1,171 research outputs found

    Enhancement of dronogram aid to visual interpretation of target objects via intuitionistic fuzzy hesitant sets

    Get PDF
    In this paper, we address the hesitant information in enhancement task often caused by differences in image contrast. Enhancement approaches generally use certain filters which generate artifacts or are unable to recover all the objects details in images. Typically, the contrast of an image quantifies a unique ratio between the amounts of black and white through a single pixel. However, contrast is better represented by a group of pix- els. We have proposed a novel image enhancement scheme based on intuitionistic hesi- tant fuzzy sets (IHFSs) for drone images (dronogram) to facilitate better interpretations of target objects. First, a given dronogram is divided into foreground and background areas based on an estimated threshold from which the proposed model measures the amount of black/white intensity levels. Next, we fuzzify both of them and determine the hesitant score indicated by the distance between the two areas for each point in the fuzzy plane. Finally, a hyperbolic operator is adopted for each membership grade to improve the pho- tographic quality leading to enhanced results via defuzzification. The proposed method is tested on a large drone image database. Results demonstrate better contrast enhancement, improved visual quality, and better recognition compared to the state-of-the-art methods.Web of Science500866

    An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs

    Get PDF
    Background: Transcription factors (TFs) control transcription by binding to specific regions of DNA called transcription factor binding sites (TFBSs). The identification of TFBSs is a crucial problem in computational biology and includes the subtask of predicting the location of known TFBS motifs in a given DNA sequence. It has previously been shown that, when scoring matches to known TFBS motifs, interdependencies between positions within a motif should be taken into account. However, this remains a challenging task owing to the fact that sequences similar to those of known TFBSs can occur by chance with a relatively high frequency. Here we present a new method for matching sequences to TFBS motifs based on intuitionistic fuzzy sets (IFS) theory, an approach that has been shown to be particularly appropriate for tackling problems that embody a high degree of uncertainty. Results: We propose SCintuit, a new scoring method for measuring sequence-motif affinity based on IFS theory. Unlike existing methods that consider dependencies between positions, SCintuit is designed to prevent overestimation of less conserved positions of TFBSs. For a given pair of bases, SCintuit is computed not only as a function of their combined probability of occurrence, but also taking into account the individual importance of each single base at its corresponding position. We used SCintuit to identify known TFBSs in DNA sequences. Our method provides excellent results when dealing with both synthetic and real data, outperforming the sensitivity and the specificity of two existing methods in all the experiments we performed. Conclusions: The results show that SCintuit improves the prediction quality for TFs of the existing approaches without compromising sensitivity. In addition, we show how SCintuit can be successfully applied to real research problems. In this study the reliability of the IFS theory for motif discovery tasks is proven

    CO2 emission based GDP prediction using intuitionistic fuzzy transfer learning

    Get PDF
    The industrialization has been the primary cause of the economic boom in almost all countries. However, this happened at the cost of the environment, as industrialization also caused carbon emissions to increase exponentially. According to the established literature, Gross Domestic Product (GDP) is related to carbon emissions (CO2) which could be optimally employed to precisely estimate a country's GDP. However, the scarcity of data is a significant bottleneck that could be handled using transfer learning (TL) which uses previously learned information to resolve new tasks, more specifically, related tasks. Notably, TL is highly vulnerable to performance degradation due to the deficiency of suitable information and hesitancy in decision-making. Therefore, this paper proposes ‘Intuitionistic Fuzzy Transfer Learning (IFTL)’, which is trained to use CO2 emission data of developed nations and is tested for its prediction of GDP in a developing nation. IFTL exploits the concepts of intuitionistic fuzzy sets (IFSs) and a newly introduced function called the modified Hausdorff distance function. The proposed IFTL is investigated to demonstrate its actual capabilities for TL in modeling hesitancy. To further emphasize the role of hesitancy modelled with IFSs, we propose an ordinary fuzzy set (FS) based transfer learning. The prediction accuracy of the IFTL is further compared with widely used machine learning approaches, extreme learning machines, support vector regression, and generalized regression neural networks. It is observed that IFTL capably ensured significant improvements in the prediction accuracy over other existing approaches whenever training and testing data have huge data distribution differences. Moreover, the proposed IFTL is deterministic in nature and presents a novel way for mathematically computing the intuitionistic hesitation degree.© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Technology assessment with IF-TOPSIS: An application in the advanced underwater system sector

    Get PDF
    Technologies are pivotal for firms' success, but also resource consuming. Therefore, managers have to assess and select technologies carefully in order to allocate resources on the most promising ones, grounding their decisions on adequate sets of criteria on which experienced people can express their opinion.This work proposes an application of Multi Criteria Decision Aids to technology assessment, where Decision Support Systems offer an effective support for evaluating technology impact on firms' success, building on experts' judgments.The method is based on a peer-based modification to Intuitionistic Fuzzy multi-criteria group decision making with TOPSIS method (peer IF-TOPSIS). A case study in which this methodology is applied to a company operating in the military sector (Advanced Underwater System) is also presented.Besides the empirical proof of the method's suitability and value in assisting managers in their decision, the paper's contributions are both methodological and theoretical. Methodologically, while allowing a peer-based voting procedure, the method enhances the consensus in the firm and limits the possible biases that a supra-decision maker could introduce. Theoretically, the set of proposed criteria includes many facets of the assessment problem, and avoids being tailored to the investigated technological field, so enhancing its generalizability

    Fuzzy Logic in Decision Support: Methods, Applications and Future Trends

    Get PDF
    During the last decades, the art and science of fuzzy logic have witnessed significant developments and have found applications in many active areas, such as pattern recognition, classification, control systems, etc. A lot of research has demonstrated the ability of fuzzy logic in dealing with vague and uncertain linguistic information. For the purpose of representing human perception, fuzzy logic has been employed as an effective tool in intelligent decision making. Due to the emergence of various studies on fuzzy logic-based decision-making methods, it is necessary to make a comprehensive overview of published papers in this field and their applications. This paper covers a wide range of both theoretical and practical applications of fuzzy logic in decision making. It has been grouped into five parts: to explain the role of fuzzy logic in decision making, we first present some basic ideas underlying different types of fuzzy logic and the structure of the fuzzy logic system. Then, we make a review of evaluation methods, prediction methods, decision support algorithms, group decision-making methods based on fuzzy logic. Applications of these methods are further reviewed. Finally, some challenges and future trends are given from different perspectives. This paper illustrates that the combination of fuzzy logic and decision making method has an extensive research prospect. It can help researchers to identify the frontiers of fuzzy logic in the field of decision making

    Decision-making model for designing telecom products/services based on customer preferences and non-preferences

    Get PDF
    The design of the packages of products/services to be offered by a telecom company to its clients is a complex decision-making process that must consider different criteria to achieve both customer satisfaction and optimization of the company’s resources. In this process, Intuitionistic Fuzzy Sets (IFSs) can be used to manage uncertainty and better represent both preferences and non-preferences expressed by people who value each proposed alternative. We present a novel approach to design/develop new products/services that combines the Lean Six Sigma methodology with IFSs. Its main contribution comes from considering both preferences and nonpreferences expressed by real clients, whereas existing proposals only consider their preferences. By also considering their non-preferences, it provides an additional capacity to manage the high uncertainty in the selection of the commercial plan that best suits each client’s needs. Thus, client satisfaction is increased while improving the company’s corporate image, which will lead to customer loyalty and increased revenue. To validate the presented proposal, it has been applied to a real case study of the telecom sector, in which 2135 users have participated. The results obtained have been analysed and compared with those obtained with a model that does not consider the non-preferences expressed by users.Spanish Ministry of Science and Innovation (State Research Agency)Junta de Andalucia PID2019-103880RB-I00 PID2019-109644RB-I00 PY20_0067

    Multiple Attributes Decision Fusion for Wireless Sensor Networks Based on Intuitionistic Fuzzy Set

    Get PDF
    Decision fusion is an important issue in wireless sensor networks (WSN), and intuitionistic fuzzy set (IFS) is a novel method for dealing with uncertain data. We propose a multi-attribute decision fusion model based on IFS, which includes two aspects: data distribution-based IFS construction algorithm (DDBIFCA) and the category similarity weight-based TOPSIS intuitionistic fuzzy decision algorithm (CSWBT-IFS). The DDBIFCA is an IFS construction algorithm that transforms the original attribute values into intuitionistic fuzzy measures, and the CSWBT-IFS is an intuitionistic fuzzy aggregation algorithm improved by the traditional TOPSIS algorithm, which combines intuitionistic fuzzy values of different attributes and obtains a final decision for the monitoring target. Both algorithms have benefits, such as low energy consumption and low computational complexity, which make them suitable for implementation in energy-constrained WSNs. Simulation results show the efficiency of intuitionistic fuzzification for the DDBIFCA and a high classification accuracy, compared with traditional fuzzy fusion and other intuitionistic fuzzy aggregation algorithms, for the CSWBT-IFS
    corecore