4,359 research outputs found

    ASDTIC control and standardized interface circuits applied to buck, parallel and buck-boost dc to dc power converters

    Get PDF
    Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency

    Energy-efficient and Power-dense DC-DC Converters in Data Center and Electric Vehicle Applications Using Wide Bandgap Devices

    Get PDF
    The ever increasing demands in the energy conversion market propel power converters towards high efficiency and high power density. With fast development of data processing capability in the data center, the server will include more processors, memories, chipsets and hard drives than ever, which requires more efficient and compact power converters. Meanwhile, the energy-efficient and power-dense converters for the electric vehicle also result in longer driving range as well as more passengers and cargo capacities. DC-DC converters are indispensable power stages for both applications. In order to address the efficiency and density requirements of the DC-DC converters in these applications, several related research topics are discussed in this dissertation. For the DC-DC converter in the data center application, a LLC resonant converter based on the newly emerged GaN devices is developed to improve the efficiency over the traditional Si-based converter. The relationship between the critical device parameters and converter loss is established. A new perspective of extra winding loss due to the asymmetrical primary and secondary side current in LLC resonant converter is proposed. The extra winding loss is related to the critical device parameters as well. The GaN device benefits on device loss and transformer winding loss is analyzed. An improved LLC resonant converter design method considering the device loss and transformer winding loss is proposed. For the DC-DC converter in the electric vehicle application, an integrated DC-DC converter that combines the on-board charger DC-DC converter and drivetrain DC-DC converter is developed. The integrated DC-DC converter is considered to operate in different modes. The existing dual active bridge (DAB) DC-DC converter originally designed for the charger is proposed to operate in the drivetrain mode to improve the efficiency at the light load and high voltage step-up ratio conditions of the traditional drivetrain DC-DC converter. Design method and loss model are proposed for the integrated converter in the drivetrain mode. A scaled-down integrated DC-DC converter prototype is developed to verify the design and loss model

    Review of Electric Vehicle Charging Technologies, Configurations, and Architectures

    Full text link
    Electric Vehicles (EVs) are projected to be one of the major contributors to energy transition in the global transportation due to their rapid expansion. The EVs will play a vital role in achieving a sustainable transportation system by reducing fossil fuel dependency and greenhouse gas (GHG) emissions. However, high level of EVs integration into the distribution grid has introduced many challenges for the power grid operation, safety, and network planning due to the increase in load demand, power quality impacts and power losses. An increasing fleet of electric mobility requires the advanced charging systems to enhance charging efficiency and utility grid support. Innovative EV charging technologies are obtaining much attention in recent research studies aimed at strengthening EV adoption while providing ancillary services. Therefore, analysis of the status of EV charging technologies is significant to accelerate EV adoption with advanced control strategies to discover a remedial solution for negative grid impacts, enhance desired charging efficiency and grid support. This paper presents a comprehensive review of the current deployment of EV charging systems, international standards, charging configurations, EV battery technologies, architecture of EV charging stations, and emerging technical challenges. The charging systems require a dedicated converter topology, a control strategy and international standards for charging and grid interconnection to ensure optimum operation and enhance grid support. An overview of different charging systems in terms of onboard and off-board chargers, AC-DC and DC-DC converter topologies, and AC and DC-based charging station architectures are evaluated

    Design and analysis on reduced switching frequency current mode control isolated power converters for light load efficiency

    Get PDF
    This paper focus on improving light load efficiency of isolated DC/DC converters. A mixed signal control platform is proposed to implement multiple-mode variable frequency control. An 8-bit Micro Controller Unit MCU is used in the platform to provide adaptive control schemes and cost effectiveness digital solutions. Small signal analysis is covered to explain frequency modulation effects. Control of isolation transformer flux swing to avoid saturation is also implemented, to provide safe operation both in steady and transient states. A 300 Watt prototype Two-FET forward converter is built up to verify the proposed mixed signal control platform. © 2009 IEEE.published_or_final_versionThe Inaugural IEEE Energy Conversion Congress and Exposition (ECCE 2009), San Jose, CA., 20-24 September 2009. In Proceedings of the IEEE Energy Conversion Congress and Exposition, 2009, p. 3268-327

    Fault Tolerant DC–DC Converters at Homes and Offices

    Get PDF
    The emergence of direct current (DC) microgrids within the context of residential buildings and offices brings in a whole new paradigm in energy distribution. As a result, a set of technical challenges arise, concerning the adoption of efficient, cost-effective, and reliable DC-compatible power conditioning solutions, suitable to interface DC microgrids and energy consuming elements. This thesis encompasses the development of DC–DC power conversion solutions, featuring improved availability and efficiency, suitable to meet the requirements of a comprehensive set of end-uses commonly found in homes and offices. Based on the energy consumption profiles and requirements of the typical elements found at homes and offices, three distinctive groups are established: light-emitting diode (LED) lighting, electric vehicle (EV) charging, and general appliances. For each group, a careful evaluation of the criteria to fulfil is performed, based on which at least one DC–DC power converter is selected and investigated. Totally, a set of five DC–DC converter topologies are addressed in this work, being specific aspects related to fault diagnosis and/or fault tolerance analysed with particular detail in two of them. Firstly, mathematical models are described for LED devices and EV batteries, for the development of a theoretical analysis of the systems’ operation through computational simulations. Based on a compilation of requirements to account for in each end-use (LED lighting, EV charging, and general appliances), brief design considerations are drawn for each converter topology, regarding their architecture and control strategy. Aiming a detailed understanding of the two DC–DC power conversion systems subjected to thorough evaluation in this work – interleaved boost converter and fault-tolerant single-inductor multiple-output (SIMO) converter – under both normal and abnormal conditions, the operation of the systems is evaluated in the presence of open-circuit (OC) faults. Parameters of interest are monitored and evaluated to understand how the failures impact the operation of the entire system. At this stage, valuable information is obtained for the development of fault diagnosis strategies. Taking profit of the data collected in the analysis, a novel fault diagnostic strategy is presented, targeting interleaved DC–DC boost converters for general appliances. Ease of implementation, fast diagnostic and robustness against false alarms distinguish the proposed approach over the state-of-the-art. Its effectiveness is confirmed through a set of operation scenarios, implemented in both simulation environment and experimental context. Finally, an extensive set of reconfiguration strategies is presented and evaluated, aiming to grant fault tolerance capability to the multiple DC–DC converter topologies under analysis. A hybrid reconfiguration approach is developed for the interleaved boost converter. It is demonstrated that the combination of reconfiguration strategies promotes remarkable improvements on the post-fault operation of the converter. In addition, an alternative SIMO converter architecture, featuring inherent tolerance against OC faults, is presented and described. To exploit the OC fault tolerance capability of the fault-tolerant SIMO converter, a converter topology targeted at residential LED lighting systems, two alternative reconfiguration strategies are presented and evaluated in detail. Results obtained from computational simulations and experimental tests confirm the effectiveness of the approaches. To further improve the fault-tolerant SIMO converter with regards to its robustness against sensor faults, while simplifying its hardware architecture, a sensorless current control strategy is presented. The proposed control strategy is evaluated resorting to computational simulations.O surgimento de micro-redes em corrente contínua (CC) em edifícios residenciais e de escritórios estabelece um novo paradigma no domínio da distribuição de energia. Como consequência disso, surge uma panóplia de desafios técnicos ligados à adopção de soluções de conversão de energia, compatíveis com CC, que demonstrem ser eficientes, rentáveis e fiáveis, capazes de estabelecer a interface entre micro-redes em CC e as cargas alimentadas por esse sistema de energia. Até aos dias de hoje, os conversores CC–CC têm vindo a ser maioritariamente utilizados em aplicações de nicho, que geralmente envolvem níveis de potência reduzidos. Porém, as perspectivas futuras apontam para a adopção, em larga escala, destas tecnologias de conversão de energia, também em equipamentos eléctricos residenciais e de escritórios. Tal como qualquer outra tecnologia de conversão electrónica de potência, os conversores CC–CC podem ver o seu funcionamento afectado por falhas que degradam o seu bom funcionamento, sendo que essas falhas acabam por afectar não apenas os conversores em si, mas também as cargas que alimentam, limitando assim o tempo de vida útil do conjunto conversor + carga. Desta forma, é fulcral localizar a origem da falha, para que possam ser adoptadas acções correctivas, capazes de limitar as consequências nefastas associadas à falha. Para responder a este desafio, esta tese contempla o desenvolvimento de soluções de conversão de energia CC–CC altamente eficientes e fiáveis, capazes de responder a requisitos impostos por um conjunto alargado de equipamentos frequentemente encontrados em habitações e escritórios. Com base nos perfis de consumo de energia eléctrica e nos requisitos impostos pelas cargas tipicamente utilizadas em habitações e escritórios, são estabelecidos três grupos distintos: iluminação através de díodos emissores de luz, carregamento de veículo eléctrico (VE) e aparelhos eléctricos em geral. Para cada grupo, é efectuada uma avaliação cuidadosa dos critérios a respeitar, sendo com base nesses critérios que será escolhida e investigada pelo menos uma topologia de conversor CC–CC. No total, são abordadas cinco topologias de conversores CC–CC distintas, sendo que os aspectos ligados ao diagnóstico de avarias e/ou tolerância a falhas são analisados com particular detalhe em duas dessas topologias. Inicialmente, são estabelecidos modelos matemáticos descritivos do comportamento das principais cargas consideradas no estudo – díodos emissores de luz e baterias de VEs – visando a análise teórica do funcionamento dos sistemas em estudo, suportada por simulações computacionais. Com base numa compilação de requisitos a ter em conta em cada aplicação – iluminação através de díodos emissores de luz, carregamento de veículo eléctrico (VE) e aparelhos eléctricos em geral – são estabelecidas considerações ligadas à escolha de cada topologia de conversor não isolado, no que respeita à sua arquitectura e estratégia de controlo. Visando o conhecimento aprofundado das duas topologias de conversor CC–CC alvo de particular enfoque neste trabalho – conversor entrelaçado elevador e conversor de entrada única e múltiplas saídas, tolerante a falhas – quer em funcionamento normal, quer em funcionamento em modo de falha, é avaliado o funcionamento de ambas as topologias na presença de falhas de circuito aberto nos semicondutores activos. Para o efeito, são monitorizados e analisados parâmetros úteis à percepção da forma como os modos de falha avaliados neste trabalho impactam o funcionamento de todo o sistema. Nesta fase, é obtida informação fundamental ao desenvolvimento de estratégias de diagnóstico de avarias, particularmente indicadas para avarias de circuito aberto nos semicondutores activos dos conversores em estudo. Com base na informação recolhida anteriormente, é apresentada uma nova estratégia de diagnóstico de avarias direccionada a conversores CC–CC elevadores entrelaçados utilizados em aparelhos eléctricos, em geral. Facilidade de implementação, rapidez e robustez contra falsos positivos são algumas das características que distinguem a estratégia proposta em relação ao estado da arte. A sua efectividade é confirmada com recurso a uma multiplicidade de cenários de funcionamento, implementados quer em ambiente de simulação, quer em contexto experimental. Por fim, é apresentada e avaliada uma gama alargada de estratégias de reconfiguração, que visam assegurar a tolerância a falhas das diversas topologias de conversores CC–CC em estudo. É desenvolvida uma estratégia de reconfiguração híbrida, direccionada ao conversor entrelaçado elevador, que combina múltiplas medidas de reconfiguração mais simples num único procedimento. Demonstra-se que a combinação de múltiplas estratégias de reconfiguração introduz melhorias substanciais no funcionamento do conversor ao longo do período pós-falha, ao mesmo tempo que assegura a manutenção da qualidade da energia à entrada e saída do conversor reconfigurado. Noutra frente, é apresentada e descrita uma arquitectura alternativa do conversor de entrada única e múltiplas saídas, com tolerância a falhas de circuito aberto. Através da configuração proposta, é possível manter o fornecimento de energia eléctrica a todas as saídas do conversor. Para tirar máximo proveito da tolerância a falhas do conversor de entrada única e múltiplas saídas, uma topologia de conversor indicada para sistemas residenciais de iluminação baseados em díodos emissores de luz, são apresentadas e avaliadas duas estratégias de reconfiguração do conversor, exclusivamente baseadas na adaptação do controlo aplicado ao conversor. Os resultados de simulação computacional e os resultados experimentais obtidos confirmam a efectividade das abordagens adoptadas, através da melhoria da qualidade da energia eléctrica fornecida às diversas saídas do conversor. São assim asseguradas condições essenciais ao funcionamento ininterrupto e estável dos sistemas de iluminação, já que a qualidade da energia eléctrica fornecida aos sistemas de iluminação tem impacto directo na qualidade da luz produzida. Por fim, e para aprimorar o conversor de entrada única e múltiplas saídas tolerante a falhas, no que respeita à sua robustez contra falhas em sensores, é apresentada uma estratégia de controlo de corrente que evita o recurso excessivo a sensores e, ao mesmo tempo, simplifica a estrutura de controlo do conversor. A estratégia apresentada é avaliada através de simulações computacionais. A abordagem apresentada assume vantagens em múltiplos domínios, sendo de destacar vantagens como a melhoria da fiabilidade de todo o sistema de iluminação (conversor + carga), os ganhos atingidos ao nível do rendimento, a redução do custo de implementação da solução, ou a simplificação da estrutura de controlo.This work was supported by the Portuguese Foundation for Science and Technology (FCT) under grant number SFRH/BD/131002/2017, co-funded by the Ministry of Science, Technology and Higher Education (MCTES), by the European Social Fund (FSE) through the ‘Programa Operacional Regional Centro’ (POR-Centro), and by the Human Capital Operational Programme (POCH)

    High Efficiency Reversible Fuel Cell Power Converter

    Get PDF

    The presentation of sustainable power source assets in the field of intensity age assumes an imperative job

    Get PDF
    DC to DC converters to interface lesser-voltage higher-control supply to the essential stock shows the most raised proficiency was practiced in the full-connect converter. Non-separated converters bury unified inductor help converters with essential voltage gain and furthermore converters hold lesser profitability, yet they huge in structure, even the quantity of latent parts is diminished. In like manner gives proficient utilization of semiconductor switches, have higher voltage yield and are prepared to work in lesser estimation of D interestingly with every single disconnected converter. High addition topologies are regularly outfitted with high voltage security structures. Few non-disengaged topologies gives voltage hang security circuits are pointless since capacitive fragments and circuit plan are progressed to work under higher information voltage and low power. That requires lesser qualities for convincing RAC obstruction and entomb partnered inductance dispersal to achieve more prominent adequacy of intensity change. Larger supply current needs extensive region of core area inter allied inductors

    MPPT Solar Charge Contoller For Portable

    Get PDF
    The purpose of our senior project was to design and prototype an MPPT charge controller for small capacity PV panels under varying temperature and irradiance conditions to charge portable devices. In this paper we discuss our research, simulation, design, and testing to develop an MPPT solar charge controller. Furthermore, we presented our results and findings from testing our design. An MPPT solar charge controller is feasible and affordable if implemented on a PCB board. Due to MPPT’s affordability and increased efficiency under dynamic conditions, an MPPT solar charge controller for portable devices would be more effective than solar chargers currently sold without MPPT

    Suppression of Second-Order Harmonic Current for Droop-Controlled Distributed Energy Resource Converters in DC Microgrids

    Get PDF
    Droop-controlled distributed energy resource converters in dc microgrids usually show low output impedances. When coupled with ac systems, second-order harmonics typically appear on the dc-bus voltage, causing significant harmonic currents at the converters resource side. This paper shows how to reduce such undesired currents by means of notch filters and resonant regulators included in the converters control loops. The main characteristics of these techniques in terms of harmonic attenuation and stability are systematically investigated. In particular, it is shown that the voltage control-loop bandwidth is limited to be below twice the line frequency to avoid instability. Then, a modified notch filter and a modified resonant regulator are proposed, allowing to remove the constraint on the voltage loop bandwidth. The resulting methods (i.e., the notch filter, the resonant regulator, and their corresponding modified versions) are evaluated in terms of output impedance and stability. Experimental results from a dc microgrid prototype composed of three dc-dc converters and one dc-ac converter, all with a rated power of 5kW, are reported
    • …
    corecore