult to compute then implementing this constraint will also be difficult,

therefore I must chose T wisely.

One example of a good choice of T is Rd
+. hRd

+
(r− r′) is finite and zero iff

r−r′ ≤ 0 therefore, the value of r+r′ must lie in the halfspace ⟨r−r′, r′ +r⟩ ≥ 0.

Unfortunately, the problem of finding r and r′ vectors that satisfy this constraint

is non-convex and it is not possible to project on to this set given a pair of vectors

that violate the constraints. I remedy this situation by adding an additional

constraint that r + r′ must also lie in the negative orthant, i.e. r + r′ ≤ 0.

Table 5.5 presents all the derived constraints. Unfortunately, since the T model

defines t = e − e′, therefore it is not possible to set T = Rd
+. In the case

of the T model if I constrain e to lie in B(0, ρ) then t must lie in B(0, 2ρ)

and hT(r − r′) = 2ρ(r − r′) =⇒ ⟨r−r′,r′+r⟩
||r−r′|| ≥ 4ρ. One way to make this

constraint amenable to efficient projection is to enforce that r + r′ = 4ρ(r− r′)

and ||r − r′||2 ≥ 1 =⇒ ||r′||2 ≥ |2ρ− .5|. This constraint becomes trivial if

ρ = 0.25

convex cones and their polar and dual sets.
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5.4.1.1 Reverse Relational Implication and Symmetry

A reverse relational implication rule denoted by RevImp(r, r′) specifies that if

(r, (x, y)) is correct, then (r′, (y, x)) is also correct for all (x, y) ∈ T . This rule can

be enforced through the inequality that score(r′, y, x) ≥ score(r, x, y). Depending

on the model let r = (r1; r2) or (r1; r2; 1 or 0) as shown in Table 5.4, and similarly

decompose r′. I will omit this detail in later sections. Under models A and B, this

inequality translates to the following constraint ⟨y, r′
1⟩+⟨x, r′

2⟩ ≥ ⟨x, r1⟩+⟨y, r2⟩

and under models C and D, the necessary constraints are ⟨r1−r′
2, r1 +r′

2−2x⟩ ≥

⟨r′
1 − r2, r′

1 + r2 − 2y⟩. Stronger versions of these constraints, which are more

efficient to enforce, are shown in Table 5.5.

A symmetry rule denoted as Symm(r) specifies that if the fact (r, (e, e′))

is known to be correct then (r, (e′, e)) is also correct. I can only comply with

this logical rule in an embedding base KB by ensuring that score(r, e, e′) =

score(r, e′, e). Under all 4 score models this rule can be enforced only by ensuring

that r1 = r2.

5.4.1.2 Entailment

A type A entailment logical rule denoted as EntailA(r, e, r′, e′) specifies that

(r, (e, x)) implies (r′, (e′, x)) for all x in E .11 A Type B entailment rule, En-

tailB(r, e, r′, e′) specifies that (r, (x, e)) implies (r′, (x, e′)). r and r′ may denote

the same relation. For example, the rule EntailB(IsA,Man,IsA,Mortal) can

be used to enforce that if (IsA,(Socrates,Man)) then the KB must also predict

that (IsA,(Socrates,Mortal)). The final constraints required to implement
11I use the term, entailment, in the sense of entailment of properties. Note that this is

different from implication.
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a type B entailment rule are shown in Table 5.6.12

5.4.1.3 Property Transitivity

A property transitivity rule denoted ProTrans(r, r′, e′, r′′, e′′) specifies that if

(r, (x, y)) and (r′, (y, e′)) are true then (r′′, (x, e′′)) is also true. For example, the

rule ProTrans(Partner, Convicted, Criminal, Suspected, Criminal) can

be used to incorporate the common sense rule that if an entity is the partner

of a convicted criminal then it will be suspected of being a criminal into the

embeddings based KB. Note that the score of the hypothesis fact (r′′, (x, e′′))

should be high if the antecedent facts have high score for any possible entity y. A

natural way in which I can incorporate such a rule into score based KBC models

is by ensuring that score(r′′, x, e′′) ≥ maxy∈E min(score(r, x, y), score(r′, y, e′)).

In order to derive efficient constraints that can enforce this inequality I now

strengthen the constraint imposed on the score function by replacing the min

function in the lower bound to a convex combination of the scores, i.e. let

λ ∈ (0, 1), I enforce the inequality that score(r′′, x, e′′) ≥ maxy∈E λ score(r, x, y)+

(1− λ) score(r′, y, e′) .

Since a convex combination of two values is greater than their minimum,

this stronger inequality translates to the following constraint for model A:

⟨e′′, r′′
2⟩− (1−λ)⟨e′, r′

2⟩+ ⟨x, r′′
1−λr1⟩ ≥ ⟨y, λr2 + (1−λ)r′

1⟩. Let a = r′′
1 −λr1+e′′

λ
,

b = − (1−λ)(r′
1+e′)+λr1
λ

, c = ⟨r′′
2 ,e′′⟩−(1−λ)⟨r′

2,e′⟩
λ

, and let E contain the set {e | e ∈ E}.

For Model B, the above inequality on the score function leads to the the constraint:
12Details: To implement a type B entailment rule I need to ensure that score(r′, x, e′) ≥

score(r, x, e) for all x ∈ E . Under model A this inequality translates to, ⟨r′
1 − r1, x⟩ ≥

⟨r2, e⟩ − ⟨r′
2, e′⟩. Model B requires ⟨r′

1 − r1 + e′ − e, x⟩ ≥ ⟨r2, e⟩ − ⟨r′
2, e′⟩. Model C requires

⟨r1−r′
1, r1 +r′

1−2x⟩ ≥ ⟨r′
2−e′ +r2−e, r′

2−e′−r2 +e⟩, and finally the constraints over model
D’s score functions are ⟨r1− r′

1, r1 + r′
1⟩+ ⟨e− e′, e + e′⟩− ⟨r′

2− e′− r2 + e, r′
2− e′ + r2− e⟩ ≥

2⟨r1 − r′
1 − e− e′, x⟩.
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∀x,y ∈ E, ⟨x,y⟩ ≤ ⟨x, a⟩+ ⟨y,b⟩+ c. Remember that my goal is to devise a

set E, and constraints on relation embeddings such that it is efficient to project

onto it and for which the above inequality can be guaranteed. The following

proposition shows how to construct such a set:

Proposition 5. Let x,y be members of Rd
+∩B(a, ||a||) and a ≥ 0 then ⟨x,y⟩ ≤

⟨x + y, a⟩.

The above proposition shows that if a = b and c ≥ 0 then by setting

E = Rd
+ ∩B(a, ||a||) I can satisfy the above constraints.

Rule Model Constraints

RelImp(r, r′) A, R, B r ≤ r′

C, D r ≤ r′ ≤ −r

RevImp(r, r′)
A,B r′

2 ≥ r1, r′
1 ≥ r2

C, D r1 ≤ r′
2 ≤ −r1, r2 ≤ r′

1 ≤ −r2.
R matrix(r′) ≥ matrix(r)

Table 5.5: Constraints sufficient for enforcing RelImp(r, r′) and RevImp(r, r′) The
constraint e ≥ 0∀e ∈ E applies for all models. matrix is the inverse of the operation
that converts a matrix to a vector by concatenating its columns. I.e. matrix(r) denotes
the matrix form of the vector r.
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Alg. 2 Projected SGD for Model A, Batch Size=1
Given: F ,F c,L. Hyperparameters: α, η, S.
for each fact f ∈ F do

for S steps do
Sample f̄ = (t̄, r̄) from F c

Let v = σ(⟨r̄, t̄⟩ − ⟨r, t⟩)
▷ Fix e and optimize J
∂J(f)

∂r = −tv, ∂J(f)

∂r̄ = t̄v
(r; r̄)←proj L

(︂
(r; r̄)− η((∂J(f)

∂r ; ∂J(f)

∂r̄ ) + 2α(r; r̄))
)︂

▷ Fix r and optimize J
∂J(f)

∂t = −rv, ∂J(f)

∂t̄ = r̄1v

(t; t̄)←ProjL
(︂
(t; t̄)− η((∂J(f)

∂t ; ∂J(f)

∂t̄ ) + 2α(t; t̄))
)︂

end for
end for

5.4.1.4 Type Implication

A type implication rule, denoted as TypeImp(r, e, r′), specifies that if the fact

(r, (x, y)) is correct then (r′, (x, e)) is also correct ∀(x, y) ∈ T . In other words, this

rule enforces that positional arguments of a relation possess certain properties.

For example, the rule TypeImp(Husbandof,Man,Gender) can enforce that if

my KB predicts the fact that (Husbandof,(Don,Mel)) then it also predicts

that (Gender,(Don,Man)).

Under model A the TypeImp(r, e, r′) rule translates to the following in-

equality for the parameters ⟨x, r′
1⟩ − ⟨x, r1⟩ ≥ ⟨y, r2⟩ − ⟨e, r′

2⟩∀(x, y) ∈ T . Let

a = e + r′
1 − r1, b = −r2 and c = ⟨r′

2, e⟩. Under model B, the restriction on the

score function translates to: ⟨x,y⟩ ≤ ⟨a,x⟩+ ⟨b,x⟩+ c. The analysis for this

case again relies on Propostion 5 and the analysis for models C and D is yet out

of reach. See Table 5.6.
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Model Constraints
A r′

1 ≥ r1, ⟨r2, e⟩ ≤ ⟨r′
2, e′⟩

B r′
1 ≥ r1 + e− e′, ⟨r2, e⟩ ≤ ⟨r′

2, e′⟩

C
r1 ≤ r′

1 ≤ −r1, r2 − e ≤ r′
2 − e′,

r′
2 + r2 ≤ e′ + e

D
r1 − r′

1 ≤ e′ − e, e ≥ e′, r1 ≤ r′
1 ≤ −r1,

r2 − e ≤ r′
2 − e′, r′

2 + r2 ≤ e′ + e

Table 5.6: Sufficient constraints for EntailB(r, e, r′, e′). The constraint e ≥ 0∀e ∈ E
applies for all models.

Rule Model Constraints

ProTrans

A
r′′

1 ≥ λr1, λr2 + (1− λ)r′
1 ≤ 0

⟨e′′, r′′
2⟩ ≥ (1− λ)⟨e′, r′

2⟩

B

r′′
1 + e′′ + (1− λ)(r′

1 + e′) = 0,

⟨r′′
2, e′′⟩ ≥ (1− λ)⟨r′

2, e′⟩, and

a ≥ 0,∀x ∈ E , x ∈ Rd
+ ∩B(a, ||a||)

TypeImp
A r′

1 ≥ r1, ⟨e, r′
2⟩ ≥ 0 and r2 ≤ 0

B
e + r′

1 = r1 − r2, ⟨r′
2, e⟩ > 0, and

−r2 ≥ 0, ∀x ∈ E x ∈ Rd
+ ∩B(−r2, ||r2||)

Table 5.7: Constraints for enforcing ProTrans(r, r′, e′, r′′, e′′) and TypeImp(r, e, r′).
a = r′′

1 −λr1+e′′

λ
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5.4.2 Evaluating Logical Deduction and KBC on Word-
Net

My method for training embeddings based KBC systems allows for a very

interesting application for solving logical puzzles using an embedding based

KBC system without using an external logical-symbolic subsystem. I perform a

controlled experiment where I compare the performance of an embedding based

KBC system trained with the constraints versus a system that has been trained

without those constraints.

Data Consider the logical deduction problem shown in Table 5.8. This

is a simplified version of a logical puzzle presented in (Russell, Norvig, and

Intelligence 1995). In this puzzle, Nono is a country that possesses a WMD and

Benedict has traded with Nono. The KB has to deduce whether Benedict is a

criminal based on just two input facts and 3 rules. The total number of facts is

52 × 4 = 100.

Rules
RelImp(TradeWith,TransactWith)
EntailB(Possess,WMD,Considered,Enemy)
ProTrans(TransactWith,Enemy,
Considered,Criminal,Considered)

Facts
(Possess,(Nono,WMD))
(TradeWith,(Benedict,Nono))

Query ?
(Considered,(Benedict,Criminal))

Table 5.8: A Logical Deduction Problem. Based on the rules and facts a KB should
infer that Benedict is a Criminal.

Evaluation I train two versions of two KBC systems, Models A and B,

with batch size= 1, α = 0.001, η = 0.1, S = 200, d = 50, and d̃ = 25 using
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Baseline ELKB
Model P@10 MRR MAP P@10 MRR MAP
A 0.00 0.02 0.01 0.20† 0.44† 0.83†

B 0.00 0.03 0.03 0.17† 0.26† 0.35†

Table 5.9: Table of Results. The baseline of R is equivalent to the RESCAL
method.Bold marks that the average performance is higher. † implies that the
difference is significant with two-tailed p-value ≤ 0.005 as measured by a matched
pair t-test.

Algorithm 2. Both KBs were trained in one pass using the two training facts. The

only difference was that the baseline system did not constrain the embeddings

to obey logically derived geometric constraints. After training, I queried the

KBs for the scores of all possible facts. I ranked all the facts based on their

scores, excluding the training facts, and marked all facts that could be logically

entailed from the two training facts as correct results and the rest of them as

incorrect. I performed 10 runs, and in each run, I computed the MRR, P@10,

MAP for the two models. Finally, I averaged these quantities over 10 runs.

Results Table 5.9 shows that my method was able to rank logically entailed

facts with much higher precision and recall than the baseline systems. This

validates my intuition that logical rules can be usefully incorporated into the

parameter learning mechanism of a KBC system via simple geometric constraints

even for low dimensional embeddings. The reason for the large improvement in

performance by the ELKB system in comparison to the baseline is that the ELKB

model makes the score of entailed facts higher than the score of non-entailed

facts because of the constraints during learning. E.g. the scores of entailed

facts such as (Considered,(Nono,Enemy)), and (TransactWith,(Benedict,

Nono)) are forced to be high in comparison to non-entailed facts such as (Trade

With,(Benedict,WMD)). In comparison, the baseline method does not have this

119



systematic advantage, and its scores remain unchanged.

5.4.3 Evaluating Link Prediction on WordNet

In the link prediction task, the KBC system is given incomplete facts, with either

a missing head entity or tail entity, i.e. given either (r, (_, e′)), or (r, (e,_)) the

system has to predict e or e′ respectively. I evaluated the utility of proposed

constraints by comparing the performance of model A and model B trained with

and without the constraints. I now present the results of my experiments on

the WN18 knowledge graph,13 derived from WordNet, and released by (Bordes

et al. 2013), which is a popular testbed for KBC algorithms (Wang et al. 2014;

Lin et al. 2015; Toutanova et al. 2015; Yang et al. 2015).

Data The WN18 dataset comes with standard train, development and test

splits. These three splits of the data contain 141442, 5000, and 5000 facts

respectively. The total number of relations in the WN18 dataset is 18, and the

number of entities is 40,943. Recently (Guo et al. 2016) publicly released a list

of logical rules14

For all the models I fixed batch size= 10, α = 0.001, η = 0.125, S = 200, d̃ =

100, for model T , d = 100 and otherwise d = 200. Following existing work, I

measured the MRR, HITS@3 and Hits@10 metrics and reported their average

over the two tasks of head entity prediction and tail entity prediction. Instead

of training in a single pass, I trained my models for 50 epochs on the WN18

dataset and chose the best parameters using early stopping on the validation

set. In other words, I used the parameters from that epoch which performed the
13I found that the performance of models C, D and R was too low therefore I do not report

their results.
14aclweb.org/anthology/attachments/D/D16/D16-1019.Attachment.zip
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Model Project MRR HITS@3 HITS@10
A No 0.0152 0.016 0.0330
A Yes 0.0238 0.03 0.0514
B No 0.0677 0.072 0.137
B Yes 0.241 0.283 0.50
T No 0.311 0.412 0.66

Bproject+T – 0.367 0.475 0.708

Table 5.10: MRR, HITS@3 and HITS@10 of the constrained and unconstrained
versions of models A, B and unconstrained T. B+T reports the results of combining
models B and model T.

best on the validation set in terms of the HITS@10 metric. Finally, I combined

the predictions of the best performing T model and the best performing system

based on model B. In order to combine the two ranking systems I trained a

logistic regression classifier using the default settings in vowpal webbit15 to first

predict whether model T or model B will produce a better ranking and then

output that system’s ranking over entities for evaluation. My logistic regression

classifier had 73% accuracy on the training data and 70% accuracy over the

test data. By using this third system, I were able to create a single ranking

system that performed better than model T which is very similar to the TransE

model.16

Results Table 5.10 shows that both the constrained and unconstrained

versions of model A perform quite poorly. This is to be expected since model A

scores a triplet (r, (e, e′)) as ⟨r, e⟩+⟨r, e′⟩. Regardless of e′, the ranking produced

by the model will remain the same. Therefore model A is unsuitable for this
15https://github.com/JohnLangford/vowpal_wabbit
16The main differences between model T and TransE are that TransE used hinge loss versus

the BPR objective. TransE does not regularize the relation embeddings and forces the entity
embeddings to lie on the unit sphere, instead in model T I add a quadratic regularization term
to regularize the embeddings.
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task, for similar reason model C is also an unsuitable model. However, the

drastic improvement in the performance of model B when it is trained according

to the constraints corresponding to the RevImp rules demonstrates the utility

of my proposed constraints. After adding the constraints, the MRR increased

almost 3 times and the value of HITS@10 by 4 times from 0.137. Recall that at

test/inference time the constraints do not play any role, so the only role of the

constraints is as a form of regularization on the parameters of the model.

5.4.4 Discussion

It is instructive to look at a few examples of the predictions that model B

makes and to compare them to the predictions made by model T. Table 5.11

compares the top 5 predictions of constrained model B with the predictions from

model T for the input (hypernym, (_, floweringshrubNN_1)). The true answer

is poinciana_gilliesii_NN_1 so the model T achieves a reciprocal rank of 1

for this example, but constrained model B is not able to rank the right answer

within the top 5 answers. This list of answers shows that model B ranks those

answers higher that are similar to floweringshrubNN_1, but it is not able to

properly use the relation information. However, by properly combining the

models, I can improve the performance of the overall system.

B T
flowering_shrub_NN_1 poinciana_gilliesii_NN_1

genus_caesalpinia_NN_1 mysore_thorn_NN_1
shrub_NN_1 flowering_shrub_NN_1
tree_NN_1 pernambuco_wood_NN_1

rosid_dicot_genus_NN_1 caesalpinia_bonducella_NN_1

Table 5.11: A comparison of the top 5 predictions of constrained model B with the
predictions from model T for the input (hypernym, (_, flowering shrub NN_1)).
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5.5 Conclusion

I have presented a novel method for incorporating logical constraints into an

embedding based knowledge base by constraining the parameters of a KB. My

experiments on a small logical deduction problem, and on WordNet, indicate

that my ideas of imposing geometric constraints on embeddings for enforcing

logical rules are sound and that they can improve the generalization of models

that are hard to train otherwise. Although the KBC models A, B, C and D

do not perform as well as existing models trained without constraints such as

TransE, I show that they can be used as part of a combination of systems to

improve upon existing methods.
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Chapter 6

Comparative Experiments

In this chapter, I present experiments on the downstream tasks of Corefer-

ent Mention Retrieval and Entity Linking using the MVLSA and Variational

Autoencoder representation learning methods.

The Coreferent Mention Retrieval (CMR) task, is an information retrieval

task, in which the system receives a query sentence mentioning an entity, and the

goal is to retrieve sentences containing coreferent mentions of that entity. A user

may use a CMR system to find more mentions of an entity when performing an

exploratory task over a corpus containing information about entities. The CMR

task is a special case of the well-studied problem of Cross-Document Coreference

Resolution (Bagga and Baldwin 1998; Mayfield et al. 2009) – in which the system

has to cluster all mentions of all entities – in which, unlike Cross-Doc Coref.

Rather than operating on the entire mention graph, the system uses retrieval

techniques to limit its focus to an implicit subgraph anchored by the given query

mention.

Recently, (Sankepally et al. 2018) introduced the CMR task and introduced

a new dataset for this task. In this chapter, I compare a number of unsupervised
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representation learning methods to learn representations of mentions. I compare

LSA, MVLSA, and Variational Auto Encoder based approaches and demonstrate

that these features can improve the performance of a strong information retrieval

system.

The Entity Linking task is the task of automatically annotating spans of

words in natural language texts that mention an entity with the coreferent entity.

Entity linking is also sometimes called entity disambiguation to distinguish it

from the task of jointly detecting the span of words mentioning an entity and

the linking the span to an entity. In this chapter, I focus exclusively on the task

of linking a given span in an unstructured plain text document to an entity in a

Knowledge Base.

The ACE corpus (The ACE 2005 (ACE05) Evaluation Plan 2005) contains

a wide range of documents from varying genres such as newswire and online

newsgroups. The entire corpus is annotated with the mention boundaries,

coreference information between mentions, the semantic type of each mention,

and finally, the entity links for each mention which were added by (Bentivogli

et al. 2010). The semantic type of an entity can be from one of seven classes:

Person,Organization,GPE,Location,Facility,Weapon, and Vehicle. The

entity links from mentions to a canonical Wikipedia URL are absent for the

Weapon and Vehicle classes. I compare LSA, MVLSA and Variational Auto

Encoder based approaches for entity linking and I observe how these unsupervised

features learned can improve entity linking performance.
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6.0.1 Hypothesis

Based on the experiments and discussion in chapters 4 and 3 we hypothesize that

the NVSE method which is based on the Variational autoencoder framework

will outperform the spectral method based MVLSA method for the CMR task.

One of the reasons for this is that the MVLSA method requires access to a large

number of disparate views which are not readily available for the CMR task.

Due to similar reason, we believe that the VAE based method will be better

than MVLSA for the task of entity linking. In fact, we skip testing the MVLSA

method in a head-to-head comparison with NVSE on the entity linking task

and focus on comparing the VAE based method to a state-of-the-art entity

embedding method based on max-margin learning.

6.1 Coreferent Mention Retrieval

The CMR dataset released by (Sankepally et al. 2018) was constructed using the

TAC-KBP2014 Entity Discovery and Linking dataset (Ji, Nothman, and Hachey

2014) which is available from the LDC as LDC2014E54,LDC2014E13. I will refer to

this collection as TAC14. This dataset contains newswire documents, annotated

mentions of entities in those documents, and some entity links between those

mentions and canonical URLs of entities in Wikipedia. (Sankepally et al. 2018)

used 84 mentions as input queries from TAC14. A subset of the documents

from TAC14 collections was chosen for retrieval as follows: First, the earliest

and latest dates for the documents from which the query mentions were selected

were determined. Then, those documents whose dates did not fall between

these dates were filtered out. This reduced the size of the retrieval set from 1
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million to 117, 132 documents. Given a query mention – out of the 84 mentions

– the goal was to find all co-referent mentions for that query out of 117, 132

documents. Since the TAC14 collection has fairly sparse mention, annotations,

therefore, Sankepally et al. used the Amazon Mechanical Turk platform to obtain

additional relevance judgments for a set of candidate mentions. A total of 4, 172

relevant mentions were collected in this way.

(Sankepally et al. 2018) measured the performance of a system – at the level of

individual sentences – using the Mean Inferred Average Precision metric (Yilmaz

and Aslam 2006). The average of infAP over all queries is Mean infAP, and

analogously the average of inferred AP is mean Inferred AP. Inferred Average

Precision is a refined version of the Average Precision metric that accounts for

the fact that some of the results that are returned by a system may actually be

relevant but may have been skipped by judges during manual annotation. Inferred

Average Precision metric also assumes that the top-K results returned by a system

have perfect recall. I briefly explain how inferred Average Precision (infAP) is

computed for a query. Let us first recall how Average Precision (AP) is computed.

Assume that a retrieval system returns a ranked list of documents, for each

document in the ranked list I evaluate whether the document is relevant or not.

This gives us a sequence of binary values (ei)N
i=1 where ei is the binary relevance

of the ith result. The average precision is computed as

N∑︂
i=1

ei

N

∑︁i
j=1 ej

i

Note that ∑︁i
j=1 ej/i is the precision at the ith position. (Yilmaz and Aslam

2006) showed that the above metric could be considered as an expectation of
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the following random experiment.

Algorithm 3 The Average Precision Random Experiment.
1: Input: A list, L, of binary relevance values, And a map, M , of relevant

documents to their rank in L or if a relevant document is not present in L then
the default value is L.

2: Select a relevant document at random from the keys of M and let its associated
rank be R.

3: Select a rank r uniformly at random from the set {1, . . . , R}.
4: Output the binary relevance of the document at rank r.

Steps 3 and 4 effectively compute the precision at a relevant document, and

Step 2 has the effect of weighted averaging over all documents, weighted by

the relevance of a document. The inferred Average Precision metric changes

steps 3 and 4 to compute precision at rank R more robustly when all the relevant

mentions are not available in the retrieved set.

6.1.1 Experiments

I performed mention retrieval experiments on the CMR dataset in a query-by-

example setting. I first learned representations of un-linked mention spans of

named entities using methods such as MVLSA and Variational Autoencoders,

and then I used these features to re-rank the top-100 results returned by the

Lucene (McCandless, Hatcher, and Gospodnetic 2010) Information Retrieval

software. In the following sections, I explain the pre-processing steps performed

before doing Lucene retrieval and the features used to learn mention represen-

tations, and finally how the mention representations were used for the final

mention retrieval.
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6.1.1.1 Mention Featurization

A mention is a span of words inside a sentence that refers to an entity.1 Such

spans are already marked in the TAC14 collection (Ji, Nothman, and Hachey

2014). Given all the mentions in the corpus, my first step is to obtain the raw

features for each mention-span in the corpus. I followed the best-performing

pre-processing method from (Sankepally et al. 2018) for the following steps.

I created two sets of features for each mention.2 The first field of features –

called the mention field – uses the mention words, and the second field – called

the document field – is built upon the background document text for representing

candidate mentions. Each field contains binary and real-valued features. The

binary features are constructed by counting the occurrence of the mention

string, the mention type, trigrams of mention string, and an acronym of the

mention. The acronym feature was created by concatenating the first alphabetic

character of each mention word. All English stop words such as “the”, “an”,

“of” were removed before constructing the features.3 The real-valued features

were constructed from the mention words, words from the surrounding sentence

and top-scoring words from surrounding document and words in the coreference

chain of the mention.4 All real-valued features in both the fields were weighted

using the BM25 weights5 but the binary features were not weighted using BM25.
1Such Spans are also called named-spans, but I will use the term mentions throughout.
2These feature sets are also called fields in the Information Retrieval literature.
3The Lucene StandardAnalyzer filters the lowercased and normalized output of a grammar-

based tokenizer which implements the word-break rules from the Unicode Text Segmentation
algorithm (Davis 2011) using a list of English stop words. The normalizer removes the ’s at
the end of words and dots in acronyms.

4The coreference chain was extracted using the Stanford CoreNLP coreference resolution
system.

5See § 4.4.1 for details about BM25.

129



After obtaining the features, I index them using the Lucene library. At

query time I first retrieve the top-100 mentions from Lucene along with their

scores as computed by Lucene. For representing the query, I only used the

mention words in the query and projected these query features using Lucene’s

multi-field Query Parser. I.e., I duplicated the mention words across both the

mention field and the document field. The document field was given a weight of

w and the mention field was given a weight of 1.0.

For example, the query Keith Wiggans is represented as weighted bag-of-

words features spread across two fields with associated weights as shown below:

mention_keith:1.0,document_keith:0.1,mention_wiggans:1.0,document_wiggans:0.1

6.1.1.2 Learning Entity Embeddings

As mentioned earlier I experimented with MVLSA and the Variational Autoen-

coder method described in Chapter 4. I conducted experiments on a CMR

dataset by (Sankepally et al. 2018) and evaluate the inferred Average Precision

metric. The results of the evaluation are shown in Table 6.1 and we can conclude

the following from the results:

6.1.2 Results and Discussion

MVLSA m is the intermediate dimensionality, k is the final dimensionality.

6.1.2.1 Performance Comparison between MVLSA and VAE

The highest performance of the Variational Autoencoder is 50.91 infAP points

individually which is far superior to the best performance of achieved by MVLSA

of 37.08. Clearly the non-linearity of the encoder and optimizing the ELBO
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Method Hyper-parameters InfAP Ensemble
(Sankepally
et al. 2018)

w = 0.01 54.26
w = 0.01 54.53

LSA of
Concatenated
Views

dim= 20 34.08 50.11
dim= 300 40.08 50.32
dim= 500 38.08 49.39

Multiview LSA

m = 500,k = 500 37.08 -
m = 500,k = 1000 36.65 -
m = 500,k = 300 36.51 -
m = 256,k = 300 35.08 48.95

Variational
Autoencoder

Multilabel
Decoder

lbv = 0, encdim1 = 150, β = 1 36.35 -
lbv = 1, encdim1 = 150, β = 1 39.55 -
lbv = 1, encdim1 = 300, β = 1 40.99 -

Multinomial
Decoder

nepoch = 5, β = 1, 50.25 55.13
nepoch = 5, β = 1, +lbv = 0 46.29 -
nepoch = 5, β = 1, +deduplicate 50.25 -
nepoch = 0, β = 1 50.74 54.05
nepoch = 40, β = 1 50.29 55.04
nepoch = 5, β = 1, +smooth=0.5 50.91 55.27
nepoch = 2, β = 0.0, smooth = 0.5 49.67 55.80
nepoch = 2, β = 0.2, smooth = 0.5 49.31 55.42
nepoch = 2, β = 0.4, smooth = 0.5 49.62 55.53
nepoch = 2, β = 0.6, smooth = 0.5 48.83 55.14
nepoch = 2, β = 0.8, smooth = 0.5 50.34 54.69

Table 6.1: Results of Different Unsupervised Representation Learning Algorithms on
the Contextual Mention Retrieval Task.
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objective is helping the VAE extract more useful features from the raw bag-of-

words representation.

6.1.2.2 The influence of Decoder Type on VAE

The decoder type choice for the VAE exerts significant influence on the perfor-

mance of the VAE. The best performance with the multilabel decoder for the

VAE is 40.99 which increases by 10 absolute points to 50.91 in the case of the

multinomial decoder. This shows us that the multinomial decoder is the better

choice for encoding high-dimensional sparse bag-of-words representations of text

documents.

6.1.2.3 The effectiveness of VAE training

An interesting observation is the relatively small improvement in the individ-

ual performance of the VAE from 50.74% infAP to 50.91% infAP after the

multinomial decoder is trained for 5 epochs. However, the improvement in the

ensemble-performance is larger from 54.05% to 55.80% which is almost a 2%

absolute improvement in inferred average precision.

6.2 Named Entity Disambiguation

The goal of Named Entity Disambiguation (NED) is to link a detected name-

mention in a text document to an entity in a knowledge graph (KG). See Hoffart

et al. (2011) for an overview of the NED task and survey of approaches circa 2011.

See (Bollacker et al. 2008; Dong et al. 2014) for an introduction to knowledge

graphs.

More recently, unsupervised representation-learning approaches – such as
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Word2Vec (Mikolov et al. 2013), Paragraph Vectors (Le and Mikolov 2014), and

BERT (Devlin et al. 2018a) – have become popular for language processing tasks.

Simultaneously systems that learn low-dimensional and dense Entity Embeddings

were proposed for the NED task by He et al. (2013), Yamada et al. (2016),

Fang et al. (2016), Zwicklbauer, Seifert, and Granitzer (2016), and Yamada

et al. (2017) and Ganea and Hofmann (2017). In light of the greatly increased

research into entity-embeddings, and because of the sustained interest in solving

the NED task, the investigation – presented in this paper – of the effects of

different entity embedding methods on NED accuracy will be useful.

One of the current best NED systems is the document-level joint-inference

neural model proposed by (Ganea and Hofmann 2017). This model roughly

operates along the following three steps:

In Step One: A max-margin objective is optimized – independently for each

entity – to learn an entity embedding from its description page and the tokens in

a fixed size window surrounding its mentions. The optimization procedure itself

is inspired by Word2Vec and relies on negative sampling. The entity embeddings

are learned separately, and then they are frozen.

In Step Two: For each mention, a list of top-k candidate entities are re-

scored using a local neural network which receives the mention its context and

the entity embeddings as input.

Finally, in Step Three: a document level joint-inference procedure6 is

used to determine which entity is referred by which mention.

Although (Ganea and Hofmann 2017) quantified the downstream impact on
6Specifically loopy-belief propagation over a full-connected factor graph with pairwise

potentials is used for joint inference.
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the NED accuracy of using a global joint-inference model in comparison to a

local NED model, the downstream impact of the entity embedding method in

step one on the final NED accuracy remains unclear. Therefore, in this paper,

we quantify the effect of different pre-training objectives and different types of

input contexts on NED accuracy.

6.2.1 Entity Embedding: Methods and Data

Let E denote the set of entities. Abstractly an entity embedding is a map, say

e : E → Rd. d is typically chosen to between 100 to 500 based on cross-validation

with the most common choice being 300. Qualitatively, an entity’s embedding

should be discriminative amongst homonym entities such as a (river) bank and

a (financial) bank, and it should be similar to the combined representation of

content words that co-occur with its mentions.

6.2.1.1 Data Sources

Mainly two sources of data have been used in previous work for learning e: The

first data-source is the text in the canonical page that describes an entity. For

example, the Wikipedia page for Amarchy defines the concept of anarchy. It

mentions that Anarchy is a type of political philosophy which rejects hierarchy.

Clearly, embedding the content words that appear on the canonical page of an

entity into a low-dimensional dense feature vector can help us describe an entity

succinctly. We denote this type of data in general as U1.

The second data-source – which may not exist in some cases – consists

of tokens surrounding the mentions of an entity. For example, the Wikipedia
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page for Alexander Grothendieck, the famous algebraic geometer, men-

tions that Grothendieck was born in Berlin to [anarchist](Anarchism) parents

. . .7. By optimizing the entity embedding for Anarchy to be similar to the

representations of the tokens surrounding the word anarchist in this sentence, we

can disambiguate the political philosophy of Grothendieck’s parents. We denote

this data-source as U2. Take note that this data-source is not truly unlabeled,

and it may not exist in many practical applications. Especially in cold-start sit-

uations (TAC-KBP@NIST 2015; Rastogi, Lyzinski, and Van Durme 2017) large

manually hyperlinked entity corpora do not exist. Therefore entity-embedding

models that can operate with or without entity mentions are desirable. If U2 is

available then the total data is U = U1 ∪ U2 otherwise U = U1.

In addition, it is useful to quantify the benefit of entity mentions on well-

studied NED task such as wikification (Mihalcea and Csomai 2007; Ratinov

et al. 2011) where large quantities of hyperlinked mentions are readily available,

so that we can quantify how much may we gain by annotating this information.

6.2.1.2 Methods

Let W denote the word vocabulary of our entity embedding system. Contempo-

rary approaches for learning entity embeddings (Yamada et al. 2017; Ganea and

Hofmann 2017) start with a pre-trained word embedding map w :W → Rd.8 For

example, if the word embeddings of philosophy and theory are similar and the

embeddings for rejects and shuns are similar then an NED system could correctly

disambiguate a political theory that shuns hierarchy. It is folk-knowledge that
7[description](link) is the markdown hyperlink syntax.
8Typically the dimensionality of the word embedding map w and the entity embedding

map e is kept the same to reduce the number of free hyper-parameters and to map words and
entities to the same vector space. We follow the same convention in this work.
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using a pre-trained embedding such as Word2Vec pre-trained vectors (Mikolov

et al. 2013) improves performance, but the downstream impact on NED – to

the best of our knowledge – has not been reported in previous work.

6.2.1.2.1 Max-Margin Entity Embedding The word embedding map

w and unlabeled data U{1,2} can be used to learn e in many ways. However,

Word2Vec inspired objectives have dominated other approaches in the context of

NED research (Yamada et al. 2016; Ganea and Hofmann 2017; Yamada, Shindo,

and Takefuji 2018). In this paper, we focus on a state-of-the-art model for entity

disambiguation proposed by (Ganea and Hofmann 2017) which minimizes a

max-margin loss for learning entity embeddings.

(Ganea and Hofmann 2017) motivate their objective as follows: Let Ue denote

the portion of training data containing all the words that co-occur with e. Let

p(w|e) denote a conditional-multinomial distribution of words that occur in Ue.

p(w|e) is estimated from empirical counts #(w, e)/∑︁w∈Ue
#(w, e). Next, let q(w)

be an unconditional probability distribution. (Ganea and Hofmann 2017) define

q(w) = p(w)α for some α ∈ (0, 1) where p(w) ∝ #(w) in U . Let w+, w− be two

random variables sampled from p(w|e) and q(w) respectively. Careful readers

will have noticed that the setup so far is the same as (Mikolov et al. 2013).

Indeed, this is why we said that these models are “Word2Vec inspired”.

The novelty of (Ganea and Hofmann 2017) is that they optimize the max-

margin objective in (6.1) instead of the logistic-type loss defined by (Mikolov
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et al. 2013) to infer the optimal embedding for entity e with a margin hyper-

parameter γ > 0:

e(e) = arg min
z:∥z∥=1,z∈Rd

Ew+|e Ew−

[︂
h
(︂
z;w+, w−

)︂]︂

h(z;w, v) = max(0, γ − zT (ww −wv)) (6.1)

Since the word-embeddings are kept fixed therefore the above objective is convex.

6.2.1.2.2 Variational Entity Embedding There are many ways of

constructing the entity embedding map e from w and U . (Ganea and Hofmann

2017) motivated their learning algorithm using generative assumptions but

optimized a contrastive max-margin objective in the actual learning process. At

this step, a question naturally arises that how important is the max-margin

algorithm for learning and what other methods could be motivated from the

same generative assumption.

In order to answer these questions, we propose to use the Variational-

Autoencoder Framework (VAE) (Kingma and Welling 2014b) for learning entity

embeddings and comparing their downstream performance to the max-margin

entity embeddings by (Ganea and Hofmann 2017). Under the standard VAE

framework, the generative model is:

z ∼ π = N (0, I), and xe ∼ p(w|z) = NNg
θ(z)

Here π denotes the standard gaussian prior distribution on the latent variable

z, the output of NNg are the mean-parameters of a conditional multinomial

distribution. xe denotes the bag-of-words representation of Ue.9 The parameters
9Recall that in the previous section, we defined Ue as the training words that co-occur with

e.
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θ of NNg are learnt by defining two inference-networks NNi,m
ϕ ,NNi,v

ϕ that map

xe to a gaussian posterior over the latent variable z. NNi,m
ϕ ,NNi,v

ϕ compute the

mean and variance of the posterior respectively. The parameters θ,ϕ are learnt

jointly by minimizing the Evidence Lower Bound Objective (ELBO):

arg min
θ,ϕ

∑︂
e∈U

ENNi
ϕ(z|xe)[log NNg

θ(xe|z)]

− βKL(NNi
ϕ(z|xe)||π). (6.2)

Here β ≥ 0 is a hyper-parameter that can be tuned via cross-validation. A larger

value of β leads to disentangled representations (Higgins et al. 2017) but a lower

value of β can improve the model fit by decreasing the KL penalty. Another

interpretation of β = 0 is that instead of using π as the prior of z we are using

a dynamic prior equal to NNi
ϕ(z|xe). After the training we define e(e) as the

posterior mean of z given xe, i.e.,

e(e) = NNi,m
ϕ (xe). (6.3)

6.2.1.2.3 Null Objective Entity Embedding Recall that we defined xe

as the bag-of-words vector representation of Ue. The VAE method learns a neural

network to map xe to e(e) as shown in (6.3). We want to know how beneficial

is the VAE objective itself in training a discriminative neural network. Is it the

case that xe are themselves linearly separable and a random low dimensional

embedding will work just as well or better than the VAE? In order to answer

these questions, we conduct an experiment where we use (6.3) with a randomly

initialized inference network as our entity embedding.

We call this the Null Objective Entity Embedding because we do not optimize

objective (6.2) for training NNi,m
ϕ .
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6.2.2 Related Works

Recently (Kar et al. 2018) also released a local model; however, the code they

have released was incomplete and Yamada et al. also released entity embeddings

In order to limit the scope of this study, I restricted myself to the global

model proposed by and we use the variational autoencoder to closely mimic

the generative assumptions in the original paper but without the max-margin

training. Our model is most closely related to the NVDM model (Miao, Yu, and

Blunsom 2016).

There are potentially many ways of either bag-of-words methods such as

Paragraph Vectors (Le and Mikolov 2014), Simple Embedding (Arora, Liang,

and Ma 2017) or even pre-trained sentence encoders such as ELMO (Peters et

al. 2018a) and BERT (Devlin et al. 2018a) to construct e. Most recently (Yamada,

Shindo, and Takefuji 2018) proposed a method to train entity embeddings;

however they did not show a downstream evaluation of NED accuracy. Therefore,

it is not known at this time how effective these embeddings will be for NED. We

leave this evaluation for future work.

6.2.3 Experiments and Results

To quantify the effect of the embedding objective on NED accuracy we trained

the best performing global NED model from (Ganea and Hofmann 2017) with

pre-trained entity embeddings learnt using different objectives. For each ob-

jective, we varied whether the entity embeddings had access to the mentioned

context U2. Following prior work, we evaluated the micro F1 score of the

trained models on four of the most popular NED datasets. The four datasets
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are AIDA-CoNLL (Hoffart et al. 2011), MSNBC (Cucerzan 2007), AQUAINT

(AQUA.) (Milne and Witten 2008) and ACE2004 (ACE04) (Ratinov et al. 2011).

We used the preprocessed versions of these datasets released by (Ganea and

Hofmann 2017; Guo and Barbosa 2014). The F1 scores and pertinent statistics

for the datasets are shown in Table 6.2.

The Max-Margin Embeddings were trained on a February 2014 dump of

Wikipedia as follows: Each entity vector was randomly initialized from a mean-0,

variance-1, 300-dimensional normal distribution. Values larger than 10 were

clipped. First, the embeddings were trained to convergence on the content words

in the canonical description page for an entity. In each iteration, 20 samples

of w+ and 5 samples of w− were used to minimize (6.1). The optimizer was

Adagrad with a learning rate of 0.3. Hyperparameters α = 0.6 and γ = 0.1 were

the recommended values from (Ganea and Hofmann 2017). If U2 was included,

then we used the tokens from a window of size 20 as positive examples as well.

The 300-dimensional VAE embeddings were trained using a fixed vocabulary

of 50, 000 words.

For learning the NED model, we used ADAM with a learning rate of 1e-4

until the validation accuracy exceeded a threshold. Afterward, we reduced the

learning rate to 1e-5. The validation threshold was selected for each configuration

by first training the system with a threshold of 100% for three trials and then

using the median of the highest validation F1 scores. The rest of the training

details of the global NED model were identical to (Ganea and Hofmann 2017).
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Objective U2 AIDA
(4485)
(98.2%)

MSNBC
(656)
(98.5%)

AQUA.
(727)
(94.2%)

ACE04
(257)
(90.6%)

Max
Margin

✗ 89.5 92.7 84.9 88.1
✓ 92.2 93.7 88.5 88.5

VAE ✗ 83.9 93.3 84.6 87.7
✓ 85.4 94.7 86.9 86.5

Null ✗ 84.1 92.6 81.3 88.1
✓ 83.0 93.2 86.4 88.1

Table 6.2: Micro F1 results for the same NED model but with entity embeddings
pre-trained with different objectives. ✓and ✗ in the second column indicates whether
the learning algorithm had access to the mention context or not, respectively. The
top two numbers in the dataset columns indicate the test-set size and the recall of the
top-30 candidate entities.

6.2.3.1 Entity Relatedness:

In addition to downstream NED evaluation we also evaluated our embeddings

on an intrinsic task of entity relatedness prediction. The entity relatedness test

set of (Ceccarelli et al. 2013) measures how well the geometry of the entity

embeddings captures manually annotated similarity relations between entities.

It contains 3319 and 3673 entity-relatedness queries for the test and validation

sets. Each query consists of one prompt entity and up to one hundred candidate

entities. Each candidate has a gold label indicating whether it is related to

the prompt entity or not. The cosine similarity of the entity embeddings is

used to rank the candidate entities, and the goal is to rank related entities

before the unrelated entities. Same as previous work we report Normalized

Discounted Cumulative Gain (NDCG) at three different ranks and the Mean

Average Precision (MAP) score. Table 6.3 shows the performance of different

systems on this test set.
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Objective U2 NDCG@1 NDCG@5 NDCG@10 MAP
Max
Margin

✗ 0.616 0.590 0.616 0.549
✓ 0.646 0.611 0.639 0.576

VAE ✗ 0.592 0.559 0.578 0.514
✓ 0.615 0.571 0.596 0.542

Null ✗ 0.577 0.537 0.563 0.503
✓ 0.615 0.571 0.596 0.542

Table 6.3: Entity Relatedness Evaluation Results.

6.3 Conclusion

We started with the hypothesis that the entity embeddings based on the varia-

tional autoencoder will outperform the MVLSA embeddings and our experiments

on the CMR task validated this hypothesis. Moreover, within the different types

of decoder types, we found that the multinomial decoder had a significantly

higher performance than the multilabel decoder.

We then focused attention on the multinomial VAE generative model and

compared its performance to a state-of-the-art contrastive method for learning

entity embeddings for the task of named entity disambiguation. We also evaluated

the contribution to the NED accuracy by the mention context U2? The results

in Table 6.2 show that although the performance improvement varies with each

system and on each dataset, for the best Max-Margin entity embeddings the

improvement in performance is substantial.

Based on the experiments we can conclude that although MVLSA and GCCA,

in general, are useful methods for learning entity embeddings their utility is

limited in situations where multiple views of data are not readily available. On the

other hand, variational methods for learning embeddings are promising in single

view situations and can fare well in comparison to other more discriminative
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methods for learning entity embeddings for NLP tasks.
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Chapter 7

Concluding Remarks

In this thesis, I developed novel algorithms for learning representations at the

level of words and entities mentioned in linguistic corpora. Chapter 3 focused

on multi-view learning of word embeddings using the novel spectral method

called MVLSA, and Chapter 4 presented the NVSE model – which builds upone

the Variational Auto-Encoder framework – for learning embeddings of entities.

Through automatic evaluations for MVLSA and human evaluations for NVSE I

showed that these methods can outperform existing state of the art methods in

their respective domains.

Then in Chapter 5 I explored ways of geometrically regularizing the learning

of entity embeddings in a knowledge base to force the learnt embeddings to

comply with logical constraints. I showed that on toy tasks at least it is possible

to perform interesting logical inference using the proposed regularization methods.

Chapter 6 applied the proposed MVLSA, NVSE algorithms to more practical,

downstream tasks of Contextual Mention Retrieval (CMR) and Named Entity

dismabiguation (NED). We found that an ensemble of the features learnt through

the variational-autoencoder approach with pre-existing bag-of-words features
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can improve the performance of a state-of-the-art CMR system. However on

the task of Named Entity Disambiguation we did not find any benefit of our

representations over the state of the art entity embeddings.

Future directions for some of the work in this thesis, especially regarding the

NVSE algorithm, involves the use of pretrained contextual sequence encoders such

as ELMO (Peters et al. 2018b) and BERT (Devlin et al. 2018b). The methods

for extracting features for entities proposed in this thesis should be compatible

with these sequence encoding methods. Another potential future direction will

be to use the constraint based methods developed in this thesis for embedding

entities in knowledge graphs and applying them to more sophisticated models of

entities such as the Box-Lattice Measures for probabilistic embeddings (Vilnis

et al. 2018; Li et al. 2018) and (Subramanian and Chakrabarti 2018). In order to

do so, it will be desirable to improve the scalability of the alternative projection

stochastic gradient algorithm proposed in Chapter 5.
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Appendix A

A.1 Bayesian Sets

The Bayesian Sets algorithm ranks the elements in X \ Q according to the ratio

of two probabilities:

score(x) = p(x|Q)
p(x) = Ep(z|Q)[p(x|z)]

Eπ(z)[p(x|z)]

Instead of assuming the commonly used Beta-Binomial distribution I assume that

p(x|z) is a product of independent Poisson distributions with Gamma conjugate

priors. I.e. p(x|z) = ∏︁
k

z
xk
k

xk
. The conjugate prior on z is a product of Gamma

distributions,

p(z|α, β) =
∏︂
k

βk
αk

Γ(αk)zk
αk−1 exp(−βkzk)

. Let f(xk, αk, βk) =(︃
xk + αk − 1

xk

)︃
(1− 1

1 + βk

)αk( 1
1 + βk

)xk .

The Bayesian Sest score under these conditions is

score(x) =
∏︂
k

f(xk, α̃k, β̃k)
f(xk, αk, βk)

Where α̃k = αk + ∑︁
x∈Q xk and β̃k = βk + Q. Note that if α̃k = αk then

f(xk,α̃k,β̃k)
f(xk,αk,βk) = ( 1+βk

1+βk+D
)xk which means that features that occur in x that did not
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occur in Q are penalized based on the number of times the feature appeared.

Therefore, the Gamma-Poisson distribution is a good approximation only when

quantitative differences in the number of times a feature appears are important.

Finally I assume that the components of x were sampled from conditionally

independent gaussian distributions with unknown mean and precisions. I.e.

p(x|µ, τ) =
∏︂
k

√︃
τ

2π exp(−(xk − µk)2τk)

and p(µ, τ |ρ, λ, α, β) =
∏︂
k

βk
αk
√
λk

Γ(αk)
√

2π
τk

αk− 1
2 exp(−βkτk) exp(−λkτk(µk − ρk)2

2 ).

In the following formulaes I omit the susbscript k for convenience.

x̄ = 1
Q
∑︂
x∈Q

x

ρ̃ = λρ+ Qx̄
λ+ Q

λ̃ = λ+ Q

α̃ = α + Q/2

β̃ = β + 1
2
∑︂
x∈Q

(x− x̄)2 + Qλ
Q + λ

(x̄− ρ̃)2

2

The Bayesian Sets score is the ratio of two t distribution values:

score(x) =
∏︂
k

t2α̃k
(xk | ρ̃k,

β̃k(λ̃k+1)
α̃kλ̃k

)
t2αk

(xk | ρk,
βk(λk+1)

αkλk
)

Now the value of tν(x|a, b) where a is the location parameter and b is the
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scale parameter is:

tν(x|a, b) =
Γ(ν+1

2 )√
bνπΓ(ν

2 )

(︄
1 + (x− a)2

bν

)︄− ν+1
2

In order to use this distribution with count data, it is important to use some

variance stabilizing transform, and then perform mean and variance normalization

to preprocess all the count features. In this way I can set the priors ρ̃k to be 0

and λk can be set uniformly to some small number such as 2 and alphak, βk can

be chosen to be 2, 1 respectively.

A.1.1 Binarizing feature counts

BS binarizes the feature vector fx as f ′
x via thresholding:

f ′
x[j] = I[fx[j] > µ[j] + λσ[j]]

µ[j] =
∑︁

x∈X fx[j]
X , σ2[j]=

∑︁
x∈X (fx[j]− µ[j])2

X ,

where λ ∈ R is a hyperparameter. I tried three values of λ – {0, 0.5, 1} – and

set it to 0.5 based on preliminary experiments. BS’s scoring function becomes

score
BS

(Q,x) =
F∑︂

j=1

(︄
log α̃Q[j]β[j]

α[j]β̃Q[j]

)︄
f ′

x[j] (A.1a)

α̃Q[j] = α[j] +
∑︂
x∈Q

f ′
x[j] (A.1b)

β̃Q[j] = β[j] + Q−
∑︂
x∈Q

f ′
x[j]. (A.1c)

A.2 Ranking methods

A standard function for computing the distance between distributions is the KL-

divergence. Another possibility to compute the distance between distributions
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is to compute the symmetric version of the KL-divergence. Another standard

method for computing the similarity between two probability distributions is to

compute the probability product kernel (PPK) between two distributions (Jebara,

Kondor, and Howard 2004); i.e.

⟨qϕ(z|Q), qϕ(z|x)⟩ =
∫︂

z
qϕ(z|Q)qϕ(z|x)dz

In the special case that qϕ(z|Q) and qϕ(z|x) have the special deep-gaussian form

then the KL divergence as well as the inner product can be computed in closed

form. KL Divergence between two distributions normal distributions p1, p2 with

parameters (µ1,Σ1) and (µ2,Σ2) is:

KL(p1||p2) = 1
2

(︄
tr(Σ−1

2 Σ1) + (µ1 − µ2)⊤Σ−1
2 (µ1 − µ2)− d+ log det(Σ2)

det(Σ1)

)︄
.

and PPK is

exp(−(µ1 − µ2)T (Σ1 + Σ2)−1(µ1 − µ2)
2 − log det((Σ1 + Σ2)))

In the further special case that µ2 = 0,Σ2 = I then the KL divergence simplifies

to:

KL(p1||p2) = 1
2
(︂
tr(Σ1) + µT

1 µ1 − d− log det(Σ1)
)︂
.

However, I propose here a simple way to compute the distance between two

normal distributions. If µ1,Σ1 and µ2,Σ2 are the mean and variance of two

normal distributions, p1, p2 then I use the following distance

d(p1, p2) = ||µ1Σ−1
1 − µ2Σ−1

2 ||2 = ||ξ1 − ξ2||2

This metric can be implemented as a single matrix multiplication while KL

divergence and PPK cannot. Intuitively this distance gives higher weightage to

those dimensions where the variance of the either the distributions is lower. In
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preliminary experiments I found this distance to be superior to KL divergence

and PPL and I have used this distance function in all of my experiments. I believe

that the regularization from the gaussian prior that encourages the posterior

distributions to be close to the origin make shift invariance unnecessary.
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