621 research outputs found

    Brain-Computer Interface meets ROS: A robotic approach to mentally drive telepresence robots

    Get PDF
    This paper shows and evaluates a novel approach to integrate a non-invasive Brain-Computer Interface (BCI) with the Robot Operating System (ROS) to mentally drive a telepresence robot. Controlling a mobile device by using human brain signals might improve the quality of life of people suffering from severe physical disabilities or elderly people who cannot move anymore. Thus, the BCI user is able to actively interact with relatives and friends located in different rooms thanks to a video streaming connection to the robot. To facilitate the control of the robot via BCI, we explore new ROS-based algorithms for navigation and obstacle avoidance, making the system safer and more reliable. In this regard, the robot can exploit two maps of the environment, one for localization and one for navigation, and both can be used also by the BCI user to watch the position of the robot while it is moving. As demonstrated by the experimental results, the user's cognitive workload is reduced, decreasing the number of commands necessary to complete the task and helping him/her to keep attention for longer periods of time.Comment: Accepted in the Proceedings of the 2018 IEEE International Conference on Robotics and Automatio

    Brain-Computer Interface meets ROS: A robotic approach to mentally drive telepresence robots

    Get PDF
    This paper shows and evaluates a novel approach to integrate a non-invasive Brain-Computer Interface (BCI) with the Robot Operating System (ROS) to mentally drive a telepresence robot. Controlling a mobile device by using human brain signals might improve the quality of life of people suffering from severe physical disabilities or elderly people who cannot move anymore. Thus, the BCI user can actively interact with relatives and friends located in different rooms thanks to a video streaming connection to the robot. To facilitate the control of the robot via BCI, we explore new ROS-based algorithms for navigation and obstacle avoidance in order to make the system safer and more reliable. In this regard, the robot exploits two maps of the environment, one for localization and one for navigation, and both are used as additional visual feedback for the BCI user to control the robot position. Experimental results show a decrease of the number of commands needed to complete the navigation task, suggesting a reduction user’s cognitive workload. The novelty of this work is to provide a first evidence of an integration between BCI and ROS that can simplify and foster the development of software for BCI driven robotics devices

    A Study of Enhanced Robot Autonomy in Telepresence

    Get PDF

    Robot Tour Guide

    Get PDF
    Our goal was to create a friendly robot that could safely guide a user through a building. While creating our end product, we explored a number of fields including human-robot interaction and robot navigation. Thanks to Ava Robotics, we used one of their first generation drive bases as the core of our robot, PAT. We mounted a head, which contains a Jetson TX2, a camera, and a touch screen for user interaction. PAT can take users through a set of destinations efficiently either from voice commands or its graphical interface. If PAT is stuck, it can detect obstacles and ask for help to remove an obstacle in order to continue guiding the user. We have accomplished a basic tour guide using Ava Robotics’ base model, which created a stepping stone for future development

    Virtual Reality-Based Interface for Advanced Assisted Mobile Robot Teleoperation

    Full text link
    [EN] This work proposes a new interface for the teleoperation of mobile robots based on virtual reality that allows a natural and intuitive interaction and cooperation between the human and the robot, which is useful for many situations, such as inspection tasks, the mapping of complex environments, etc. Contrary to previous works, the proposed interface does not seek the realism of the virtual environment but provides all the minimum necessary elements that allow the user to carry out the teleoperation task in a more natural and intuitive way. The teleoperation is carried out in such a way that the human user and the mobile robot cooperate in a synergistic way to properly accomplish the task: the user guides the robot through the environment in order to benefit from the intelligence and adaptability of the human, whereas the robot is able to automatically avoid collisions with the objects in the environment in order to benefit from its fast response. The latter is carried out using the well-known potential field-based navigation method. The efficacy of the proposed method is demonstrated through experimentation with the Turtlebot3 Burger mobile robot in both simulation and real-world scenarios. In addition, usability and presence questionnaires were also conducted with users of different ages and backgrounds to demonstrate the benefits of the proposed approach. In particular, the results of these questionnaires show that the proposed virtual reality based interface is intuitive, ergonomic and easy to use.This research was funded by the Spanish Government (Grant PID2020-117421RB-C21 funded byMCIN/AEI/10.13039/501100011033) and by the Generalitat Valenciana (Grant GV/2021/181).Solanes, JE.; Muñoz García, A.; Gracia Calandin, LI.; Tornero Montserrat, J. (2022). Virtual Reality-Based Interface for Advanced Assisted Mobile Robot Teleoperation. Applied Sciences. 12(12):1-22. https://doi.org/10.3390/app12126071122121

    A Personal Robot as an Improvement to the Customers’ In- Store Experience

    Get PDF
    Robotics is a growing industry with applications in numerous markets, including retail, transportation, manufacturing, and even as personal assistants. Consumers have evolved to expect more from the buying experience, and retailers are looking at technology to keep consumers engaged. In today’s highly competitive business climate, being able to attract, serve, and satisfy more customers is a key to success. It is our belief that smart robots will play a significant role in physical retail in the future. One successful example is wGO, a robotic shopping assistant developed by Follow Inspiration. The wGO is an autonomous and self-driven shopping cart, designed to follow people with reduced mobility (the elderly, people in wheelchair, pregnant women, those with temporary reduced mobility, etc.) in commercial environments. With the Retail Robot, the user can control the shopping cart without the need to push it. This brings numerous advantages and a higher level of comfort since the user does not need to worry about carrying the groceries or pushing the shopping cart. The wGO operates under a vision-guided approach based on user-following with no need for any external device. Its integrated architecture of control, navigation, perception, planning, and awareness is designed to enable the robot to successfully perform personal assistance, while the user is shopping

    A 360 VR and Wi-Fi Tracking Based Autonomous Telepresence Robot for Virtual Tour

    Get PDF
    This study proposes a novel mobile robot teleoperation interface that demonstrates the applicability of a robot-aided remote telepresence system with a virtual reality (VR) device to a virtual tour scenario. To improve realism and provide an intuitive replica of the remote environment for the user interface, the implemented system automatically moves a mobile robot (viewpoint) while displaying a 360-degree live video streamed from the robot to a VR device (Oculus Rift). Upon the user choosing a destination location from a given set of options, the robot generates a route based on a shortest path graph and travels along that the route using a wireless signal tracking method that depends on measuring the direction of arrival (DOA) of radio signals. This paper presents an overview of the system and architecture, and discusses its implementation aspects. Experimental results show that the proposed system is able to move to the destination stably using the signal tracking method, and that at the same time, the user can remotely control the robot through the VR interface

    Haptic Guidance for Extended Range Telepresence

    Get PDF
    A novel navigation assistance for extended range telepresence is presented. The haptic information from the target environment is augmented with guidance commands to assist the user in reaching desired goals in the arbitrarily large target environment from the spatially restricted user environment. Furthermore, a semi-mobile haptic interface was developed, one whose lightweight design and setup configuration atop the user provide for an absolutely safe operation and high force display quality

    Long-Term Evaluation of a Telepresence Robot for the Elderly: Methodology and Ecological Case Study

    Get PDF
    Telepresence robotic systems are proposed in different contexts and specifically in the area of social robotics for assisting older adults at home. Similarly to other robotic systems, such robots are often designed and then evaluated in laboratory settings for a limited period of time. Lab-based evaluations present limitations because they do not take into account the different challenges imposed by the fielding of robotic solutions into real contexts for longer periods. In order to perform long-term experiments in real ecological settings it is very important to define a structured approach to assess the impact of a prolonged and constant use of the telepresence robot. This paper proposes a methodology in the area of elderly people support, called MARTA, for M ultidimensional A ssessment of telepresence R obo T for older A dults. It introduces the main variables of interest as well as the instruments and administration timeline for assessing relevant changes that may occur over time. MARTA is also validated in a one year-long case study during which a telepresence robot, called Giraff, has been deployed and iteratively assessed. The paper also provides remarks on the technology readiness and suggestions for its improvements
    • …
    corecore