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Abstract

Since the introduction of transistors and the first integrated circuits there has been a

trend for increasing performance in the semiconductor industry. This has been primarily

lead by the continuous shrinking in transistor size which enabled, roughly every two

years, to double the number of transistors per area unit in a chip. This shrinking trend

has become to be known as Moores law and it makes possible that, at each generation,

transistors are faster, with lower power consumption and can be manufactured at lower

costs.

Nonetheless, benefits from new generations of transistors have been diminishing over the

last years and it is now argued that Moores law may not hold for much longer. One of

the main causes for these diminishing returns is variability. Recent generations, or tech-

nology nodes, produce transistors so small that it is no longer possible to manufacture

them with the exact desired properties. A small deviation in manufacture that would

have once been negligible may today completely change the behaviour of a component.

Furthermore, smaller transistors are much more susceptible to environmental changes,

such as temperature or small voltage fluctuations.

Circuits are subject to strict constraints that set very definite operational ranges for its

components in properties such as power and delay. Variations in the characteristics of

transistors have the risk of causing violations in those constraints, producing a failure

in the circuit. Modern design deals with this problem by using huge margins on the

behaviour of components and often assumes worst case scenarios, effectively sacrificing

great amounts of performance. Moreover, these worst case scenarios are rarely reached

in practice, and, even if they are, it is only for very short periods of time.

In this work we propose a different way of dealing with variability. Instead of adding

margins to the behaviour of transistors, it may make sense to relax constraints and

make them change in the same way that variations over the rest of the system does.

In fact, variability in circuits is a problem because, while silicon components change its

behaviour, the clock that sets timing constraints is virtually agnostic to variability. Our

proposal is the substitution of this clock for a small circuit that, while it still generates a

v



vi Abstract

periodic signal, it is as susceptible to variability as the rest of the system. This approach

gives the possibility of ignoring most of the margins applied at design stage and enables

designing for normal operation rather than worst case scenarios.

One of the ways of implementing a circuit that gives a periodic signal is by using a

Ring Oscillator. A Ring Oscillator is a path of gates with an odd number of inversions

connected in a feedback loop. The period of the signal generated by such a circuit

depends on the delay of the gates used. At the same time, the delay of the cells strongly

depends on the variability sources at which their transistors are subject. The problem

remains, though, of creating a sequence of gates with a delay long enough that it does

not cause timing violations in the rest of the system. Furthermore, due to changes in

variability, this must hold regardless of manufacture deviations, environmental changes

or voltage fluctuations.

The aim of this project is, specifically, to generate paths for Ring Oscillators that are

adaptable to variability in a way that do not violate timing constraints of the system.

Moreover, periods of these circuits must be as small as possible, as this is directly related

with performance. In order to accomplish this, we will present in this project different

schemes for designing Ring Oscillators. These schemes may also present the possibility

of dynamically changing the period as well as to monitor the current state of variability

in the system, allowing for faster or safer operation modes.

The main contributions of this work lie in the techniques for designing the schemes

presented here. It is not a simple task to create a path of gates that meets constraints

for every possible scenario and we will formally prove that it is, in fact, a complex

problem. A series of algorithms will be presented with the aim of generating Ring

Oscillators that, while ensuring a correct behaviour of the system, perform as fast as

possible. Finally, these algorithms will be analysed and benchmarked with a series of

circuits in order to assess quality of the solutions.

This document starts by presenting variability in detail, as well as introducing necessary

concepts such as process corners and static timing analysis. Afterwards, current state of

the art in the field of reducing variability margins is presented and discussed. Schemes

for Ring Oscillators and monitoring circuits are then be presented and its functionalities

described in detail. With this, we formalize the problem of generating paths of gates

adaptable to variability sources, including a discussion of its complexity. We then suggest

a series of algorithms that solve path generation for different schemes of Ring Oscillators.

These algorithms are finally tested in real circuits and the quality of their solutions

discussed.
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Chapter 1

Introduction

1.1 Introduction

It hardly makes sense to argue against the profound implications that semiconductor

industry has had in society and people’s life over the last half century. Since the appear-

ance of the first integrated circuits in the late 1950’s, electronic devices of all kind have

been developed and introduced in the market, taking advantage of the versatility that

transistors provide. This versatility has been intensified more and more by the speed at

which transistors and integrated circuits in general have been evolving.

In 1965, Gordon E. Moore presented what would become one of the most famous papers

in computer Engineering [1]. He predicted a trend of doubling the number of components

per chip each year thanks to a shrinking in component size. Although the speed at which

the doubling occurs was later slowed down to 18 months, this trend was fulfilled like

a prophecy. It is commonly considered to be the main enabler for the evolution that

electronic and digital devices have underwent in the last decades. And not surprisingly;

this exponential growth in the number of transistors has made possible going from

single transistors to billion-transistors microprocessors. Figure 1.1 shows this trend

applied to Intel and AMD processors, in which we can see how transistor count has been

continuously increasing.

This prediction is nowadays known as Moore’s law and is a topic of hot controversy

today. Since the early days of semiconductors industry, the shrinking of transistors had

several benefits for electronic circuits:

• Smaller dimensions enabled a higher integration density.

1
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Figure 1.1: Transistor count evolution for Intel and AMD processors.

• Faster switching speed made possible to increase clock frequency, often doubling

the previous frequencies.

• Lower voltage thresholds1 increased the energy efficiency of transistors, making

them only needing half the power.

• Increased reliability made circuits less likely to behave in unexpected ways.

• All of this without increasing the cost per area, meaning that the cost per transistor

was halving at each new generation.

More importantly, all of these improvements occurred without virtually any tradeoff; a

new generation of transistors was better than the previous one at almost every conceiv-

able characteristic, and a new generation was appearing each 18 months.

But this exponential growth cannot continue eternally. If nothing else, there is a physical

limit at which it is not possible to reduce the size of a transistor. Additionally, voltage

fluctuations (noise) do not scale – in the last decade we ran into a limit in how much

we could keep reducing voltage. Without voltage reductions, increasing the frequency

of a transistor meant increasing its power consumption. Therefore, a trade off between

speed and power appeared – we can have faster transistors or lower power, but not

both. This put an end to the exponential growth for frequency, as increasing power

consumption was causing the chips dice to literally melt. Moreover, current transistor

1The voltage threshold of a transistor is the minimum voltage required to switch its logic state.
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generations are more and more unreliable due to variability in fabrication process as well

as environmental conditions once the chip is produced (which will be later discussed in

depth), thus forcing the introduction of huge guard band margins in the design process.

On top of everything, it is now considered that the end for Moore’s law will not really

occur for physical reasons, but for economical ones. In the last generations, cost per

transistor may have reversed its trend and is actually increasing for some manufacturers

[2]. All of this is making some experts on the field believe that Moore’s law will stop in

the next few years [3].

1.2 Variability

One of the main reasons for the diminishing returns of transistor scaling in the last years

is variability in the smallest technology nodes. In this section we introduce the most

relevant variability sources.

One of the most common ways to categorize variability sources is by dividing them into

two groups:

• Static variability: This variability accounts only for process variability. It is con-

sidered static because it does not change during the life of a chip.

• Dynamic variability: Sources of variability that change the properties of a chip in

time. This category includes voltage, temperature and aging.

When talking about variability it is also important to distinguish between global and

local variability.

• Global variations affect the whole chip or at least a major part. For example, the

ambient temperature will affect equally all the chip, yet that does not mean that

all the chip is at the same temperature.

• Local variations affect only a small part of the chip. The greater the distance be-

tween two points, the more unrelated local variations become. In the temperature

example, there may be some components in the chip that become hotter due to

switching activity, thus increasing the temperature in their vicinity.

This categorization of the locality of variations is important at design stage, as different

parts of the chip may behave in different ways, but it becomes even more relevant when

introducing some techniques that require monitoring variability. For example, knowing
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the temperature in one part of the chip does not guarantee that the opposite side of the

chip is subject to the same temperature. Below follows a detailed explanation for the

main variability sources.

1.2.1 Process Variations

The chip manufacturing process is far from perfect. In the last technology nodes it has

become more and more difficult to maintain homogeneity in the fabrication of chips,

thus introducing differences in the characteristics of transistors. These variations from

transistor to transistor in the manufacturing stage is what is known as process variability.

As explained above, this type of variability is stable along the life of a chip and does not

change with time.

Process variations come from a number of sources, the most important of which are

enumerated below.

1.2.1.1 Critical dimensions

The manufacturing of a chip passes through a stage in which a source of ultraviolet

light traverses a mask in order to “print” the layout. The wavelength of light used for

this process has remained at λ = 193 nm since the 130 nm node. As we move towards

smaller technology nodes, recently reaching 14 nm, this source of light is more and more

unsuitable due to the diffraction phenomenon in which the waves are dispersed as they

traverse openings smaller than their wavelength.

To cope with these limitations, some techniques are applied in order to correct the

effects of diffraction. One of these techniques is optical proximity correction (OPC),

which consists in using a corrected mask in order to force the light into projecting the

desired layout. Figure 1.2 shows an example of this technique. On the top left is shown

the intended layout which, if projected as is, will be deformed into the bottom left figure.

In order to be able to print something similar to what we want, a correction algorithm

is ran and the layout from top right is obtained. When this layout is projected, figure

from bottom right is obtained. This last figure is very similar to what we needed, yet

not perfectly identical to the indented shape.

These small variations with respect to what we originally intended, as well as deviations

in both the creation of the corrected mask and its projection, affect in an unpredictable

way the sizes of transistors and thus their properties, such as its drive current or voltage

threshold.
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Figure 1.2: Mask layout correction from [4]. On the top left, the intended layout.
Bottom left shows the printed layout if no correction is applied. Top right depicts the
actual mask after correction, which results in the printed image at the bottom right.

1.2.1.2 Random dopant fluctuation

Another stage in the manufacturing process consists in doping the channel region of

transistors with impurity atoms. These atoms are placed into the channel in order

to alter its electrical properties and thus have a great impact in the threshold value.

Older technologies required the random insertion of thousands of atoms, so deviations

of several atoms had a negligible impact. In the latest nodes, with only a few tens of

atoms, these deviations of several atoms are much more disruptive.

1.2.1.3 Gate Oxide Thickness

One of the parts that composes a transistor is the gate oxide. It separates the gate

terminal from the underlying source and drain terminals as well as the conductive chan-

nel that connects source and drain when the transistor is switched on. This layer can

be grown with an accuracy of 1-2 inter atomic layers [5]. In older technologies, with

thickness in the order of tens of inter atomic layers, variations in the growth for the

gate oxide were negligible, but in the most recent nodes the oxide thickness may be as

small as 5 inter atomic spacings. The differences in the gate oxide thickness further

contributes to the voltage threshold uncertainty.

1.2.2 Voltage fluctuations

Fluctuations in the voltage source are caused mainly by a combination of IR drops and

di/dt noise. The former is caused by the current flow over the parasitic resistance of the
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power grid and is a direct cause of Ohm’s law (V = i(t) · R, hence the name IR). The

latter is a consequence of the parasitic inductance in combination with capacitance and

resistance of the power grid, causing the voltage to “bounce”. When both effects are

superposed, they may cause the voltage to not only drop, but to overshoot (going over

the nominal voltage value). It is especially notorious that these effects are fast changing,

having typically values of time in the range of nano to micro seconds.

The voltage variations in a gate or a path of gates has a great impact in their delay. As

it can be seen by Figure 1.3, a voltage variation of just 33% may have an impact of 3x

over the delay in a critical path.

Figure 1.3: Relation between supply voltage and logic delay, illustrated by the most
critical path of a multiplier circuit in 65 nm technology. Source from [5].

1.2.3 Temperature

Temperature on a chip fluctuates mainly due to power dissipation of its components.

These changes in temperature may be global, due to ambient temperature or power

dissipation, but it can also be local in regions of high-activity switching. Typically,

temperature fluctuations have time constants in the range of milliseconds, being much

slower than voltage fluctuations.

Increasing the temperature in the chip usually leads to slower delays due to reduced

carrier mobility and increased interconnect resistance. In conditions of low voltage,

this trend may be reverted when the voltage threshold decrease exceeds the mobility

degradation. This phenomenon is known as temperature inversion.
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1.2.4 Aging

Aging of a circuit is the wear out of the same along time. Aging becomes only significant

over weeks or months of use. This makes it the variability source that changes the

slowest with time. Aging occurs for a number of causes, such as Hot Carrier Injection,

Negative-Bias Temperature Instability and Electromigration that we explain below.

• Hot Carrier Injection: This phenomenon mostly occurs during the switching of

logic gates. The acceleration of carriers in the lateral field makes them gain enough

energy to be injected into the gate dielectric. This effect changes the switching

characteristics of the transistors.

• Negative-Bias Temperature Instability: Negative-Bias Temperature Instabil-

ity (NTBI) is a phenomenon in the gate-oxide and occurs in negative gate voltages

or in elevated temperatures. It has the effect of permanently changing the voltage

threshold value of transistors over time.

• Electromigration: Electromigration is the transport of material caused by the

gradual movement of ions in a conductor. This effect causes the degradation of

wires and may cause the eventual failure of a circuit.

1.3 Living with variability

As we have seen, there are many sources of variability, each one affecting a given design

in different ways. In order to have working circuits, it is necessary to account for all

these variations in the characteristics of its components. For this reason, it has been

historically a common practice to design for the worst case combination (usually referred

to as worst-case sign off). This approach ensures that circuits work correctly in every

condition with a low risk of failure.

Yet as mentioned before, newer technology nodes have more sources of variability and,

more importantly, variability sources have a greater influence. This fact is making worst-

case sign off increasingly expensive, to a point where it no longer makes sense to simply

consider the worst possible combination. In addition, worst-case scenarios are extremely

unlikely to occur in practical scenarios.

Figure 1.4 shows the delay for the critical paths of an AES (Advanced Encryption

Standard) circuit. Each bar of the figure represents a combination of variability sources,

called corners (explained in detail latter in Section 1.4.1), for a 65 nm process. The

leftmost bar represents the worst-case combination, the bar labelled typical represents
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the most frequent combination and the rightmost one the ideal case. As it can be seen,

there is a huge gap of almost 3x between typical and worst case.

Worst Typical Best
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AES delay per corner

Figure 1.4: AES module critical path delay for corners. Delays were obtained for a
65 nm commercial library.

It is this growing difference between typical and worse conditions what justifies research

in variability and, in particular, motivates this work.

1.4 Static Timing Analysis

The process of designing a circuit involves a number of stages. It usually starts with

a requirement specification, not unlike in the software, and then continues with several

stages until a functional design is obtained. This design, usually expressed in some RTL

(Register-transfer language), describes the operation of the circuit in a way that can be

synthesized and implemented into a physical circuit. But before this implementation

can be done, it is important to perform a series of analysis and validations regarding

its properties, such as logic functionality (does the logic design behave as expected?) or

physical considerations (when manufactured, will it still behave as expected?).

One of the most important analysis that must be done is the timing analysis, in which

we verify whether a circuit meets all of its timing requirements or constraints. These
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constraints include, for example, checking if a certain path within a circuit has enough

time to finish its computation before a clock pulse arrives.

There are two types of timing analysis:

• Dynamic Timing Analysis: The timing constraints are checked with a limited set of

input test vectors. The behaviour of the circuit is simulated with high accuracy at

the cost of high execution times. Additionally, it checks logical functionality. Not

all possible scenarios are checked, as only a limited set of inputs can be analysed.

• Static Timing Analysis: Checks timing constraints for all possible inputs. Uses

accurate models for timing, yet does not test functionality. While models are less

accurate than simulation, runtimes are much lower and tests are more thorough,

checking all possible worst-case scenarios.

Static Timing Analysis can be divided into 3 main steps:

• Design is divided into timing paths

• For each path, signal propagation delay is calculated

• Check for violations of timing constraints

As we saw in previous sections, variability gravely affects the delay in a circuit or, more

specifically, in a path. One of the most common ways to take into account variability

in STA is with the use of corners. The rest of this section will show how variability is

included into delay computations and how delay is finally propagated along a path.

1.4.1 Corners

As we saw earlier, there are many sources of variability in a circuit, increasing in number

and relevance as we move on to smaller technology nodes. These variability sources

change the way a given cell behaves altering properties such as delay, capacity or slew2.

The corner paradigm tries to delimit the properties of a cell by setting limits on the

values of the variability sources. These limits that enclose the way cells can behave is

what we call corners.

Before going into a more accurate definition, it is important to first enumerate the

sources of variability modelled. In this work we consider PVT/RC corners (Process,

Voltage, Temperature / Resistance, Capacitance):

2The slew, or transition time, is the measure of the time it takes for a signal to go from a logic 0 to
a logic 1 (rise transition) or from a logic 1 to a logic 0 (fall transition).
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• Process shifts: Due to the fabrication process of a chip, transistors and wires may

have different properties than expected. For example, a transistor in a certain chip

may be faster or slower than the same transistor in a different chip, or a wire may

be wider than expected, causing it to have more capacitance and less resistance.

Moreover, chips are constructed by layers, and different types of transistors (PNP

and NPN transistors) may have different properties. The process is thus divided

into two categories:

– Transistors: The model for process for transistors can be Fast, Typical or

Slow. Due to the construction process in layers, cells containing both types of

transistors may be modelled as Fast-Fast (FF), Typical-Typical (TT), Slow-

Slow (SS) or any possible mixed combination of the three such as FS or SF.

– Interconnects: The fabrication process can also alter the properties of inter-

connect elements such as wires and vias. In the case of interconnects, we

consider models with maximum and minimum values for resistance and ca-

pacitance, providing four extreme RC (Resistance-Capacitance) corners plus

one typical corner (RC-typical) for the wires and for the vias. Note that wires

and vias are independent, so it is possible that one has RC minimum and the

other one maximum.

• Voltage: A circuit may work with different voltage sources, caused either by con-

trolled fluctuations (such as reducing the voltage to save power) or by uncontrolled

variations (such as voltage droops or noise in general). The voltage is usually mod-

elled by maximum, typical and minimum values.

• Temperature: The temperature at which the chip is working greatly affects the

way it behaves. It is usually defined by maximum, typical and minimum.

Note that, while some of the variability sources may have small correlations (for example,

higher voltage usually produces higher temperatures), nothing prevents for any single

combination to happen in the correct circumstances (for example, it is possible to have

a chip working at the maximum voltage with the minimum temperature).

All these variability sources define the PVT/RC space, whose limits are defined by the

combination of extreme situations. For example, a point in a vertex of the PVT/RC

space is a process with FS transistors, wires and vias with maximum capacity and

minimum resistance, working at maximum voltage and minimum temperature. It was

those combinations of extreme values that were at first defined as corners in the PVT/RC

space, when the number of variability sources was much smaller. However, the idea

behind this characterization is to find the extreme values for the delay (and possibly
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nominal ones) for the cells and nets. For this reason, only some of these combinations

are useful. A more accurate and current definition, which can be found in [6], is:

Corner is a point in the PVT/RC space where the cell/net delays have extreme (and

optionally nominal) values - all cell delays are the maximum or the minimum and all

net delays are the maximum or minimum independently.

It must be noted that obtaining these corners is not trivial, but it is outside the scope

of this work to describe this process. It suffices to say that each foundry generates a set

of libraries of cells for each technology node containing all this information that allows

corner-based signoff.

1.4.2 Delay computation and propagation

In this section we will explain how to compute the delay of a net based on commercial

corner-based libraries. But first, let’s define what we meant with delay: in digital

circuits, propagation delay or gate delay is the lapse of time that starts when the input

to a logic gate becomes stable and finishes when the output of that logic gate is stable.

Similarly, we may talk about delay of a path of gates by considering the inputs and

outputs of the path.

Also important concepts that we will use are the slew, or transition time, and transition

edges, represented by Figure 1.5. The slew represents the lapse of time that a signal

needs for switching logic state. This transition of logic states may be a rising transition

if the signal switches from 0 to 1 or a falling transition if it switches from 1 to 0.

Figure 1.5: Slew, or transition time, and transition edges. On the left, a rising edge.
On the right, a falling edge.

Before starting with the computation of delay, it is convenient to describe what infor-

mation relevant to our problem is contained in the libraries. A library contains a set of

corners and, for each corner, there is an exhaustive list of all available cells. For each

cell, besides other data, there is the following information:

• Basic information: Such as name, area or footprint.
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• Pins: An exhaustive list of pins both input and output.

• Capacitance: Maximum and minimum values for the capacitance of each of the

input pins of the cell. Also, the capacitance of a cell depends on whether the input

signal is a rising or a falling edge.

• Delay tables: For each pin, for each possible assignment of inputs on the pins

and for both transition options (rise and fall), there exist a table with output

capacitance and input slew (or transition time) which combination indexes a wide

range of delays. This is used to compute the delay and will be explained in more

detail latter on this section.

• Transition tables: For each delay table there is an additional transition table used

to compute the output slew. Again, we will see a more detailed explanation on

this latter.

• Unateness: For each pin and assignment of signals for the rest of pins, the libraries

may optionally contain the unateness that can be either positive unate3 or negative

unate4. Note that, while a cell may implement a binate function5, by fixing the

assignment of signals we enforce unateness.

• Function: Each output pin contains the function that implements (with respect to

the input pins).

Besides that information, each cell has other important information such as power or

leakage values that are not relevant to our work at this stage. Also, the library contains

models for wires (called Wire Models) that allows for a rough estimation of its capaci-

tance and resistance before the routing stage of the signoff. This usually gives estimate

values depending on the fan-out of the cells and are only useful for a first notion of the

actual values.

As specified above, the delay and slew of a cell are defined by a table whose inputs are

slew and capacitance. This table contains several discrete values for slew and capaci-

tance, but needs to be accessed for any continuous value, so some sort of interpolation is

needed. In our work, we are using the NLDM (Non Linear Delay Model) to interpolate

the delay, as this is a common approach, which consists simply in a bilinear interpolation.

3A positive unate function indicates that a rise transition in the input can only cause a rise transition
in the output and, symmetrically, a fall transition in the input causes exclusively a fall transition in the
output.

4The opposite of positive unate, a negative unate function indicates that the output transition is the
inverse of the input transition (i.e. a rise transition in the input causes a fall transition in the output
and, conversely, a fall transition in the input causes a rise transition in the output).

5A binate function indicates that the behaviour of transitions at the output with respect to some
input depends on the value of other inputs.
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As an example of how to compute delay by the NLDM model consider Table 1.1. In the

leftmost column are the indices for capacitance and the topmost row contains indices for

slew. In this case, table values represent delays but transition time tables are identical

otherwise. Let’s suppose that we are interested in the delay for an input transition

time of 0.15 ns and an output capacitance of 1.16 pF. Note that Table 1.1 has removed

all values not relevant for this example and only shows the indices that contain our

capacitance and slew values (i.e. 0.15 is contained within the range 0.1-0.3).

... 0.1 0.3 ...

... ... ... ... ...

0.35 ... 0.1937 0.2327 ...

1.43 ... 0.7280 0.7676 ...

... ... ... ... ...

Table 1.1: An example of a NLDM table for delay.

We will call x1 and x2 the index values for slew (0.1 and 0.3 in this example) and y1 and

y2 the index values for capacitance (0.35 and 1.43 in this example). The corresponding

table values will be denoted as T11, T12, T21 and T22 respectively. If the table lookup is

required for (x0, y0) (0.15 and 1.16 in this example), the lookup value T00 obtained by

interpolation is given by:

T00 = x20 × y20 × T11 + x20 × y01 × T12 + x01 × y20 × T21 + x01 × y01 × T22

where

x01 = (x0 − x1)/(x2 − x1)

x20 = (x2 − x0)/(x2 − x1)

y01 = (y0 − y1)/(y2 − y1)

y20 = (y2 − y0)/(y2 − y1)

By making the appropriate substitutions, the delay we are looking for is computed as:

T00 = 0.75×0.25×0.1937+0.75×0.75×0.7280+0.25×0.25×0.2327+0.25×0.75×0.7676 =

0.6043

By knowing the delay of all the cells in a netlist, we can easily compute the delay

of a path (i.e. a sequence of interconnected cells) by simply adding the values. The

problem remains, though, on how to find the input values for the delay tables, namely

the capacitance and the slew.
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The input slew depends on the output slew of the previous cell, which is computed in

a similar way to the delay by using tables. We also need to know the direction of the

edge depending on the function implemented by the previous cell. In our particular case

in which we are only interested in a simple path of cells, this function can be simplified

by looking only at the unateness of the pins connected. Finally, the capacitance on the

output of the cell depends on the capacitance of the cells connected to its output pin.

It suffices with adding the capacitance of the input pins connected to the fanout of the

cell (note that the capacitance also depends on the edge direction). If we are using a

wire model, we also need to take into account the increase in capacitance or, if we have

routing values for the wires, we must add the wire capacitance to the cells capacitance.

All these computations will yield the delay of a path for a given corner. This must be

repeated with each corner of the library and so we will obtain as many delays as corners

for the path.

It is important to understand that the delay of a cell within a path of cells is then

dependent on the previous cells and on the following cells. Furthermore, it also depends

on the value of the pins not connected to the path as they can alter which table must

be used for delay and slew and they can even modify the unateness of the function.

This interdependency will become relevant later when the problem is defined, as it is

the main cause for complexity in the problem.

1.5 Objectives

The main objective of this project is, in short, to propose a scheme that takes variability

into account in such a way that margins can be reduced. There is significant previous

research on this topic, some of which is presented in Chapter 2, that usually tries to avoid

variability by limiting it (such as parametric binning) or adapting to it (for example,

adaptive clocks). Our proposal is to embrace variability in such a way that the system

behaves differently when subject to different conditions, yet still does so correctly.

By analysing variability, we can see that the problem is not so much that characteristics

for components in a circuit may change from one moment to another as much as that

they do so in an uncorrelated way. For example, a voltage drop will make the circuit work

slower, yet a common clock is virtually agnostic to variability and so the requirements

for speed remain mostly unchanged. This way, a voltage drop that slows the circuit but

does not change the clock period may cause a timing violation, resulting in a possible

failure that can only be avoided by adding margins to the period. Yet still, when working
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in regular conditions, these additional margins are unnecessary and potential speed and

energy is lost.

For that reason, we propose a different clocking scheme that is as susceptible to vari-

ability as the rest of the circuit, in such a way that its timing characteristics always

match that of the system. In the previous example, when a voltage drop slows down

the circuit, the clock would also slow down thus increasing the period and avoiding a

timing violation without the need for margins. In order for this to work even for fast

voltage variations, which may change in the order of nanoseconds, this adaptation must

be instantaneous.

1.5.1 Ring Oscillator as a clock substitutive

A Ring Oscillator (RO) is a sequence of gates in a feedback loop with an odd number

of inversions. For example, 5 inverter gates connected one after the other with the last

gate also connected to the first one will form a RO. The properties of such a circuit are

that it oscillates periodically, much like a PLL6 (Phase-Locked Loop), yet it may be

constructed with the same gates and transistors that constitute the rest of the circuit.

By using the same components, the RO behaves similarly to the circuit in the presence

of variability.

In order to accomplish it, the RO must at least have the following two properties:

• Its variability must be closely related to that of the critical path. Not all gates in

the circuit behave the same way with different variation sources, so the RO must

be constructed in such a way that it always matches the critical path in the design.

• The period of the RO must never fall below the timing requirements of the circuit.

While the period should be as small as possible, it must never be so small that it

makes the circuit fail.

Constructing a Ring Oscillator with those properties is not a trivial matter, yet any

path generated must follow them. This proposes an interesting problem: the second

property may be directly converted into a constraint, while the first property poses

an optimization goal. The main contribution of this work is the generation of paths

with those two properties. This will be done by presenting schemes for constructing

such RO, but also proposing an algorithm to solve this optimization problem. Finally,

experimental tests will be conducted and results will be discussed.

6A PLL is a control system whose output signal phase is related to the input signal phase. These
systems generate a periodic signal and are commonly used as a clock for circuits.
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1.6 Organization

The rest of this thesis is organized as follows. In Chapter 2 there is a discussion about

the state of the art and related work for systems that, similarly to ours, try to reduce

variability margins. This is followed by Chapter 3 in which our schemes will be intro-

duced and explained in detail. Chapter 4 will first formalize the problem that we intend

to solve and then propose a series of algorithms to solve the different design schemes pre-

sented in Chapter 3. Chapter 5 shows results from our implementation of the algorithms

for a benchmark of several circuits. Finally, we present in Chapter 6 our conclusions, as

well as expose some of the future work about this topic that we intend to conduct.
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State of the art

2.1 Introduction

As mentioned in the previous chapter, our main objective is to avoid the large margins

used nowadays in worst case signoff. But we are far from being alone in this quest. In

fact, there is a significant amount of work done and papers published on this topic with

different approaches, some of which are being actively used in industry.

In this chapter we will introduce some of those works that aim at a similar objective. We

will focus on the most relevant for either their extensive application (such as parametric

binning) or their similarity with our own work.

2.2 Parametric binning

Parametric binning is the oldest and most widely used of the technologies that we

introduce in this document, but it can only address static variability.

This technique is highly related to yield, which can be briefly described as the probability

of a certain design to meet the target delay. More precisely, the yield depends on the

design, the foundry and the technology and it represents the proportion of devices in

the wafer that are considered to perform properly.

For example, we may have a design targeted to work at 1 GHz of frequency but, due

to process variability, some of the dies may not work at that speed without incurring in

timing violations.

Parametric binning tries to classify the dies in groups or bins after they are manufactured

depending on certain parameters such as frequency. This may be taken advantage of

17
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while designing by not considering the worst case in process but aiming instead to the

expected or typical process values. After the fabrication, dice will undergone intensive

testing to determine whether the timing constraints are met, discarding those that do

not. In summary, parametric binning trades static margins in the design stage for a

reduction in yield in the fabrication stage.

To improve profits, manufacturers often include a greater number of bins rather than

just accepting or discarding dice. This may be done by classifying each die into different

parameter values and then pricing and marketing them accordingly. For the example of

the design targeted at 1 GHz, some of the dice may correctly work at 0.8 and 0.9 GHz

and thus can be sold at lower prices. There may also be dice that met delay constraints

at 1.1 and 1.2 GHz and that can then be sold at higher prices as premium products.

The way that chips are classified will ultimately depend on the intended use and market

in which they will be sold. Figure 2.1 shows an example of different dice with respect

to frequency and power leakage.

Figure 2.1: Process variations for dies in 130 nm. Each bubble represents a single
die. Source from Intel.

This classification into bins may be done for two parameters:

• Speed binning: Speed binning [7, 8] classifies the dice with respect to its frequency.

A die that does not meet timing constraints at a certain frequency bin is placed

in a less restrictive bin.

• Voltage binning: In voltage binning [9] the classification is done with respect to the

voltage at which the die has to work in order to meet delay constraints. Increasing

the voltage in a circuit reduces the delay of its gates at the cost of an increased

power consumption, allowing for dice that would fail at the target frequency to

work correctly. The acceptance or rejection of dice and, possibly, its pricing is

then done accordingly to power consumption.
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2.3 Razor

A different technique that also addresses dynamic variability is Razor [10]. This tech-

nique is based on the idea of dynamically tuning the supply voltage of the circuit while

monitoring the error rate. The voltage is lowered until the error rate reaches certain

thresholds and increased when the number of errors grows due to variability sources.

In order to guarantee valid execution, error correcting circuits are also included so that

they may recover the data at a (small) time and power cost.

In essence, Razor tries to make the circuit work at the lowest possible voltage so that the

circuit consumes as little power as possible (note that voltage has a quadratic influence

over the power). This can also be potentially used for increasing the frequency of a

circuit, while maintaining the power consumption with respect to a circuit without

Razor.

With this idea, we can identify three parts on the Razor design:

• Error detection: The main circuit addition of Razor is the inclusion of shadow

latches: each delay-critical flip-flop (such as the ones that are at the end of a

critical path) is augmented with a shadow latch controlled by a delayed clock.

This clock must be delayed enough so that it will always capture the correct value

of the signal even in low voltage operations.

The error detection may be done by comparing the output of both the flip-flop

and the shadow latch, but in timing violations in flip-flops there is always the

possibility of incurring in metastability1 issues. For that reason, a metastability

detector is also included. Figure 2.2 depicts a simplification of the error detection

hardware.

• Error correction: The error correction is already partly done in the error detection

stage, as the correct value of a given stage is always in the shadow latch. The

problem remains, though, of not propagating the faulty signal through the pipeline.

There are different ways of doing this, the simplest one being stalling the pipeline

one cycle whenever one error is detected by using clock gating. In the next cycle,

the flip-flop will capture and propagate the correct value. Any number of errors

can happen at the same time and the execution will always continue regardless of

the error rate, never executing slower than half the speed.

1A digital circuit may stay for an unbounded amount of time, yet with an exponentially decreasing
probability over time, in a metastable state. In this state, the circuit is unable to settle into a logic 1 or
0 and acts in unpredictable ways.
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Figure 2.2: Razor error detection scheme. The regular input D feeds a common
Flip-Flop and the shadow latch. The output from the Flip-Flop is compared with the
output from the shadow latch and if different or if a metastable state is detected the

Error output is fired.

• Supply voltage control: The voltage control is configured in a way that it tries

to maintain a certain error rate. A low error rate indicates that the computation

is finishing too quickly and that there is an opportunity for energy savings, so

the voltage is lowered. When the error rate grows over an error rate reference, the

voltage is increased to avoid losing performance or power due to recovery overhead.

Since the apparition of Razor, multiple optimizations have been presented, such as in

[11], which proposes ways to better deal with metastability issues.

2.4 CRISTA and Trifecta

A different approach for dealing with dynamic variability is the one implemented by

CRISTA [12] (short for CRitical path ISolation for Timing Adaptiveness) and Trifecta

[13]. The basic ideas of these works are:

• Identify the set of paths that may cause timing violations in presence of variability

(critical paths).

• In synthesis stage, it must be ensured that they are rarely activated.

• Those critical paths are given an extra cycle whenever they are activated.

This identification of critical paths is called isolation by [12], and it must be possible

to predict their activation as a function of the input. In this way, the delay on these
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paths may be much less restrained than regular paths, as they will have twice the time

to complete. In fact, this is called path isolation due to the difference in delay with

regular paths, as can be seen in Figure 2.3. The isolation of paths may be done by using

a number of synthesis techniques, such as partitioning or gate sizing.

Figure 2.3: Delay distribution of paths from [12]. Critical paths have a clearly higher
delay, differentiating them (isolation) from the regular paths.

Of course, these approaches only make sense if it can be ensured that the critical paths

are only exercised in few circumstances. In those cases, a simple circuit dynamically

identifies their activation and sends a signal to stall the pipeline for one cycle.

Additionally in [12] it is also proposed the use of a Temperature-Adaptive Pipeline Design.

This technique tries to deal with the variability caused by the temperature in a circuit

by including three different voltage supply sources that must be tuned for working at

different temperature ranges. A simple sensor will then determine which of the three

voltage supply units to use in function of the temperature at which the circuit is working

and will switch between them as needed.

2.5 Performance Monitors

While not so directly correlated with reducing variability margins as the previous tech-

niques, Performance Monitors aim at quantifying those margins in runtime. There are

numerous articles on this topic proposing different implementations, only a few of which

will be introduced here, but it is important to mention them for two reasons:

• They often use Ring Oscillators for implementing monitors. While their use has a

different objective than ours, their designs share several similarities.

• Performance monitors are also an important part of our work. As shown later in

Chapter 3, we use Monitors to check margins.
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One way of classifying these Monitors is by considering whether they are designed for

generic circuits or for a particular circuit design. The former may consist of simple

inverter-based RO or more complex process-sensitive ones. In our case, we are more

interested about design-dependent monitors, as they share more similarities with our

work.

This last type may be further classified by the way they are designed. In [14] they

propose the generation of a single representative critical path (RCP) designed for being

slower than all the critical paths of the circuit. While this approach is similar to our

own, the RCP is designed with statistical static timing analysis methods (SSTA) [15]

and it only takes into account process variability without addressing dynamic variability.

Another interesting approach introduced by [16] consists on synthesizing 5 different delay

paths that can be monitored either individually or combined, each path with different

types of gates. The monitor includes a 12-bit thermometer2 for measuring the delay

that works in a very similar way to the one we propose in Chapter 3. With the help of

the thermometer for measuring time margins, the delay path or combination of paths

can be configured to approximate the actual critical path.

A different set of techniques estimate performance by placing in situ monitors [17, 18].

These monitors measure delay directly at critical paths, gaining in accuracy but resulting

in a high area overhead. It is possible to reduce that overhead by selecting only a

representative set of nets or even intermediate nets along critical paths as proposed by

[18]. The problem remains, though, that in situ monitors may interfere with the actual

critical paths thus increasing the complexity in the design stage.

The last type of monitors that we will be introducing are the Design-Dependent Ring

Oscillators (DDROs) [19]. In their paper, they propose to run cluster algorithms over all

the critical paths and design a RO for the centroid of each cluster. Note that the number

of clusters may be as small as 3 or 4, so that the area for ROs remains small. Their

technique also allows for both post-silicon tuning and real time performance monitoring.

2.6 Adaptive Clocks

Adaptive Clocks refer to a wide range of work and research in schemes that dynamically

change the frequency of the clock [20–25]. In summary, they monitor the current condi-

tions on the circuit and adapt the clock period accordingly. There are numerous schemes

that differ in some way or another between themselves, making it hard to mention all

2A thermometer is introduced and explained later in Chapter 3.
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the possibilities. Nonetheless, they share similarities and there is a set of characteristics

that are often present:

• The set of frequencies to which the clock can be modulated is discrete.

• Voltage droops are usually the main focus and, often, the only source of variability

that is alleviated, not taking into account, for example, temperature.

• Voltage droops may occur in the order of nanoseconds (high frequency voltage

droops), yet adapting the clock is not instantaneous. Every scheme has its own

way to deal with this problem, but it often requires the introduction of further

margins.

• In order to know when to adapt the clock, it is common to use monitors such as

the ones presented in Section 2.5.

Some of the Adaptive Clock schemes have been successfully used in commercial designs,

such as the ones introduced in [21] or in [25].





Chapter 3

Ring Oscillator schemes

3.1 Introduction

The work in this thesis focuses on the design of a novel clocking scheme that adapts

to variability in order to avoid margins in design stage. More specifically, we use a

Ring Oscillator as substitutive for the PLL that is designed for tracking variability for

critical paths in the system. Additionally, we will also include a monitor circuit, similar

to the ones introduced by Section 2.5. This monitor, while not strictly necessary, will

be convenient for a possible accuracy tuning as well as margin checks. It is especially

interesting when used in conjunction with configurable ROs that are explained later in

this chapter.

Along this chapter, we will talk about paths of gates. In order to simplify representation,

we will use the convention shown in Figure 3.1. Any path of arbitrary gates, such as the

topmost picture of Figure 3.1, will be depicted in the rest of this document as either a

sequence of triangles or an elongated bubble. Note that, while they represent a path of

gates, we are only interested in the delay they cause, rather than the gates themselves.

Figure 3.1: Topmost figure shows an arbitrary path of gates. This will be represented
by the mid and bottom figures in later pictures.

25
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As an overview of the system, consider figures 3.2 and 3.3. In Figure 3.2 we may see

a regular clocking scheme, in which a periodic signal is feed to the Flip-Flops in the

system. Note that the only changes done by a RO system is the substitution of this

clock for a RO that fulfils the exact same role. A monitor circuit may also be present

in the system.

Figure 3.2: A regular clocking scheme. The clock generates a periodic signal that
feeds to the Flip-Flops in the system.

Figure 3.3: Simplified overview of a RO system. The clock is substituted by a RO,
yet the signal is still directed towards the Flip-Flops. Monitor circuits are physically

close to the paths they check.

The following sections will go into detail as to how the RO and monitors are designed.

We will also talk about different schemes for RO and discuss their advantages.

3.2 Monitor

The Monitor is a circuit that keeps track of the variability in the system. This circuit

shares similarities with the RO in that it is a path built with regular gates subject to

the same sources of variability as the rest of the chip. The difference is that it does not

need to generate a periodic signal but it needs to somehow measure what is the current

delay of the path.

Figure 3.4 shows a basic scheme of the two main parts of the Monitor. It is first composed

by a path of gates that gives a delay subject to variability, followed by a component called
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thermometer. This thermometer measures how far has the signal travelled through the

path before the clock signal arrives, being just composed by a sequence of gates with

Flip-Flops interleaved at regular intervals, as can be seen by Figure 3.5.

Figure 3.4: Basic scheme of a Monitor. There is an initial delay, followed by the
Thermometer section which is used to measure the number of flip-flops reached by the

signal before the clock edge arrives.

Figure 3.5: Scheme of a Monitor Thermometer. The blue triangles represent any
possible gate or sequence of gates, the blue squares are flip-flops and the red signal

indicates the clock.

The way this circuit works is simple: at the start of the clock period, a signal pulse is

generated from the initial Flip-Flop and travels along the path, storing a value in each

of the thermometer Flip-Flops it passes through. The thermometer is also connected to

the clock, so when the next clock signal arrives, the Flip-Flops that had a value in its

input will now have it in its output, while the ones that were not reached in time by the

signal maintain their previous value. This can be read by a simple circuit showing how

far the signal has travelled. Figure 3.6 shows a representation of this functionality.

Figure 3.6: Representation of a monitor measuring the delay before the clock signal
arrives. In red is shown the reach of the input signal when the clock edge activates the

flip-flops.

The Monitor has some restrictions and there are some desirable characteristics that it

should maintain:

• The length of the initial delay should be configurable (at design stage), so that it

may be adaptable to each system.

• The total length of the path, including the thermometer, must always be greater,

for each corner, to the critical path delay of the circuit that we are monitoring.
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• The number of Flip-Flops in the thermometer needs to be a configurable parameter

in design stage.

• The slew through the whole monitor should be relatively small, as bigger slews

render the path more susceptible to variability and this could pose a problem.

3.3 Ring Oscillator

The Ring Oscillator is the most important circuit that we are designing, but also the

most difficult one. As basic properties, it needs to generate a periodic signal that cannot

be faster than the critical path at each corner. For simplicity, we will refer from now on

to the timing restrictions as target delay.

Because of the periodicity of the signal, the RO circuit must be connected in a loop. A

simple example of RO is an odd number of NOT gates in sequence, with the last gate

connected to the first gate. It is important to note that there must be an odd number

of inversions, as one traversal of the signal through the path will generate the positive

edge and the next will generate the negative edge. This also means that the delay for

both negative and positive signals must be greater than half the target delay.

Regardless of that simple example, the possible gates are not restricted to inverters and

the scheme for a RO does not need to be that simple either. Latter on in this section

we will discuss the two schemes that we are considering for this work, but before going

into details, let us enumerate the main characteristics that an RO should have:

• It must provide a periodic signal, yet the period does not need to be constant.

There may be, and in fact it is desirable, some jitter1 as the period adapts to the

variability sources.

• For each corner, the delay of the RO must be greater than the delay of the critical

path for that corner.

• While maintaining the previous restriction, it should have a delay as small as

possible.

• It is desirable that the slew is contained within a certain interval for avoiding an

excess of sensitivity to variability.

• Optionally, it is interesting that the RO can be dynamically configurable, so that

it can change the length of the path. This is useful when used in conjunction with

1Jitter is the deviation from true periodicity of a presumed periodic signal.
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the Monitor to allow for a fine grain tweak once the chip is fabricated permitting

the delay to be reduced for performance or increased for safety.

During the rest of this section we will explain the two different oscillator schemes that

we are considering in this work, as well as a way to deal with configurable paths.

3.3.1 Simple Ring Oscillator

The simple RO is the most straightforward strategy and it is similar to the example

posed at the beginning of this section. As can be seen in Figure 3.7, this scheme is just

composed by a sequence of gates (any normal gate) that invert the signal as represented

by the small ball (this can be done, as stated before, with any odd number of inversions)

and are connected in a feedback loop.

Figure 3.7: A simple Ring Oscillator connected in a loop. The signal is inverted at
each iteration.

It is important to mention at this point that we are interested in a symmetric duty cycle

– the time of the signal at level 0 is equal to the one at level 1. This kind of clock signal

is very common and is the one we will focus on.

Note that, at any one period, the signal will traverse each cell twice; once as a rising

edge and once as a falling edge. Now remember that the delay of a cell depends on the

edge direction, so the effective delay of a cell will not be constant through a period. If

this were not the case, we would only need to build a path that has a delay half of the

target delay, but considering a real model greatly increases the difficulty of the problem.

When designing the path, the selection of gates will have to be such that the rising

edge takes the same time than the falling edge to traverse it. This does not necessarily

imply that each gate must have the same delay for rising and falling edges, as one

cell can compensate for the next one. In any case, this is the biggest disadvantage of

this approach, as it increases the complexity of the optimization problem to solve and,

potentially, reduces the quality of the solution (i.e. greater margins).
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3.3.2 Dual Ring Oscillator

This scheme for the RO aims to mitigate the problem of optimizing for two edges at the

same time. It is based in the idea of making one path optimized for the rising edge and

one path optimized for the falling edge.

Figure 3.8 depicts a general view of this scheme. It can be seen how it has two alternate

paths joined together by a special cell named C-element. This C-element, depicted in

Figure 3.9, is a sequential gate that only propagates the signal when the first edge arrives

from any of the two paths. This means that, if the signal from path A arrives before the

signal from path B, the C-element will propagate that signal and feed it back to both

paths.

Figure 3.8: A Dual Ring Oscillator depicting two possible paths. One of them is
optimized for the rising edge and the other one for the falling edge. As with the simple

RO, the signal is inverted once per iteration.

Figure 3.9: A possible implementation for a negated C-Element with standard gates.
It has three AND gates and one NOR gate connected as shown, with two inputs and

one output.

It should be noted that, while this allows for independently optimizing each path for

one edge, it is still necessary to maintain the condition that the non-optimized edge

must be slower (i.e. have higher delay) than the optimized edge from the opposite path.

That means that, if path A is optimized for rising edges, the falling edge in A must be
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slower than in B. While this may sound a harsh condition, it is in fact more lax than

the condition from the simple oscillator scheme.

3.3.3 Configurable Ring Oscillator

As mentioned before, one of the optional yet desirable characteristics for a Ring Oscil-

lator is the capacity for reconfiguration in runtime. This allows, with the help of the

Monitor, to cut safety margins that were put in the design stage to attest for variability

without incurring in timing violations. Alternatively, this can also be used to increase

variability margins if deemed necessary. In any case, this is a tool that gives a degree of

control over the performance of the whole chip once implemented.

Until now, a RO was composed by just a sequence of gates and so there was only one pos-

sible path. When introducing the possibility of configuration we need to somehow create

alternative paths that have different lengths and so different delays, while still working

within a loop. In this thesis, we consider two different approaches that accomplish this.

Probably the most obvious way to accomplish this is by creating multiple ROs and then

selecting the one we are interested in by using a multiplexer, as can be seen by Figure

3.10. This has the advantage of not adding complexity to the problem of creating an RO,

we just need to design as many of them as we want. The problem with this approach

is that we only have one configuration per RO, so adding more configuration increases

linearly the area (i.e. ten configurations require roughly ten times the area of a single

RO). If we are interested in a big number of configurations this solution may become

inefficient.

Figure 3.10: A multiplexer selects which Ring Oscillator to use.

Another way of implementing this may be by including multiplexers within the RO. For

example, if we include a multiplexer at half the path that can select between the rest

of the path and a straight wire to the end of the RO, we can choose with a single bit
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whether we want the total delay or just half of it. This can be easily extended with more

multiplexers. Furthermore, if we place the multiplexers always at half of the remaining

length we may have an exponential number of configurations with respect to the number

of multiplexers. An example of this can be seen in Figure 3.11, where we have a fixed

delay and a variable delay in which each multiplexer selects a path with half of the delay

of the previous one.

Figure 3.11: A Ring Oscillator with four MUX, allowing for 24 configurations. The
triangles symbolize in this case the length of each path so that 2 triangles is twice the

delay of one.

This approach is, contrary to the first one, very efficient in terms of area. Doubling the

number of possible configurations only requires adding one more multiplexer. Nonethe-

less, there is a big problem: including a multiplexer inside the path greatly increases the

complexity of generating the RO. This is caused by the slew. Consider Figure 3.12 that

depicts a RO with 2 multiplexers and 4 different paths. If we choose the path shown in

3.12(a) the signal will traverse all the gates and go back to the first gate again in the

loop back with a certain slew. If we were to select the path of 3.12(b), we would skip

some of the gates in the middle and so the slew when arriving to the last gates would

be different than what it was in 3.12(a), effectively changing the delay of those cells.

Moreover, if we select the paths of 3.12(c) or 3.12(d), a different slew would then arrive

for the loop back to the first gate and so modifying the delay for the next iteration.

This problem must be solved when designing the RO and, as can be seen, it increases

the complexity of the problem with respect to the number of multiplexers considered,

potentially reducing the quality of the solutions obtained.

(a) Longest path (b) Skip the first group of cells

(c) Skip the last group of cells (d) Shortest path

Figure 3.12: Ring Oscillator with four possible paths. In red are marked the paths
that the signal will follow on each configuration.

Besides those two different ways of implementing configurations, it is also possible to

mix them to gain the benefits of the two, at the cost of incurring a bit in the drawbacks

of both. For example, if we are interested in 16 configurations we can use two RO with
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three multiplexers. This will have twice the area of an RO with 4 multiplexers, but it

will be significantly easier to design and will probably be more accurate.

3.4 Summary

In this Chapter we introduced the different circuits that we aim to design, with some

alternatives for the case of the Ring Oscillator. It is not clear which of those different

implementations for a RO is better, so they need to be analysed in the experiments

chapter. We also presented the monitor circuit that, while in principle not necessary,

enables the possibility of configurable ROs. This characteristic may be used for either

performance gains or for safer operations modes. The following chapter will give more

information in how both circuits are designed.
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Path Generation

4.1 Introduction

In this chapter we will give a more formal definition of the problem that we need to

solve. We will start by proposing a basic version that will be later expanded. Each of

the different schemes presented in Chapter 3 will be a variant of the problem. After

the definition, an analysis on the complexity of the problem will follow, including a

polynomial reduction from the well-known 3-SAT problem.

With a more formal definition of the problem, we will be able to discuss different alterna-

tives for algorithms, including optimal and non-optimal schemes. A thorough definition

of the algorithm that we implemented will follow, with specific versions for each of the

problem variations. Finally, we will conclude the chapter with a discussion on the cost

functions used by the algorithm.

4.2 Formal definition: Basic problem

This section presents a formal definition and nomenclature for the problem. We first

start with a basic version of the problem, which will be expanded in the next section in

order to encompass all the different alternative schemes. For reference, table 4.1 shows

all the nomenclature that will be used in the basic definition of the problem.

We part from a library that can be divided into c corners that form the set corners

c ∈ C. In the library we also have cells or gates. Remember that a gate may have

different pins and input values, as well as different output pins. We consider that a gate

g that exists in the set of gates G contains one input pin, one output pin and a specific

assignment in the rest of the input pins. So for example, an AND2 cell with two input

35



36 Chapter 4. Path Generation

L Library

C Set of corners

c Corner

G Set of gates

g
Individual gate, including specific pin and signal con-
figuration

P Path of gates

P Ordered sequence of gates

pi ith gate for path P

E Edge, either r (rise) or f (fall)

Ei Output edge for gate i or input edge for gate i+ 1

U Unateness, either p (positive) or n (negative)

Dg,c Delay function for corner c and gate g

Sg,c Slew function for corner c and gate g

Q Capacity

Qi
Set of output capacitances for gate i or input capac-
itances for gate i+ 1

Qi,c
Output capacitance for the ith cell or input capaci-
tance for the i+ 1 cell for corner c

S Slew

Si
Set of output slews for gate i or input slew for gate
i+ 1

Si,c
Output slew for the ith cell or input slew for the i+1
cell for corner c

T Set of target delays

tc Target delay for corner c

δi,c Delay for the ith cell for corner c

di,c Accumulated delay for ith cell for corner c

Λ Set of normalized delays

λi,c Normalized delay for cell i and corner c

Table 4.1: Nomenclature used for the basic problem definition.

pins (A and B) and one output pin (Z) that implements the logic function A · B = Z

actually represents four gates in our nomenclature:

• Pin A as input pin, pin Z as output pin, B = 0.

• Pin A as input pin, pin Z as output pin, B = 1.

• Pin B as input pin, pin Z as output pin, A = 0.

• Pin B as input pin, pin Z as output pin, A = 1.

Each gate g ∈ G has associated an input capacitance Q(E), that depends on the signal

edge E = {r, f} (r for rising edge, f for falling edge) and a unateness U = p, n (p for
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positive, n for negative1). The library also associates, for each corner c and gate g, the

following functions:

• The delay function Dg,c(Q,S,E), with Q being the capacitance connected to the

output pin, S the slew in the input pin and E the edge of the input signal.

• The slew function Sg,c(Q,S,E), where Q, S and E are defined as in the delay

function.

The capacity Q at the output pin of a cell is equivalent to the capacity of the input

pin of the next cell. The slew S comes from the slew function from the previous cell.

Finally, the edge E is function of the unateness and input edge of the previous gate.

We summarize the definition of a library L as the tupla containing:

• Set of corners C.

• Set of gates G.

• Delay function Dg,c(Q,S,E).

• Slew function Sg,c(Q,S,E).

Along with a library we also have a set of target delays T . Each target delay tc ∈ T has

associated a corner c. We also define a path of gates P associated with a library L as

the tupla containing:

• A sequence of gates P , where pi represents the ith gate with 1 ≤ i ≤ n, and n is

the length of the path.

• The input slew for the first gate S0.

• The input edge for the first gate E0.

• The output capacitance for the last gate Qn.

For convenience, we also define Si, Ei and Qi, with 0 ≤ i ≤ n as the slew, edge direction

and capacitance at the output of the ith cell or at the input of cell i+ 1.

1A positive unateness will maintain the input edge at the output, while a negative unatenes will
invert the input edge at the output. Also note that, in general, a gate may not be unate (for example,
an XOR gate). In our case, though, we ensure that our definition of gate is always unate by predefining
the state for all the input pins.
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For a given path P we call δi,c the delay of the ith cell in P for corner c and we define

the accumulated delay di,c as:

di,c =
i∑

j=1

δj,c (4.1)

With δi,c computed as

δi,c = Dg,c(Qi,c, Si−1,c, Ei−1) (4.2)

The basic goal of the problem is, given a library L, a set of target delay T and, possibly,

an input slew S0, an input edge E0 and an output capacitance Qn, find a path P that

satisfies

∀tc ∈ T : dn,c ≥ tc (4.3)

With n being the last cell of the path. This defines the main constraint for the problem

and any path that does not satisfy it is not considered a valid solution. But this problem

is in fact an optimization problem, so we lack the last ingredient, the optimization goal.

First lets define the normalized delay λi,c =
di,c
tc

, with λi,c ∈ Λ. Note that the previous

condition is satisfied if and only if ∀c ∈ C : λn,c ≥ 1. In short, we want the values in Λ

to be as small as possible. Different possible optimization goals are:

• Minimize maximum(Λ): Minimize the maximum of all the λ ∈ Λ, so that the

worst case is as good as possible.

• Minimize average(Λ): Minimize the average of all the normalized delays.

• Minimize λty: Minimize the delay of the corner corresponding to the typical corner.

• Minimize pondered average(Λ): Minimize a pondered average so that we may give

specific weights to each of the corners.

It is not clear at this point which one is the best optimization goal, so we will leave the

discussion for the section 4.7, in which we describe possible cost functions. For now, let

us just assume that our goal is the minimization of the cost function:

Minimize : CostFunction(T,P) (4.4)
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4.3 Expanding the basic problem

Besides the basic definition of the problem exposed in the previous section, there are some

other properties and constraints that we may need. Also, variations over the simple path

exposed in Chapter 3, such as monitors or configurable paths, require slightly different

definitions.

The following subsections will formalize some extensions over the problem. Note that

most of them are not mutually exclusive and, in fact, are often used in conjunction.

Table 4.2 summarizes the new nomenclature introduced in this section. Any variable

not found in this table will be found in the basic nomenclature Table 4.1.

P ′ Identical to P but with the initial input edge inverted

P i ith path of gates

P
Sequence of vectors of gates P = {{p11 , p12 , ..., p1m1},
{p21 , p22 , ..., p2m2}, ..., {pn1 , pn2 , ..., p1mn}}

P i Sequence of vectors of gates for the path P i
Pi Vector of cells in the ith position of the path

pij
Cell in the ith position of the path in the jth position
of the vector

pij jth vector of cells for the ith path

Wc() Wire model for corner c

Qij
Capacitance of the cell in the ith position of the path
and the jth position of the vector

Qij
Set of capacitances for the vector of gates in position
the jth position in the ith path

Smax Maximum slew

Sij
Set of slews for the vector of gates in the jth position
in the ith path

ty Typical corner

nmin Minimum length of the path

nmax Maximum length of the path

ni Length of path i

F Number of flip-flop gates in the thermometer

f Flip-flop gate instance

d′n,c
Accumulated delay for the last cell, corner c, with
the initial input edge inverted w.r.t. dn,c

dij,c jth accumulated delay for path i and corner c

λ′n,c
Normalized delay for the last cell, corner c, with the
initial input edge inverted w.r.t. dn,c

Λ′ Set of inverted normalized delays

M Number of multiplexers in a configuration path

∆ Vector of coefficients for target delay

δi ith coefficient from ∆

Table 4.2: Nomenclature used for the extended problem definition.
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4.3.1 Extensions on the problem

In order to allow for modelling some of the variations over the problem, as well as gain

in accuracy, we include the following extensions over the basic problem.

4.3.1.1 Additional cells

We extend the definition of path of cells to include the possibility of connecting a cell

to more than one cell. A path P = {p1, p2, ..., pn} previously contained exactly n cells

in sequence. Now, we define pi as a vector of cells of the form pi = {pi1 , pi1 , ..., pimi},
where pij represents an instance of a cell. Only the first cell, denoted pi1 , has its output

pin actually connected to the following cells, as shown in Figure 4.1.

Figure 4.1: Each triangle represents an arbitrary cell. Only the first cell of each set
has its output pin connected and so is the only one traversed by the signal.

The rest of the cells pij with 1 < j ≤ mi affect the delay by changing the capacity. Thus

the capacity is now computed as follows:

Qi,c =

mi∑
j=1

Qij ,c (4.5)

with mi = |pi| representing the number of cells in pi.

4.3.1.2 Wire models

For now we have omitted the presence of the wires that interconnect the cells, but they

also have an impact on the delay by modifying the capacitance. Libraries often include

approximations for the influence of wires in capacitance in the way of wire models. These
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models use the fanout2 of the cell in order to estimate a capacitance. The computation

of capacity having on account wire models is as follows:

Qi,c = Wc(m
i) +

mi∑
j=1

Qij ,c (4.6)

with Wc() being the wire model function for corner c obtained from the library.

4.3.2 Additional constraints

We introduce some additional constraints to the previous only constraint. These new

constraints exist to either give more control over the resulting path or to allow for

variations in the problem that will later be presented.

4.3.2.1 Maximum Slew

The slew of a signal is one of the main factors in the delay computation of a cell. It

has also a great impact in the sensitivity to variability of the cells it drives. In some

occasions we may be interested in limiting the maximum values that the slew can reach

in order to have better control over variability.

As the slew for all the corners is correlated (high slew in one corner also gives a high

slew in the rest of corners) it is enough with checking that the slew at the typical corner

ty does not surpass some input specified maximum slew Smax. The new constraint is as

follows:

∀i ∈ [1, n] : Si,ty < Smax (4.7)

4.3.2.2 Length of the path

Another property we may need is a specific length for the path measured in number

of gates. We also consider a certain margin over the length. We define nmin as the

minimum length of the path and nmax as the maximum length and add the following

constraint:

nmin ≤ |P | ≤ nmax (4.8)

2The fanout of a cell is the number of elements to which the output pin is connected to.
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4.3.2.3 Inverted edge

One of the variations of the problem, the Dual Ring Oscillator, requires that the prop-

agation of the signal along the path for a specific input edge is faster than the inverted

edge. This adds the following constraint:

∀c ∈ C : dn,c > d′n,c (4.9)

with d ∈ P = {P, S0, E0, Qn} and d′ ∈ P ′ = {P, S0, Ē0, Qn}.

4.3.2.4 Parity of the inversions

It is often required to control the parity of the inversions in the path. For example, if

we need that the signal is inverted at the end of the path with respect to the input edge,

we need an odd number of inversions. An even number of inversions will produce an

output edge similar to the input edge. Thus we have two different possible constraints.

Inverting path,

E0 6= En (4.10)

Non-inverting path,

E0 = En (4.11)

4.3.3 Variations on the problem

The definition of the problem at this point allows to model paths of gates that trace

variability. Still, we are actually interested in Ring Oscillators and Monitors, as well

as the possibility of dynamically selecting a path. This section defines the different

problems that we actually need to solve.

4.3.3.1 Monitor

The monitor path problem is very similar to the basic problem. It only introduces a new

constraint, subject to new inputs. For the monitor path we are interested in building a

thermometer (see Section 3.2) at the end of the path, so we need to know the amount

of flip-flops that we want to use. We will call this number F . We also require a specific

flip-flop gate f .
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The only difference between the Monitor path and the basic problem path is that the

last F gates have as an additional cell a flip-flop. Thus we can define the only additional

constraint as:

∀i ∈ [n− F, n] : pi2 = f (4.12)

4.3.3.2 Simple Ring Oscillator

This RO is the simplest one and we have most of the ingredients to specify it. We

only lack one more optimization goal that has not yet been defined and modify some

constraints. Remember from Section 3.3.1 that this kind of RO needs to have a similar

delay for both raising and falling input edges. We cannot add a constraint that forces

to have both edges equally, as a solution that satisfies it may not even exist. We can

settle with a more relaxed version:

∀c ∈ C : dn,c ≈ d′n,c (4.13)

with d ∈ P = {P, S0, E0, Qn} and d′ ∈ P ′ = {P, S0, Ē0, Qn}.

Now this constraint is very unspecific as to what “≈” means. Defining that constraint

with some margins is a possibility, yet then choosing those margins would be tricky and

can lead to worse solutions. We instead decided to modify the optimization goal to

reflect this constraint without specifying margins, as we will see below.

The Simple RO also needs to change some constraints. Remember that the signal has

to traverse the path of gates twice each period, one for the rising edge and one for the

falling edge. This forces us to add the inverting edge constraint 4.16 and half the target

delay constraints 4.14 and 4.15 – we are now interested in only half of the target delay

for each traversal of the path.

Another thing to take into account is that we are now defining a Ring Oscillator that is

connected by a feedback loop. This means that the output capacitance for the last cell

will actually be the input capacitance for the first cell. Consequently, the output slew

for the last cell is also the input slew for the first cell, yet enforcing this as a constraint

may render the problem unsolvable. We will only add constraint 4.17 for the capacitance

and constraint 4.18 for the slew of the inverted edge.

In previous sections we defined the normalized delay as λi,c =
di,c
tc

, with λi,c ∈ Λ and

d ∈ P = {P, S0, E0, Qn}. We extend this definition to include the inverted edge delay
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and slew λ′i,c =
d′i,c
tc

, with λ′i,c ∈ Λ′ and d′ ∈ P ′ = {P, S′0, Ē0, Qn}. The new constraints

are:

∀c ∈ C : λn,c ≥ 0.5 (4.14)

∀c ∈ C : λ′n,c ≥ 0.5 (4.15)

E0 6= En (4.16)

Q0 = Qn (4.17)

S′0 = Sn (4.18)

And the optimization goal:

Minimize : CostFunction(T,P) + CostFunction(T,P ′) (4.19)

4.3.3.3 Dual Ring Oscillator

The Dual RO is actually two different paths. For simplicity, we will divide the problem

in two different problems that can be solved independently. We will call these two

problems P1 and P2. The main difference between them is the input edge E0:

P1 = {P 1, S1
0 , E0, Qn} (4.20)

P2 = {P 2, S2
0 , Ē0, Qn} (4.21)

Note that the paths P 1 and P 2 are different, as well as the input slew S1
0 and S2

0 , but

the output capacitance must be the same. In fact, this capacitance must be the addition

of capacitances of input cells plus the wire model and this will be modelled as constraint

4.25. This is because the paths are actually connected together. Similarly, the output

slew for one path is the input slew for the other. As in the case for the simple RO,

enforcing this may not be possible, so we add the more relaxed constraint 4.26.

Another constraint that both paths must follow is a fixed last cell. The last cell is a

C-element cell, yet each path is connected to a different set of pins. We will call p1
n1 ∈ P 1

the last cell for P1 and p2
n2 ∈ P 2 the last cell for P2. The C-element cell with different

pins configurations will be ce1 and ce2. This produces constraints 4.27 and 4.28.

Similarly to the Simple RO, each path traversal corresponds to half of the target delay.

This also adds the constraint of having an odd number of inversions (constraint 4.23)
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and halves the target delay for each path (constraint 4.24). Yet in this case, we also

need the inverted edge constraint 4.22 explained in Section 4.3.2.3.

Finally, the optimization goal is independent for each path and so does not need to be

modified. The new constraints for this problem are:

∀c ∈ C : d1
n,c > d2

n,c (4.22)

E0 6= En (4.23)

∀c ∈ C : λn,c ≥ 0.5 (4.24)

Qn = Q1
0 +Q2

0 +W (|p1
1|+ |p2

1|) (4.25)

S2
0 = S1

n1 (4.26)

p1
n1 = ce1 (4.27)

p2
n2 = ce2 (4.28)

4.3.3.4 Configurable path

This variant of the problem addresses the optional extension of dynamic configuration

of the path introduced in Section 3.3.3. Note that while this can (and should) be used

in conjunction with other schemes, here we will define it as a separate problem.

The input for this problem needs to include the number of multiplexers M that will be

added into the path. There must also be an input vector ∆ of size M+1 with coefficients

for the target delay, so that we know how long each path is. The first element of the

vector ∆ is the time for the fixed delay, the second element is the time between the

first and second multiplexer, and so on. For example, ∆ = {0.5, 0.4, 0.3} indicates that

half of the target delay corresponds to the fixed delay, the path between the fixed delay

and the first multiplexer is 0.4 times the target delay and the time between the first and

second multiplexers is 0.3 times the target delay. Note that the sum of all the coefficients

is not necessarily equal to 1. Figure 4.2 shows how the ∆ vector is distributed.

Figure 4.2: Distribution of the ∆ vector of coefficients for target delay along the path.

The multiplexers may be any cell from the library that have a function that allows the

selection of one of its inputs based on configuration signals. We consider that only one

type of cell is used as multiplexer and defined by the input. There must also be two
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different configurations: the fixed configuration, that skips the longest path, and the

long configuration, that propagates the signal through the longest path. We will call the

gates thus configured mf and ml respectively, as can be seen in Figure 4.3.

Figure 4.3: Naming convention for the two possible multiplexer configurations. We
will refer to the configuration that selects the shortest path as mf , represented at the
top. At the bottom is depicted the longest delay configuration, which we will call ml.

For modelling the configurable path, we will actually consider M + 1 different paths

P1,P2, ...,PM+1. The first path P1, that corresponds to the fixed delay, will have M

multiplexers mf at the end of the path, as expressed by constraint 4.30. The other paths

all end with just one multiplexer ml (constraint 4.31). Each path will have a different

target delay based on the ∆ vector of coefficients. In particular, path Pi has target delay

T · δi with δi ∈ ∆ and 1 ≤ i ≤M + 1. This is modelled by constraint 4.29.

The input slew for paths other than the first one will also be dependant on the slew at

the input of the corresponding multiplexer in the first path. This means that the input

slew for path i, that we will call Si0, corresponds to the input slew for cell p1
n1−(M+1−i)

from the fixed delay path. Thus, for paths Pi with 2 ≤ i ≤ M + 1, the input slew Si0

is equal to S1
n1−(M+2−i). Constraint 4.32 shows this restriction. Figure 4.4 shows the

distribution in different paths as well as the points from different paths that share slew.

Figure 4.4: At the top is represented the path that we want to model. The path P1

at the middle represents the fixed delay, while the paths at the bottom represent the
configurable delay. The circles marked at each path in a different color represent the

points in the path that share slew.
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This last constraint allows us to correctly model the propagation of a signal from the

fixed delay path to exactly one of the longer paths. The moment a signal goes through

one of the alternative paths the slew will make delays computations incorrect for the

rest of the path. To palliate this effect we will introduce a new optimization goal that

tries to match the slew at the end of the alternative paths to the slew at the output

of the multiplexers in the fixed path. The objective of this new goal is to reduce the

difference between the slew Si
ni and the slew S1

n1−(M+1−i), with 2 ≤ i ≤ M + 1, n1 the

length of the fixed delay path and ni the length of the ith path.

The new target delay constraint for all the paths is:

∀i ∈ [1,M + 1], ∀c ∈ C : λin,c ≥ δi (4.29)

The constrain for path P1 is :

∀i ∈ [n−M,M ] : p1
i = {mf} (4.30)

Constraints for paths Pi with 2 ≤ i ≤M + 1 are:

∀i ∈ [2,M + 1] : pini = {ml} (4.31)

∀i ∈ [2,M + 1] : Si0 = S1
n1−(M+2−i) (4.32)

The new optimization goals for the same paths need to reduce the difference between

slews like so:

Minimize : ∀i ∈ [2,M + 1],∀c ∈ C : |S1
c,n1−(M+1−i) − S

i
ni | (4.33)

Yet this is not a valid function. The actual optimization goal is, as previously, to

minimize the cost function. This cost function will be latter discussed in Section 4.7.4.

4.4 Problem analysis

With the problem defined it is now possible to analyse it. In this section we will try

to understand where the difficulty of this problem lies as well as give some proof and

intuition about its complexity.
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The first thing that should be noted are the dependencies for the delay computation

for a cell. On the one hand, we have the capacity for the output pins in a cell. This

capacity is dependent of the next cell (or set of cells, if they are connected in parallel),

and thus the delay cannot be accurately known without looking at least one step ahead.

On the other hand, the edge and slew depend on the previous cell. Furthermore, the

output slew is also dependent on the input slew, so in practice the slew and delay for

the ith cell in the path is dependent on all the previous cells from 1 to i− 1.

This entanglement of dependencies, especially the ones concerning the slew, makes it

impossible to have any partial solution that is guaranteed to be optimal. For example,

if we were to construct the path one cell at a time, we cannot at any point know for

sure that the portion of the path already built is optimal. Even the first cell of the path

will modify how the delay of the last cell is computed. This inconveniently prevents us

from reaching an optimal solution by using a simple greedy algorithm that selects at

each step the best candidate.

In order to give a formal proof about the hardness of the problem, we show below a

polynomial reduction from 3-SAT to a decisional version of the basic problem. This will

prove that the basic problem is at least as hard as 3-SAT, placing it into the NP-hard

complexity class.

4.4.1 3-SAT polynomial reduction

The Boolean Satisfiability Problem, often abbreviated as SAT, is a decisional problem

consisting in determining whether there exists an assignment of variables that satisfies

a given boolean formula. SAT was also one of the first problems proven to be NP-

complete. In the most general version the boolean formula may have any shape, but

here we will only consider the 3-SAT version that is also proved to be NP-complete.

The 3-SAT problem is identical to the regular SAT problem, yet with restrictions for the

input formula. In particular, the formula must be in conjunctive normal form (CNF),

where each clause has at most three literals. Sometimes, it is required for 3-SAT that

each clause has exactly 3 literals. Note that this does not affect the complexity, as

auxiliary variables can be added to complete the restriction, requiring extra clauses as

well to ensure that all solutions assign the new variables to false.

For simplicity in the proof, we will consider the 3-SAT version that requires exactly 3

literals per clause. We will also require that there are no duplicate clauses. This last

restriction may be satisfied by a polynomial search over the formula, removing repeated

clauses.
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We also need to transform the basic problem to which we want to make the reduction

into a decisional problem. For simplicity of the proof, we will simplify the basic problem

and only consider one corner. We will call the decisional version of this problem PATH.

Maintaining all the restrictions from the basic problem, except for the optimization

goals, PATH is the problem of deciding whether there exist a path of gates such that

t ≤ d < t+ ε, with d being the accumulated delay of the path, t the target delay and ε

a positive rational number.

4.4.1.1 Reduction

An instance from 3-SAT is composed by N variables and M clauses. Each variable is

enumerated by appearance order from 1 to N . For each clause Ci, 1 ≤ i ≤M , a set of 7

gates Gi is created into the library L. Each of these 7 gates from Gi has the delay and

slew functions constructed in base to the 7 possible assignments to Ci that satisfy the

clause.

Consider for example the clause (a ∨ b ∨ c̄). There are 7 assignments for the variables

a, b and c that satisfy it, which are: (a = 0, b = 0, c = 0), (a = 0, b = 1, c = 0),

(a = 0, b = 1, c = 1), (a = 1, b = 0, c = 0), (a = 1, b = 0, c = 1), (a = 1, b = 1, c = 0) and

(a = 1, b = 1, c = 1), but not (a = 0, b = 0, c = 1). There will be one gate representing

each of these possible assignments and we will refer individually to them as gi,j , with

1 ≤ i ≤ M identifying the clause Ci and 1 ≤ j ≤ 7 identifying the variable assignment.

All the gates created are identical except for the slew and delay functions. A more

graphic example of this gate creation can be seen in Figure 4.5.

Remember from the introduction to this section that the slew at any one point in the

path may depend on all the previous cells. We will make use of this to encode information

into the slew. Let’s first define a possible encoding. The initial slew will be a natural

number which most significant digit is a 1 followed by N +M 0’s. We will refer to this

digits as Yi, with 1 ≤ i ≤ N +M , and Y1 being the digit immediately to the right of the

initial 1, Y2 at the right of Y1 and so on. We now define the codification:

• A 0 in Yi, with 1 ≤ i ≤ N , indicates that the slew has not traversed any gate from

the set Gi, while a 1 indicates that the slew has traversed some gate from Gi.

• A 0 in Yi, with N + 1 ≤ i ≤M , indicates that the slew has not traversed any gate

from a set Gj such that the clause Cj contains the variable (i−N).

• A 1 in Yi, with N + 1 ≤ i ≤ M , indicates that the slew has traversed some gate

gj,k ∈ Gj such that the clause Cj contains the variable (i − N) and the gate gj,k

refers to an assignment where the variable (i−N) is assigned to FALSE.
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Figure 4.5: The ith clause generates a set of 7 gates Gi. Each gate gi,j in this set
represents a satisfiable assignment of the clause, numbered from 1 to 7.

• A 2 in Yi, with N + 1 ≤ i ≤ M , is similar to the previous case, but with an

assignment to TRUE.

For example, consider a problem with N = 4 and M = 9. The slew 1 1010 021102100

indicates that only gates from the sets G1 and G3 have been seen. It also shows that

the variable 2 and 6 have been assigned to true and the variables 3, 4 and 7 have been

assigned to false. No other variables have been yet assigned.

It is now possible to define the slew function. For simplicity, the slew function will only

depend on the input slew. Thus, for each cell gi,j , with 1 ≤ i ≤ N and 1 ≤ j ≤ 7 we

can define the slew function Sgi,j(Sin). The slew at the output is identical to the slew

at the input Sin with the following changes:

• The ith digit of the slew is set to 1, indicating that clause Ci has already been

traversed.

• By looking at the jth assignment for Ci we set the appropriate values for the

variables with respect to the encoding previously defined.

Finally, we may also define the delay function Dgi,j(Sin) for gate gi,j , with 1 ≤ i ≤ N

and 1 ≤ j ≤ 7. Note that, like in the slew case, the delay is only function of the slew.

Depending on the slew, the delay function outputs the following:

• If the ith digit of the input slew is a 1, the delay is t+ ε.
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• If the encode of the input slew shows that any of the variables contained in clause Ci

has already been assigned, and the assignment is different than the same variable

in the jth assignment for clause Ci, the delay is t+ ε.

• Otherwise, the delay is t/N .

The value for the target delay and for ε may be any positive rational number, for

example, t = N and ε = 1. Note that this construction can be done in polynomial

time and nothing else is required for the reduction. If the formula is satisfiable, it is

guaranteed that a path exists such that its accumulated delay d satisfies t ≤ d < t + ε.

In this case, exactly N gates will be used, one for each group of cells, and their variable

assignments will be compatible. For construction, we also know that all the variables will

have a value assigned. If no such path exists, it can only be because there is no possible

assignment of variables that satisfies the formula, thus the formula is unsatisfiable.

As an example, consider the formula (a∨ b∨ c̄)∧ (a∨ b̄∨ d̄)∧ (ā∨ c∨ d) that has N = 3

clauses and M = 4 variables. The library for this formula would contain 3 sets of gates

G with a total of 21 gates. A possible path that satisfies constrains can be seen in Figure

4.6. Note from that example that there is exactly one gate from each clause. The gates

also contain compatible values for the variables and they correspond to a satisfiable

assignment of the formula.

Figure 4.6: Correct path for the example formula. Slew at each point is shown below,
while delay is shown above.

4.5 Solving the problem

As we have shown in the previous section, this is a hard problem. Even so, there are

lots of possible strategies and schemes that may solve it in reasonable times, often with

compromises regarding quality on the solution. In this section we will do a brief analysis

for both approaches that yield optimal solutions and approaches that compromise quality

as a trade-off for complexity and execution time.
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4.5.0.2 Optimal solutions

We have seen that any optimal algorithm would need to pay an exponential cost unless

P = NP. This is the case for lots of important problems that are, nonetheless, possible

to solve by paying that cost for real life instances. We will now propose a couple of

algorithms that try to do that and see if it would make sense to implement them.

First of all, it is always interesting to see what the naive algorithm would look like. Let

us assume that we are trying to solve the basic problem without cells in parallel3. The

naive algorithm would evaluate all the possible combinations of cells such that the delay

is greater than the target delay. Solutions were removing one or more cells still gives a

delay greater than the target delay for all the corners are not considered (this prevents

an infinite amount of possible combinations). After each evaluation, the best solution

so far is stored. The algorithm returns at the end the best solution stored.

If the longest possible path is N and the amount of cells in the library is M , it can be

seen that the algorithm would have a complexity proportional to O(MN ). In a real-life

instance of the problem, N is typically in the order of several tens and M in the order of

several thousands. Thus this naive algorithm would rarely be useful for real instances.

By looking at the formal definition of the problem, it may seem somehow natural to

propose a reduction to ILP (Integer Linear Programming). In fact, the constraints

could be directly translated from the definition, including the optimization goals. While

the ILP algorithms are still within the realm of the exponential, they have proven to be

quite fast in practical applications. Yet in this case there is one catch: the delay and

slew functions. These two functions would need to be translated as variables and, as

explained earlier, both delay and slew depend on all the previous cells. It is necessary,

then, to have one delay and slew variable for each possible combination of paths. We

would need to pay the same cost of the naive algorithm just to generate the ILP instance,

and then we may potentially need an exponential cost over it for solving it.

Similar problems arise when considering reductions to other kind of well-known problem

solving frames such as SAT, constraint programming or SMT. This does not mean that

there does not exist any optimal algorithm that solves this problem for some real-life

instances in reasonable time, but may give an intuition of the difficulty of designing it.

We were, in fact, unable to find any such optimal algorithm.

3With cells in parallel we would need to ensure either that the delay function is monotonic with
respect to the capacity or fix a constant bound over the number of cells in parallel in order to have a
finite amount of combinations. If not, the decisional version of this problem would not be decidable.
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4.5.0.3 Non-optimal solutions

There is a huge number of ways for solving this problem if we relax the optimality

requirement. Here we will consider two ways: simplifying the problem and solving it

optimally or solving the complete problem with a non-optimal algorithm.

The first way allows for controlling how much precision you may have, by deciding in

which way to simplify the problem. An example of this approach can be found in [19],

where they solve a very similar problem to ours. In real-life instances, the slew function

tends to converge to a certain value when applied to a given sequence of gates. For

example, the slew at the end of a sequence of AND gates will eventually converge to

a certain value, regardless of the input slew. In [19] they make use of this property to

group sequences of several gates. They also only consider a relatively small set of groups

as their atomic unit for building a path, and ignore the interaction of the slew between

groups. With this, they can use an ILP algorithm to optimally solve the simplified

problem.

There exist a wide range of algorithms and techniques for the non-optimal approach that

range from simple greedy algorithm to more complex approximate algorithms. Greedy

algorithms are commonly very fast at solving problems, but do not give any short of

guarantee with respect to the quality. On the other end of the spectrum, approximate

algorithms are typically not as fast as a greedy one, yet they give very specific boundaries

for the quality of the solution. Regardless of that, approximate algorithms may not exist

for every problem and, even if they do, they not always yield high quality solutions. In

this work we decided to use a middle ground by choosing a metaheuristic algorithm.

Metaheuristic algorithms have been widely used since they appearance for solving com-

plex optimization problems often yielding near-optimal solutions. They share a simi-

larity with greedy algorithms in that they are often fast and do not give any guaranty

respect the quality of the solution. Even so, they usually give high-quality solutions

in short execution times and, sometimes, even optimal ones. There is a wide range of

metaheuristic algorithms, each one usually working well for one type of problems and

not so well for other types. In fact, even if sometimes there is some intuition as to what

metaheuristic works well with what problem, the only way to know which is preferable

is to actually test them.

In our work we decided after some tests to use a metaheuristic called Beam Search that

performs a wide range of greedy algorithms in parallel, keeping a constant set of best

solutions. This metaheuristic and, in particular, the implementation that we did for this

problem, will be explained in the following section.
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4.6 Beam Search algorithm

The Beam Search algorithm is a search algorithm that explores the space of solutions

by expanding the most promising set of nodes. It is an extension for a greedy search

algorithm that at each step selects the best possible solution. In the case of Beam Search,

it always keeps a set of best solutions with a fixed size.

A fast and informal description of the algorithm is as follows:

• We part from a set (with fixed length) of empty paths of gates.

• At each step, we evaluate with a cost function our current paths with a new cell

at the end. This is evaluated with all possible cells in the library and each path

in the set.

• The best solutions found replace the ones in the set.

• This continues until all the solutions in the set have finished paths.

• The output is the best solution.

A more formal specification of the algorithm for the basic problem can be found in

Algorithm 1. The input for this problem is a set of gates G and a target delay T that

serves to compute the cost function. Additionally, we need an input slew S0 and an

input edge E0 for the first cell as well as an output capacitance Qout for the last cell.

The output is a path of gates satisfying the constraints imposed by T .

In the first part of the algorithm we initialize the set of candidates with a fixed size K.

This set of candidates will always contain the best K paths found so far, as well as the

cost of each one. At the end of the initialization, the set Cand has the best K paths

that have just one cell.

The core of the algorithm is a loop that goes on until all candidates contain a path

with a delay greater than T . At each iteration, we evaluate the cost of adding any

possible cell to any possible candidate path, including paths in which we do not add

any cell. Note that this could stuck the algorithm into a fixed length. To solve this, the

getBestCandidates() function will always select paths with one more cell unless a path

already satisfies the constraints. After the core loop, the best cell found in the Cand set

is returned.

It is possible to expand this core algorithm to solve the different variants of the problem.

Additional constraints such as the maximum slew, length of the path, the inverted
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Algorithm 1: Basic Beam Search algorithm

input : A set of gates G, a set of target delay T , input slew S0, input edge E0 and
output capacitance Qout

output: A path of gates satisfying the basic problem constraints

begin
Cand←− ∅ //Set of candidates
Test←− ∅ //Set of paths tested so far
foreach g ∈ G do
P ←− {P = {g}, S0, E0, Qout} //Path with only one gate
cost← costFunction(P, T )
Test← {Test|{P, cost}} //add new path with cost

Cand←− getBestCandidates(Test, K, T ) //Assign best K candidates to Cand
L := 2 //Minimum length for paths that do not satisfy constraints
while not allPathsSatisfyConstraints(Cand) do

Test← ∅
foreach c ∈ Cand do

Test← {Test|c}
foreach g ∈ G do
P ←− appendCell(c, g) //Append gate g to the end of the path from c
cost← costFunction(P, T )
Test← {Test|{P, cost}}

Cand←− getBestCandidates(Test, K, T , L)
/* Assign best K candidates to Cand. Unless a path already

satisfies constraints, the candidates selected from Test must

have at least length L */

L := L+ 1
return: bestCandidate(Cand)

edge or the parity of inversions can be dealt with by not accepting paths that do not

satisfy them. This can be done by the getBestCandidates() function by controlling which

paths are valid. The additional cells and wire models can be taken into account while

evaluating the paths by the costFunction() function. There only remains the different

variations of the problem, each of which will need an algorithm of their own.

4.6.1 Monitor algorithm

The monitor path problem only requires the addition of a thermometer at the end of the

path with respect to the basic problem. This requirement may be taken into account by

solving two problems and merging the solutions.

Algorithm 2 shows the algorithm used for this version of the problem. First note that

we now require a new input parameter F for the length of the thermometer as well as
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a parameter f for the type of flip-flop that the thermometer will use. We may consider

two parts for this algorithm:

• The first part of the algorithm solves a path of length F , in which each cell that

we add to the path has as an additional cell a flip-flop f . There are no constraints

regarding the target delay T , but any other constraint required (such as max slew),

may still be applied. At the end of this part, we will have a thermometer path

with delay Dth and length f .

• The second part of the algorithm just solves the basic problem but with a target

delay T − Dth, which output capacitance Qout equals the first input capacitance

of the thermometer path. If length constraints apply, the new required length will

be N −F . After the basic algorithm finishes, we append the thermometer path to

the best path and return it as output.

One thing to consider in this algorithm is that we are, in fact, ignoring the slew of the

last cell of the path previous to the thermometer. This simplification takes advantage of

the properties in real scenarios for slew, which converges to certain values with sequences

of gates. Even so, there is some error introduced by this simplification, which may be

palliated by the introduction of slew optimization goals if necessary.

Algorithm 2: Monitor Beam Search algorithm

input : A set of gates G, a set of target delay T , input slew S0, input edge E0, output
capacitance Qout, a natural number F for the length of the thermometer and
a flip-flop cell f

output: A path of gates satisfying the monitor requirements

begin
Thermometer ←− generateThermometer(G, T , S0, E0, Qout, F , f)
/* Thermometer with length F. The only difference of this algorithm

w.r.t. the basic algorithm is that each cell that we add has a

flip-flop f as an additional cell and that no constraints

regarding T are taken into account */

Dth ←− getDelay(Thermometer)
Qth ←− getInitialCapacitance(Thermometer)
BasicPath←− basicBeamSearch(G, T −Dth, S0, E0, Qth)
/* Call to the basic Beam Search Algorithm */

Path←− appendPath(BasicPath, Thermomenter)
/* We append the path Thermometer to BasicPath */

return: bestCandidate(Path)
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4.6.2 Simple Ring Oscillator Algorithm

The problem variation for the simple RO does not require a huge modification over the

basic algorithm. The special constraint required for this problem is limited to the parity

of the inversions, which can be dealt by the function that selects best candidates. We also

need to take into account the new optimization goal that requires similar delays for both

possible input edges. This will then be encoded into the cost function. A straightforward

way of implementing this is, as suggested by the formal definition of this variation of

the problem, adding the costs from delays for both possible input edges.

The only thing that remains to specify is how to guarantee that the input capacitance

and slew for the first cell are identical to the output capacitance and slew for the last

cell. We will accomplish this by repeating several iterations of the basic algorithm. In

the first iteration, the values for capacitance and slew used will be from the input, but

subsequent iterations use the cells from previous paths. Ideally, this will be repeated

until convergence (paths in two iterations are identical), but in practice this may never

happen. This unrolling of the loop is thus repeated an input-fixed amount of times I.

Algorithm 3 shows more specifically how this is handled. A first execution of the basic al-

gorithm provides us with capacitance and slew values for more accurate approximations.

After we have an initial path, a loop iterates I times repeating the basic algorithm with

capacitance and slew values from the previous iteration. After the number of required

steps is performed, the algorithm returns the last path constructed.

Algorithm 3: Simple Ring Oscillator Beam Search algorithm

input : A set of gates G, a set of target delay T , input slew S0, input edge E0, output
capacitance Qout, amount of loop unrolls I

output: A path of gates satisfying the simple Ring Oscillator requirements

begin
P ←− basicBeamSearch(G, T · 0.5, S0, E0, Qout) //First path
while I > 0 do

Q←− getInitialCapacitance(P)
S ←− getFinalSlew(P)
P ←− basicBeamSearch(G, T · 0.5, S, E0, Q)
I := I − 1

return: P

4.6.3 Dual Ring Oscillator Algorithm

The Dual RO problem was defined as two separate paths joined by a C-element cell.

Each of the separate problems only needed to have in common the output capacitance,
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which was equivalent to the summation of input capacitances for the first cell. Besides

this, each path is connected to a different configuration of a C-element cell that we called

ce1 and ce2. The only additional constraint besides these characteristics is the inverted

edge constraint explained in section 4.3.2.3. This constraint can be taken into account

by the getBestCandidates() function.

Before going into the algorithm for this problem, we need to expand the basic version of

the algorithm represented by Algorithm 1. This extension will allow for having a path

predefined by input appended at the end of the path that we construct. Algorithm 4

shows the new algorithm. Note that the only differences are:

• The input now requires a partial path that will be appended at the end of the best

solution.

• We evaluate the cost function of each new cell appending the partial path at the

end of the path, yet the path added to the set of candidate solutions does not

include the partial path.

• After the best solution is found we append the partial path before returning it.

This new version of the algorithm will allow us to include the C-element cell at the

end of the paths. Algorithm 5 shows the pseudocode for the Dual RO problem. The

inputs are similar to those of the Simple RO problem, yet we now have the two possible

C-Element configurations ce1 and ce2. Like in the Simple RO algorithm, we include as

input parameter the number of loop unrolls I, that will be used to satisfy the conditions

for capacitance at the output of the paths, as well as propagate the slew between paths.

The algorithm starts by initializing the two paths with the input values. Note the calls

to the Algorithm 4, that include the cells ce1 and ce2. Also notice how the call for path

P2 uses an inverted input edge with respect to P1. After the initialization, we go into

a loop with I iterations that recomputes output capacitance and input slew before each

call to Beam Search. After the loop, the return value are the last two paths obtained.

4.6.4 Configurable Path Algorithm

Configurable paths are intended for substituting regular paths in the Dual and Simple

RO. This algorithm is designed for substituting the calls to the basic algorithm in those

problems to calls to this algorithm. As explained in the formalization for this problem,

we will split it into one problem per multiplexer, plus one more for the fixed delay path.
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Algorithm 4: Predefined partial path Beam Search algorithm

input : A set of gates G, a set of target delay T , input slew S0, input edge E0, output
capacitance Qout and a partial path Pp that is appended at the end of the
path

output: A path of gates satisfying the basic problem constraints which last gates
correspond to the ones in Pp

begin
Cand←− ∅ //Set of candidates
Test←− ∅ //Set of paths tested so far
foreach g ∈ G do
P ←− {P = {g}, S0, E0, Qout} //Path with only one gate
Pext ←− appendPaths(P,Pp)
cost← costFunction(Pext, T )
/* The cost function evaluates the path with the partial path

appended */

Test← {Test|{P, cost}} //We add the path without the partial path

Cand←− getBestCandidates(Test, K, T ) //Assign best K candidates to Cand
L := 2 //Minimum length for paths that do not satisfy constraints
while not allPathsSatisfyConstraints(Cand) do

Test← ∅
foreach c ∈ Cand do

Test← {Test|c}
foreach g ∈ G do
P ←− appendCell(c, g) //Append gate g to the end of the path from c
Pext ←− appendPaths(P, Pp)
cost← costFunction(Pext, T )
Test← {Test|{P, cost}}

Cand←− getBestCandidates(Test, K, T , L)
/* Assign best K candidates to Cand. Unless a path already

satisfies constraints, the candidates selected from Test must

have at least length L */

L := L+ 1

best←− appendPaths(bestCandidate(Cand), Pp)
return: best //Return the path with the appended partial path

Algorithm 6 shows the pseudocode for this problem. The inputs are similar to the basic

algorithm, with a few additions: the number of multiplexers M , a vector of coefficients

for the delay ∆, both multiplexer configuration mf for the fixed delay and ml for the

long path and a partial path Pp for the case of Dual RO in which we will need to include

C-Element cells.

We may consider two parts on this algorithm. First we create the fixed delay path,

which includes a sequence of M multiplexers mf at the end of the path. After this,

we create M more paths, each with its target delay multiplied by the coefficient in ∆.
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Algorithm 5: Dual Ring Oscillator Beam Search algorithm

input : A set of gates G, a set of target delay T , input slew S0, input edge E0, output
capacitance Qout, amount of loop unrolls I and two C-Element cells ce1 and
ce2

output: A path of gates satisfying the Dual Ring Oscillator requirements

begin
P1 ←− predefinedPartialPathBeamSearch(G, T · 0.5, S0, E0, Qout, {ce1}) //Initial
path 1
P2 ←− predefinedPartialPathBeamSearch(G, T · 0.5, S0, Ē0, Qout, {ce2}) //Initial
path 2
Q1 ←− getInitialCapacitance(P1)
while I > 0 do

Q2 ←− getInitialCapacitance(P2)
Q←− Q1 +Q2

S ←− getFinalSlew(P2)
P1 ←− predefinedPartialPathBeamSearch(G, T · 0.5, S, E0, Q, {ce1})
//Current path 1
Q1 ←− getInitialCapacitance(P1)
Q←− Q1 +Q2

S ←− getFinalSlew(P1)
P2 ←− predefinedPartialPathBeamSearch(G, T · 0.5, S, Ē0, Q, {ce2})
//Current path 2
I := I − 1

return: P1, P2

The slew and capacitances for these paths can be obtained from the fixed path that we

previously created. Finally, we return the set of paths.

4.7 Cost Function

In the previous section we talked about the algorithms that we implement for solving

different variations of the problem. In every algorithm we mentioned a cost function

that will somehow evaluate the quality of a path, yet anywhere did we explain anything

about it. This section is dedicated to the cost function, as it is not straightforward to

decide which is the best way to implement it. Furthermore, there was a lot of trial and

error in the design for this function, so we will not be able to formally defend some of

the decisions that we took.

In Section 4.2 we talked about different possibilities for the optimization goal, yet stated

that it was not clear which was preferable. At first sight, it may make sense to implement

the cost function directly from those optimization goals and use whichever seems prefer-

able for our practical application. In our tests, we found that, often, directly applying
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Algorithm 6: Configurable Path Beam Search algorithm

input : A set of gates G, a set of target delay T , input slew S0, input edge E0, output
capacitance Qout, amount of multiplexers M , vector of coefficients ∆ with size
M + 1, multiplexer cell for fixed path mf and multiplexer cell for long path
ml and a partial path Pp that is appended at the end of the path

output: A configurable path of gates satisfying the constraints for configurable path
problem

begin
Mux←− [mf ×M ] //A path with a sequence of M cells of type mf

Pp ←− appendPaths(Mux, Pp)
Pf ←− predefinedPartialPathBeamSearch(G, T ·∆[1], S0, E0, Qout, Pp) //Fixed
path
n := lengthOfPath(Pf )
Paths←− {Pf} //Set of paths
i := 2
while i ≤M do

Si ←− getSlew(Pf , n− (M + 2− i))
Ei ←− getEdge(Pf , n− (M + 2− i))
Qi ←− getCapacitance(Pf , n− (M + 1− i))
Pi ←− predefinedPartialPathBeamSearch(G, T ·∆[i+ 1], Si, Ei, Qi, {ml})
//Long path i
Paths←− Paths|{Pi}
i := i+ 1

return: Paths

those functions would yield low quality solutions with respect to the goals that we were

trying to optimize. Besides the basic optimization goals, we also need in some occasions

to minimize differences in slew. This requires the use of a different cost function that

has to take into account slew as well as delay.

The following subsections will describe implementations for the cost function that were

explored and found to give best quality for all optimization goals overall.

4.7.1 Variance over the normalized delay

The heuristic that implements this cost function is, as the name suggest, computed as

the variance of the normalized delay. The function is defined as:

Cost =
∑
c∈C

(λc −Avg)2

Avg =
(
∑
c∈C

λc)

|C|

With C representing the set of corners, λc = dc
tc

the normalized delay for corner c, dc the

current accumulated delay of the path for corner c, and tc the target delay for corner c.
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Note that this function will penalize gates that give unbalanced normalized delays. A

good visual representation of what this function tries to accomplish can be seen at Figure

4.7.

Figure 4.7: Graphical representation of the variance over the normalized delay heuris-
tic. The y-axis represents different corners. The x-axis represents normalized delay

values. The function tries to minimize the differences in normalized delays.

4.7.2 Squared normalized distance

This heuristic function uses the concept of distance of the delay to the target delay,

penalizing cells that have, for some corner, a long difference between the normalized

delay and 1. This function is simply defined by:

Cost =
∑
c∈C

(λc − 1)2

With C representing the set of corners, λc = dc
tc

the normalized delay for corner c, dc the

current accumulated delay of the path for corner c, and tc the target delay for corner c.

A visual representation of this function is shown in Figure 4.8, in which we see how the

heuristic tries to minimize long distances.

It should be noted that, in the same way that this function penalizes the smallest

normalized delays, it also incentives big normalized delays. This may sometimes cause

unbalances that may affect the quality of the solution. A way of solving this problem is

to redefine the function in the following way:
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Figure 4.8: Graphical representation of the squared normalized distance heuristic.
The y-axis represents different corners. The x-axis represents normalized delay values.

The function tries to minimize the distance to the target delay.

Cost =
∑
c∈C

(λc − ni
n )2

With ni being the current length of the path and n the total expected length for the

path, as defined by the input.

This alternative version is only possible when solving the extension of the problem that

includes a specific length for the final solution. The advantage of this modification is that

it allows for a gradual construction of the path. For example, for n = 20 the heuristic

will incentive the selection of gates that increase the delay for all corners for about 1/20

of the target delay. In fact, experimental trial and error shows that using this heuristic

is a far better way to implement the extension of the problem that specifies a length

instead of adding a new constraint.

4.7.3 Mixed heuristic

Another possibility for the cost function is to mix the two previous heuristic functions.

The first heuristic balances the delay of the corners, while the second heuristic penalizes

differences with respect to the target delay. We experimentally found that it was better

to use the variance over the normalized delay heuristic for the most part of the algorithm

and then, in the final iterations, switch over to the squared normalized distance function.
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The mixed heuristic raises a new problem: when is best to change heuristics. In our

implementation, this change is done when the first complete solutions (that is, solu-

tions that satisfy all the constraints) appear in the candidate set, but other options are

possible. For example, this switch could be done when all the candidates reach some

threshold either in length or normalized delay.

4.7.4 Slew heuristic

Some of the extensions previously discussed require the optimization of slew as well as

the delay. Having two optimization goals is tricky, especially when they are uncorrelated.

Each one may pull from different directions, gravely resenting the quality of the solution.

Luckily, the slew requirements only apply for the last cell. We can make use of this

and only optimize for slew in the last stage. Thus, the last cell of each path will have a

different cost function that will penalize slews different than the target slew TS.

A function that was found to work well is defined as:

Cost = DelayCost+
∑
c∈C

( Sc
TSc
− 1)2

With DelayCost being the cost from the heuristic for the delay, Sc the delay for corner

c and TSc the target slew for corner c.

4.8 Summary

In this chapter we formalized and analysed the problem that conforms the main focus

of this work. We then discussed different approaches for solving it. Considering this,

we decided to use a metaheuristic algorithm called Beam Search for constructing so-

lutions. This approach surrenders optimality in the solutions in favour of reasonable

runtimes. Corresponding sections then describe different implementations of the Beam

Search algorithm for the diverse versions of the problem.

An important idea from this chapter is the complexity of the problem. We do not know

a way of solving it optimally and thus different approaches to its solutions may yield

different quality levels. The next chapter will discuss how accurate the solutions are by

providing experimental results.
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Experimental results

5.1 Introduction

In this chapter we will present experimental results from our implementation of the

algorithms described in Chapter 4. Each of the following sections will be devoted to one

aspect of the algorithm, such as comparison between heuristics or behaviour of different

schemes. There will be, for each section, a simple description of the experiment, followed

by the results and a brief discussion of them.

For the experiments, we used circuits from the IWLS-2005 benchmark, as it is widely

used in research papers. In particular, we selected circuits from the itc99 subset of IWLS-

2005. Some information about these circuits used can be found in Table 5.1. From those

circuits, we executed the STA in order to obtain target delays for our experiments. We

used the following tools from Synopsys R©:

• Synthesis with Design Compiler. This tool obtains, from the RTL design, a netlist

of the circuit mapped to a specific library.

• Place and route with IC Compiler. Based on a previously obtained netlist, this tool

maps cells to positions on the chip (placement) and to the wires that interconnect

them (routing).

• Static Timing Analysis with Prime Time. Given a netlist, possibly after place-

ment and routing (as is our case), this tool executes a STA and returns timing

information for all the corners of the library. This is the information that we use

for our experiments.

65
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Name Gates1 Primary Inputs Primary Outputs Flip-Flops

b01 49 2 2 5

b02 28 1 1 4

b03 160 4 4 30

b04 737 8 11 66

b05 998 1 36 34

b06 56 2 6 9

b07 441 1 8 49

b08 183 9 4 21

b09 170 1 1 28

b10 260 11 6 17

b11 770 7 6 31

b12 1,076 5 6 121

b13 362 10 10 53

b14 10,098 32 54 245

b14 1 6,900 32 54 245

b15 8,922 36 70 449

b15 1 13,098 36 70 449

b17 32,326 37 97 1,415

b17 1 39,665 37 97 1,415

b18 114,621 36 23 3,320

b18 1 108,482 36 23 3,320

Table 5.1: Basic description for benchmarked circuits.

In order to both run the experiments and synthesize the benchmark circuits we need to

use standard cell libraries. We selected three libraries from three different technology

nodes and foundries. In particular:

• Synopsys 32nm Generic Library. This library, obtained from Synopsys R©, is a

educational library for the 32 nm technology node and uses 10 corners. It is not

suitable for actual silicon synthesis, but it adds diversity to our tests.

• UMC (United Microelectronics Corporation) standard cell library for the 65 nm

node with 11 corners. This is a commercial library that can be used for chip

manufacturing.

• TSMC (Taiwan Semiconductor Manufacturing Company) standard cell library for

the 40 nm node with 15 corners. Another commercial library from one of the

biggest semiconductor foundries in the world, also suitable for manufacturing.

For the experiments that follow in this chapter, we decided to split the circuits from

the benchmark into two groups: circuits with long critical paths and short critical paths.

1Number of gates from original source. This can be different when synthesising with our tools and
may change for each library.
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The reason for this classification is that most of the circuits from the itc99 benchmark

are very small. This affects the algorithm, as smaller circuits do not give opportunity to

adapt to delay. More importantly, in practice we are interested in longer critical paths

that would appear in a processor or an ASCI (Application-Specific Integrated Circuit)

such as the AES circuit that we analyse latter in this chapter. For that reason, we will

consider that short critical path circuits are those that have less than half the delay of

the AES circuit.

5.2 Heuristics and libraries

As can be seen by the multiple schemes and different alternatives for the problem and

the algorithm, there is a big number of possible configurations to analyse. In order

to keep things simple, we will devote this first section to compare both heuristics and

libraries. After this section, we will focus on only one heuristic and one library.

All the results shown on this section use the Simple Ring Oscillator scheme with two

loop unrollings. We use this scheme because it does not have input fixed cells, such

as multiplexers, flip-flops or C-Elements. The nomenclature for naming heuristics is as

follows:

• H1: Squared normalized distance, introduced in Section 4.7.2.

• H2: Variance over the normalized delay, introduced in Section 4.7.1.

• H3: Mixed Heuristic, introduced in Section 4.7.3

We will present most of the results in one type of line chart, such as the one presented

in Figure 5.1. These charts show the normalized error on the y-axis and the circuits in

the x-axis. The normalized error is the percentage that the delay of the resulting path

overshoots the target delay. For example, a normalized error of 0% means that the delay

of the path is equal to the target delay, while a 1% indicates that it is 1% greater. In

particular, normalized error for one corner is computed by the following expression:

dc−tc
tc
× 100

with d being delay, t target delay and c the corner.

For simplicity, we will show the averaged normalized error for all the corners. Each

point in the line chart represents the normalized error for some particular circuit from

the benchmark. We will often categorize these charts by library or scheme, as indicated
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by a legend. Circuits in the x-axis will always be ordered by the average delay of the

circuits. In particular, circuits with smaller delays are on the left, and circuits with

bigger delays are on the right. Finally, these charts are very often split by a vertical

line. This line always show, on the left, circuits with short delays and, on the right,

circuits with long delays. This distinction is important, as we are mostly interested in

circuits with long delays. In fact, short delay circuits are only present for reference, as

the algorithm is not designed to work well with these.

Moving into the results themselves, Figure 5.1 shows a line chart for the Squared nor-

malized distance heuristic for libraries TSMC, UMC and Synopsys. Note how circuits

on the left of the partition have usually worse results, as the algorithm has more trouble

tracking delays. Figure 5.2 shows a zoomed version of the previous chart, in which we

can see more accurately the delay of the longer circuits. While there are differences

between libraries, they are in the same range of errors, between 5 and 10% in average.
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Figure 5.1: Results for the Squared normalized distance heuristic for all the libraries.
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Figure 5.2: Results for the Squared normalized distance heuristic for all the libraries.
Only circuits with long critical paths are shown.
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Results for the variance over the normalized delay heuristic are depicted in Figure 5.3.

It can be seen how, in this case, results are more stable for libraries TSMC and Synopsis,

yet UMC shows more spikes in the short circuits. In any case, by looking in detail to

the more interesting long delay circuits in Figure 5.4, it is obvious that results are much

better than the previous heuristic.
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Figure 5.3: Results for the Variance over the normalized delay heuristic for all the
libraries.
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Figure 5.4: Results for the Variance over the normalized delay heuristic for all the
libraries. Only circuits with long critical paths are shown.

Results for the last heuristic that we analyse, the mixed heuristic, can be seen in Figure

5.5. This heuristic tries to combine the benefits of the previous two, and it seems to

succeed in improving results. As it can be seen, errors are much lower for all circuits,

including the short ones. More importantly, long delay circuits, shown in Figure 5.6,

have very small errors overall, regardless of the library.
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Figure 5.5: Results for the mixed heuristic for all the libraries.

b17_1 b17 b12 b18 b18_1 b14 b14_1
Circuit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
liz
e
d
 e
rr
o
r 
(%

)

Normalized error for Simple RO, heuristic H3

TSMC_40

UMC_65

SYN_32

Figure 5.6: Results for the mixed heuristic for all the libraries. Only circuits with
long critical paths are shown.

5.3 Simple and Dual Ring Oscillators

In this section we will discuss results for Simple and Dual Ring Oscillators. For simplicity,

we will only compare the schemes with the UMC library and the mixed heuristic.

Figure 5.7 shows a line chart comparing Ring Oscillator schemes along the benchmark.

We can see how the Dual RO has consistently better results than the Simple scheme,

with very few exceptions. This can be achieved thanks to the more relaxed constraints

for the Dual RO with respect to the inverted edge.

For the more interesting long delay circuits we can look at a zoomed view in Figure 5.8.

It can be seen how in these circuits the Dual scheme has average errors always under

the 1.5% mark.
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Figure 5.7: Comparison between Simple and Dual RO schemes for library UMC and
mixed heuristic.
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Figure 5.8: Comparison between Simple and Dual RO schemes for library UMC and
mixed heuristic. Only circuits with long critical paths are shown.

Besides the results shown here, there is something important to point out. The Dual

RO needs, as input parameter, a C-Element cell. There are lots of ways of implementing

such a gate with standard cell libraries, and this implementation may have an impact on

the solution. For this experiment we selected one option and stuck with it for the sake

of consistency. This, nonetheless, puts the dual scheme at a disadvantage – the Dual

RO has more room for tweaking and solutions may be further improved by playing with

different C-Element cells and sizes.

5.4 Monitor

The Monitor is another of the schemes that were discussed in previous chapters. In

this case, the signal does not oscillate, so there are less constraints for the problem.

Nonetheless, this scheme is actually build by concatenating two paths: a regular path
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and a thermometer path. Remember that the peculiarity of the thermometer path is

that it has a fixed number of gates and there is a Flip-Flop attached to each gate. We

used, in particular, 16 Flip-flops for the thermometer for all the benchmarks.

Figure 5.9 shows results for the benchmark with the UMC library and the mixed heuris-

tic. Differences between long and short delays are very noticeable in the case of the

monitor.
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Figure 5.9: Results for Monitor scheme, library UMC and mixed heuristic.

On the one hand, circuits with short delays have a very high error rates. Note that,

in order to construct the monitor, we force a minimum length of 16 cells with Flip-

Flops. Most of these paths are actually built overly long due to the thermometer length

constraints and, for some of them, the thermometer makes up the whole length of the

path.
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Figure 5.10: Results for Monitor scheme, library UMC and mixed heuristic. Only
circuits with long critical paths are shown.

On the other hand, circuits with long delays have very low errors rate, as can be better

seen in Figure 5.10. We can see how, in general, results stay below 1% error, as it is
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easier to track variability if we ignore the inverted path. Even so, the problem is solved

by first generating two different paths and then concatenating them. Note that the

slew between the two paths is not taken into account when concatenating them. This

has usually a very small impact. Even so, big slews at the end of the first path may

potentially change the delay on the second path. This is reflected in the b17 1 circuit,

which reaches an average error of around 7%.

Summarizing, the Monitor scheme tends to give very good results for circuits with long

delays, which are the ones that we are interested in. Shorter paths would need fewer

Flip-Flops, thus affecting the capacity to accurately monitor the state of the circuit.

5.5 Configurable Ring Oscillator

Configurable Ring Oscillators are the last of the schemes discussed in Chapter 3 that

remains to be tested. In this section we will show results for configurable paths for both

types of Ring Oscillators. Again, the algorithm was ran with the UMC library and the

mixed heuristic was used.

In the case of configurable paths, each circuit has now 2n target delays, with n being

the number of multiplexers. We change for this section the way to show results in order

to simplify things. Average values are now computed by averaging all the normalized

errors for all the possible configurations in every corner.

Figure 5.11 shows average values for the Configurable Simple RO with up to three

multiplexers. The first thing that should be noted is that increasing the number of

multiplexers also increments the average error, as expected. Similarly to what happened

in the case of the Monitor, the multiplexers are cells fixed by the input. In this case,

multiplexer cells have often large delays and thus are inappropriate for tracking delays

in small circuits. For that reason, we can also see how as we move to the left of the

chart to circuits with smaller delays, solutions deteriorate much more than in previous

schemes.

A zoomed version of the previous chart into the circuits with longer delay can be seen

in Figure 5.12. It can be seen how errors are much greater than schemes without

multiplexers, especially for 3 multiplexers.

Results for the Configurable Dual RO are shown in Figure 5.13. Similar trends to the

Simple RO case can be seen for this scheme. Even so, error values are in general lower,

as was the case without multiplexers.
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Figure 5.11: Results with the mixed heuristic for the Configurable Simple RO with
up to 3 multiplexers.
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Figure 5.12: Results with the mixed heuristic for the Configurable Simple RO with
up to 3 multiplexers. Only circuits with long critical paths are shown.
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Figure 5.13: Results with the mixed heuristic for the Configurable Dual RO with up
to 3 multiplexers.
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Concluding results for the Configurable Paths, Figure 5.14 depicts only circuits with long

delays. Again, with longer delays the algorithm accomplishes smaller errors, especially

with one or two multiplexers.
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Figure 5.14: Results with the mixed heuristic for the Configurable Dual RO with up
to 3 multiplexers. Only circuits with long critical paths are shown.

As noted by previous sections, these benchmarks were done all with the same parameters

for consistency reasons, yet this algorithm greatly benefits from parameter tweaking for

each instance. This is especially important for configurable paths, in which the decision

of the multiplexer cell has a huge impact in the final delay. Circuits with longer delays

are less influenced from the selection of multiplexer and thus some of the bigger circuits

yield reasonable results. Even so, parameter tuning is necessary in order to obtain good

results for configurable paths.

5.6 Place and Route experiment

Until now, we have been making one simplification for the results shown. While the

target delays that we used come from circuits after the place and route stage, the delays

that we present are obtained based solely on the wire models of the libraries. These

wire models approximate wire capacitances, yet an actual placement and routing is still

necessary for a correct Static Timing Analysis. The reason for this omission and simpli-

fication is that it would be necessary for the algorithm to execute itself the placement

and routing when generating the path. While this is something interesting for future

work, this characteristic is not currently implemented.

Nonetheless, it is possible to overcome this simplification by making use of an iterative

process. In particular, this can be made by generating a set of very similar target delays,

multiplied by some small coefficients. For example, if the target delay is T , we create
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several target delays ε ·T , with ε being values close to 1. Each of these target delays may

then be solved and later processed through a place and route tool and a STA analysis.

Of these results, the best solution that does not violate constraints is selected.

We now present an example of a Simple Ring Oscillator with timing results after a correct

placement and routing. We selected for this experiment an AES (Advanced Encryption

Standard) circuit. This case is also an example of results that may be obtained by fully

tweaking the algorithm to optimize the solution, even if some precision is lost due to the

placement and routing.

Figure 5.15 shows the delay for each corner of the UMC library. The delay for the AES

circuit is represented by the white bars. On top of them, the delay of the Simple RO

after place and route is shown in blue. As it can be seen, the difference between delays

is actually very narrow for all corners. A better view of these differences may be seen

in Figure 5.16. This last figure represents the normalized error for each corner of the

library.
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Figure 5.15: Simple Ring Oscillator delay values for an AES circuit. The timings of
the Ring Oscillator were taken after place and route.

The main objective of this experiment was to show that, despite the limitations of the

algorithm with respect to placement and routing, it is still possible to use it in real-life

scenarios with the help of some iteration in the process. While this iterative process is

not ideal, it must only be done once per design. Furthermore, results obtained are close

in quality terms to those that were obtained without any placement and routing.
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Figure 5.16: Error per corner for the AES Ring Oscillator.

5.7 Conclusions

Conclusions for each experiment have mainly already been discussed at the end of each

section. we now present a summary of the basic conclusions:

• The library used may impact the accuracy of the algorithm.

• Heuristics used for the cost function gravely affects the quality of the solutions

found. The first heuristic yields results consistently worse than the other two,

especially than the mixed heuristic.

• Adequately tweaking the algorithm for each input is very important in order to

obtain good results. Most of the results shown here would have presented better

values have we tweaked them individually.

• Smaller target delays negatively affects quality of solutions. This is especially

significant when using schemes that need input fixed cells such as Monitors and,

most notably, configurable paths.

• The algorithm is valid for usage in real-life scenarios where placement and routing

of the Ring Oscillator is needed.
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Conclusions

6.1 Summary

Since the introduction of the first transistors, the semiconductor industry has been

profiting from a continuous technology node shrinking every couple of years. While this

has allowed an exponential improvement of the characteristics of silicon devices for over

fifty years, we are now facing a slowdown and, potentially, a complete stop of this trend.

During the last years, an important part of the improvements in semiconductor circuits

comes from clever tricks and techniques rather than just technology improvements at

transistor level. This will probably have more and more impact in the coming years, as

finding new ways of better exploiting our current technologies becomes a necessity if we

want to keep improving.

In this document we identified an opportunity for improvement in the way circuits are

designed. In particular, recent technology nodes require huge guard band margins at

design stage in order to overcome the variability at which circuits are subject. We

proposed a clock scheme that aims to substitute common PLLs, in order to dynamically

adapt timing constraints of a circuit to the actual requirements at each moment.

The main component of this scheme is a Ring Oscillator which suffers from the same

variability sources than the rest of the system. This Ring Oscillator has the task of

generating the clocking signal, so any changes that affect the way a circuit behaves will

similarly affect the clock signal. In particular, we relax the periodicity of the clock signal

so that it dynamically changes over time in order to adapt to variability.

The Ring Oscillator that we introduce in this work may be built in different ways. We

presented two main ways: the Simple RO and the Dual RO. Furthermore, these circuits
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may be enhanced with the possibility of dynamically configuring their length. This is

what we called configurable paths. Configurable paths are constructed with the help of

multiplexers, which allows the signal to skip sequences of gates in order to reduce the

length of the path.

In order to give feedback about the actual state of variability of a circuit and allow for

tweaking configurable paths, we also presented monitor circuits. This kind of circuits is

not novel to this work and has been studied in other research papers, such as the ones

we introduce in Section 2.5. Even so, we design them using a similar techniques to the

ones we use for the Ring Oscillators.

The design of all these circuits was approached in an algorithmic way. First, we formal-

ized the problem with a set of constraints and optimization goals. With a formalization

we were able to analyse the difficulty of the problem and found that it was in the NP-

hard complexity class. This, coupled with the dimensions of the input parameters that

we need to solve, made us look for fast algorithms in exchange for optimality. We then

presented a set of algorithms to solve the problem and each of its variations.

Finally, we tested an implementation of the algorithm with a benchmark of different

circuits and libraries. The results showed that, for circuits with sufficiently long critical

paths, designing a Ring Oscillator with almost identical characteristics to the circuit is

possible, often with errors no bigger than a 1% or 2%. The Dual RO seemed to yield

better results in general, thanks to the more relaxed constraints.

When considering configurable paths, the algorithm is not always able of maintaining

accurate results and errors of 5-10% are more common. This is especially important

with bigger number of multiplexers. Nonetheless, it is also possible to obtain config-

urable paths by using multiplexers outside the Ring Oscillator, in which case there is

no penalization to accuracy. The limitation of this last approach is a linear cost in area

over the number of possible configurations.

With respect to the monitor, results show that it is easier to track variability when no

oscillating signal is involved. In fact, for most of the circuits that we were interested in,

errors were often well under the 1% error rate.

As a final experiment, we also showed that the algorithm is also able to keep track of

variability even after placement and routing. A Simple RO was designed to work for

an AES circuit and was latter placed and routed with Synopsys R© tools. Results show

errors no bigger than 2% per corner in the worst cases and, very often, errors under 1%.

With all this, we can conclude that this is a reasonable approach to the design of the

Ring Oscillators. Even so, further improvements are required in order to reduce the
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tweaking dependency and, especially, to improve results when designing configurable

paths.

6.2 Future Work

In this document we presented a problem and showed that the approach that we took to

solve it was reasonable. Nonetheless, there are numerous ways to improve results from

the algorithm, as well as simplify the design stage.

During this work we prioritized functionality over quality. As such, we designed different

schemes and analysed them, yet we somehow left aside different algorithms testing. For

that reason, possibly one of the most important things that remains to be tested are the

potential improvements that may be achieved by using different algorithms.

One of the main drawbacks of our algorithm is its tendency to explore in depth only a

few solutions, rather than exploring a more diverse range of solutions more superficially.

While this is a good approach in some cases, it still has the risk that a wrong decision at

an early stage cannot be corrected latter. There remains as future work to test different

metaheuristic algorithms that may focus in the opposite and yield a wider range of

solutions.

A strategy that was discussed in the document but not tested is the usage of optimal

algorithms for solving a simplified version of the problem. While we proved that optimal

algorithms may not be possible in polynomial time for solving the complete problem,

finding a good simplification and then solving it optimally may still yield good results. In

fact, as we discussed in Chapter 4, there has been work done in that direction for similar

problems while designing monitors. Probably, a first good option for this approach

would be to use ILP. The description as a linear programming problem seems to come

very naturally from the formal definition that we presented in Chapter 3.

Another drawback of the approach presented here is the manual tweaking process. In

particular, it is undesirable to leave to the user the responsibility of selecting multiplexer

cells for configurable paths or C-Element cells for the Double RO. This is not only a

problem of difficulty of usage, but can also be a problem of accuracy. The algorithm

should automatically decide which are the best cells to use in these situations, possibly

from a set of candidates that depends on each library.

Perhaps in part as an effect for letting the user select the multiplexer gates, delays from

configurable paths often fail to accurately track variability. This is something that may

be solved by incorporating into the optimization problem the selection of multiplexer
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cells, but that is probably not enough. Configurable paths as we described here are

subject to very harsh constraints due to slew propagation. Because of this, it may be

possible that accurate solutions do not even exist. More research in this topic will be

necessary to either find a way of obtaining better solutions or deciding for a different

scheme. In any case, it is always possible to create an array of Ring Oscillators and

multiplex each one individually, if we are willing to pay the cost in area.

Finally, something that we left as a small experiment in the results chapter is what

happens about the placement and routing of these Ring Oscillators. In last instance,

the only timing values that are useful for real life instances are those after a placement

and routing. This is something that is not currently incorporated in the tool. For now,

we know thanks to our experiments that our proposed way of designing RO is able to

track variability even after a placement and routing, but this is not enough. One of the

most important things that remains to be done is, then, to somehow take into account

accurate values for wires after the place and route.

Possibly the most obvious way of accomplishing this is by executing the placement and

routing at the same time that the Ring Oscillator is constructed. Even so, there may

be other possibilities that incorporate iteration, such as generating a path first, then

placing it, and then using the capacity values for the wires to modify the path. This

may be iterated a few times until convergence is reached. Deciding for one of these

implementations or even some other third option is, again, something that we leave as

future work.
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