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A B S T R A C T   

The industrialization has been the primary cause of the economic boom in almost all countries. However, this 
happened at the cost of the environment, as industrialization also caused carbon emissions to increase expo-
nentially. According to the established literature, Gross Domestic Product (GDP) is related to carbon emissions 
(CO2) which could be optimally employed to precisely estimate a country’s GDP. However, the scarcity of data is 
a significant bottleneck that could be handled using transfer learning (TL) which uses previously learned in-
formation to resolve new tasks, more specifically, related tasks. Notably, TL is highly vulnerable to performance 
degradation due to the deficiency of suitable information and hesitancy in decision-making. Therefore, this paper 
proposes ‘Intuitionistic Fuzzy Transfer Learning (IFTL)’, which is trained to use CO2 emission data of developed 
nations and is tested for its prediction of GDP in a developing nation. IFTL exploits the concepts of intuitionistic 
fuzzy sets (IFSs) and a newly introduced function called the modified Hausdorff distance function. The proposed 
IFTL is investigated to demonstrate its actual capabilities for TL in modeling hesitancy. To further emphasize the 
role of hesitancy modelled with IFSs, we propose an ordinary fuzzy set (FS) based transfer learning. The pre-
diction accuracy of the IFTL is further compared with widely used machine learning approaches, extreme 
learning machines, support vector regression, and generalized regression neural networks. It is observed that 
IFTL capably ensured significant improvements in the prediction accuracy over other existing approaches 
whenever training and testing data have huge data distribution differences. Moreover, the proposed IFTL is 
deterministic in nature and presents a novel way for mathematically computing the intuitionistic hesitation 
degree.   

1. Introduction 

Rich and developed countries possess higher per capita Gross Do-
mestic Product (GDP) but at the cost of enormous energy consumption. 
Globally 46% of carbon emission is produced by energy-based industries 
(Bokde et al., 2021). Historically, industrialization and urbanization 
propelled the per capita GDP of a nation. Energy was produced by 
burning fossil fuels which ultimately caused an exponential increase in 
carbon emissions and degradation of the environment (Depren et al., 
2022). The construction industry played a crucial role in urbanization 
and is also one of the biggest emitters of CO2 (carbon dioxide) (Guo 
et al., 2012). Yao et al. (2015) have proved that economic growth caused 

an increase in CO2 emissions for G20 countries. Similarly, Govindaraju 
and Tang, (2013b) demonstrated that industrialization represents the 
economic growth of a nation which is proportional to its CO2 emission. 
Adedoyin et al., (2021) showed that both real GDP and use of non- 
renewable energy sources increased CO2 emissions in 32 countries in 
Sub-Saharan Africa. Further, Gyamfi et al., (2021) have proved that a 
1% increase in GDP caused a 0.400% increase in pollution for emerging 
industrialized seven (E7) economies. Chaabouni and Saidi, (2017) 
studied 51 countries and found that a 1% increase in CO2 increased the 
economy by 0.011%, while 1% economic growth increased CO2 emis-
sions by 0.263%. Acheampong, (2018b) further proved that CO2 emis-
sion positively impacts economic development by analyzing historical 
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data from 116 countries. Globally, Stern, (2010b) showed that carbon- 
income elasticity is 1.509, indicating their proportional relationship. 

This tightly coupled relationship between CO2 emission and GDP 
motivated us to predict the GDP of a nation using its carbon emission. 
However, the available dataset of some countries is not sufficient 
enough to train a machine learning (ML) model. To overcome this lim-
itation, this paper proposes a novel transfer learning methodology. 
Transfer learning (TL), a machine learning (ML) technique, utilizes 
previously learned information to resolve new tasks, more specifically, 
related tasks. In conventional ML techniques, every new task is learned 
from the scratch (Che et al., 2021), and the training and test data are 
drawn from the same distribution. However, if the data distribution is 
changed between the training and test data, the performance and reli-
ability of the predicted output may degrade significantly (Lu et al., 
2019). This may also lead to high computational costs and inappropriate 
outcomes (Pan and Yang, 2010). In such a scenario, TL is helpful as it 
transfers the learned knowledge from a related task to solve a new task 
in a related domain. TL contradicts semi-supervised ML algorithms (Van 
et al., 2020), as it can handle all those cases where both domains of 
training and testing data are of different distribution (Pedrycz et al., 
1997). TL has been associated with many other terminologies, such as 
transfer of learning, domain adaptation (Pan and Yang, 2010), multi- 
task learning (MTL), meta-learning, etc. It has found its application in 
several domains, including intelligent environments (Shell and Coup-
land, 2015), failure prediction (Behbood et al., 2015), acoustic moni-
toring (Dufourq et al., 2022), detection and classification (Lu et al., 
2021; Lumini and Nanni, 2019), etc. 

A discrete numeric set of values often represents feature space 
matrices in TL methods. This is an essential factor to be considered in the 
cases of noisy data sets. Such noises, which are associated with infor-
mation and decisions, can be modelled using fuzzy sets (FSs). The pa-
rameters in human cognition to handle uncertainty and imprecision 
during knowledge transfer are generally associated with epistemic un-
certainties (Shell and Coupland, 2015). Various factors could influence 
these parameters, including uncertainties due to external noises, mea-
surement uncertainty, non-agreement of the decision-makers, etc. 
Almost all the fuzzy TL (FTL) techniques are developed using concepts of 
ordinary FSs, each element of which is associated with a membership 
value. There are higher-order fuzzy sets such as type-2 fuzzy sets which 
considers membership function uncertainty for every element of tradi-
tional FSs (Debnath et al., 2018; Shukla and Muhuri, 2019). However, in 
a real-world applicative context, there are cases when besides mem-
bership value, there exists a need for non-membership value to accu-
rately define its elements due to hesitancy. This hesitancy can be 
effectively handled by the generalization of FSs, called intuitionistic 
fuzzy sets (IFSs). It was proposed by Atanassov, (1986), where the 
hesitation margin was considered as hesitancy (Fan and Xiao, 2020; 
Ohta et al., 2020) that can enable better decision making. The sum of 
membership and non-membership values is unity in an FS; however, for 
an IFS, the hesitation margin is calculated by subtracting the sum of 
membership and non-membership values from unity. This property of 
IFSs have shown potential in wide range of applications such as adaptive 
sliding mode control method (Kutlu et al., 2020), time series analysis 
(Castillo et al., 2007), multi-criteria decision making (Shukla et al., 
2022), hyperchaotic synchronization (Atan et al., 2020), etc. 

To handle the hesitancy in a TL, this paper proposes a novel 
approach, which is termed ‘Intuitionistic fuzzy transfer learning (IFTL)’. 
IFTL capably increases learning by optimally exploiting the hesitancy 
aspect of IFSs and a newly introduced similarity function called the 
modified Hausdorff distance function. IFTL models human behavior (of 
cautiously utilizing their previous experience) with a hesitancy degree 
using the Atanassov’s IFSs. The novelty of the proposed IFTL is that the 
hesitancy degree is not randomly chosen or tuned, it is empirically 
computed using a novel mathematical formulation that captures the 
variance in the source and target domains. The input data is intuition-
istically fuzzified using Yager’s generating function (Ghosh et al., 2021; 

Kumar et al., 2016). The similarities between these intuitionistically 
fuzzified domains are optimally captured using modified Hausdorff 
distance, which adaptively refine the outcome of the learning model. 
This procedure effectively transfers knowledge across domains by using 
the differences in their data distribution. The proposed IFTL model is 
investigated to demonstrate its knowledge transfer abilities in a TL 
domain. 

The performance of the IFTL is also compared with the FTL, where 
the ordinary FSs and Euclidean distance are utilized instead of IFSs and 
modified Hausdorff distance metric, respectively. Notably, there is no 
hesitancy degree in ordinary FSs; therefore, FTL (unlike IFTL) may not 
be able to model the human tendency to cautiously utilize their expe-
rience during the transferal of knowledge across hugely diverse do-
mains. It is explicitly studied to signify the importance of hesitancy, 
without which FTL cannot enhance learning during the transferal of 
knowledge. Furthermore, the prediction accuracies of IFTL are 
compared with the widely used ML approaches such as extreme learning 
machine (ELM) (Specht, 1991), support vector regression (SVR) (Bi and 
Bennett, 2003; Vapnik, 2013), generalized regression neural network 
(GRNN) (http://www.ntu.edu.sg/home/egbhuang/elm_kernel.html, n. 
d.; Huang et al., 2006). The experimentations are performed where the 
model is trained for GDP prediction using only the CO2 emission data of 
developed nations and is tested for its prediction for the developing 
nation. It is observed that IFTL capably ensured significant improve-
ments in the prediction accuracy over other approaches. 

The major contributions of the paper are mentioned below: 

a) This paper proposes a novel domain adaptation approach that pro-
vides a mechanism to manage hesitancy in a TL problem. The 
approach is termed ‘Intuitionistic fuzzy transfer learning (IFTL)’, 
which can also enhance model learning during transfer learning.  

b) A new distance function called ‘the modified Hausdorff distance 
function’ is also proposed in this paper, which is exploited by IFTL 
along with the hesitancy aspect of IFSs.  

c) Further, to highlight the significance of hesitancy using IFTL, this 
paper also investigates and compares the problem with ordinary FS- 
based transfer learning (FTL).  

d) The proposed IFTL approach is investigated to demonstrate its 
capability for TL, where it is trained for GDP prediction using CO2 
emission data of developed nations and then tested for its GDP pre-
diction accuracies for a developing nation.  

e) IFTL capably ensures significant improvements over ELM, SVR, 
GRNN, and FTL with better prediction accuracies across highly 
diverse domains.  

f) IFTL is deterministic in nature and introduces an innovative way for 
calculating intuitionistic hesitation degree by utilizing the variance 
of the data differences among different domains. 

The rest of the paper is organized as follows. Related research works 
in TL and domain adaptation are discussed in Section 2. In Section 3, 
essential mathematical preliminaries are explained. Section 4 explains 
the proposed IFTL approach and a novel procedure for selecting an 
intuitionistic hesitation degree. Section 5 discusses the experimental 
results of our approach. Finally, Section 6 concludes with a discussion of 
the work and highlights some future research scopes. 

2. Related works 

Rosenstein et al., (2005) empirically proved that, in case of extreme 
dissimilarity between two tasks, the technique’s performance degrades 
even after knowledge transferal with the use of brute-force technique. 
Pedrycz et al. (1997)) proposed calibration of fuzzy sets via non-linear 
context adaptation. Pan et al., 2016 proposed Multi-Layer Transfer 
Learning (MLTL) which uses latent spaces to learn non-shared concepts. 
Firstly, specific latent feature spaces are produced by MLTL, which are 
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then combined with common latent feature space to generate one latent 
feature space layer. Moreover, to learn the corresponding distributions 
on different layers, multiple layers are generated which learns with their 
pluralism, simultaneously. Salaken et al., (2019) employed deep 
learning in which a small sample of target domain is used as seed to 
transform source domain dataset. Sousa et al., (2020) proposed a 
transfer learning approach with data augmentation techniques for 
wildfire detection to overcome data limitations. 

Xie et al., (2018) introduced the generalized hidden mapping tran-
sudative learning method to extend the utilization of the transfer 
learning method in various other classical as well as intelligent models. 
The authors demonstrated the applicability of the proposed approach in 
recognition of epileptic electroencephalogram (EEG) signals. A novel TL 
approach is introduced in Wang et al., (2018) to handle the problem of 
missing data. Here, TL may be utilized to enhance classification prob-
lems performance with incomplete training data by adopting the addi-
tive least squares support vector machine (LS-SVM). Chen et al., (2018b) 
proposed the domain space transfer Extreme Learning Machine (DST- 
ELM), which handles the problem of unsupervised domain adaptation, i. 
e., without the availability of target label data. Predictions are per-
formed on real-world image and text datasets. 

In several reported works, transfer learning approaches were utilized 
with several fuzzy techniques in various applications. Deng et al., (2014) 
proposed an inductive transfer learning approach based on Takagi- 
Sugeno-Kang Fuzzy logic System (TSK FLS) for email spam filtering 
with the help of neural networks (NNs). Transfer learning in Takagi- 
Sugeno fuzzy model was proposed by Zuo et al., (2016) for regression 
using particle swarm optimization (PSO) and differential evolution (DE). 
Domain adaptation was used in conjunction with FSs for various other 
applications, such as land use classification (Lu et al., 2021) and driver 
drowsiness estimation (Wu et al., 2016). FTL was utilized in intelligent 
environments and online fuzzy min max NNs (Seera and Lim, 2014). 
Also, unsupervised TL was used in texture image segmentation with 
fuzzy c-means (FCM) clustering by Qian et al., (2017). 

The problem of domain adaptation has been discussed extensively in 
the research domain (Lu et al., 2015; Margolis, 2011; Pan and Yang, 
2010) and can broadly be classified into five main classes: 1) All source 
domain samples are weighted to mimic the samples of the target domain 
using covariate shift methods with instance weighting, 2) Whenever 
confidence is reasonably high in the collected or balanced samples then 
knowledge transferral using instances are utilized (Saidi and Hammami, 
2015), 3) Cluster-based learning methods, where samples in a single 

cluster will be having same labels, 4) Self-labeling methods, which in-
tegrates target domain’s unlabeled samples during training, initializes 
their labels and then do label refinements iteratively, 5) Feature repre-
sentation methods uses feature representation techniques which extract 
suitable features from data set. 

Uncertainty handling using IFSs was demonstrated by Szmidt and 
Kacprzyk, (2001). In their research, it was shown that IFSs can suitably 
describe a problem by linguistic variables. Also, Szmidt and Kacprzyk, 
(2004) highlighted the requirement of IFSs in knowledge uncertainty, in 
the applications of human reasoning. Behbood et al., (2013a; 2015) 
introduced a novel domain adaptation technique for bank failure pre-
diction called the fuzzy domain adaptation. Their technique has gone 
through a lot of refinement, as mentioned by Behbood and others in 
(Behbood et al., 2015), (Behbood et al., 2013a; Behbood et al., 2013b). 
The same algorithm was developed and thoroughly analyzed in Behbood 
et al., (2013a), which proved its superiority over its other evolutions. 
Table 1 depicts the comparative analyses of existing fuzzy transfer 
learning approaches. 

3. Mathematical preliminaries 

First, we have accumulated the frequently used symbols/notations in 
Table 2. This section further presents the mathematical preliminaries 
utilized for the proposed approach along with their explanations. To 
effectively handle the shortcomings associated with crisp sets, Zadeh 
presented the concept of FSs in 1965 (Zadeh, 1965). FSs have been used 
to model the various sources of imprecision and uncertainty in the data 
sets. 

Definition 1. - Fuzzy Sets: A Fuzzy Set ‘A’ can be expressed as: 

A(x) = {(x, μA(x) ) |∀x ∈ X} (1)  

where, μA(x) is membership value attached to each x, and X is the uni-
versal space. Traditional FSs can also be stated as type-1 fuzzy sets (T1 
FSs). In T1 FSs, membership grades for the elements are articulated as 
crisp values in a set. Membership grade is the measure with which an 
element belongs to a set. 

Definition 2. - Atanassov Intuitionistic Fuzzy Sets (IFSs) (Ata-
nassov, 1986): Let X be the universe of discourse containing a finite 
number of objects. Mathematically, an IFSs can be defined over X as 
follows: 

Table 1 
Comparative overview of proposed and existing approaches.  

Methodology & Refs. Soft computing techniques Application TL technique Database 

MFBRDA (Behbood et al., 2015) T1 FSs, FNN, SVM Bank failure detection Feature based/ 
Domain adaptation 

Banking financial data, 20 newsgroup, etc. 

TrCbrBoost (Liu and Li, 2014) 
Fuzzy case-based 
reasoning, TrAdaBoost Land use classification Domain adaptation Middle part of the pearl river delta in china 

TL in Takagi–Sugeno fuzzy models (Zuo 
et al., 2016) 

Takagi–sugeno fuzzy 
model, PSO and DE Regression Transfer learning Housing dataset, synthetic dataset, etc. 

Online weighted adaptation 
regularization for regression (Wu 
et al., 2016) 

FSs, Regression function 
Driver drowsiness 
estimation Domain adaptation EEG signals 

Transfer generalized hidden-mapping 
ridge regression (Deng et al., 2014) 

FSs, TSK-FLS, NNs Spam filtering, etc. Inductive transfer 
learning 

Email spam filtering text dataset, synthetic dataset 
etc. 

Knowledge-leveraged transfer FCM ( 
Qian et al., 2017) FCM clustering 

Texture image 
segmentation 

Unsupervised transfer 
learning Brodatz texture 

Fuzzy transfer learning (Shell and 
Coupland, 2015) 

Fuzzy logic 
Intelligent 
environments 

Transfer learning 
Intel Berkeley dataset, de Montfort university 
robotics dataset, and robotics laboratory data, etc. 

Multitask TSK (Jiang et al., 2015) FCM, FSs 
Multitask regression 
learning Multitask learning 

Glutamic acid fermentation process modeling, 
multivalued (MV) data modeling, synthetic dataset, 
etc. 

Online fuzzy min–max neural (Seera and 
Lim, 2014) 

Fuzzy min–max neural 
network  Transfer learning 20 Newsgroups, WiFi time, and Botswana 

TSK-TL-FLS (Vapnik, 2013) 
TSK-FLS, Regression and 
classification 

Recognition of 
epileptic EEG Signals 

Transductive transfer 
learning Epileptic EEG data 

Proposed IFTL IFSs, ELM, SVM, GRNN GDP prediction Transfer Learning CO2 emission  
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I = {(x, μI(x) ,γI(x) ) |x ∈ X} (2)  

where, μI : X→[0,1] and γI : X→[0,1] with the property that 0 ≤ μI +

γI ≤ 1, μI(x) denotes the membership degree of x ∈ I, non-membership 
degree of x ∈ I is denoted by γI(x). In fuzzy sets, the following assump-
tion is observed: 

μI(x)+ γI(x) = 1 (3)  

However, the hesitancy margin of each element in an intuitionistic 
fuzzy set (x ∈ I), is defined by: 

πI(x) = 1 − μI(x) − γI(x) (4)  

where, πI(x) denotes the hesitancy margin for x. From Eq. (4), its 
deducible that 0 ≤ πI(x) ≤ 1. 

Definition 3. - Intuitionistic fuzzy inference system (IFIS) (Castillo 
and Melin, 2003): An IFIS is pictorially represented in Fig. 1. Its output 
(yf ) may be represented as: 

yf = (1 − πI(x) )ym + πI(x)ynm (5)  

Here, ym can be produced from the membership value μI(x) while ynm 
is generated from the non-membership value γI(x). If we put πI(x) = 0, 
then yf = ym, which is the ordinary or T1 FS. 

Definition 4. - Hausdorff distance: Let Y and Z be two IFSs defined in 
X = {x1, x2,…, xn} and let IY(xi) and IZ(xi) be definite with range [0,1]. 
Then IFSs Y and Z can be represented as: 

IY(Xi) = [μY(xi), γY(xi)] (6)  

IZ(xi) = [μZ(xi) , γZ(xi) ], i = 1, 2, 3,…, n. (7)  

Then, the Hausdorff distance between IY(xi) and IZ(xi), can be 
written as: 

H(IY(xi) , IZ(xi) ) = Max{(μY( xi) − μZ(xi) ), (γY(xi) − γZ(xi) )} (8) 

Thus, the distance dH(Y,Z) between Y and Z may be represented as: 

dH(Y,Z) = 1
/n
∑n

i=1
H (IY(xi) , IZ(xi) ) (9) 

Dissimilarity will be more between two instances if their Hausdorff 
distance is more significant. Experimental results proved that the 
Hausdorff distance function is precise in finding the linguistic similarity 
in IFSs (Hung and Yang, 2004). 

Definition 5. - Domain: A domain is represented by {F, P(X) }, where 
X = {x1,……,xn}, F denotes feature space and P(X) depicts every fea-
ture’s marginal probability distribution, obtained when all the remain-
ing features are considered constant. 

Definition 6. - Task: A Task is defined by T = {Y, f() }, where Y =
{
y1,…, yn

}
depicts a label space. The predictive function is denoted by 

f(), which is trained using pairs (xi, yi) and the labels for new instances 
are predicted by this learned function f(). 

Definition 7. - Transfer learning: If Ts is the learning task for a source 
domain Ds and Tt is the learning task for a target domain Dt, then the 
rationale of TL is to model a learning function ft() in Dt by utilizing 
Ds and Ts, when Ds ∕= Dt or Ts ∕= Tt .

However, when both domains are precisely similar (i.e. Ds = Dt) and 
their corresponding learning tasks are also similar (Ts = Tt), the 
learning problem changes to a machine learning approach. 

4. Proposed methodology 

In this section, we will explain our proposed IFTL technique, which is 
implemented under the framework of label refinement. The complete 
architecture is depicted in Fig. 2, and the procedure is described in Al-
gorithm 1. 

First, target data labels are predicted by a regression model, which is 
trained using only the source domain data. This regression model is 
entirely unaware of the target domain’s data distribution; hence, it is 
termed the target unaware regression (TUR) model. Secondly (under the 
IFTL), both the source and the target data are intuitionistically fuzzified 
using the IFSs. Then, K-nearest neighbors are chosen using a modified 
Hausdorff distance function. Finally, these K-nearest neighbors are 
optimally utilized to refine the labels predicted by TUR for effective 
learning during TL. Following subsections present detailed explanations 
of the components of Algorithm 1 (Fig. 2) in a step-by-step manner. 
Then, we have also discussed the special case of FTL and the computa-
tional complexity of IFTL in the following sub-sections. 

Table 2 
Symbols and Notations with their descriptions.  

Symbols/ 
Notations 

Descriptions 

IFTL Intuitionistic fuzzy transfer learning 
IFS Intuitionistic fuzzy set 
ELM Extreme learning machines 
SVR Support vector regression 
GRNN Generalized regression neural network 
Ds Source domain 
Dt Target domain 
Ts Learning task for a source domain Ds 

Tt Learning task for a target domain Dt 

TUR Target unaware regression 
IFTL Intuitionistic fuzzy transfer learning 
PL Target domain output predicted by TUR model 
PLjF Predicted label for class F of jth target instance 
Dm Mixture of the intuitionistically fuzzified instances of the source 

domain and the target domain. 
IFSM Intuitionistic fuzzy similarity matrix 
γ Refinement impact factor 
Y Source domain label 
K Nearest neighbor using minimum Hausdorff distance 
NDm

j Collection of K nearest neighbors for the jth target, extracted from 
the set of Dm 

MF Refined target domain labels via IFTL  

Fig. 1. Structure of a typical IFIS (Songwei et al., 2012).  
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Algorithm 1. Label refinement using IFTL.  

1. Target unaware regression 

Target unaware regression (TUR) is one of the core steps of label 
refinement, which uses the widely used ML regression approaches for 
label predictions, such as GRNN, SVR, and ELM. In this paper, the kernel 
version of ELM is implemented, which is deterministic in nature, as it 
does not use randomly initialized weights. These approaches are used to 
prove that the proposed IFTL enhances learning independently of the 
regression model chosen by exploiting the divergence in different 
domains.  

2. Intuitionistic fuzzy transfer learning (IFTL) 

The proposed IFTL refines target domain labels predicted by the TUR 
model. Features in the target and the source domain are exploited using 
IFTL algorithm. These features act as bridges between the source and the 
target domains. For the source domain hesitancy degree, we first find the 
variance (Var) of the differences between the source domain and the 
target domain features. Then we normalize it by its feature mean. Later, 
its absolute (Abs) value is chosen as the source domain hesitancy degree. 
Mathematically, for each feature F, the hesitancy degree is computed as 
follows: 

Source hesitancy degree(F) =

Abs
((

Var
{

Source domain feature(F) − Target domain faeture(F)
mean(Source domain faeture(F)

})

Target hesitancy degree(F) =
1

Source hesitancy degree(F)

This also gives α > 1, which brings out the anomaly in Yager’s 
generating function for its incorporation into IFTL. Hence, it efficiently 
captures the uncertainty that arises due to the variations in the data 
distribution across the source and the target domains. Thereby 
improving model prediction during transferral of the learned knowl-
edge. As the knowledge is being transferred from the source domain to 

Fig. 2. Proposed IFTL approach under the label refinement framework.  
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the target domain, the hesitancy degree of the target domain should be 
inverse to that of the source domain hesitancy degree. This helps in 
judiciously utilizing the already acquired leaning on a new domain. This 
hesitation degree is calculated for each feature of the source domain and 
the target domain, separately. Further, intuitionistic fuzzification of the 
source and target domain features are performed using Yager’s gener-
ating function, as shown below in Step 1. 

Step 1: Intuitionistic fuzzification. 
A parametric intuitionistic fuzzy complement technique called 

‘Yager’s generating function’ efficiently finds the value of the hesitancy 
margin (πI(x)) based on the experimental results (Ghosh et al., 2021; 
Kumar et al., 2016). It has the flexibility to properly tune the parameters 
of any application of real-world application by parameter optimization. 
Here, the hesitancy margin is controlled using membership value 
(Chaira, 2011). The Yager’s function is defined as: 

f(x) = xα (10)  

where α is the hesitancy degree. The Yager’s generating function in 
conjunction with Atanassov intuitionistic fuzzy complement is denoted 
in the following way (Ghosh et al., 2021): 

γY(xi) = (1 − xi
α)

1
α (11)  

where, α > 0 . For xi = 0 and 1,γY(0) = 1 and γY(1) = 0. 
Now, IFSs can be expressed as: 

IY(xi) =
{

xi,μY
(

xi
)
, (1 − μY( xi)

α
)

1
α
}

(12) 

The hesitancy margin (πY(x)) is given by: 

πY(x) = 1 − μY(x) − (1 − μY( xi)
α
)

1
α (13)  

where 0 ≤ πY(x) ≤ 1. In IFSs, hesitancy margin should be within the 
interval [0,1] as stated in Eq. (13). However, if α > 1, then πY(x) ≤ 0. 
This is against the principles of IFSs that lead to an anomaly in Yager’s 
generating function. 

Let us consider the following example: If membership value (μY( xi)) 
of xi in IFS Y is 0.2 and α = 2, then the non-membership value is: 
(1 − μY( xi)

α
)

1
α = 0.979 and πY(x) = − 0.179, which results in 

πY(x) < 0. Here, the anomaly is: μY(x)+ (1 − μY( xi)
α
)

1
α > 1. This is a 

contradictory formulation in the context of FS theory, since it has a 
condition that maximum value obtained by adding μI(x) and γI(x) is 1. 
Here, the hesitancy margin is <0 i.e. πY(x) < 0. However, this anomaly 
is handled by the introduced IFTL technique. The logic behind using it is 
that it may help in penalizing those instances in the target domain which 
have high cohesion but are of no use. Therefore, it helps in enhancing 
learning while transferring knowledge. Then, the intuitionistically fuz-
zified data points of the source and target domain are mixed with 
increasing the data size for better learning. We further propose a 
modified Hausdorff distance metric to compute the similarity between 
the target domain data and the mixed domain data. This distance matrix 
is termed an Intuitionistic Fuzzy Similarity Matrix (IFSM). 

Step 2: Proposed modified Hausdorff distance. 
Let Y and Z be two IFSs in X = {x1, x2,…, xn} and IY(x1) and IZ(xi)

with range [0, 1] are defined as follows: 

IY(xi) =
[

xi,μY
(

xi
)
, γY(xi)

]
(14)  

IZ(xi) =
[

xi,μZ(xi) , γZ(xi)
]
, i = 1, 2, 3…, n. (15) 

πY(x) is hesitation margin as defined below: 

πY(x) = 1 − μY(xi) − γY(xi) (16) 

Let Hm(IY(xi) , IZ(xi) ) is modified Hausdorff distance between 

IY(xi)and IZ(xi) and is defined as: 

Hm(IY(xi) , IZ(xi) ) = |πY − πZ(x) |*[Max{(μY( xi) − μZ(xi) ), (γY(xi) − γZ(xi)}]

(17) 

The modification in Hausdorff distance function is the addition of 
Coefficient (∣πY − πZ(x)∣) in Eq. (17). Here, Eq. (9) is disregarded as the 
similarity is being calculated between two data points, and not between 
two sets. In addition, the hesitation margin difference (|πY(x) − πZ(x) |) is 
added in order to exploit the influence arising due to Yager generating 
function anomaly. 

This proposed modified Hausdorff distance is then used for IFSM 
computation. Using IFSM, for the each of the jth instance, a set NDm

j is 
selected in this step. This set NDm

j consist of K-nearest neighbors from the 
set Dm, and its elements are chosen using their minimum value in the 
IFSM as denoted by the following Eq. (18): 

NDm
j =

{
n1:K = argmin {IFSM(j, *) } (18) 

Step 3: Label refinement. 
From the above set of mixed features, k-nearest neighbors are 

extracted for efficient label refinement in the proposed approach. We 
have compiled the label refinement steps in the form of a flowchart in 
Fig. 3. The input and output terminologies for the IFTL label refinement 
are summarized in Table 3. Various stages of this flowchart are 
explained as follows: 

Step A: Choose an instance of the target domain iteratively and for 
each instance, follow Steps B to E. 

Step B: For the instance chosen in Step A, select the class to which it 
belongs and proceed to Step D. 

Step C: For all instances in the target instance, calculate IFSM 
(Intuitionistic fuzzy similarity matrix) with respect to each datapoint of 
Dm. 

Step D: Refine the predicted labels using Eq. (19): 

MFJF = γ

⎛

⎝
∑

x0∈NDm
j

IFSM
(
xj, x0

)
*δPjF

⎞

⎠+(1 − γ)PLjF (19) 

If x0 ∈ Ds, then, 

δPjF = PLjF − μYF
(x0) (20)  

else if x0 ∈ Dt, then 

δPjF = 0
(

as PLjF − PLjF
)

(21) 

Here, MFJF denotes the IFTL-refined Fth class label of the jth instance 
of the target domain. The refinement of the predicted labels is done via 
∑

x0∈NDm
j

IFS
(
xj, x0

)
*δPjF in the Eq. (19). 

It denotes that for all x0 ∈ NDm
j , multiply δPjF with the IFSM values of 

the xj
(
xj ∈ Dt

)
and x0(x0 ∈ DDm), and then take their summation. The 

impact of refinement in Eq. (19) is controlled by γ (gamma). The value of 
γ if chosen too high, then the importance of good prediction by the TUR 
model is not optimally utilized, and if γ is too small, then IFTL will give 
results nearly equivalent to that of the prediction of ML approaches. 

Therefore, it is kept constant at 10% for every experiment of IFTL. 
This value of γ (a hyper-parameter) is experimentally chosen and then 
kept constant at 10% for all experiments of IFTL. When γ = 0, then 
MFJF = PLjF, which represents the prediction done by TUR. If Eq. (19), 
results are in a negative value, then we discard it, and no update is done. 
NDm

j is a set of those instances from the mixture set (Dm), that are the K- 
nearest neighbors of the jth instance of the target domain. As nearest 
neighbors are taken from the mixture of all the intuitionistically fuzzi-
fied instances of the target and the source domain, i.e., Dm, δPjF is 
calculated by two ways: First, if x0 in set NDm

j belongs to the source 
domain (Ds), whose labels for Fth class, μYF

(x0) are available, then δPjF is 
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derived using Eq. (20). Here, μYF
(x0) depicts Fth class of x0 ∈ Ds. Second, 

if x0 belongs to the target domain, then δPjF in Eq. (21) is equal to zero. 
Step E: Repeat Step A till the labels of all the target instances are not 

completed; else, stop. 

4.1. Special case: FTL (when hesitancy margin = 0) 

When the hesitancy margin is not considered (i.e., taken as zero), 
IFTL reduces to FTL, which considers ordinary FSs for fuzzifying the 
dataset and employs Euclidean distance instead of modified Hausdorff 
distance for determining the K-nearest neighbors. The FTL is also studied 
to show the necessity of hesitancy margin in handling human cognitive 
behavior, which is efficiently achieved using IFTL. Thus, FTL would not 
be effective during TL while using previously acquired experience to 
solve a new and related task, which our proposed IFTL can efficiently 
accomplish. 

4.2. Computational complexity 

While analyzing the computational complexity of IFTL, it is observed 

that Step A to Step E in Fig. 3 is repeated |Dt | number of times. All these 
steps have an individual computational complexity of O (1). Step B is 
ignored, as number of classes are not always too large (an assumption 
that they are <100). Step C in Fig. 3 has a runtime equal to that of the k- 
nearest neighbors, i.e., O(|Dm|d + |Dm|K ). Here, d is the dimension of 
the dataset. Modified Hausdorff distance metric uses intuitionistically 
fuzzified values in terms of membership, non-membership, and hesi-
tancy margin of each feature of a data point. However, it does not affect 
the overall computational complexity. Due to the three different com-
ponents in the modified Hausdorff distance, the computational 
complexity is (3*d) = O(d), which is equivalent to the complexity of the 
Euclidean distance. 

So, the total computational cost involving Step A to Step E is 
O(|Dt |*(|Dm|d + |Dm|K )). Also, the intuitionistic fuzzification of all the 
source and the target data has a computational complexity of O(|Dt | +

|Ds|) since each data point can be intuitionistically fuzzified cost of Θ(1), 
which is equivalent to O(|Dm|) as |Dm| = (|Dt | + |Ds| ). 

Therefore, the computational complexity of IFTL is computed by 
adding the computational cost of Step A to Step E (i.e., 
O(|Dt |*(|Dm|d + |Dm|K ))) and the computational cost of intuitionistic 
fuzzification (i.e. O(|Dm|)). Hence, the computational complexity of 
IFTL is O(|Dm| + (|Dt |*(|Dm|d + |Dm|K ) )). 

5. Experiments and results 

This section presents the experimental setup considered for evalu-
ating the proposed IFTL. We first discuss the dataset description for GDP 

Fig. 3. Algorithmic flow of IFTL label refinement.  

Table 3 
Input and Output terminologies.  

Input Output 

Ds, Dt , PL, PLjF , Dm, IFSM, γ, Y, K, NDm
j MF  
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prediction from carbon emission data. For the experiments, we start by 
using widely used ELM for the label prediction in the TUR. Later, IFTL 
and FTL are implemented using GRNN and SVR as the TUR model. It 
highlights that whenever training and testing data (including labels) 
have huge distribution differences, then IFTL outperformed FTL by 
being the most accurate due to the crucial role of hesitancy. 

Further discussions analyze IFTL and FTL for their abilities to 
improve learning by restricting overconfidence (controlling hesitancy) 
during TL by considering GRNN and SVR as the TUR. Overconfidence in 
ELM, GRNN, or SVR arises when they make predictions on a dataset 
(target domain) that has a huge data distribution difference from the 
source domain data on which they are trained. In this scenario, they just 
use their training experience to make predictions during testing without 
considering the distribution divergence in the testing dataset from the 
training dataset. We conclude this section with the execution time 
analysis of the approaches.  

a) GDP prediction using only CO2 emission data2 

For evaluating the performance of machine learning algorithms, 
well-known benchmark datasets are utilized, which are partitioned (by 
KFold or StratifiedKFold, etc.) in test data (target domain) and training 
data (source domain). Here both these domains are drawn from the same 
domain distribution; hence both of them are equal in their distribution i. 
e. Ds = Dt and Ts = Tt. However, IFTL is hypothesized for transfer 
learning, and to evaluate its performance precisely, the source domain 
and target domain must be highly diverse but related i.e. 
Ds ∕= Dt or Ts ∕= Tt or both. 

So, this paper takes up a very innovative real-life application in 
which the IFTL approach is analyzed to predict the GDP of a developing 
county (target domain) using only its carbon dioxide (CO2) gas emis-
sions data. However, the training is performed on developed countries 
(source domain). For that, the European Union’s data comprising GDP 
and its CO2 emission are used as the source domain. For the testing 
phase, target domain data is collected from India. European Union (EU) 
comprises 28 countries in Europe, which are highly developed in terms 
of infrastructure and economy. As compared to any EU country, India is 
a developing Asian country, with twice the total population that of the 
European Union. Also, the EU and India have substantial geographical, 
educational, cultural, political, and environmental differences. Hence, 
the data distribution of these two domains (CO2 emission data and per 
capita GDP) are highly different from each other i.e. 
Ds ∕= Dt and Ts ∕= Tt. Thus, it is a perfect case for a TL problem. All three 
regression models (GRNN, SVR, and ELM) are trained on source domain 
(EU) data and tested on target domain (India) data. The experimental 
setup encompasses input and output parameters, as shown in Table 4 
and Table 5, respectively. These input and output parameters of source 

and target domains are collected from the World Bank database of the 
EU and India (http://data.worldbank.org/). 

The GDP of a country is directly proportional to its carbon dioxide 
emissions, as empirically demonstrated in numerous studies (Acheam-
pong, 2018a; Govindaraju and Tang, 2013a; Stern, 2010a), (Chen et al., 
2018a; Saidi and Hammami, 2015). So, to efficiently reflect this rela-
tionship during fuzzification, each feature of a domain is fuzzified by 
dividing it by its maximum value. Thus, a higher membership value 
ensures a higher per capita GDP value and vice versa. Therefore, for 
intuitionistic fuzzification, the source domain data (EU) and target 
domain data (IND) features (Table 4) are divided with their respective 
maximum values to compute the corresponding membership values. The 
non-membership values are calculated using Eq. (11) of Yager’s gener-
ating function, in which α (the hesitancy degree) is calculated by 
exploiting the data distribution differences of source (EU) and the target 
domain (IND) as explained in Subsection C of Section 4. Then, K-nearest 
neighbors (Step C of Fig. 3) are chosen for each of the target (IND) data 
points using minimum distance values calculated by Eq. (17) from the 
mixture of intuitionistically fuzzified source (EU) and the target data 
(IND). In the end, these K-nearest neighbors are optimally utilized using 
Eq. (19) to refine the labels predicted (Step D in Fig. 3) by the TUR model 
(best of the ELM, GRNN, and SVR, i.e., ELM) for effective TL. During 
FTL, ordinary fuzzification is performed instead of intuitionistic fuzzi-
fication, and Euclidean distance is calculated using membership and 
non-membership values. The rest of the procedure is similar to that of 
IFTL. For both IFTL and FTL, the refinement impact factor ‘gamma’ is 
kept constant at 10% (γ = 0.1), which governs the impact of refinement 
in IFTL. 

From the experimental result (as shown in Fig. 4 (a)), it is found that 
the RMSE for SVR, GRNN, and ELM are 1989.4, 610.3343, and 
362.2708, respectively. The comparison between ELM and IFTL with 
actual GDP values is shown in Fig. 5. Here, all these regression models 
(GRNN, SVR, and ELM) are first trained using only EU data, and then 
these trained models are used to predict the GDP. There is an over-
confidence in the predictions of these models as they simply use their 
experiences acquired from training without considering that both India 
and the EU have considerable differences in their data distribution. This 
overconfidence of these regression techniques is restricted by IFTL, 
which optimally exploits these data distribution differences to its 
advantage by using hesitation degree for modeling by exerting caution 
in utilizing their experience in a new environment. 

In Fig. 5, it can also be observed that IFTL attempts to reduce the 
overconfidence of ELM predictions by refining it and pulling it toward 
the actual GDP values, which FTL also could not perform as it doesn’t 
have a hesitancy degree. FTL and IFTL nearly overlap until the 48th 
point on the horizontal x-axis (the year 2007). However, as the differ-
ence between the predicted values (ELM prediction) and the actual GDP 
values grows after the 48th point, IFTL outperforms FTL by pulling the 
labels more effectively toward actual values. This behavior is consistent 
till the year 2013. 

For IFTL, RMSE of 279.1 can be seen in Fig. 4 (a) when the TUR uses 
ELM (also denoted as ELM_IF). However, for FTL (or ELM_F), the RMSE 
is 366.83, which is even worse than the RMSE of 362.2708 as predicted 
by ELM. It behaves poorly after the 48th point on the horizontal x-axis of 
Fig. 5 once the difference between the actual GDP values and the pre-
dicted GDP values grows significantly. Hence, IFTL (ELM_IF) performed 
exceptionally well and secured at least 22.9% improvement in the pre-
diction accuracy over ELM and FTL (ELM_F). Furthermore, it also vali-
dated its abilities to improve learning during TL, in which USA data is 
used as the source domain and India as the target domain. 

Table 4 
Input Parameters.  

Feature Input Parameter 

1 CO2 emissions due to gaseous fuel consumption 
(% of total) 

2 
CO2 emissions due to liquid fuel consumption 
(% of total) 

3 
CO2 emissions due to solid fuel consumption 
(% of total) 

4 CO2 emissions (in metric tons per capita)  

Table 5 
Output Parameters.  

Feature Output Parameters 

Output GDP per capita (at current US$)  

2 Benchmark datasets are investigated for ML methodologies where training 
and testing data are drawn from same distribution. The proposed IFTL is a 
generic approach based on the principle of transfer learning which may pri-
marily work in any real-world application with training and testing domains 
having different data distributions. 
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As shown in Fig. 4 (b), IFTL (ELM_IF) predicted more accurately with 
an RMSE value of 466.5, whereas the best regression model of ELM 
returned RMSE of 561.27. Again, FTL (ELM_F) could not improve the 
results of ELM. It predicted similar RMSE values. Thus, IFTL outperforms 
the standalone regression model and ordinary FSs-based FTL by suitably 
restricting overconfidence, thereby enhancing learning during TL and 
providing more accurate predictions.  

b) IFTL Refinement over GRNN and SVR 

In previous results, ELM is chosen as TUR, and IFTL is implemented 
on the ELM predictions to improve its knowledge transfer. Here, GRNN 
and SVR are chosen one by one as a TUR model in the process described 
in Fig. 2. Then, IFTL with the same parameter settings (as was in the case 
of ELM in the previous subsection, where γ = 0.1) is applied over their 
prediction. The improvement of IFTL over these approaches are depicted 
in Fig. 6, where ‘GRNN_IF’ denotes the error in IFTL prediction when 
IFTL is implemented, choosing GRNN as TUR. Similarly, ‘SVR_IF’ de-
notes the IFTL error when IFTL is implemented, choosing SVR as TUR. 

Fig. 4. IFTL, source domain: (a) EU, (b) USA.  

Fig. 5. Performance analysis of ELM, FTL and IFTL (source domain: EU).  
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Fig. 6 (a) depicts the experimental results when models are trained 
using EU data as the source domain and India data as the target domain. 
It can be seen that GRNN prediction error (RMSE) is 610.33, which is 
significantly improved when IFTL is applied, which reduces the pre-
diction error, i.e., GRNN_ IF error (RMSE) is 542.39. Similarly, the SVR 
error (RMSE) is 1989.4, while the SVR_IF error is 1728.4. Fig. 6 (b) 
demonstrates the results of the model trained using USA data (source 
domain) and tested on INDIA data (target domain). Here, the GRNN 
prediction error is 47,985, which is greater than the GRNN_IF error of 
43,111. Similarly, the SVR error is 27,323, which is poorer than the 
SVR_IF error of 24,568. To conclude, the above results indicate the 
improved transfer of knowledge through IFTL over GRNN and SVR. 

Hence, it is validated that IFTL is a refinement approach that can be 
applied to the predictions done by any other existing techniques. Table 6 
summarizes these results along with ELM predictions. Third column of 
this table depicts the percentage (%) reduction in RMSE, which ranges 
from 10% to 23%. The proposed IFTL is used as a refinement over the 
results of GRNN, SVR, and ELM trained in different source domains 
while keeping γ (Gamma: the Refinement Impact Factor) fixed at 0.1. 
IFTL carefully considers the vast differences in the data distribution of 
the source domain and the target domain by which it ensures better TL 
in GRNN, SVR, or ELM.  

c) Execution time analysis 

The execution time of IFTL and FTL are analyzed with respect to their 
TUR model. In Fig. 7 (a), execution time of SVR is shown for two 
different experiments. The CPU time of 0.0126 s denotes the execution 
time of SVR, which is trained using EU as the source domain and INDIA 
as the target domain. The execution time of 0.0108 s is observed for SVR 
when the source domain is changed to USA. The SVR_F and SVR_IF 
denote the FTL and IFTL execution time, respectively, in which SVR is 
used as TUR model. SVR_F executes in 0.22 and 0.222 s, when the source 
domain is either EU or USA, respectively. Similarly, SVR_IF finished with 
an execution time of 0.0254 s when the source domain is EU and 0.024 s 
when USA is the source domain. 

In the same way, execution times (including training and testing) of 
FTL and IFTL are computed by considering GRNN and ELM as TUR 
models. The respective results are compiled in the Fig. 7 (b) and Fig. 7 
(c), respectively. It can be seen from the Figs. 7 (a - c), that IFTL is not 
very time intensive as its extra computational time is almost equivalent 
to that of SVR, i.e., it takes only about 120 CPU time (seconds) extra, in 
addition to that of the TUR in all these cases. Moreover, FTL and IFTL 
execution times are comparatively equal. These experiments have been 
implemented in MATLAB on a workstation having Xeon® processor with 
64 GB RAM on Windows 7 OS. 

Fig. 6. IFTL refinement, source domain: (a) EU, (b) USA.  

Table 6 
IFTL refinement effectiveness.   

RMSE IFTL_error Improvement (%) 

Source Domain: EU and Target Domain: India 
GRNN 610.33 542.39 11.13 
SVM 1989.4 1728.4 13.12 
ELM 362.27 279.1 22.96  

Source Domain: USA And Target Domain: India 
GRNN 47,985 43,111 10.16 
SVM 27,323 24,568 10.08 
ELM 561.27 466.55 16.88  
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Fig. 7. Execution time using (a) SVR as TUR, (b) GRNN as TUR, (c) ELM as TUR.  

Table 7 
Comparative Overview of Some Recent Works Utlizing Ecological Attribute. 
(Highlighting computational tools/aproaches used, applications considered, and ecologocal implications)  

Ref. Ecological Attribute Computational Tools/ 
Approaches 

Application Ecological Implications 

(Khatua 
et al., 
2020) 

Water temperature and 
pollution, Global warming, 
and Fish harvesting 

Fuzzy Rule based inference 
model Production of Hilsa fishes  

• High temperatures and increasing water pollution affect the 
production of Hilsa fishes significantly.  

• A novel fuzzy mathematical model is utilized to form a 
relationship between global warming and Hilsa production 

(Lu et al., 
2021) Sound of marine mammals AlexNet with TL 

Detection and classification 
of marine mammal sounds  

• The proposed hybrid ML model detects and classifies the 
sounds of different marine mammal species which inhabit 
overlapping living areas.  

• It helps in monitoring marine mammal populations and adds 
to the conservation efforts. 

(Guo et al., 
2012) 

CO2 emissions induced by 
fossil fuel combustion 

Input-output analysis Investigation of embodied 
CO2 emissions  

• The study examines the concrete emissions inventory of 
Beijing’s economy in 2007 and analyses the CO2 emissions 
resulting from fossil fuel combustion.  

• This provides valuable information for understanding the 
environmental impact of energy consumption and helps in 
formulating effective policies to reduce CO2 emissions. 

(Debnath 
et al., 
2018) 

Air pollution 
IT2 FSs, weighted interval 
type-2 fuzzy reasoning 

Evaluation of air quality 
status, assessment of Air 
Quality Index (AQI)  

• Proposed work assesses the air quality where concentration 
and toxicity levels are modelled using IT2 FSs.  

• Helps to identify contributing components for the resulting air 
quality, which further may enhance decision-making pro-
cesses related to environmental policies and health-related 
issues. 

(Wang et al., 
2022) 

Reproductive performance of 
sows 

Acoustic data, deep 
convolutional neural network 
(CNN) algorithms 

sow oestrus 
sound monitoring  

• This work utilizes acoustic data and deep CNN to identify 
oestrus and non-oestrus sounds of sows.  

• Also, provide ways for monitoring and early warning systems 
on pig farms.  

• Better reproduction capability in sows may upscale the 
economic efficiency and production level of pigs.  

• A sustainable perspective for the pig farming operations. 

Proposed 
IFTL 

Carbon emission of 
developed and developing 
countries 

IFS and TL GDP Prediction  

• The ecological implications of the proposed work are directly 
associated with the increasing CO2 emissions resulting from 
industrialization.  

• Though it has negative effects on the environment, the 
proposed IFTL utilize its attribute to predict GDP of 
economies with unavailable information.  
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6. Discussion 

Literature is filled with numerous prediction and forecasting studies 
utilizing uncertainty-based approaches (Pearson and Clark-Wolf, 2023; 
Tan and Zhao, 2023). Both traditional and non-traditional FSs have been 
effectively used for prediction studies in various ecological applications 
(Debnath et al., 2018; Khatua et al., 2020). Khatua et al., (2020) studied 
the impact of the environmental conditions on the production of Hilsa 
fishes using a traditional fuzzy logic-based inference system. Debnath 
et al., (2018) utilized an interval type-2 fuzzy set based inference system 
for assessing air quality. In addition, significant improvements in the 
GDP forecasting accuracy were observed in several fuzzy based ap-
proaches, e.g., (Jha et al., 2022; Mirbagheri, 2010), etc. Traditionally, 
GDP prediction or forecasting has depended on several economic in-
dicators and econometric models. However, the integration of envi-
ronmental factors such as carbon emission has brought added 
significance to the problem of GDP prediction as it has helped to address 
the limitation of unavailability of those economic indicators in war-torn 
and closed countries (Tang, 2013b). The literature has constantly pro-
vided scientific evidence of the proportional relationship between car-
bon emission and the GDP growth of a nation (Adedoyin et al., 2021; 
Tang, 2013b). Similarly, many such studies with tremendous ecological 
implications have been carried out in recent times by utilizing ecological 
attributes and indicators. In Table 7, we have summarized some recent 
studies, including the proposed IFTL, which have utilized ecological 
attributes/indicators, and have demonstrated their individual ecological 
implications. 

The ecological implications of the proposed work are directly asso-
ciated with the increasing CO2 emissions from industrialization. Though 
it has adverse effects on the environment, the proposed IFTL utilizes its 
attribute to predict the GDP of economies with unavailable information. 
Specifically, this work aims to predict a country’s GDP using only its 
carbon emission data. To precisely predict a nation’s GDP, this paper 
explored the non-linear relationship among ecological indicators such as 
carbon emissions from gaseous fuel, liquid fuel, and solid fuel. The 
differential usage of these fuels is also related to the economic condition 
of a nation. Solid fuel is more predominant in poorer countries. When a 
country economically progresses, it moves toward gaseous fuel (cleaner 
fuel) from liquid or solid fuels. This work has strongly established the 
need for computational intelligence based tools and approaches (e.g., 
IFS and TL) to utilize ecological indicators such as carbon emission to 
efficiently predict the economic aspect (GDP) of a country. By studying 
this correlation between CO2 and GDP, we have also presented valuable 
insights into the environmental consequences of commercialization and 
industrialization. 

7. Conclusion and future works 

This study has found its motivation from the increased level of car-
bon emissions due to industrialization and how economic indicators are 
associated with it. The ecological implication is clearly the environ-
mental degradation due to these carbon emissions, though it is strongly 
associated with economic development. The available carbon emission 
and GDP data of a country are not sufficient enough to build a robust 
predictive machine learning (ML) model to effectively learn the non- 
linearity in the data from different domains. Therefore, to precisely es-
timate the per-capita GDP of a nations using only its CO2 emission data, 
this paper proposed a unique deterministic algorithm called ‘Intuition-
istic fuzzy transfer learning (IFTL)’ for enhanced learning during TL. The 
anomaly observed regarding the hesitancy margin of Yager’s generating 
function is optimally incorporated in modified Hausdorff distance to 
avoid overconfidence for better TL. We also proposed a novel way for 
calculating the intuitionistic hesitation degree by utilizing the variance 
in the data differences among different domains. A novel fuzzy transfer 
learning (FTL) approach is also introduced, which unlike IFTL, uses only 
FSs and Euclidean distance. FTL is incorporated to emphasize the critical 

role of hesitancy in utilizing previously learned skills to solve a new and 
related task. IFTL includes a hesitation degree for modeling the human 
tendency to exert caution while using their experience in a new envi-
ronment. FTL does not contain any hesitancy degree to model this 
human behavior. 

IFTL is examined for its efficacy compared to FTL and three ML ap-
proaches, viz., SVR, GRNN, and ELM, on the real-world problems of GDP 
prediction only from carbon emission data. These ML approaches only 
use their training experience to make predictions on the testing dataset 
(i.e., target domain dataset) without considering its distribution differ-
ences with the training dataset (i.e., source domain dataset). At the same 
time, the proposed IFTL refines their prediction by optimally incorpo-
rating these data distribution differences for efficient TL from one 
domain to another, along with human behavior of using caution. For 
GDP prediction, IFTL performance has been tested where it is trained on 
the data of developed nations and tested over the data of a developing 
nation. When ELM is considered as Target unaware regression (TUR), 
IFTL performed exceptionally well and secured at least 22.9% 
improvement in the prediction accuracy over traditional ELM and FTL. 
The overall IFTL refinement effectiveness can be seen by the percentage 
(%) reduction in RMSE, which ranges from 10% to 23% when GRNN, 
SVR, and ELM are considered as TUR. 

We have found that the proposed approach efficiently captured the 
uncertainty produced by extreme variations in data distribution or the 
predictive tasks across the source and target data. It suitably restricted 
overconfidence for better learning while transferring the learned 
knowledge. IFTL outperformed FTL, where the training and testing do-
mains (including labels) have huge data distribution differences. This 
validated the effectiveness of hesitancy in restricting overconfidence 
during TL. IFTL is also thoroughly analyzed for its asymptotic compu-
tational complexity and execution time. The limitation of IFTL is that it 
adds additional computation by calculating membership, non- 
membership, hesitancy margin of each feature, and the distance 
metric for refining the output labels predicted by other ML approaches. 

This work has successfully demonstrated the utility of ecological 
attributes in addressing the limitation of GDP prediction approaches due 
to the unavailability of economic indicators for some countries. In 
addition, the implication of ecological attributes may find their due 
utility in many such fields beyond the scope of this study, where the 
ecological considerations may play a significant role. Therefore, future 
works may focus on exploring the proposed technique in several other 
real-world problems, such as economics, finance, human development 
index, text analytics, bank failure predictions, etc. IFTL shall be analyzed 
by considering different distance metrics for k-nearest neighbors 
extraction. Moreover, the proposed IFTL approach shall be used to build 
TL models for estimating the GDP of war-torn countries or inaccessible 
countries since their reliable macroeconomic data is not entirely satis-
factory in calculating their GDP. This will undoubtedly help in the 
efficient socio-economic analysis of the people residing in these 
countries. 
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