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a b s t r a c t 

In this paper, we address the hesitant information in enhancement task often caused by 

differences in image contrast. Enhancement approaches generally use certain filters which 

generate artifacts or are unable to recover all the objects details in images. Typically, 

the contrast of an image quantifies a unique ratio between the amounts of black and 

white through a single pixel. However, contrast is better represented by a group of pix- 

els. We have proposed a novel image enhancement scheme based on intuitionistic hesi- 

tant fuzzy sets (IHFSs) for drone images (dronogram) to facilitate better interpretations of 

target objects. First, a given dronogram is divided into foreground and background areas 

based on an estimated threshold from which the proposed model measures the amount 

of black/white intensity levels. Next, we fuzzify both of them and determine the hesitant 

score indicated by the distance between the two areas for each point in the fuzzy plane. 

Finally, a hyperbolic operator is adopted for each membership grade to improve the pho- 

tographic quality leading to enhanced results via defuzzification. The proposed method is 

tested on a large drone image database. Results demonstrate better contrast enhancement, 

improved visual quality, and better recognition compared to the state-of-the-art methods. 

© 2019 The Authors. Published by Elsevier Inc. 
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1. Introduction 

I n computer vision, contrast enhancement is the only method that is used to improve the visibility of underexposed

image details. Due to the limitation in the imaging sensors (viz. camera), low illumination, poor quality imaging acquisi-

tion systems and improper settings (viz. lenses), the contrast of the captured images can be distinct from ground-truth.

For a better human perception and understanding, improvement in the quality of the acquired images is a mandatory re-

quirement. To obtain an enhanced image with better details from these low dynamic range images, contrast enhancement

is performed on the basis of image processing criteria [2,11,29,30] . Presently, the application of unmanned aerial vehicles

(UAVs viz. Drone) is rapidly growing in various fields such as surveillance, military, agriculture, etc. in incommodious envi-

ronments. Object detection and tracking are very challenging tasks in the field of intelligent transportation and automatic
∗ Corresponding author at: RCC Institute of Information Technology, Kolkata, India. 

E-mail addresses: biswajit.cu.08@gmail.com (B. Biswas), siddhartha.bhattacharyya@vsb.cz (S. Bhattacharyya), jan.platos@vsb.cz (J. Platos), 

vaclav.snasel@vsb.cz (V. Snasel). 

https://doi.org/10.1016/j.ins.2019.05.069 

0020-0255/© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.ins.2019.05.069
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2019.05.069&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:biswajit.cu.08@gmail.com
mailto:siddhartha.bhattacharyya@vsb.cz
mailto:jan.platos@vsb.cz
mailto:vaclav.snasel@vsb.cz
https://doi.org/10.1016/j.ins.2019.05.069
http://creativecommons.org/licenses/by-nc-nd/4.0/


68 B. Biswas, S. Bhattacharyya and J. Platos et al. / Information Sciences 500 (2019) 67–86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

monitoring [15,16,18] . Typically, the targets often include vehicles, vessels, crafts, traffic signs, cars or forest; such targets are

specifically highly informative, which can be used to improve the accuracy of target tracking (e.g., vessel shape and grouping

activity are used in order to differentiate and predict the vessel), and prior spatial information aid to recognize the detection

of target objects (viz. vessels, trees, house) [16,18] . Due to the expensive nature of drone devices, the processing cost is very

high for fast dynamic motion and transmission. Moreover, the projected drone images can be deteriorated by various noises,

degraded normal illumination and visual quality [15,16,27] . Consequently, it is essential to design and implement a drone

efficient image enhancement algorithm with higher accuracy to understand and recognize target objects so as to address

the better discrimination of specific objects in dronogram without increasing the burden of the hardware costs [15,27] . 

In past few decades, researchers have tried to solve the exact contrast enhancement problem for colour imaging using

several approaches [2,6,24,29,30,38] . Improved contrast and image details are often required in a wide range of computer

vision applications but a generic solution to this problem has not been discovered. Several enhancement methods have

been suggested such as spatial filtering, histogram equalization (HE), wavelet decomposition, or soft computing (fuzzy sets,

neuro-fuzzy, convolutional neural networks) theory [4,9,19,30] . All these methods are broadly classified into spatial-domain

and transformation-domain methods. Detailed reviews can be found in [5,12,29,30,33] . 

Spatial-domain methods: These methods are built on the straightforward manipulation of pixel intensities in source

images [2,4,11,30,37] . Mainly, statistical based sub-band filtering approaches have been utilized to enhance underexposed

and low illumination in target images by suppressing noise [2,23,30] , but these techniques perhaps cause edge blurring

and detail loss [2,4,19,30] . Thus, adaptive enhancement approaches are beneficial to improve the contrast while maintain-

ing edges and details of dronograms [2,5,12,30] . The adaptive density weighted contrast [2,11,30] , or first derivative and

local statistics [2,12,30] are common adaptive based approaches. Though histogram equalization (HE) techniques retain the

predominant view in the field of enhancement, they possibly result in unnecessary contrast enhancement or over-fit bright-

ness effect resulting from the lack of constraint on the level of enhancement [2,6,25,30,38] . Thus, some techniques are

investigated to overcome those lacks, e.g., the adaptive HE (AHE), and contrast limited AHE (CLAHE) [2,5,29,30,33] in lit-

erature. Unsharp masking (UM) is useful for enhancing exact details of dronograms, but increases noise and exceeds steep

details at the same moment [2,25,29,30] . Later, few revised methods such as the rational UM [2,30] and nonlinear UM

(NUM) [2,12,25,30] have been suggested to overcome those problems. 

Recently, deep learning is achieving impressive state-of-the art performance for different image processing tasks such as

image segmentation, image enhancement etc. [7,32,43] . Deep convolutional neural network architecture is quickly becoming

prominent in image processing since it provides the ability to efficiently encode spectral and spatial information based on

the input image data, without any prepossessing step. It consists of multiple interconnected layers and learns a hierarchical

feature representation from raw pixel-data. It discovers features at multiple levels of representations. Several researchers

have suggested various deep learning based image enhancement methods such as Deep Bilateral Learning [10] , deep con-

volutional neural network based image enhancement [34,39] , Dehaznet for image enhancement [3] , MSR-net [31,34] etc.

All the deep learning based image enhancement methods produce remarkable results for real time images and low illu-

minated images. Therefore, deep learning method is most robust but lots of synthetic data as well as high computational

resources are required to perform the deep learning algorithms. Sometimes, deep learning approaches suffer from high bias

and over-fitting problem due to the nature of data. 

Transformation-domain methods: In this case, all existing techniques are designed based on the multi-scale represen-

tation or Fourier transform approach, which often uses an input/output transformation that varies with the regional feature

of a dronogram. Firstly, multi-scale representation-based schemes decompose an image into a level of multi-scale sub-bands

by using the contourlet, discrete dyadic wavelet, complex wavelets or shearlet [2,17,25,30] . However, most wavelet based

schemes are unable to preserve both the contour and geometry of edges in images [17,29,30] whereas contourlet and shear-

let are better for preserving image details. Moreover, traditional transformation-domain techniques can produce artefacts 

such as undesirable blocking effects [19,23,29,30] , or enhance image uniformly, but incompletely enhance all regional image

details/regions [6,18,26,38] . Still, implementation and run-time costs for contourlet or shearlet are complicated issues in

real-time applications [2,25,30] . 

Since uncertainty and vagueness are undoubtedly created during the acquisition or transmission of images, a reliable

model interpreting such images should use the personal experience to determine heuristically. Although, this can be con-

strued by the classical mathematical modeling [4,6,29,30,38] . Hence, fuzzy sets (FSs), logical FSs, type-I FSs, type-II FSs, or

intuitionistic FSs (IFSs), have been used to improve the contrast and visual quality of images because they are knowledge-

based systems. These fuzzy techniques efficiently process faulty data collected from imprecision and vagueness [2,29,30] . In

most of the cases, the grey-level range of a contrast enhanced image using type-I FSs is relatively consistent, and inadequate

to enhance the corrupted images with short grey levels and low-intensity values [4,19,30] . Type-II FSs are tough to practice

and insufficient to address the exact hesitancy in ambiguity [6,23,26,30,38] . Consequently, image enhancement is basically a

challenging task in the domain of image processing. 

Lots of researchers have suggested various methods to enhance low-contrasted images and most of them perform quite

efficiently [2,5,11,12,30,37] . Most of the existing methods cannot achieve the desired enhancement result for underexposed

and low-illuminated images and typically suffer from deficiency with robustness and accuracy. Here, we propose an appro-

priate and fittest model to correct the intensity distribution of pixels in the image, which is suitable for human perception.

To plan a dronogram (drone image) enhancement scheme, it is motivating to select intuitionistic fuzzy hesitant sets (IFHSs)

theory because IFHS take into account more uncertainties in the form of membership function that is more bound to the as-
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pects of human decision-making, in comparison to traditional FSs [1,19,41] . The IFHS is well-known for its power to measure

hesitant quantity while addressing uncertainty in image information [4,6,28,38,40] . 

Inspired by literature study, a novel dronogram enhancement algorithm motivated by the IFHS theory has been developed

in this paper. The proposed scheme is designed by using the hyperbolic regularization approach in the intuitionistic fuzzy

hesitant set. We have formulated a different membership grades generator to construct the intuitionistic fuzzy hesitant set

to measure the hesitant score in fuzzy membership grades under certain fuzzy enhancing criterion. The proposed frame-

work has been divided into two main stages. First, we have separated the background-foreground areas utilizing the global

threshold and constructed membership functions in the fuzzy domain. Secondly, a nonlinear real-valued hyperbolic function

is applied to modify and adjust both the memberships in background-foreground areas to enhance source drone images.

To increase the clarity of the dim image for object detection task, we have utilized adaptive threshold instead of direct or

fixed threshold for the separation of foreground/ background of the image. Since low illuminated images are ambiguous in

nature, we have applied hesitant score through intuitionistic fuzzy set for the enhancement task. The designed algorithm

involves few parameters and thus the suggested scheme is automated and does not require any expert knowledge. Experi-

mental results verify that the designed method is an efficient and simple way to improve the contrast and visual clarity in

the dronogram. More detailed contributions are given below: 

(1) We have proposed a novel enhancement scheme based on the hesitant fuzzy set theory for drone images. The pro-

posed method effectively identifies foreground/background pixels in drone image for contrast correction with a global

threshold in less execution time. 

(2) We address hesitant information measure on foreground/background image areas and derive weighted parameters

applying the hesitant score and hesitant distance function in foreground/background areas. 

(3) To achieve the best membership grades, we have applied hyperbolic membership grade manipulation in the hesitant

fuzzy set. Hyperbolic regularization has been exploited on the uncertainty of hesitancy using the hesitant score to

determine and process image pixels low light images. 

(4) We have revealed a unique enhancement process to adjust different pixel intensity ranges and brightness adaptation

using fuzzy data integration. 

(5) The result section shows that the proposed method outperforms the state-of-the-art algorithms while obtaining iden-

tical contrast enhancing results for target object detection. 

The rest of this paper is structured as follows: In Section 2 , we present the preliminaries to the related work. In Section 3 ,

we illustrate the designed dronogram enhancement algorithm in details. In Section 4 , we give experimental results and

discussions. Conclusions and perspectives are presented in Section 5 . 

2. Preliminaries 

This section concisely discusses the theories of intuitionistic fuzzy sets, hesitant fuzzy sets, and the basic framework of

fuzzy image enhancement for drone imaging. The novel enhancement scheme is developed on the basis of the following

concepts. 

2.1. Fuzzy sets 

According to mathematical definition in fuzzy theory [1,41] , let X = { x 1 , x 2 . . . x n } is a reference of point set. The fuzzy

set A = { 〈 x, μA (x ) 〉 |∀ x ∈ X } is defined on X by a membership function μA ( x ) for each generic points of X . The membership

function μA ( x ) is real-valued function such that μA : x → [0, 1], x ∈ X mapping each point of X into real line R . X is a crisp

set when μA ( x ) takes only 1 or 0 [1,40,41] . 

In fuzzy set, a digital image is defined by an array of singletons as membership grades of each pixel. Let I be a 2D image

with size P × Q = N containing N pixels with intensity levels in the dynamic range ( 0 , L − 1 ) , thus a fuzzy set I is written

as follows [1,6,19,29,41,42] : 

I = 

P ⋃ 

i =1 

Q ⋃ 

j=1 

μi j ( x ) 

x ij 

where μij ( x ) denotes the membership grades of intensity levels of each pixel μij ( x ) ∈ I in image I with size P × Q = N . L, P,

Q and N are respectively the highest intensity levels (for 8-bit, L = 256 ), width, height and total count of pixels in I . Due to

problem definition in image processing, the membership function μij ( x ) ∈ I for an image can be different. Several functions

such as triangulation, Gaussian, Bel-shape, S -function are used as the membership function in literature [1,19,21,41] . 

2.2. Intuitionistic fuzzy sets and its construction 

According to Atanassov [1] , typically a fuzzy set considers only membership function μ( x ) ∈ X whereas an intuitionistic

fuzzy set (IFS) deals with a membership function as ( μ( x ): x → [0, 1], x ∈ X ) with another special real-valued function known
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as non-membership function such as ( ν( x ): x → [0, 1], x ∈ X ) on X . Thus, an IFS for a point set A under discourse X is defined

as follows [1,8,23] : 

A = { 〈 x, μA ( x ) , νA ( x ) 〉 | x ∈ X } (1) 

where μA ( x ) and νA ( x ) are membership and non-membership grades of a point x belonging to the set A ⊆ X under the

following conditions [1,8,23] : 

0 ≤ μA ( x ) + νA ( x ) ≤ 1 

If νA ( x ) = 1 − μA ( x ) for ∀ x ∈ A , then A becomes a fuzzy set (FS). For all intuitionistic fuzzy sets (IFSs), due to lack of

knowledge to determine the membership grade of each point x ∈ A , a hesitation can been considered. Now, the hesitation

is defined by a real-valued function ( π( x ) : x → [ 0 , 1 ] , x ∈ A ) for A ⊆ X as follows [1,8,40] : 

πA ( x ) = 1 − μA ( x ) − νA ( x ) , ∀ x ∈ A 

where, πA ( x ) represents the hesitation degree of x ∈ A under interval 

[ μA ( x ) , μA ( x ) + νA ( x ) ] 

According to Atanassov [1,8] , f : x → [ 0 , 1 ] , x ∈ X is a continuous monotone function and monotone IFS constructor if f ( x )

satisfies the following conditions [1,20,28] : 

f ( x ) ≤ ( 1 − x ) | ∀ x ∈ A and f (0) = 1 , f (1) = 0 , (2)

We have devised an IFS generator for the proposed model of the non-membership grade νA (x ) , x ∈ A for IFS A through

Yager ’s intuitionistic fuzzy complements [20,28] and Sugeno ’s [20,28] negation function. The IFS construction functions as

IFS generator N ( x ) for IFS A in terms of intuitionistic fuzzy complements and negation functions which have been deter-

mined by modification of intuitionistic fuzzy complements, negation functions by the following expressions [8,20,28] : 

N 1 ( x ) = ( 1 − x α) 
1 
α , α > 0 , (3) 

N 2 ( x ) = 

1 − x α

1 + λx α
, α > 0 , λ > 0 (4) 

Both N 1 ( x ), N 2 ( x ) satisfy N i (0) = 1 , N i (1) = 0 , i = 1 , 2 . Hence, we define our IFS generator N ( x ) by using Eqs. (3) and (4) as

follows: 

N ( x ) = N 1 ( x ) · N 2 ( x ) (5) 

N ( x ) = ( 1 − x α) 
1 
α ·
(

1 − x α

1 + λx α

)
N ( x ) = 

[
( 1 − x α) 

k 

1 + λx α

]
, k = 

(
1 + 

1 

α

)
(6) 

where, N ( x ) always satisfies N(0) = 1 , N(1) = 0 and α > 0, λ> 0, respectively. 

By using Eq. (6) , IFS A in Eq. (1) is given by 

A ( α,λ) = 

{ 〈 
x, μA ( x ) , 

[ (
1 − μA ( x ) 

α
)k 

1 + λμA ( x ) 
α

] 〉 
: x ∈ A 

} 

(7) 

and its hesitation degree πA becomes 

πA ( x ) = 

{ 

1 − μA ( x ) −
[ (

1 − μA ( x ) 
α
)k 

1 + λμA ( x ) 
α

] } 

(8) 

On the other hand, we can measure the non-membership function νA by using Yager’s generator as follows [8,20,28] : 

νA ( x ) = 

{ (
1 − μA ( x ) 

α
)k 
} 

(9) 

Based on the aforesaid description, the IFS for an image I , notionally, A 

I 
( α,λ) 

is defined by Eqs. (1) and (7) as follows: 

A 

I 
( α,λ) 

= { 〈 x i , μA ( x i ) , νA ( x i ) , πA ( x i ) 〉 : i = 1 , 2 , . . . , N } (10) 

where, μA ( x i ), νA ( x i ), and πA ( x i ) are denoted as membership, non-membership and hesitant grades of the i th pixel of image

I . It is noted that, for different values of parameter α in fuzzy plane, the contrast of an image changes from high to dim or
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vice versa. In the proposed method, the value of α is related to the image enhancement task, i.e. the contrast of an image

can be controlled by adjusting the parameter α. 

Before fuzzification, first, we have used the gray-level normalization procedure to normalize each source image. On

the other hand, for defuzzification (viz. the inverse fuzzy map), we have utilized inverse gray-level normalization proce-

dure [6,19,25] . In this paper, the fuzzy membership μA ( x i ) for IFS A ( α,λ) is defined in terms of normalized intensity levels

of image I by following expression [6,19,41] : 

μA ( x i ) = 

[
x i − x L min 

x L max 
− x i 

]
, i = 1 , 2 , . . . , N (11)

where, N quantifies the total count of pixels, x L max 
and x L min 

specify the maximum and minimum gray level ( L ) of the image

I , respectively. Eq. (11) is applied to transfer the pixel intensity of image to the fuzzy domain i.e., the membership grades

μI 
A 
(x ) of the corresponding gray levels. 

Intuitionistic fuzzy set theory mainly deals with two uncertainties-membership and non-membership degrees. As the

choice of the membership function is dependent on the types of problems and differs from problem to problem, often a

distinct function is used as hesitant when defining the membership function. Mostly, the membership function may be

triangular, trapezoid, Gaussian, Gamma, Cauchy etc. In the intuitionistic fuzzy set, the non-membership degree is equal to

the complement of the membership degree due to the existence of hesitant property. 

2.3. Hesitant fuzzy sets and its construction 

A hesitant fuzzy set (HFS) A in X is defined as [8,23,26] : 

A = { 〈 x, h A ( x ) 〉 : x ∈ X } (12)

where, h A ( x ) : x → [0 , 1] , ∀ x ∈ X is a set of different values in [0, 1] denoting membership degrees of point x to A and is

known as the hesitant fuzzy element (HFE) [23,26,40] . HFS A can be defined as a fuzzy set (FS) if there is only one element

belonging to h A ( x ) or a intuitionistic fuzzy set (IFS) if there are two elements present in h A ( x ) [8,28,40] . 

According to Xia et al. [40] , the hesitant normalized Hamming distance measure function is typically used to determine

the distance between two HFSs. To measure on HFSs, given two HFSs A and B, h 
σ ( j) 
A ( x i ) and h 

σ ( j) 
B ( x i ) represent j th values in

h A ( x i ) and h B ( x i ) , which are defined on X such that ∀ x i ∈ X ; (1 ≤ i ≤ n ). The hesitant normalized Hamming distance (HNHD)

is then given as [28,40] : 

d h ( A , B ) = 

1 

n 

n ∑ 

i =1 

[ 

1 

c x i 

c x i ∑ 

j=1 

∣∣h 

σ ( j) 
A ( x i ) − h 

σ ( j) 
B ( x i ) 

∣∣] 

(13)

c x i = max 
i 

{
c 
(
h 

σ ( j) 
A ( x i ) 

)
, c 
(
h 

σ ( j) 
B ( x i ) 

)}
(14)

where, c 

(
h 
σ ( j) 
A ( x i ) 

)
, c 

(
h 
σ ( j) 
B ( x i ) 

)
are the cardinal numbers and h 

σ ( j) 
A ( x i ) , h 

σ ( j) 
B ( x i ) denote the i th highest value in h 

σ ( j) 
A ( x i ) ,

h 
σ ( j) 
B ( x i ) , respectively. 

The Hesitant Score (HS) [ S HS ( ·) ] usually measures the amount of hesitance in a hesitant fuzzy set (HFS). The hesitant

score for two HFSs such as h A ( x i ) and h B ( x i ) are given as [8,23,26,40] : 

S A HS ( ·) = 

1 

n 

n ∑ 

i =1 

[ 

1 

c x i 

c x i ∑ 

j=1 

h 

σ ( j) 
A ( x i ) 

] 

(15)

S B HS ( ·) = 

1 

n 

n ∑ 

i =1 

[ 

1 

c x i 

c x i ∑ 

j=1 

h 

σ ( j) 
A ( x i ) 

] 

(16)

where, n denotes the number of elements in h A ( x i ) and h B ( x i ) , respectively. 

In order to construct the hesitant fuzzy set (HFS) in terms of intuitionistic fuzzy set (IFS), we adopt Eqs. (7) –(10) . The

membership degrees in a HFS may be different [23,26] . For exact measure, the cardinality c x ( · ) of both the two HFS h A ( x i )
and h B ( x i ) should be equal. If elements in h A ( x i ) are fewer than in h B ( x i ) , then h A ( x i ) is enlarged by repeating its maximum

element until its cardinality c A ( ·) becomes equal to that of c B ( ·) of h B ( x i ) [8,26,40] . 

If A , B ⊆ X and ∀ x ∈ X , then the two HFSs such as h A ( x i ) , h B ( x i ) using Eq. (10) are considered as intuitionistic fuzzy

hesitant sets (IFHSs) which are given as follows: 

h A ( x i ) = { 〈 x i , μA ( x i ) , νA ( x i ) , πA ( x i ) 〉 : i = 1 , 2 , · · · N } (17)
h B ( x i ) = { 〈 x i , μB ( x i ) , νB ( x i ) , πB ( x i ) 〉 : i = 1 , 2 , · · · N } (18) 
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2.4. Outline of fuzzy image enhancement 

In fuzzy image processing, there are three steps associated with the process of handling spatial image data,

mostly [6,25,30,41] : (i) Fuzzification �, i.e., the input data A ⊂ X (histograms, gray levels, features, etc.) is converted into a

membership plane. (ii) Manipulation �, i.e., few algebraic as well as a logical operator (addition, multiplication, AND/OR)

are used for proper modifications of the membership grades in a fuzzy plane for the enhancement and threshold. (iii)

Defuzzification 	, i.e., if necessary, the modified membership in the fuzzy plane has to be inversely mapped into the char-

acteristic plane (crisp set) without loss of generality. The output X of the fuzzy system for an input x ∈ A is given by the

following processing stage as: 

A = 	( �( �( X ) ) ) (19) 

A fresh fuzzy membership function can be defined from the membership function of the input image. For an intuition-

istic fuzzy set, Sugenoâs and Yagerâs intuitionistic fuzzy generators are used to find the non-membership function and the

hesitant function. The hesitant score is utilized to find the optimum divergence value. In case of an intuitionistic fuzzy

hesitant set, hyperbolized operators are used to reform a new membership function from the two membership levels of

background/foreground areas. The proposed hyperbolized modifier is used to find the fittest shape of membership grades.

The main distinction from other systems is that in image processing, the input data X is managed in the membership plane

using the variety of FSs, IFSs, fuzzy logical, or fuzzy measure theories to modify and/or aggregate membership values, or to

classify data, decision making, logical inferences, etc. [19,30,41] . The new membership values are re-transformed into the

pixel plane to form new features in terms of histograms and gray levels [2,41] . 

3. Proposed methodology 

Combining the hesitant information with nonlinear hyperbolic operators, we have introduced a novel fuzzy enhancement

scheme in this study, which is based on intuitionistic fuzzy hesitant sets (IFHSs), called as DIEM for drone image enhance-

ment. The proposed DIEM model is devised in terms of intuitionistic fuzzy set, hesitant measure and hyperbolic method

which are described below. 

3.1. DIEM scheme 

In order to enhance an image, it is essential to separate the image into foreground and background portions because

of correlation in both spatial and frequency domains. Foreground/background areas are used to quantify the amount of

brightness to the blackness of an image. The division of an image into a foreground/background is illustrated in Fig. 3 (a)–

(c). Initially, a given original dronogram I ( x ) is divided into foreground region I f ( x ) and background area I b ( x ) via a threshold

θ . Then, rearranged areas ( I f ( x ) and I b ( x )) are processed through several fuzzy operations. The processed dronogram D ( x )

is assembled with the source image via different orders of fuzzy transforms to obtain a final enhanced dronogram I e ( x )

using fuzzy regularization. The schematic diagram of the DIEM scheme is shown in Fig. 1 . The different stages of dronogram

enhancement by an intuitionistic fuzzy hesitant approach are scheduled as follows: 

Step 1: Divide a dronogram ( I ( x )) into the foreground ( I f ( x )) and background ( I b ( x )) image areas. 

Step 2: Construct the hesitant intuitionistic fuzzy sets for the foreground and background regions by transforming the

image plane into a fuzzy plane. 

Step 3: Modify membership degrees by applying the hyperbolic operations on the foreground and background regions. 

Step 4: Apply defuzzification entailing an inverse transform followed by merging the processed data with the source

image data to obtain the enhanced image. 

3.2. Separation of dronogram 

The foreground/background separation is widely used in object detection task for contrast enhancement methods. This

approach is adopted in order to measure whiteness/blackness of an image. Deng et al. have suggested an efficient utilization

of the foreground/background separation in the dronogram enhancement task [6] . Typically, the foreground portion of an

image includes the image details (viz. edge, corner, etc.) whereas the background represents smooth image information.

Besides, the overall pixel intensity in the background area is shorter than the pixel intensity in the background area of an

image. Because of different illuminations in foreground/background areas, the foreground/background areas play a key role

in the image enhancement task. 

To separate the foreground/background of an image, we calculate an optimal adaptive threshold instead of a direct or a

fixed threshold. The threshold value plays a crucial role for the foreground/background seperation task to quantify the image

pixels and assures the convergence of the algorithm. Our aim to choose an optimal thresholds which reduce the number of

iterations as well as execution time. We have introduced an iterative approach to divide a dronogram ( I ) into foreground

( I f ) and background ( I b ) portions automatically. For a given source dronogram ( I ), the following strategy has been utilized to

determine a global threshold ( θ ) based on the mean μ of ( I ). 
I 
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Fig. 1. Schematic diagram of the proposed DIEM model. 

 

 

 

 

 

 

 

 

 

 

 

1. Compute the global threshold θ from whole image ( I ) as, 

θ = μI + ·( I max ) 

[
I max − I min 

n b · ( I max + I min ) 

]
where, I max and I min represent the maximum, minimum intensity values of the dronogram ( I ), respectively. μI is the

mean of original image I and n b bit level e.g. for 8-bit image, n b = 8 . 

2. Fragment the dronogram ( I ) using θ . This threshold twofolds I into foreground and background pixels such as I f which

puts together all pixels with intensity values I ≥ θ , and I b having all pixels with intensity values I < θ . 

3. Compute the average intensity values μI f 
and μI b 

of all the pixels involved in I f and I b , individually. 

4. Calculate the mean threshold value ˆ θ from foreground ( μI f 
) and background ( μI b 

) images as 

[ 
ˆ θ = 

μI f 
+ μI b 

2 

] 
. 

5. Update θ = θ − ˆ θ . 

6. Repeat Steps (2) through (5) if | θ − ˆ θ | > ε and set θ = 

ˆ θ . Otherwise, make it as the final segmentation threshold θ . Here

ε is a predefined parametric value set to ε = 0 . 005 in DIEM. 

Practically, for the original low-contrast (under-exposure) image, the pixel intensity distribution (illumination) in the

background is darker. On the other hand, the pixel intensity distribution (illumination) in the foreground is brighter. But

for an enhanced image, the black-white ratio (pixel intensity distribution) in background and foreground is stable and nor-

malized [4,6,19] . Fig. 3 (a)–(c) show the original under-exposure drone image, the background image, the foreground image,

respectively. 

3.3. Image fuzzification 

To determine the exact fuzzy membership for foreground and background images, we use restricted equivalent relation

(REF) with fuzzy decision theory [4,29] . Let μo (x ) ∈ R be an objective function, then the membership function is defined by

two real valued functions such as φ1 ∈ R and φ2 ∈ R given below: 

μo ( x, y ) = φ−1 
1 

(
1 −

√ 

1 − φ2 
2 
(x ) − φ2 

2 
(y ) 
)

(20)

To constrain μC ( x ) function on the basis of Eq. (20) , it is characterized by the membership function as 

μC ( x, y ) = φ−1 ( 1 + φ1 ( x ) · φ2 ( y ) − ζ ) 
−1 

, 0 ≤ ζ ≤ 1 (21)
2 
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Fig. 2. Plots for (a)–(b) variation of membership grades νA ( x ) with parameters α and λ and (c) variation between the original and hyperbolic regularization. 
where, φ1 , φ2 and their inverse φ−1 
1 

can be written as follows: 

φ1 ( x ) = e ( αx 2 −1 ) − 1 (22) 

φ−1 
1 = 

√ 

1 

α
log ( 1 + x ) (23) 

φ2 ( x ) = x, φ−1 
2 = x −1 (24) 

Using Eq. (22) in Eq. (20) , after simplification, we have 

μO ( x, y ) = 

( √ 

x 

α
log ( 1 + x ) 

) 

·
(

1 −
√ 

1 − x 2 − y 2 
)

(25) 

Then, the membership function μC of the decision is given as 

μC ( x, y ) = 

(
1 + y 

(
x · e ( αx 2 −1 ) − 1 

)
− ζ

)−1 

, 0 ≤ ζ ≤ 1 (26) 

By using Eqs. (25) and (26) , we have 

μD ( x, y ) = 1 − μO ( x, y ) ∧ μC ( x, y ) ∀ x, y ≤ ζ ∈ X (27) 

μD ( x, y ) = 1 − μO ( x, y ) ∨ μC ( x, y ) ∀ x, y ≥ ζ ∈ X (28) 

Applying Eqs. (27) and (28) , the adjusted fuzzification for the foreground area μA 
D can be expressed as, 

μA 
D ( x, m A ) = 1 − μO ( x, m A ) ∧ μC ( x, m A ) 
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m A = 

1 

n A 

n A ∑ 

i =0 

μA ( x i ) 

x i 
(29)

Similarly, the adjusted fuzzification for the background area μB 
D 

is given by 

μB 
D ( x, m B ) = 1 − μO ( x, m B ) ∨ μC ( x, m B ) 

m B = 

1 

n B 

n B ∑ 

i =0 

μB ( x i ) 

x i 
(30)

where, m A and m B are the mean adjusted membership grades of foreground and background areas, respectively. 

The fuzzy membership value of a pixel quantifies the grade of belongingness to the foreground or background area in

an image. Hence, it is meaningful to split an image into foreground and background areas for contrast enhancement. For a

given pixel belonging to a foreground or background area in an image with threshold θ , its membership grade is given as

(from Eqs. (29) and (30) ) 

μI 
A ( x, m A ) = 1 − μI 

O ( x, m A ) ∧ μI 
C ( x, m A ) (31)

μI 
D ( x, m B ) = 1 − μI 

O ( x, m B ) ∨ μI 
C ( x, m B ) (32)

Fig. 2 (c) shows the histogram of an image with a local area of grey levels. For source image, we have separated the

image area into components A and B , where component A be related to component B in the fuzzy membership plane. The

proposed model measures the divergence between components A and B by the hesitant score i.e., 0.3231. Typically, we have

found that the intuitionistic fuzzy divergence is considered as 0.85 [1] . 

After that, we use the pixel value x ij at point ( i, j ) in the foreground/background fuzzy hesitant image h A / h B as defined by

Eqs. (17) and (18) to replace the variable x by π ( x ), and the average gray value of the block (viz., m A / m B ) in Eqs. (31) and (32) .

Then, the final fuzzy membership grades for the foreground area h A can be expressed as, 

μI 
A (πA (x ) , m A ) = 1 − μO ( πA (x ) , m A ) ∧ μC ( πA (x ) , m A ) 

πA ( x ) = [ 1 − μA ( x ) − νA ( x ) ] (33)

Similarly, the final fuzzy membership grades for the background area at space h B are, 

μI 
B ( πB (x ) , m B ) = 1 − μO ( πB (x ) , m B ) ∨ μC ( πB (x ) , m B ) 

πB ( x ) = [ 1 − μB ( x ) − νB ( x ) ] (34)

According to IFS [1] , we construct two sets such as μIF S 
A ( x ) , μIF S 

B ( x ) from μF S 
A ( x ) , μ

F S 
B ( x ) by applying Eq. (7) individually.

μIF S 
A 

and μIF S 
B 

are formed by fuzzy membership degree μ, hesitation degree π and non-membership degree ν of μIF S 
A 

and

μIF S 
B 

by applying Eq. (8) . To determine the membership degree of μIF S 
A ( x ) for each pixel to foreground region, we formulate

following expression: 

μIFS 
A (x ) = { 〈 μA ( x ) , πA ( x ) , νA ( x ) 〉 | x ∈ X } (35)

Hence, we define the membership degree of μIF S 
B ( x ) for each pixel to background region, by the following expression 

μIFS 
B (x ) = { 〈 μB ( x ) , πB ( x ) , νB ( x ) 〉 | x ∈ X } (36)

where, μA ( x ) and μB ( x ) denote the intuitionistic fuzzy membership of sets A and B for image I . The hesitation degree and

non-membership degree are initially estimated by using Eqs. (7) and (8) for both of them. Finally, the intuitionistic fuzzy

membership grades for A and B are achieved as follows: 

μa 
A (x ) = [ μA (x ) + πA (x ) ] (37)

μb 
B (x ) = [ μB (x ) + πB (x ) ] (38)

The membership grades of the foreground intuitionistic fuzzy hesitant set belongs to bright pixels in the foreground area,

whereas the membership grades of background belongs to dim pixels in foreground area. The relationship of intuitionistic

fuzzy membership grade ν( x ) and hesitant grade π ( x ) with two parameters α and λ are shown in Fig. 2 (a) and (b). 

3.4. Hyperbolic regularization scheme 

In this work, we generate suitable membership grades for better contrast using the following hyperbolic regularization

function [29,33] : 

d h ( x, a ) = ln ( χ( x, a ) ) + 

√ 

1 − χ( x, a ) 
2 
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Fig. 3. Showing the histograms of a dronogram (a), the corresponding background area (black) (b), foreground area (white) (c) histogram before enhance, 

(d) enhanced result and (e) histogram after enhance. 

 

 

 

 

 

χ( x, a ) = 

[ 

1 −
∣∣| x − a 

∣∣| 2 2 

2 xa 

] 

(39) 

where, 
∣∣| x − a 

∣∣| 2 
2 

denotes the Euclidean distance in R 

2 between two points x and a (fixed point). In addition, χ( x, a ) = 0

if x = a and ∀ x ∈ X with 0 ≤ x ≤ 1, χ ( x, a ) always fulfils 0 ≤χ ( x, a ) ≤ 1 [5,33] . The hyperbolic regularization procedure is

adopted to expand the liking of the pixels whose intensity levels are closer to the average gray of the foreground (object) to

the background of an image. Similarly, the hyperbolic regularization is used to reduce the liking of the pixels to the average

gray of the foreground (object) or background area for those pixels whose gray levels are wider from the average gray of

the foreground (object) or the background area of the image [6,28–30] . 

The hyperbolic regularization for a foreground area ( μa 
A (x ) ) using Eq. (39) is given as: 

ˆ μa 
A ( x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

μa 
A ( θ ) − d 

a 
A h ( μ

a 
A ( x ) , μ

a 
A ( θ ) ) ·

(√ 

S a A ( ·) + H 

a 
AB ( ·) 

(
μa 

A ( θ ) 
2 − μa 

A ( x ) 
2 
))

if μa 
A min 

≤ μa 
A ( x ) ≤ μa 

A ( θ ) 

μa 
A ( θ ) − d 

a 
A h ( μ

a 
A ( x ) , μ

a 
A ( θ ) ) ·

√ 

S a A ( ·) + H 

a 
AB ( ·) 

((
1 − μa 

A ( θ ) 
)2 −

(
1 − μa 

A ( x ) 
)2 
)

if μa 
A ( θ ) ≤ μa 

A ( x ) ≤ μa 
A max 

(40) 

where μa 
A ( θ ) = 

1 

α

⎡ 

⎢ ⎣ 

(
1 −

(
μa 

A min 

)α)k 

1 + λ
(
μa 

A max 

)α
⎤ 

⎥ ⎦ 

, α > 0 λ > 0 

Similarly, the hyperbolic regularization for a background area ( μb 
B (x ) ) by applying Eq. (39) is determined as: 

ˆ μb 
B ( x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

μb 
B ( θ ) − d 

b 
B h 

(
μb 

B ( x ) , μ
b 
B ( θ ) 

)
·
(√ 

S b B ( ·) + H 

b 
AB ( ·) 

(
μb 

B ( θ ) 
2 − μb 

B ( x ) 
2 
))

if μb 
B min 

≤ μb 
B ( x ) ≤ μb 

B ( θ ) 

μb 
B ( θ ) − d 

b 
B h 

(
μb 

B ( x ) , μ
b 
B ( θ ) 

)
·
√ 

S b B ( ·) + H 

b 
AB ( ·) 

((
1 − μ f 

B ( θ ) 
)2 −

(
1 − μb 

B ( x ) 
)2 
)

if μb 
B ( θ ) ≤ μb 

B ( x ) ≤ μb 
B 

(41) 
max 
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where μb 
B ( θ ) = 

1 

α

⎡ 

⎢ ⎣ 

(
1 −

(
μb 

B min 

)α)k 

1 + λ
(
μb 

B max 

)α
⎤ 

⎥ ⎦ 

, α > 0 λ > 0 

where, ˆ μa 
A ( x ) and ˆ μb 

B ( x ) denote the hyperbolic regularized membership grades of each point in μa 
A (x ) and μb 

B (x ) at the

fuzzy hyperbolic space. The threshold θ is calculated by an iterative approach from, μa 
A min 

and μa 
A max 

, which represent the

minimum and maximum membership grades of the foreground area ( μa 
A (x ) ). μb 

B min 
and μb 

B max 
stand for the minimum and

maximum membership grades of the background area in the fuzzy plane. H AB ( ·) is the normalized Hamming hesitant fuzzy

distance between two IHFSs μa 
A (x ) and μb 

B (x ) . 

Fig. 2 (c) shows the relationship between a linear and a hyperbolic function where the red, blue and green color denote

the linear curve, normal hyperbolic function and the suggested hyperboloid function (the crossover point on reference line

is set as 0.5). The vertical line is the partition plot between the foreground and background areas. For example, we take

two point such x = 0 . 4 and reference cross point a = 0 . 5 . According to Eq. (39) , we achieve new hyperbolic regularized

membership ( = 0 . 4381 ). It is obvious that the new point is more close to a reference point ( a = 0 . 5 ) than a previous point

( x = 0 . 4 ). Similarly, for two-points a = 0 . 5 , x = 0 . 4 in [6,30] , we have found a new membership value of (x = 0 . 4173) that is

less than the proposed approach. 

3.5. Image defuzzification 

We improve and modify each membership degree in terms of hyperbolic regularization approach for foreground ( μa 
A (x ) )

and background ( μb 
B (x ) ) via the transformation of hesitant intuitionistic fuzzy image (HIFI) ( I ( α,λ) ) in the fuzzy plane. In the

defuzzification stage, the hyperbolic regularized membership grades at the fuzzy plane are converted into the image plane

through defuzzification operation. According to Eqs. (7) –(11) and Eqs. (40) and (41) along with mathematical simplification,

the defuzzification for the foreground area is achieved as follows: 

R a (x ) = 

[ 

I L max 
−
(
I L max 

− I L min 

)( (
1 − ˆ μa 

A ( x ) 
)(

2 k + λ ˆ μa 
A (x ) 

)
) ] 

(42)

On the other hand, the defuzzification for the background area is achieved as follows: 

R b ( x ) = 

[ 

I L max 
−
(
I L max 

− I L min 

)( (
1 − ˆ μb 

B ( x ) 
)(

2 k + λ ˆ μb 
B ( x ) 

)
) ] 

(43)

where, R a and R b represent the fresh gray value at all the pixels in foreground and background areas, and I L min 
and I L max 

indicate the minimum and maximum gray values L of the original dronogram I , respectively. For example, Fig. 3 (d)–(f)

depicts the histogram before and after enhancement. 

3.6. Enhanced image reconstruction from image partitions 

To achieve enhanced results, we combine the normalized foreground ( I f ), background ( I b ) and original ( I ) images in

terms of certain arithmetic operators (such as division, dot product, etc.). We apply the multiplication ( · ) and addition ( + )

arithmetic operators for integrating fuzzy data in DIEM to achieve the desired enhancement. In this work, we use point wise

computation by the operator addition ( + ) and multiplication ( · ) in DIEM . After that, the enhanced result ( I E ) is obtained

the by following formula: 

I E ( x ) = ( ( κo · I 0 ( x ) ) + ( κb · R b ( x ) ) + ( κa · R a ( x ) ) ) 

R b ( x ) = ϒ( 	( �( �( I (x ) ) ) ) ) 

R a ( x ) = ϒ( 	( �( �( I (x ) ) ) ) ) (44)

where, κo , κb and κa are the scaling parameters for original, background and foreground images, respectively. I ( x ) denotes

the input dronogram. On the other hand, the functions �, �, 	, and ϒ represent the fuzzification, hyperbolic regularization,

defuzzification, and normalization operations applied on I ( x ) orderly, and · denotes the simple multiplication operation. 

For a given original under-exposed (dim) image, typically the histogram curve is nearly close to the left of the histogram

abscissa and for a over-exposed (high-contrast) image, the corresponding histogram curve is more close to the right of

the histogram abscissa. However, for an enhanced image, the histogram curve mainly fits in left to right of the histogram

abscissa ( Fig. 2 ). Fig. 3 (d)–(f) show the histograms of the under-exposed, enhanced drone image, and Fig. 3 (a) show the

source image, respectively. From Fig. 3 (d)–(f), we can observe that the peak of the histogram curve for the enhanced image

is flatter from left to right abscissa in the histogram. The pseudo code of DIEM is described in Algorithm 1 . 
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Algorithm 1 Pseudo code of DIEM. 

Require: Image data X ( x, y ) ∈ I ∈ Z 

(M×N) ; 

Initialize: α, λ, κ = (1 + 1 /α) , x min 
L , θ , n = M × N and x max 

L 
; 

Output: R , the enhanced version of I ; 

Begin 

Step 1. Load data matrix X ; 

Step 2. Compute: 

μX ( x i ) = 

[
x i − x min 

L 

x max 
L 

− x i 

]
, i = 1 , 2 , . . . , N ;

Step 3. Compute: 

X ( α,λ) = 

{ 〈 
x, μX ( x ) , 

[ (
1 − μX ( x ) 

α
)k 

1 + λμX ( x ) 
α

] 〉 
: x ∈ X 

} 

Step 4. Compute: 

πX ( x ) = 

{ 

1 − μX ( x ) −
[ (

1 − μX ( x ) 
α
)k 

1 + λμX ( x ) 
α

] } 

and calculate 

νX ( x ) = 

{ (
1 − μX ( x ) 

α
)k 
} 

Step 5. Compute: 

S X HS ( ·) = 

1 

n 

n ∑ 

i =1 

[ 

1 

c x i 

c x i ∑ 

j=1 

h 

σ ( j) 
X ( x i ) 

] 

;

Step 6. Compute: 

ˆ μ∗
X = μ∗

X ( θ ) − d 

∗
X h ( μ

∗
X ( x ) , μ

∗
X ( θ ) ) 

where μ∗
X ( θ ) = 

1 

α

⎡ 

⎢ ⎣ 

(
1 −

(
μ∗

X min 

)α)k 

1 + λ
(
μ∗

X max 

)α
⎤ 

⎥ ⎦ 

, α > 0 λ > 0 ;

Step 7. Defuzzify with (44) to compute 

R ∗( x ) = 

[ 

I max 
L −

(
I max 
L − I min 

L 

)( (
1 − ˆ μ∗

X ( x ) 
)(

2 k + λ ˆ μ∗
X ( x ) 

)
) ] 

;

Step 8. Calculate R ; 

End 

 

 

 

 

 

4. Experiments results and analysis 

In this section, we discuss the performance measures and efficiency of the proposed DIEM method in comparison to

several performance measure metrics and baseline methods. 

4.1. Benchmark data 

The validation of the suggested scheme is tested on a large drone image database and the test data sets are taken from

authorized websites [44] . In simulation, we have selected a set of RGB colour images with size 512 × 512 pixels with 8 bits-

per-pixel. The images selected are not clear and are either lowly illuminated or blurred. We have used more than 100 images

to validate the enhancement performance of the proposed DIEM method. As an example, some original sample images (viz.

âGarfield Parkâ, âToledoâ, âLewisâ) are shown in Fig. 4 (1st column). 
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Fig. 4. Visual enhancement (ODM datasets: Garfield Park, Toledo, Lewis): (a) the original image(40 0 0 × 30 0 0)(1st-column) (b) enhanced by the DIEM(2nd- 

column). 
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Table 1 

Statistical based quantitative evaluation of baseline methods. 

Image Method MAE EMEE AME AMEE 

PLE 0.131 1.153 113.2 0.381 

FSE 0.132 1.212 113.7 0.382 

Fig. (5 ) MIEF 0.131 1.338 113.8 0.383 

RDH 0.125 1.421 114.1 0.391 

DIEM 0.124 1.503 114.7 0.404 

PLE 0.141 1.181 115.1 0.394 

FSE 0.142 1.238 115.3 0.396 

Fig. (6 ) MIEF 0.135 1.329 115.6 0.398 

RDH 0.130 1.427 115.7 0.407 

DIEM 0.1265 1.510 116.9 0.413 

PLE 0.137 1.185 113.5 0.388 

FSE 0.136 1.227 113.8 0.3897 

Fig. (7 ) MIEF 0.134 1.340 113.9 0.390 

RDH 0.131 1.441 114.10 0.393 

DIEM 0.129 1.591 114.8 0.401 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Performance metrics 

The quantitative evaluation of contrast enhancement techniques is a challenging task. There exists no universally accepted

quantitative and qualitative evaluation methods for the exact measure of enhancement of individual resultant images. All

performance measuring schemes are not able to determine the quality of visual contrast of an enhanced image in uniform

situations. 

However, to validate the effectiveness and quality of image enhancement, we have used different performance met-

rics such as mean absolute error (MAE) [13,36] , linear index of fuzziness (LIF) [14,22] , Weber-law-based contrast measure

(EMEE) [14] , Michelson law measure of enhancement (AME) [13,36] , Michelson law measure of enhancement by entropy

(AMEE) [13,36] , universal quality index (UQI) [14] , Structural Similarity index measure (SSIM) [13,14,35,36] , fuzzy quality in-

dex (Q/FS) [13,14,36] and Intuitionistic fuzzy quality index (Q/IFS) [13,14] to assess the efficiency of DIEM. The higher values

of all the aforementioned metrics indicate better enhancement except MAE and LIF [14,36] . MAE, EMEE, AME and AMEE are

conventional statistical based metrics whereas LI, UQI, SSIM, Q/FS and Q/IFS are image quality measurement metrics. 

4.3. Enhancement analysis 

In this section, we discuss the performance of the enhancement task. Both the quantitative assessment as well as quali-

tative analysis with comparative study have been explored in this treatment. 

4.3.1. Quantitative evaluation 

In quantitative evaluation, we have tested the DIEM method on one hundred drone images taken from ‘OpenDroneMapâ

(ODM) [44] and compared with four state-of-the-art enhancement methods in this study. The selected four baseline meth-

ods are ‘Parameterized logarithmic framework for image enhancement’ ( PLF ) by Panetta et al. [25] , ‘A novel image enhance-

ment method using fuzzy Sure entropy’( FSE ) by Li et al. [19] , ‘A novel reversible data hiding method with image contrast

enhancement’ ( RDH ) by H.T. Wu et al. [37] , and ‘Mammogram Enhancement using Intuitionistic Fuzzy Sets’ ( MEIF ) by Deng

et al. [6] . FSE and MEIF are scheduled for completion with default parameters, as recommended in their own papers. The

quantitative and visual assessment of the enhanced images by the different baseline methods are executed to analyze the

overall performance. The DIEM method is devised on Anaconda Python (vs.-3.6) programming language on 64-bit Ubuntu

18.04 LTS Linux system with Intel Core i3 CPU-3.5 GHz and 16-GB RAM. 

For the purpose of quantitative description, Tables 1 and 2 show the metrics for each enhanced results by all the baseline

methods as shown in Figs. 5 –7 , respectively. It is pointed out that the proposed DIEM method produces the lowest MAE

and LIF than other baseline methods which indicate that DIEM provides better-enhanced images. Performance is further

computed by using UQI, SSIM, Q/FS, Q/IFS for each test. Tables 1 and 2 provide the MAE, UQI, and SSIM, Q/FS, and Q/IFS

indices for all the methods. Lower MAE, LIF and a higher UQI, SSIM, Q/FS, and Q/IFS indicate the best contrast. It is important

to use more quantitative assessment for exact performance evaluation of DIEM. Hence, we have used some popular statistical

metrics such as EMEE, AME and AMEE in this work. The estimated results of EMEE, AME and AMEE are provided in Table 1 .

DIEM has achieved higher EMEE, AME and AMEE values than the baseline methods which indicates that DIEM more efficient

to enhance drone image. 

Similarly, the universal quality index (UQI) and structural similarity (SSIM) as well Q/FS, and Q/IFS are measured for all

the baseline methods and DIEM. Higher UQI values specify that the contrast is improved. On the other hand, for better

structural similarity between the source and enhanced images, the SSIM value is very close to 1. The estimated values of

all the methods are listed in Table 2 , where metric values achieved by DIEM are listed in boldface. It is important to note

that baseline methods and DIEM yield different results for the enhanced drone images. Tables 1 and 2 suggest that DIEM
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Table 2 

Image quality based quantitative evaluation of baseline methods. 

Image Method LI UQI SSIM Q/FS Q/IFS 

PLE 0.213 0.97856 0.96456 0.83942 0.83389 

FSE 0.215 0.97855 0.96827 0.84019 0.84369 

Fig. 5 MIEF 0.211 0.97959 0.97022 0.84238 0.85950 

RDH 0.212 0.98979 0.97614 0.84476 0.86808 

DIEM 0.209 0.99953 0.98809 0.84911 0.88737 

PLE 0.221 0.98614 0.97024 0.85109 0.85143 

FSE 0.220 0.98627 0.97281 0.85328 0.85487 

Fig. 6 0.218 MIEF 0.98738 0.98263 0.85671 0.86661 

RDH 0.213 0.99819 0.98509 0.85794 0.87812 

DIEM 0.210 0.99985 0.99758 0.86033 0.88908 

PLE 0.216 0.98174 0.97684 0.83911 0.83861 

FSE 0.215 0.98298 0.97709 0.84128 0.84572 

Fig. 7 MIEF 0.211 0.98303 0.97983 0.84303 0.85013 

RDH 0.208 0.98326 0.98292 0.84501 0.86279 

DIEM 0.203 0.99651 0.99758 0.84972 0.87058 

Fig. 5. Comparative enhanced results of baseline methods: (a) the original image, (b) PLF method, (c) FSE method, (d) MEIF method, (e) RDH method, 

and, (f) DIEM method. 

 

 

 

 

 

 

 

 

 

 

for Garfield drone image gives the best visual quality score with 0.1245, 0.2098, 1.5039, 114.7139, 0.4039, 0.99953, 0.98809,

0.84911, and 0.88737. However, PLF obtains slightly poor visual quality score with 0.1315, 0.2136,1.1538, 113.2538, 0.3818,

0.97856, 0.96456, 0.83942 and 0.83389, respectively. We have observed from Tables 1 and 2 that DIEM is better than other

baseline methods with respect to MAE, LIF, EMEE, AME, AMEE, UQI, SSIM, Q/FS, and Q/IFS. 

Furthermore, Tables 1 and 2 represent the contrast measures for ‘Toledo’ data as shown in Figs. 6 and 7 obtained with

the baseline methods. For two groups of ‘Toledo’ drone images, the DIEM method obtains MAE, LIF, EMEE, AME, AMEE, UQI,

SSIM, FSQI, and IFSQI values with scores of 0.1265, 0.2108, 1.5107, 116.9181, 0.4135, 0.99985, 0.99758, 0.86033, and 0.88908

for first Toledo ( Fig. 7 (f)) and scores of 0.1295, 0.2031, 1.5918, 114.8107, 0.4006, 0.99651, 0.99758, 0.84972, and 0.87058 for

last Toledo ( Fig. 7 (f)), respectively. The above objective measures (MAE, LIF, EMEE, AME, AMEE, UQI, SSIM, FSQI, and IFSQI)

indicate DIEM has improved the pictorial quality compared to the baseline methods. So, the enhanced results obtained

using the proposed DIEM method are almost accurate and useful in recognizing different types of scanning target objects

accurately. This will provide assistance to user to precept the target objects clearly. 
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Fig. 6. Comparative enhanced results of baseline methods: (a) the original image, (b) PLF method, (c) FSE method, (d) MEIF method, (e) RDH method, 

and, (f) DIEM method. 

Fig. 7. Comparative enhanced results of baseline methods: (a) the original image, (b) PLF method, (c) FSE method, (d) MEIF method, (e) RDH method, 

and, (f) DIEM method. 
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4.3.2. Qualitative analysis 

Various enhanced approaches have been used to assess and analyze the enhancement results in the literature. To visu-

ally improve an underexposed (very low-light) image for exact discrimination of the object boundaries in ROIs, we have

suggested DIEM in this study. We have simulated the designed method with a set of raw drone data in this experiment. For

example, Fig. 4 (a) demonstrates dronograms with car parking region, where few cars are found present. The boundaries be-

tween the green region and park along the parking road are much blurry in the original test data Garfield of OpenDroneMap

(ODM) . From the enhanced results obtained by DIEM, it is clear that dim regions are more clear and easy to be discernible

without any effort. The car parking region is highlighted in the Garfield data by square and its clear appearance assists for

better understanding and visualization of the target objects like cars, trees under the green field compared with the original

image. 

Four ground truth dronograms of OpenDroneMap(ODM) such as Garfield ( Fig. 5 (a)), Toledo ( Fig. 4 )(b), ( Fig. 6 )(a) and Lewis

( Fig. 7 (a) contain different objects (car, trees, roads houses and etc.) which are visually slightly unclear as well as the loca-

tions of target objects and their morphological details seem to be obscure in the original images. However, after application

of the proposed DIEM technique, those differences are improved in the enhanced results as shown in Fig. 4 (b)–(f). It is ob-

served that deformities in ROI can be easily identified by DIEM. As a result, we can use DIEM for object recognition and

to discriminate the proper location of object positions under scanned dronograms. Also, it is helpful to differentiate and

highlight the deformities of ROI in dronograms. 

4.4. Regions of interest 

When a user observes a digitized dronogram, he or she usually observes the spatial positions of the target objects and

describes their morphological details with a ROI. If an enhanced version of ROI is present alongside the original image, the

user can switch between the original dronogram and the automatically enhanced views for comparison. Accordingly, he/she

can easily describe any new details or features which are manifested to him or her that can even identify some activity

findings in dronograms. 

Three dronograms (viz. ‘Garfield Park, ‘Toledo’, ‘Lewis’) with target and/or ROI are displayed in Fig. 4 , where the color

box covers the locations of the ROI. The red rectangles indicate the ROIs and highlighting target objects as shown in

Fig. 4 (b),(d),(f). We can see that the contrast of target object is distinct in the enhanced results achieved by the DIEM

method. It can be found that both the visual quality and contrast of the enhanced ROIs are much better than that of the

original ones. To synchronously show enhanced target objects as well as normal object boundary, the enhanced ROIs are

superimposed with the corresponding original dronograms, as shown in Fig. 4 (a)–(f), where the red areas consisting of cer-

tain pixels denote the detected region and/or ROIs. These pixels are visually clear in enhanced ROIs and the edges are also

refined well. 

The detected image objects and/or ROIs are assessed by a drone expert majoring in the monitoring of a drone. He/She

considers that the detected results are accurate reflections of target regions (viz. scanned object when drone monitoring) in

dronograms. Moreover, these results facilitate to recognize and analysis further tasks. In results, the DIEM algorithm shows

the improvement of the contrast as well as the visual quality of target regions. This proves that DIEM has potential for

understanding the target object details and to identify the target ROIs by enhancing fine details in dronograms inducing the

capability of the object detection task. 

4.5. Comparisons with baseline methods 

We have conducted three experiments to get considerably a more detailed qualitative assessment to investigate the ef-

fectiveness of DIEM to enhance drone raw images. At the end of each experiment, the objective measures are evaluated

to ensure that the tracing of image objects can be easily achieved in the presence of image enhancement as compared

to other baseline methods. The proposed DIEM method has been compared with recent state-of-the-art enhancement algo-

rithms with large dronogram data sets [44] . As mentioned above, we use four well-known baseline methods for performance

evaluation notationally expressed as PLF, FSE, MEIF and RDH, respectively. We have used the baseline methods with their

suggested parameters in literature. 

In the simulation, we have used benchmark color dronograms of size 512 × 512 pixels with 8 bits-per-pixel. To show

enhancement performance of the DIEM algorithm, Fig. 5 shows the results for all the images, respectively. For all the test

images, the enhanced results achieved by the baseline methods PLF, FSE, MEIF, RDH, and DIEM are shown in Figs. 5 –7 ,

respectively. For instance, the first selected ‘Garfield park’ drone image and the enhanced results obtained by the baseline

methods are shown in Fig. 5 (a) (original drone image) and the remaining shown in Fig. 5 (b)–(f) are those obtained with

PLF, FSE, MEIF, RDH, and DIEM methods, respectively. For the case of a low illuminated image, testing of color contrast

improvement methods is a hard and challenging task. For example, the enhanced results obtained by the baseline methods

and the proposed method are visually different. So, the purpose of defining an efficient algorithm in this study is to ensure

highly informative visual content and significant illuminated images for better interpretation. From the results, we have

observed that the visual improvement after the proposed DIEM enhancement method shown in Fig. 5 (f) is almost better

than the baseline methods in Fig. 5 (b)–(e). 
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Fig. 8. Comparing results of baseline methods: (a) average run time (unit on sec.), (b) performance metric (average values). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the second experiment, we have tested all the methods with the ‘Lewis’ drone image with size 512 × 512 × 3. We

have noted that all the baseline algorithms except PLF have slightly improved the visual quality in the resultant images

as shown in Fig. 6 (a)–(e), respectively. MEIF, RDH and DIEM have given better effect and thereby assist to distinguish the

image objects for better understanding. However, MEIF and RDH produce over enhanced images than DIEM on the boundary

regions of the image objects in the ‘Lewis’ dronogram as shown in Fig. 6 (d) and (e). Perceptibly, PLF and FSE have generated

artifacts at the edges of objects and provide a blurry view than the original ones. In contrast, DIEM not only improves the

background of the image but also successfully achieves prominent boundary regions and sharp edges depicted in Fig. 6 (f).

From Fig. 6 (b)–(f), for all baseline methods, we have observed that the proposed DIEM method is better than the baseline

methods due to its improved capability in producing clarity of distinct regions and better exposure on object details. 

In the last test, we have selected another sample of the ‘Lewis’ drone image in this study. The enhanced results of all the

baseline methods including DIEM are shown in Fig. 7 (b)–(f), respectively. Compared to Fig. 7 (a)–(f), the proposed method

DIEM successfully improves the local contrast and visually sharpen boundary regions. We have also noted that the image

details generated by PLF and FSE shown in Fig. 7 (b),(c) fail to preserve the colour details. Moreover, the boundary regions

are slightly blurred. The existing MEIF and RDH methods produce much brighter images but slight hazy effects on object

boundary especially trees, cars and roads. In addition, the inner structures are not clearly visible. Fig. 7 (a) is just an original

image of the ‘Lewis’ drone dataset where the object regions (viz. houses, cars and roads) are not well visible. It is clear that

the enhanced image after application of the proposed DIEM method ( Fig. 7 (e)) contains almost higher object details and is

visually prominent to easily distinguish the scanned objects more accurately. 

The computed performance metrics (viz., MAE, LIF, EMEE, AME, AMEE, UQI, SSIM, Q/FS, and Q/IFS) obtained with DIEM

are presented in Tables 1 and 2 (listed in bold). These are also illustrated graphically in Fig. 8 (b). It is seen that DIEM is

well suited for the task of contrast enhancement. It observed that DIEM is statistically more distinct from all the baseline

techniques in subjective and/or objective evaluation. Consequently, the quantitative and qualitative comparisons demonstrate 

that the proposed DIEM method provides better performance than the baseline methods. Thus it is beneficial for differen-

tiating and highlighting objects in dronograms and assist in further operations in advanced image processing (e.g. object

detection, classification and etc.). A lot of images in ‘OpenDroneMap’ (ODM) are complex enough for enhancement purposes

as they contain small objects (viz., men, small trees.) in drone images. These images show better enhancements when con-

sidered for DIEM technique. This shows that the DIEM algorithm is good enough for such challenging cases in drone image

enhancement. 

In summary, the proposed DIEM method outperforms the baseline enhancement techniques as specified by the sub-

jective and objective evaluations. The proposed DIEM method offers better contrast and visually true results mainly for

tough-to-enhance drone images such as those underexposed with obscure images. Moreover, the stability and consistency

of an enhancement algorithm are more important to perform a constant enhancement for all images, especially for the low

illuminated cases. Our experiments can be summarized with the following observations: 

1. Enhancing drone images to make them visually improved for better understanding of the relationships between different

parts of the object regions in dronogram. 

2. Visual enhancement is facilitated to differentiate and perceive target objects. 
3. Enhancing drone images improves the view for high-fidelity objects. 
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Table 3 

The execution time of baseline methods (s). 

Computational time of the all enhancement methods on the CPU 

Image PLE FSE MIEF RDH DIEM 

Image 5 0.1392 0.1412 0.1253 0.1275 0.1232 

Image 6 0.1329 0.1409 0.1261 0.1276 0.1229 

Image 7 0.1308 0.1467 0.1252 0.1279 0.1231 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6. Time complexity analysis 

To compute the execution time, we carried out an extensive assessment with a larger drone database with image size

512 × 512. The average run time of the different baseline methods for each image is listed in Table 3 . We use Python on

Ubuntu 18.04 Linux systems with core i 3 processor 3.20 GHz and 16 GB RAM . Almost, the computational time varies

depending on the image resolution and the number of bins existing in the histogram of the processed image. Thus, if the

resolution of the image increases, then the computational time for the histogram and grey-level transformation will be

raised. 

From the experiments, we have observed that MIEF takes little time as it involves unidirectional fuzzy mathematical

function using the hyperbolic criterion. Moreover, MIEF takes slightly more time than the proposed algorithms as MIEF is

primarily concerned with restricted equivalence functions and hyperbolic membership degrees for foreground and back-

ground areas over the image pixels in ROI computation. FSE is a slow method because of the exhausted search, histogram

computation and the need for computation of entropy. From the runtime analysis, the PLE computes the bi-histogram equal-

ization, which takes considerable high execution time than MIEF. On the other hands, the RDH method takes more compu-

tation time due to its histogram computations via a reversible data hiding approach. Similarly, PLE and FSE methods require

extra time because of their reiterative nature. In comparison, the proposed DIEM algorithm takes less time than MIEF, RDH,

PLE, and FSE. Besides, RDH, PLE, and FSE only perform global contrast enhancement, while MIEF and DIEM carry out both

local and global contrast enhancements. The average execution times of different baseline methods are shown in Fig. 8 for

the all the test images with size 512 × 512 and it is obvious the DIEM is very fast. Therefore, the proposed algorithm more

suited in real-time especially for low light drone imaging applications with regard to its accuracy and efficiency. 

5. Conclusion 

I n this paper, a novel intuitionistic hesitant fuzzy set based image enhancement scheme is presented for lowly illu-

minated dronograms where a hesitant score is used as a new way to measure image uncertainty. The proposed method

initially separates a dronogram into foreground/background areas based on a global threshold and determines the mem-

bership functions by intuitionistic hesitant fuzzification approach via hyperbolic operations for membership modification.

Finally, we achieve a highly informative and improved dronogram obtained by defuzzification. Results are compared with

privileged methods and it is perceived that the proposed intuitionistic hesitant fuzzy set based method performs well and

provides improved contrast images with better clarity and sharpness. For the lowly illuminated drone images, the proposed

enhancement scheme works better because of its capability of dealing with image uncertainties by taking recourse to the

intuitionistic hesitant fuzzy set. In comparison to the state-of-the-art methods, the proposed method exhibits better perfor-

mance to increase both the visual quality and contrast for dronograms. 

In future, the present algorithm can be improved from different directions for noisy and heavily blurred images with

respect to speed up execution so that it can be applied to real-time environments. As a part of further investigation, an

image enhancement model can be developed for several types of color combination drone images. The authors are currently

working in these directions. 
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