7 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Synthesis of timing paths with delays adaptable to integrated circuit variability

    Get PDF
    This project proposes to substitute the Clock of a circuit for a Ring Oscillator. This Ring Oscillator is designed to be susceptible to variability in the same way than the rest of the system, allowing to drastically reduce variability guard band margins at design stage

    Automated synthesis and optimization of multilevel logic circuits.

    Get PDF
    With the increased complexity of Very Large Scaled Integrated (VLSI) circuits, multilevellogic synthesis plays an even more important role due to its flexibility and compactness.The history of symbolic logic and some typical techniques for multilevel logic synthesisare reviewed. These methods include algorithmic approach; Rule-Based approach; BinaryDecision Diagram (BDD) approach; Field Programmable Gate Array(FPGA) approachand several perturbation applications.One new kind of don't cares (DCs), called functional DCs has been proposed for multilevellogic synthesis. The conventional two-level cubes are generalized to multilevel cubes.Then functional DCs are generated based on the properties of containment. The conceptof containment is more general than unateness which leads to the generation of newDCs. A separate C program has been developed to utilize the functional DCs generatedas a Boolean function is decomposed for both single output and multiple output functions.The program can produce better results than script.rugged of SIS, developed by UC Berkeley,both in area and speed in less CPU time for a number of testcases from MCNC andIWLS'93 benchmarks.In certain applications ANDjXOR (Reed-Muller) logic has shown some attractive advantagesover the standard Boolean logic based on AND JOR operations. A bidirectionalconversion algorithm between these two paradigms is presented based on the concept of polarityfor sum-of-products (SOP) Boolean functions, multiple segment and multiple pointerfacilities. Experimental results show that the algorithm is much faster than the previouslypublished programs for any fixed polarity. Based on this algorithm, a new technique calledredundancy-removal is applied to generalize the idea to very large multiple output Booleanfunctions. Results for benchmarks with up to 199 inputs and 99 outputs are presented.Applying the preceding conversion program, any Boolean functions can be expressedby fixed polarity Reed-Muller forms. There are 2n polarities for an n-variable function andthe number of product terms depends on these polarities. The problem of exact polarityminimization is computationally extensive and current programs are only suitable whenn :::; 15. Based on the comparison of the concepts of polarity in the standard Boolean logicand Reed-Muller logic, a fast algorithm is developed and implemented in C language whichcan find the best polarity for multiple output functions. Benchmark examples of up to 25inputs and 29 outputs run on a personal computer are given.After the best polarity for a Boolean function is calculated, this function can be furthersimplified using mixed polarity methods by combining the adjacent product terms. Hence,an efficient program is developed based on decomposition strategy to implement mixedpolarity minimization for both single output and very large multiple output Boolean functions.Experimental results show that the numbers of product terms are much less thanthe results produced by ESPRESSO for some categories of functions

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications
    corecore