33 research outputs found

    From Bitcoin to Solana -- Innovating Blockchain towards Enterprise Applications

    Full text link
    This survey presents a comprehensive study of recent advances in block-chain technologies, focusing on how issues that affecting the enterprise adoption were progressively addressed from the original Bitcoin system to Ethereum, to Solana etc. Key issues preventing the wide adoption are scala-bility and performance, while recent advances in Solana has clearly demon-strated that it is possible to significantly improve on those issues by innovat-ing on data structure, processes and algorithms by consolidating various time-consuming algorithms and security enforcements, and differentiate and balance users and their responsibilities and rights, while maintaining the re-quired security and integrity that blockchain systems inherently offer

    Energy consideration when integrating Blockchain with IoT for anti-counterfeit

    Get PDF
    Blockchain technology has been growing in popularity after Bitcoin, the first protocol has demonstrated a strong use case of the technology in Finance. Over the years, as the technology develops more and more, other use cases for the technology which basically relies on a distributed ledger database system have been explored in areas like supply chain and Internet of Things, to help in some of the bottleneck which IoT faces, some of the challenges are security, privacy, scalability, etc. This thesis work will consider energy consumption when integrating IoT with the Blockchain for anti-counterfeit purposes. Because there is little public academic information about the integration of Blockchain with IoT, it is very difficult to ascertain quantitatively, the energy requirement in application areas like anti-counterfeit. This thesis work has to qualitatively, rely on projects whitepapers and application documentation when comparing the energy requirement in the integration of Blockchain and IoT used for counterfeit solutions by different projects. Both private and public (open-sourced) projects were considered and resulted in two broad classifications ‘integration by brands using a unique identifier (RFID and NFC)’ and ‘integration throughout a product lifecycle’. Energy need for each project(s) in a class is considered based on the IoT hardware used and the Blockchain generation and consensus which also seems to have an impact on the implementation cost and complexity of the project

    Developing a foundation for a globally coordinated approach to the taxation of crypto-asset transactions

    Get PDF
    Crypto-assets and blockchain technology have created much uncertainty within the field of taxation. While some jurisdictions have attempted to formulate responses, others have yet to meaningfully engage with the topic. In contrast to the taxation of the digitalised economy, a coordinated global approach to the taxation of crypto-asset transactions is notably lacking. Rather than focusing on individual jurisdictions, this study addresses the consequences of crypto-asset transactions within the international tax system. It begins by applying an adapted form of the constant comparison method traditionally employed in grounded theory research to a selection of crypto-assets white papers to inductively identify possible taxable events, and from these to develop ten transaction categories, each with definitive characteristics. These categories then form the basis of a doctrinal analysis of the nature within the international tax system of the income arising and its classification within the text of the articles of the model tax conventions. Finally, the study considers the potential future impact of measures to tax the digitalised economy. The study finds that while it is possible to classify each of the identified transaction categories within the articles of the model tax conventions, alternative constructions within treaties and existing differences in interpretation may still significantly impact the allocation of taxing rights. In addition, crypto-asset transactions may further challenge the role of the permanent establishment concept in determining taxing rights and contribute to base erosion. While such transactions may fall within the measures to tax the digitalised economy, the pseudonymous, decentralised nature of blockchain technology may frustrate the application of these measures. This study may inform individual jurisdictions in designing the scope and outcomes of a comprehensive response to crypto-asset transactions. It may also provide a basis for the classification of these transactions within the international tax system, and support the development of a globally coordinated response to the taxation of crypto-assets. Finally, it may contribute to the broader development of the taxation of the digitalised economy, in which crypto-asset transactions may play an increasingly significant role in the future

    From legal contracts to smart contracts and back again: Towards an automated approach

    Get PDF
    Blockchain smart contracts, programs with the potential to automate transactions and beyond, have gained tremendous popularity over the past years. Central to the original of smart contracts is that every computable clause of a contract or agreement is encoded into arbitrary computer logic with the aim of coding this logic into computer programs, and let the program decide and execute what happens during the contract's life span. The term smart legal contract has been coined to describe smart contracts that aim to capture legally binding agreements between parties. This dissertation presents a method to facilitate the creation of smart legal contracts that constitute a legally binding contract and that can (partially) self-enforce their terms and conditions within that contract, regardless of the blockchain platform. Understanding how blockchain technology works is pivotal to grapple the ramifications of this choice for smart contracts. Chapter 2 presents an overview of the literature on blockchain to delineate architectural perspectives on the technology, and to define its properties. Finally, the chapter points out the current challenges for the technology and gaps in literature. In Chapter 3, a background on smart contracts will be provided using a motivational example. Chapter 4 expounds the research methodology, the research paradigm adopted for the research, and the philosophy underpinning the method called Model Driven Architecture. Following, in Chapter 5 a domain model for smart legal contracts is presented. The chapter demonstrates how the contents of a legal contract could be captured in a model using a motivational example. Chapter 6 is devoted to describing the models that can be employed to write smart contracts. The chapter presents a platform specific model for the Ethereum and Hyperledger Fabric blockchain platforms. A platform agnostic model for blockchain technology is thereafter presented that captures the commonalities between these platforms. Chapter 7 discusses how the main research question is addressed. Derived from the insights of the discussion some opportunities for future research are discussed. Finally, Chapter 8 concludes the dissertation

    RobotChain: Artificial Intelligence on a Blockchain using Tezos Technology

    Get PDF
    Blockchain technology is not only growing everyday at a fast-passed rhythm, but it is also a disruptive technology that has changed how we look at financial transactions. By providing a way to trust an unknown network and by allowing us to conduct transactions without the need for a central authority, blockchain has grown exponentially. Moreover, blockchain also provides decentralization of the data, immutability, accessibility, non-repudiation and irreversibility properties that makes this technology a must in many industries. But, even thought blockchain provides interesting properties, it has not been extensively used outside the financial scope. Similarly, robots have been increasingly used in factories to automate tasks that range from picking objects, to transporting them and also to work collaboratively with humans to perform complex tasks. It is important to enforce that robots act between legal and moral boundaries and that their events and data are securely stored and auditable. This rarely happens, as robots are programmed to do a specific task without certainty that that task will always be performed correctly and their data is either locally stored, without security measures, or disregarded. This means that the data, especially logs, can be altered, which means that robots and manufacturers can be accused of problems that they did not cause. Henceforth, in this work, we sought to integrate blockchain with robotics with the goal to provide enhanced security to robots, to the data and to leverage artificial intelligence algorithms. By doing an extensive overview of the methods that integrate blockchain and artificial intelligence or robotics, we found that this is a growing field but there is a lack of proposals that try to improve robotic systems by using blockchain. It was also clear that most of the existing proposals that integrate artificial intelligence and blockchain, are focused on building marketplaces and only use the latter to storage transactions. So, in this document, we proposed three different methods that use blockchain to solve different problems associated with robots. The first one is a method to securely store robot logs in a blockchain by using smart-contracts as storage and automatically detect when anomalies occur in a robot by using the data contained in the blockchain and a smart-contract. By using smart-contracts, it is assured that the data is secure and immutable as long as the blockchain has enough peers to participate in the consensus process. The second method goes beyond registering events to also register information about external sensors, like a camera, and by using smart-contracts to allow Oracles to interact with the blockchain, it was possible to leverage image analysis algorithms that can detect the presence of material to be picked. This information is then inserted into a smart-contract that automatically defines the movement that a robot should have, regarding the number of materials present to be picked. The third proposal is a method that uses blockchain to store information about the robots and the images derived from a Kinect. This information is then used by Oracles that check if there is any person located inside a robot workspace. If there is any, this information is stored and different Oracles try to identify the person. Then, a smart-contract acts appropriately by changing or even stopping the robot depending on the identity of the person and if the person is located inside the warning or the critical zone surrounding the robot. With this work, we show how blockchain can be used in robotic environments and how it can beneficial in contexts where multi-party cooperation, security, and decentralization of the data is essential. We also show how Oracles can interact with the blockchain and distributively cooperate to leverage artificial intelligence algorithms to perform analysis in the data that allow us to detect robotic anomalies, material in images and the presence of people. We also show that smart-contracts can be used to perform more tasks than just serve the purpose of automatically do monetary transactions. The proposed architectures are modular and can be used in multiple contexts such as in manufacturing, network control, robot control, and others since they are easy to integrate, adapt, maintain and extend to new domains. We expect that the intersection of blockchain and robotics will shape part of the future of robotics once blockchain is more widely used and easy to integrate. This integration will be very prominent in tasks where robots need to behave under certain constraints, in swarm robotics due to the fact that blockchain offers global information and in factories because the actions undertaken by a robot can easily be extended to the rest of the robots by using smart-contracts.Hoje em dia é possível ver que a blockchain não está apenas a crescer a um ritmo exponencial, mas que é também uma tecnologia disruptiva que mudou a forma como trabalhamos com transações financeiras. Ao fornecer uma maneira eficiente de confiar numa rede desconhecida e de permitir realizar transações sem a necessidade de uma autoridade central, a blockchain cresceu rapidamente. Além disso, a blockchain fornece também descentralização de dados, imutabilidade, acessibilidade, não-repúdio e irreversibilidade, o que torna esta tecnologia indispensável em muitos setores. Mas, mesmo fornecendo propriedades interessantes, a blockchain não tem sido amplamente utilizada fora do âmbito financeiro. Da mesma forma, os robôs têm sido cada vez mais utilizados em fábricas para automatizar tarefas que vão desde pegar objetos, transportá-los e colaborar com humanos para realizar tarefas complexas. Porém, é importante impor que os robôs atuem entre certos limites legais e morais e que seus eventos e dados são armazenados com segurança e que estes possam ser auditáveis. O problema é que isso raramente acontece. Os robôs são programados para executar uma tarefa específica sem se ter total certeza de que essa tarefa irá ser executada sempre de maneira correta, e os seus dados são armazenados localmente, desconsiderando a segurança dos dados. Sendo que em muitas ocasiões, não existe qualquer segurança. Isso significa que os dados, especialmente os logs, podem ser alterados, o que pode resultar em que os robôs e, pela mesma linha de pensamento, os fabricantes, possam ser acusados de problemas que não causaram. Tendo isto em consideração, neste trabalho, procuramos integrar a blockchain com a robótica, com o objetivo de proporcionar maior segurança aos robôs e aos dados que geram e potenciar ainda a utilização de algoritmos de inteligência artificial. Fazendo uma visão abrangente dos métodos que propõem integrar a blockchain e inteligência artificial ou robótica, descobrimos que este é um campo em crescimento, mas que há uma falta de propostas que tentem melhorar os sistemas robóticos utilizando a blockchain. Ficou também claro que a maioria das propostas existentes que integram inteligência artificial e blockchain estão focadas na construção de marketplaces e só utilizam a blockchain para armazenar a informação sobre as transações que foram executadas. Assim, neste documento, propomos três métodos que utilizam a blockchain para resolver diferentes problemas associados a robôs. O primeiro é um método para armazenar, com segurança, logs de robôs dentro de uma blockchain, utilizando para isso smart-contracts como armazenamento. Neste método foi também proposta uma maneira de detetar anomalias em robôs automaticamente, utilizando para isso os dados contidos na blockchain e smart-contracts para definir a lógica do algoritmo. Ao utilizar smart-contracts, é garantido que os dados são seguros e imutáveis, desde que a blockchain contenha nós suficientes a participar no algoritmo de consenso. O segundo método vai além de registar eventos, para registar também informações sobre sensores externos, como uma câmara, e utilizando smart-contracts para permitir que Óraculos interajam com a blockchain, foi possível utilizar algoritmos de análise de imagens, que podem detetar a presença de material para ser recolhido. Esta informação é então inserida num smart-contract que define automaticamente o movimento que um robô deve ter, tendo em consideração a quantidade de material à espera para ser recolhida. A terceira proposta é um método que utiliza a blockchain para armazenar informações sobre robôs, e imagens provenientes de uma Kinect. Esta informação é então utilizada por Óraculos que verificam se existe alguma pessoa dentro do um espaço de trabalho de um robô. Se existir alguém, essa informação é armazenada e diferentes Óraculos tentam identificar a pessoa. No fim, um smart-contract age apropriadamente, mudando ou até mesmo parando o robô, dependendo da identidade da Com este trabalho, mostramos como a blockchain pode ser utilizada em ambientes onde existam robôs e como esta pode ser benéfica em contextos onde a cooperação entre várias entidades, a segurança e a descentralização dos dados são essenciais. Mostramos também como Óraculos podem interagir com a blockchain e cooperar de forma distribuída, para alavancar algoritmos de inteligência artificial de forma a realizar análises nos dados, o que nos permite detetar anomalias robóticas, material para ser recolhido e a presença de pessoas em imagens. Mostramos também que os smart-contracts podem ser utilizados para executar mais tarefas do que servir o propósito de fazer transações monetárias de forma automática. As arquiteturas propostas neste trabalho são modulares e podem ser utilizadas em vários contextos, como no fabrico de peças, controle de robô e outras. Devido ao facto de que as arquiteturas propostas, são fáceis de integrar, adaptar, manter e estender a novos domínios. A nossa opinião é que a interseção entre a blockchain e a robótica irá moldar parte do futuro da robótica moderna assim que a blockchain seja mais utilizada e fácil de integrar em sistemas robóticos. Esta integração será muito proeminente em tarefas onde os robôs precisam de se comportar sob certas restrições, em enxames de robôs, devido ao fato de que a blockchain fornece informação global sobre o estado da rede, e também em fábricas, porque as ações realizadas por um robô podem ser facilmente estendidas ao resto dos robôs, e porque fornece um mecanismo extra de segurança aos dados e a todas as ações que são efetuadas com ajuda de smart-contracts

    Trade-offs between Distributed Ledger Technology Characteristics

    Get PDF
    When developing peer-to-peer applications on distributed ledger technology (DLT), a crucial decision is the selection of a suitable DLT design (e.g., Ethereum), because it is hard to change the underlying DLT design post hoc. To facilitate the selection of suitable DLT designs, we review DLT characteristics and identify trade-offs between them. Furthermore, we assess how DLT designs account for these trade-offs and we develop archetypes for DLT designs that cater to specific requirements of applications on DLT. The main purpose of our article is to introduce scientific and practical audiences to the intricacies of DLT designs and to support development of viable applications on DLT

    An Explorative Dive into Decision Rights and Governance of Blockchain: A Literature Review and Empirical Study

    Get PDF
    Background: Blockchain technology and accompanying programmed protocols (smart contracts) offer disruptive opportunities for businesses, public institutions, society, and its citizens. However, blockchain is a relatively young research area: the number of publications available regarding blockchain did not begin to rise significantly until 2012, and certain fields of the blockchain domain remain to be explored. A similar situation exists with research into the governance of blockchain solutions focusing on decision rights: the limited number of theoretical and empirical contributions hinders the proper adoption of governance mechanisms in practice. Method: A mixed-method approach was conducted in which 1) a structured literature review, 2) semi-structured interviews, and 3) a focus group discussion were utilized to determine the current situation regarding decision rights in the context of blockchain governance. Results: The structured literature review resulted in a total of 23 relevant contributions. Those contributions were consolidated to serve as input for a total of twelve semi-structured interviews, and for a focus group session with five participants, who were not part of the interviewee pool. Using that approach, an overview of the concepts, relationships and mechanisms pertinent to decision rights was composed. Conclusions: Considered together, the results show that decision rights are often overlooked at the start of a blockchain project, where technical considerations are dominant in the discussion with stakeholders. However, research also points out that the longer it takes to address decision rights in a blockchain consortium, the more complex and costly it becomes to introduce governance mechanisms at a later stage. Another important conclusion is that consensus is currently lacking as to what constitutes blockchain governance and what part decision rights play in governance processes, in both theoretical and practical terms
    corecore