

Tilburg University

From legal contracts to smart contracts and back again: Towards an automated
approach
Butijn, Bert-Jan

DOI:
10.26116/d6h4-7r79

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Butijn, B-J. (2022). From legal contracts to smart contracts and back again: Towards an automated approach.
CentER, Center for Economic Research. https://doi.org/10.26116/d6h4-7r79

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 01. Nov. 2022

https://doi.org/10.26116/d6h4-7r79
https://research.tilburguniversity.edu/en/publications/cb0ba26e-6644-481d-b11c-9c00b8c5768d
https://doi.org/10.26116/d6h4-7r79

ISBN: 978 905668 687 1
DOI: 10.26116/d6h4-7r79

N
R

. 6
8

5
Fro

m
 Leg

al C
o

n
tracts to

 Sm
art C

o
n

tracts an
d

 B
ack A

g
ain

: A
n

 A
u

to
m

ated
 A

p
p

ro
ach

B
ert-Jan

 B
u

tijn

From Legal Contracts to
Smart Contracts and Back Again:

An Automated Approach

Dissertation SeriesTILBURG SCHOOL OF ECONOMICS
AND MANAGEMENT

B E RT - J A N B U T I J N

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 1PDF page: 1PDF page: 1PDF page: 1

From Legal Contracts to Smart Contracts and
Back Again: An Automated Approach

Proefschrift ter verkrijging van de graad van doctor aan Tilburg University op gezag van derector magnificus, prof. dr. W.B.H.J. van de Donk, in het openbaar te verdedigen tenoverstaan van een door het college voor promoties aangewezen commissie in de Aula vande Universiteit op vrijdag 23 september 2022 om 13.30 uur
door

Berend Johannis Butijn
geboren op 26 augustus 1989 te Leeuwarden.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 2PDF page: 2PDF page: 2PDF page: 2

Promotores:prof. dr. W.J.A.M. van den Heuvel Tilburg University & JADSprof. dr. G.M. Duijsters Tilburg University
Copromotor:dr. ir. D.A. Tamburri Eindhoven University of Technology & JADS
Leden promotiecommissie:prof. dr. S. Tai Technische Universität Berlinprof. dr. ir. W. van der Valk Tilburg Universityprof. dr. E. van Heck Erasmus University Rotterdamprof. dr. F. Lumineau HKU Business Schoolprof. dr. M. Mecella Sapienza University of Rome

©Berend Johannis Butijn, TheNetherlands. All rights reserved. No parts of this thesismay bereproduced, stored in a retrieval system or transmitted in any form or by any means withoutpermission of the author. Alle rechten voorbehouden. Niets uit deze uitgave mag wordenvermenigvuldigd, in enige vormof op enigewijze, zonder voorafgaande schriftelijke toestem-ming van de auteur.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 3PDF page: 3PDF page: 3PDF page: 3

i

“For a man to conquer himself is the first and noblest of all victories.”

– Plato

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 4PDF page: 4PDF page: 4PDF page: 4

ii

Abstract
Over the past decade, blockchain technology, a decentralized alternative to the traditionalcentralized (financial) transaction system, has gained tremendous popularity across the globeand has sparked the revival of smart contracts by providing a platform to support their de-ployment and execution. Central to the original idea of smart contracts is that every com-putable clause of a contract is translated into a computer program, and letting the programdecide what happens during its life span. The term smart legal contract has been coined todescribe smart contracts that aim to capture legally binding agreements between parties.
With some exceptions, works on smart legal contracts assume the smart contract code isthe contract. This approach raises the problem, because in most countries contracting par-ties are required by law to understand the contract. Besides this problem, the aim of letting"smart" legal contracts self-enforce the terms and conditions of a legal contracts introducesa host of additional challenges. Recent efforts have sought to address these challenges; how-ever, they only cater for the deployment of smart contracts for a specific platform. Given therapid developments in the field of blockchain and smart contracts and the lack of a dominantblockchain platform a platform independent approach is required.
The primary purpose of this research is to develop an understanding of what method wouldfacilitate the creation of smart legal contracts that constitute a legally binding contract andthat can (partially) self-enforce their terms and conditions within that contract, regardless ofthe blockchain platform. Blockchain technology provides the infrastructure to store smartcontracts and execute transactions. It is therefore crucial to create an understanding of theinner workings this blockchain technology. The extant literature on BCT reviewed in thisdissertation to establish a definition of BCT using a FCA, to delineate the architecture of BCT,point out challenges and characteristics that the technology faces, and provide a roadmapfor future research. Another chapter provides insights into the relation between blockchaintechnology and smart contracts. In this chapter a motivational example, further fleshedout by a case study exemplifies this relation and demonstrates how smart contracts can beemployed for business transactions.
In this dissertation a method is presented based on the Model Driven Architecture (MDA)philosophy to (semi) automatically draft smart legal contracts. In line with the MDA phi-losophy this research presents a domain ontology that facilitates the stipulation of domainspecific requirements. The concepts for the domain ontology were identified by reviewing19 works from the fields of legal requirements engineering, MAS, and e-contracts and con-ducting a qualitative content analysis. The use of smart legal contracts introduces severalproblems. Another review was performed on 29 papers to identify these problems. Find-ings suggest that the identified problems are coupled to distinct parts of a smart contracts’life-cycle and concepts in the domain ontology.
To model smart contracts, a platform specific model (PSM) for the Ethereum platform, andanother for the Hyperledger platform are presented. A representation of the concepts re-quired to model smart contracts for both platforms are portrayed in a platform independentmodel (PIM) that facilitates cross platform usage. Finally, to enable the translation betweenthe models a mapping between the concepts in the domain model and PIM is presented.The models enhance the academic understanding of the smart contract artifact, and its im-plementation into legal practice.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 5PDF page: 5PDF page: 5PDF page: 5

iii

Acknowledgements
The finalization of this dissertation marks the end of my period as a Ph.D. student at theJheronimus Academy of Data Science and Tilburg University. My journey as a Ph.D. stu-dent would have never commenced without the encouragement and support of Prof. E.W.Berghout for which I would like to express my thanks. During my time as Ph.D. student Igot the opportunity to further develop my programming and research skills while enhancingmy knowledge on blockchain technology, and IT in general. For this opportunity to developmyself as a person I feel greatly privileged and deeply thankful. The last years have not onlybeen exciting, but also challenging at times. I am thankful for all the support that I receivedduring the research.
First, I would like to express my sincere gratitude to my promotor Prof. W.J.A.M. van denHeuvel. Prof. van den Heuvels’ efforts made it possible for me to become a Ph.D. studentand for that I owe him great thanks. Furthermore, Prof. van den Heuvel has supportedme on both methodological and non-methodological matters, for which I am grateful. Thebrainstorm sessions that Prof. van den Heuvel and myself engaged in helped to shape myresearch.
It is a genuine pleasure to express my deep gratitude to my second promotor Prof. G. Dui-jsters. I would like to thank Prof. Duijsters especially for conveying his enthusiasm for smartcontracts and blockchain technology in general, that have led to interesting conversationsabout the present and future of these promising technologies. His enthusiasm enhancedmy motivation when conducting my research and lifted my spirit when needed. WheneverI felt that my worked lacked the proper structure Prof. G. Duijsters provided invaluable in-sights and suggestions that aided in structuring my work.
I owe a deep sense of thanks and gratitude to my copromotor Dr. D.A. Tamburri. Conductingrelevant research following a rigorous method is a complex and difficult undertaking. Underthe expert guidance of Dr. Tamburri however, I always felt that it became far easier. Not in thelast place because I was in the fortunate position to tap into his great expertise on ModelDriven Architecture, software engineering, IT architecture in general, and methodologicalmatters. The review process of publishing your research paper can be tedious, and some-times it seems endless. This burden became significantly lessened because Dr. Tamburri hasa great sense of humor that he leveraged frequently to shine a more relaxed perspective onthe challenges at hand.
Besides my (co)promotores I would like these acknowledgements to thank the remainder ofmy thesis committee: Prof. Dr. Tai, Prof. Dr. van der Valk, Prof. Dr. van Heck, Prof. Dr. Lu-mineau and Prof. Dr. Mecella for their encouragement, insightful comments and challengingquestions. The comments and suggestions made by the thesis committee to revise parts ofthis dissertation have improved the quality of my dissertation, for which I am grateful.
At timeswriting your dissertation can be frustrating and lonely process. I never felt that I wasreally alone in my endeavor because I had the support of my friends and family. I would liketo especially thank my sisters for their discussions about this research, and my parents fortheir ongoing support in all things that I do throughout my life. Lastly, I would like to expressmy deepest thanks to Leontine who strongly supported me and provided me with so muchpersonal care while writing my thesis.
Bert-Jan ButijnJuly 20, 2022

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 6PDF page: 6PDF page: 6PDF page: 6

iv

Table of Contents

Abstract ii

Acknowledgements iii

1 Introduction 11.1 Introduction . 11.2 Motivation . 21.3 Problem Context . 31.3.1 Designing Legally Binding Smart Contracts 31.3.2 Designing Legal Contract Enforcing Smart Contracts 51.4 Methods to Use Smart Legal Contracts as Alternative to Legal Contracts . . 61.5 Research Purpose and Requirements . 91.5.1 Research Purpose and Question 91.5.2 Requirements . 101.6 Outline of the Dissertation . 11
2 Blockchain Technology 142.1 Introduction . 142.1.1 Related Work . 152.2 Background and Basic Notions . 162.2.1 Historical Setting . 162.2.2 Terms and Definitions . 162.3 Research Methodology . 182.3.1 Data Preparation Approach . 182.3.2 Search strategy . 192.3.3 Data Analysis . 212.3.4 Inter-Rater Reliability Assessment 222.3.5 Sample Selection Results . 222.4 A Systematic Definition of Blockchain Technology 252.5 Blockchain Technology: Architecture Elements 262.5.1 Logical View . 272.5.2 Development View . 272.5.3 Process View . 272.5.4 Physical View . 292.6 Blockchain Use-Case View: Main Usage Scenarios 302.7 Blockchain Technology: Main Architecture Properties 302.8 Blockchain Technology: Challenges and Outlook 312.8.1 Latency . 312.8.2 Throughput . 322.8.3 Data Storage . 322.8.4 Data Privacy . 322.8.5 Governance . 332.8.6 Usability . 33

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 7PDF page: 7PDF page: 7PDF page: 7

v
2.9 Discussion . 342.9.1 A Grounded-Theory of Blockchain Technology 342.9.2 Highlights and Observations . 392.10 Research Gaps and Roadmap . 432.10.1 Consensus Protocols . 432.10.2 Data Storage and Privacy . 442.10.3 Smart Contracts . 442.10.4 Usability . 442.11 Limitations and Threats to Validity . 452.12 Conclusions . 46

3 Smart contracts 473.1 Introduction . 473.2 Motivating Example . 483.3 Lifecycle of Smart Contract Driven Business Transactions 493.4 A Reference Architecture for Smart Contract Driven Business Transactions . 503.5 Motivating Example with Smart Contracts 523.5.1 Case Study Design . 533.5.2 Ethereum Solidity Smart Contracts 543.6 Discussion . 553.7 Conclusion . 56
4 Research Methodology 584.1 Introduction . 584.2 Research Paradigm . 594.3 Model Driven Architecture . 604.3.1 Modeling Levels . 614.3.2 Modeling Languages . 624.3.3 Mappings and Transformations . 644.3.4 MDA: Benefits and Considerations 664.4 Research Design . 674.4.1 Rationale for the Use of MDA . 674.4.2 Research Overview . 684.5 Discussion . 694.6 Conclusion . 70
5 Domain Ontology For Smart Legal Contracts 725.1 Introduction . 725.2 Related Work: Modeling Smart Legal Contracts 735.3 Digitizing Legal Contracts . 745.4 Research Methodology . 755.4.1 Data Gathering . 765.4.2 Data Analysis . 765.4.3 Constructing the ontology . 775.5 Smart Contracts: Legal Challenges . 775.5.1 Drafting and Coding . 785.5.2 Testing . 795.5.3 Deployment . 795.5.4 Signing . 795.5.5 Monitoring and Execution . 805.5.6 Dispute Resolution and Termination 80

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 8PDF page: 8PDF page: 8PDF page: 8

vi
5.6 Motivating Example . 815.7 A Domain Ontology For Smart Legal Contracts 825.7.1 Asset and Party . 825.7.2 Definition . 835.7.3 Clause . 845.7.4 Action . 875.8 Evaluation: Instantiating the Domain Ontology 935.9 Discussion . 1005.10 Conclusion . 102

6 Towards a Unified Platform Independent Model for Smart Contracts 1046.1 Introduction . 1046.2 Related Work: Model Driven Smart Contract Development 1056.3 Research Methodology . 1066.3.1 Phase 1: Preparation . 1076.3.2 Phase 2: Anchoring . 1076.3.3 Phase 3: Iterative Improvement 1086.4 Platform Specific Perspectives On Smart Contract Platforms 1106.4.1 A Platform Specific Perspective of Ethereum 1106.4.2 A Platform Specific perspective of Hyperledger Fabric blockchains . 1156.5 Towards a Platform Independent Metamodel for Smart Contracts 1216.5.1 Finding Common Ground . 1216.5.2 A Platform Independent Model for Smart Contracts 1236.5.3 Transformation Rules . 1266.6 Smart Contract Generation . 1286.6.1 Validation Platform Independent Model 1286.6.2 Ethereum PSM Creation and Code Generation 1306.6.3 Hyperledger Fabric PSM Creation and Code Generation 1336.7 Discussion . 1356.8 Conclusion . 137
7 Discussion 1387.1 Introduction . 1387.2 Design Principles and Lessons Learned . 1387.2.1 A Unified Domain Ontology for Smart Legal Contracts 1397.2.2 Representation of legal contracts 1427.2.3 Enforcement with smart legal contracts 1447.2.4 Achieving Complete Traceability 1477.2.5 Development of Platform Agnostic Smart Contracts 1477.3 Limitations and Threats to Validity . 1487.3.1 Internal Validity . 1487.3.2 Construct Validity . 1497.3.3 External validity . 1497.4 A Research Agenda for Smart Legal Contracts 1507.4.1 Legal Research Opportunities . 1507.4.2 Technical Research Opportunities 1517.4.3 Business Research Opportunities 1527.5 Conclusion . 153
8 Conclusion 1558.1 Introduction . 155

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 9PDF page: 9PDF page: 9PDF page: 9

vii
8.2 Overview of the Research and Main Observations 1558.3 Theoretical Contributions . 1578.4 Practical Contributions and Implications 159

A Research Methodology Blockchain Technology 161A.1 Formal Concept Analysis Methodology . 161A.2 Grounded Theory Analysis Method . 161A.3 Inter-rater process . 162
B A 4+1 Architectural View of Blockchain Technology 164B.1 A 4+1 View of Blockchain Technology . 164B.1.1 Logical View . 164B.1.2 Development View . 166B.1.3 Process view . 168B.1.4 Physical View . 174
C Example lease agreement 177

D Instantiation of Motivating Example 182

E Questionnaire and initial concepts Delphi method 193E.1 Intro . 193E.2 Instructions . 193
F Enum Types Used in Models 195F.1 Enums used for Ethereum smart contract metamodel 195F.2 Enums used for Hyperledger smart contract metamodel 196F.3 Enums used for platform independent model 196
G Transformation Rules for Models 197G.1 Transformation Rules From PIM to Ethereum PSM 197G.2 Transformation Rules From PIM to Hyperledger PSM 202G.3 Constraints for the Platform Independent Smart Contract Model 210
Bibliography 215

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 10PDF page: 10PDF page: 10PDF page: 10

viii

List of Figures

1.1 The smart legal contract life cycle . 51.2 Spectrum of smart legal contracts. Adopted from: [186] 61.3 Outline and structure of the dissertation 13
2.1 Research methodology, an outline. 192.2 Sample Search and selection strategy, a process model. 202.3 Sample results; Grey and Scientific Literature across primary studies. 232.4 Sample results; Publication Venues per Year. 232.5 Sample results; Topics frequency analysis. 242.6 Trends in BCT publication topics. 252.7 Distribution topics scientific and grey literature. 262.8 Frequency of top 10 most recurring codes. 342.9 BCT software elements and properties, an overview. 352.10 Consensus protocols related to challenges, in chronological order from leftto right. 362.11 Trends in BCT challenges from 2008 to 2019. 392.12 Decision-making model for blockchain networks; adapted from: [272]. . . . 43
3.1 Supply chain example, Adopted from [265] 483.2 Life cycle of smart contract driven business transactions 493.3 A reference architecture for smart contract driven business transactions . . 513.4 Motivating example with smart contracts 533.5 Sequence diagram illustrating part of a business transaction 54
4.1 Design Science Research Model (DSRM) 604.2 Use of different models within MDA. Inspired by [233] 614.3 Hierarchy of metamodels and languages. Based on [144]. 624.4 Model transformations in MDA. Based on: [104] 644.5 Research method in relation to stakeholders and requirements 684.6 Overview overall research approach . 69
5.1 Composition of a contract . 825.2 Model elements related to a definition . 835.3 Model elements related to a clause . 845.4 Model elements related to an equations 855.5 Relation between actions, resources, agents and terms. 885.6 Contract level concepts displayed in Contract Custodian 995.7 Action level concepts displayed in Contract Custodian 100
6.1 Delphi methodology. Adopted from [114] 1076.2 A model of Ethereum blockchain architecture 1106.3 A metamodel of Ethereum smart contracts 1136.4 A model of the Hyperledger Fabric blockchain architecture 1166.5 An overview of resources for Hyperledger Fabric 118

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 11PDF page: 11PDF page: 11PDF page: 11

ix
6.6 A Metamodel of Hyperledger Fabric smart contracts 1196.7 A platform independent model for smart contracts 1236.8 Algorithmic steps for Smart Contract generation 1286.9 Activities of algorithm to create Ethereum smart contracts 1306.10 Activities of algorithm to create Hyperledger smart contracts 134
F.1 Enum types used for Ethereum smart contract metamodel 195F.2 Enum types used for Hyperledger Fabric smart contract metamodel 196F.3 Enum types used for PIM smart contract metamodel 196

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 12PDF page: 12PDF page: 12PDF page: 12

x

List of Tables

2.1 Quality criteria grey literature. 212.2 A complete reference over consensus protocols; instances are described alongtheir characteristics, an implementation example and the source for argu-ment of the claims. 40
5.1 Overview of Legal Challenges Related to Smart Contracts 785.2 Liabilities and privileges by party role. 90
6.1 Descriptive statistics respondents . 109

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 13PDF page: 13PDF page: 13PDF page: 13

xi

List of Abbreviations

BCT Block Chain Technology . 1
MDA Model Driven Architecture . 2
EDI Electronic Data Interchange . 3
P2P peer - to - peer . 14
DLT distributed ledger technology 14
IoT Internet of Things . 15
MAS Multi - Agent Systems . 15
POW Proof - of -Work . 17
PoS Proof - of - Stake . 17
DPoS Delegated - Proof - of - Stake . 17
PoET Proof - of - Elapsed - Time . 17
ZKP Zero Knowledge Proofs . 17
PBFT Practical Byzantine Fault Tolerance 18
MLR Multivocal Literature Review . 18
GL Grey Literature . 18
SL scientific literature . 19
FCA Formal Concept Analysis . 21
GT Grounded Theory . 22
DApps Decentralized Applications . 27
GHOST Greedy Heaviest Observed Subtree 31
GDPR General Data Protection Regulation 33
QoS Quality of Service . 50
SLAs Service Level Agreements . 50
SOA Service - Oriented Architecture 50
DSR Design Science Research . 58
DSRM Design Science ResearchModel 59
CIM Computation IndependentModel 61
PIM Platform IndependentModel 61
PSM Platform SpecificModel . 61
MOF Meta Object Facility . 62
UML UniversalModeling Language 62
DSL Domain - Specific Language . 63
BPMN Business ProcessModel Notation 63
OCL Object Constraint Language . 63
ATL Atlas Transformation Language 64
e-contracts electronic contracts . 74
EOA Externally Owned Accounts . 111
NFT Non - Fungible Token . 111
EVM Ethereum VirtualMachine . 111
CA Certificate Authority . 116

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 14PDF page: 14PDF page: 14PDF page: 14

xii

Dedicated to my family and friends for supporting me, and God. Lord
knows how hard I needed Him.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 15PDF page: 15PDF page: 15PDF page: 15

1

Chapter 1

Introduction

1.1 Introduction

Smart contracts, programs with the potential to automate transactions and beyond, havegained tremendous popularity over the past years. Central to the original idea by Nick Sz-abo [245] of smart contracts is that every computable clause of a contract or agreement isencoded into arbitrary computer logic with the aim of coding this logic into computer pro-grams, and let the program decide and execute what happens during the contract’s life span.These principles constitute automated and self-enforcing agreements expressed in code. Ini-tially however, the lack of means to digitally exchange assets in safe manner hampered thewidespread adoption of smart contracts. The concept of smart contracts saw its revival withthe introduction of Block Chain Technology (BCT) [83].
Originally designed for keeping a financial ledger to record transactions, the blockchain para-digm offers the potential to be employed as a technology to underpin smart contracts. Thepopularity of BCT can mainly be attributed to the fact that it removes the reliance on a cen-tralized authority to facilitate or mediate transactions in any way [265]. BCT is a specific formof distributed ledger technology where the ledger is deployed on a Peer-to-Peer network onwhich transaction data is replicated, shared, and synchronously distributed. Transactionsare processed following a strict consensus protocol that is operated by specific nodes toensure the validity of requested transactions, and to synchronize all shared copies of thedistributed ledger. Where BCT complements smart contracts is that the former enables se-cure peer-to-peer transactions that are recorded on a tamper proof ledger shared which isauditable to parties concerned with the smart contract [274]. From blockchain technologysmart contracts also inherent some important characteristics; Since the smart contracts canbe stored on a blockchain they become immutable meaning that their contents can not bechanged once deployed in order to guarantee that parties cannot tamper with the code.The outcomes of the contract are required to be deterministic because every node on theblockchain network needs to be able to replicate the execution of the smart contract andhave the same outcome [164].
Smart contract encompasses the terms "smart" and "contract". The term "smart" is derivedfrom the fact that because a smart contract contains pre-defined programming logic it canautomatically execute the terms stipulated in the contract [83]. Luu et al. [164] and Cruz, Kaji,andNaoto [63] argue that as such a smart contract can be regarded as an autonomous agent.The second term "contract" suggests that a smart contract will self-enforce the obligationsand exercise the rights that are stipulated in the contract [58], which may include seizingcontrol of assets that are stored on a shared ledger, or other means to enforce contractualagreements [83]. Although the term smart contracts includes the word "contract" that doesnot necessarily imply that they are legally enforceable [56]. The term smart legal contract

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 16PDF page: 16PDF page: 16PDF page: 16

Chapter 1. Introduction 2
has been coined to describe an application of a smart contract that constitutes to a legallybinding contract that can (partially) self-enforce the terms and conditions stipulated withinthat contract.
This research seeks to investigate what method would allow the creation of smart legalcontracts that constitute to a legally binding contract and that can (partially) self-enforcetheir terms and conditions within that contract, regardless of the blockchain platform. Themethod is developed following the Model Driven Architecture (MDA) philosophy for soft-ware design which suits the purpose of this research. In line with the MDA philosophy thisresearch presents a domain ontology that facilitates the stipulation of domain specific re-quirements. A platform independent model for blockchain smart contracts, and platformspecific models to instantiate smart contracts on a Hyperlegder blockchain or the Ethereumplatform. Combined, these models can be employed to develop smart legal contracts.
In the remainder of this chapterwewill firstmotivate the importance of smart legal contractsto society and why the theoretical development of the concept is warranted. Thereafter inSection 1.3 we will discuss the legal considerations that using smart contracts to substitutelegal contracts introduces. In the next section (Section 1.4), recent endeavours to addressthese challenges will be presented. We conclude the chapter by explaining the purpose ofthe research and formulating the coherent research question in Section 1.5. Lastly, an outlineof the other chapters in this dissertation is provided in Section 1.6.

1.2 Motivation

Nowadays between $850 and $930 billion is spend online in the U.S. alone in commercialtransactions, and this number is only increasing [256]. Coincidental with this trend, con-sumers and organizations increasingly transact in a digital manner. Unfortunately, with anyeconomic exchange consumers and organizations incur transaction costs. Transaction costsare costs related to search, measurement, bargaining, and enforcement of an economic ex-change. Traditionally, legal contracts are used to govern opportunistic behaviour or lack ofadaptation in order to minimize transaction costs [224]. On a global marketplace where thetransactions and agreements are made in an online setting traditional contracts no longersuffice. Acknowledging these problems, various countries have adopted laws that allow par-ties to engage in digital contracting [92].
Smart contracts are able to perform transactions without a trusted third party. Moreover, re-searchers [285] and institutions [100] argue that smart contracts could greatly reduce trans-action costs by lowering enforcement costs; Smart contracts reduce the chance of breachthrough self-execution and immutability, thereby reducing the need for expensive third-party monitoring or litigation. In concert, automated transaction execution by the smartcontract reduces costs and increases the pace of monitoring and verification. Lastly, theuse of BCT as underpinning technology for smart contracts provides all parties involved inthe agreement with a transparent record of bilateral facts and their evolution, allowing formonitoring without requiring costly replication.
With the increase of digitization and globalization, the call within society for safe and soundmanners to engage in electronic contracting grows ever stronger. Smart contracts can bean invaluable technology to address this need. However, at the moment of writing mostsmart contracts cannot be considered as contracts in the true sense of the word. Rather,they can be perceived as automated escrow handlers that capture simple commitments ofparties [186]. This impedes smart contracts from reaching their true potential in enablingmore sophisticated, safe, logic based, and legally binding transactions.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 17PDF page: 17PDF page: 17PDF page: 17

Chapter 1. Introduction 3
The desire to employ digital means for e-commerce is not new. Already in the 1960’s theElectronic Data Interchange (EDI) method was pioneered. The EDI method caters for the ex-change of structured messages between firms in a format that can be processed by IT. How-ever, organizations averted from adopting EDI due to high installation costs, lack of a unifiedstandard leading to incompatible protocols, and other technological limitations. With thedawn of the internet organizations where provided with an affordable, unified, and flexi-ble manner to exchange messages or other information [54]. It is against this backdrop ofdigital transformation that Nick Szabo [245] proposed the concept of smart contracts as amethod to digitize legal contracts so that IT could process the execution and monitoring oflegal agreements. Initially smart contracts enjoyed little success due to a lack of a platformto store the contract and exchange assets [83].
BCT is a promising technology to exchange value and store smart contracts. Moreover, thetechnology provides several attractive properties that smart contract inherit. Not surpris-ingly, nowadays a myriad of platforms exist that share the commonality of employing BCT tomake transactions and store smart contracts. On the flip side, smart contracts also inheritseveral technological constraints from blockchain that impede the use of smart contracts tosubstitute legal contracts. Furthermore, the diversity of BCT platforms has led to a multi-form implementation of the smart contract concept. Potential users of smart legal contractswould therefore be required to inquire into, and develop smart contracts for each platform,making it a costly endeavour. Moreover, the current lack of understanding among scholarsof commonalities between platforms hampers the further scientific development of smartcontracts.
BCT and smart contracts will have a radical impact on how organizations in the future willgovern their relations [161], and are touted as a revolution. This research is warranted as anunderstanding the needs to be created on these technologies an contractual practice cantechnically conflate, and the limitations thereof. With organizations becoming evermorereliant on digital commerce for their revenue this need becomes even more urgent.

1.3 Problem Context

A smart legal contract is a specific application of a blockchain based smart contract thatconstitutes a legally binding contract and that can (partially) self-enforce the terms and con-ditions stipulated within that contract. This means that the smart contract is used within thecontext of the legal domain, andmore specifically legal contracts. Designing a smart contractin a legally binding manner while enabling them to self-enforce the terms and conditions inthe contract introduces several challenges. First we will discuss what types of legal contractsare there and what makes them legally binding as it likely that smart contracts are requiredto adhere to the same principles [9, 16, 207]. Thereafter we will discuss what additionalchallenges arise when letting smart contracts self-enforce a contract.
1.3.1 Designing Legally Binding Smart Contracts

The first notion of contracts can trace it’s origins back to classical Rome [207]. There areseveral descriptions of what a legal contract is and how it can be defined1, and there is nouniversally accepted definition. For reasons of popularity and clarity we adopt the definition
1The American Law Institute’s Restatement Second of the Law of Contracts defines a contract as "a contract isa promise or a set of promises for the breach of which the law gives a remedy, or the performance of whichthe law in someway recognizes as a duty." Reinecke et al. [216] provide the following definition: "A contract is alegally enforceable agreement, in which two or more parties commit to certain obligations in return for certainrights."

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 18PDF page: 18PDF page: 18PDF page: 18

Chapter 1. Introduction 4
of legal contracts by Treitel [251]. Treitel defines a legal contract as: "an agreement givingrise to obligationswhich are enforced or recognized by law". These obligations arise from themutually agreed upon set of promises of performance that the parties have made towardsone another. Depending on the content of the contract, it may be characterized as bilateralor unilateral. When the contract is bilateral, the parties have mutually made a promise ora set of promises to each other. Unilateral contracts are rare instances of agreements wereone party makes a (set of) promises and the other parties do not.
Whether a legal contract is legally enforceable by law depends on if it is consistent withthe requirements of the law. Within the current legal frameworks a contract needs to meetcertain requirements to be legally binding. As de Filippi and Wright [66] note, even in caseswhere a smart contract might completely substitute a legal contract, these programs do notoperate in a legal vacuum. It is likely that smart contractswill need to satisfy the same criteria[9, 16, 207]. A smart contractwhich does notmeet these criteria, does not constitute a legallybinding contract, and therefore the contracting parties will not be able to legally enforce it’scontent. Considering that smart contracts might not be able to completely self-enforce allterms and conditions within a legal contract [214] this most likely will be required [170].
Although legal systems differ between countries, they show considerable common groundwith regard to the regulation of contracts and the requirements for a legal contract to be-come binding. The lion’s share of codifications (civil and common law) include the principleof freedom of contract, allowing parties to enter into a contract and determining its content.In general, to be legally binding a contract requires the elements of an offer by a party andthe acceptance of that offer by another party. Common law systems also require the ele-ment of consideration, meaning that something of value is offered by a party to the other[9, 16]. An offer is an expression by a party of willingness to contract on certain conditions,made with the intention that the offer is to be legally bound upon acceptance by anotherparty [251]. An important element of acceptance is that both parties entering into contract
understand the offer that is being accepted. Acceptance of the offer also needs to be com-municated by the accepting party. The communication about the acceptance can take placein several manners: Firstly, implicit when one of the parties conducts an action that impliesthe intention of a deal (e.g. asking a cab to drive somewhere). Secondly, there is the tacitmanner when there is a change to the general terms and conditions of a legal contract by aparty and no action is taken by another party within a given period. Finally, there is the ex-plicit manner where there is a written contract, electronic message or oral consent. Writtencontracts are colloquially referred to as a legal contract in everyday life. In this dissertation,the terms ’legal agreement’ and ’legal contract’ are used to refer to the terms and conditionsof the bilateral legal agreement between the parties as they are set down in writing in thebody of the written agreement.
Traditionally, setting down the terms of a legal contract in writing on behalf of clients is thetask of legal professionals (e.g. a lawyer). Legal professionals gather any terms and condi-tions that are relevant for the drafting of the legal contract by deliberating with the businessparty they represent. Programmers can use the terms and conditions defined within the le-gal contract as requirements to code a smart contract in a manner that reflects the intent ofthe contracting parties. Consequently, programmers become an important third stakeholderin a contracting process as they transform the legal requirements into code. However, mostlegal professionals will not be able to read code and thus verify whether the smart con-tract code reflects the intent of their clients. Conversely, most programmers will not havea full understanding of the legal domain and the concepts used therein. This lack of a com-
mon understanding about what concepts are used within the legal domain and how they aretranslated to code hampers the further use of smart contracts for the legal domain.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 19PDF page: 19PDF page: 19PDF page: 19

Chapter 1. Introduction 5
1.3.2 Designing Legal Contract Enforcing Smart Contracts

When a smart contract meets the requirements of offer, acceptance, and consideration itconstitutes a legally binding contract. However, as discussed, an important prerequisite isthat the parties are able to understandwhat the offermeans. It is unlikely that smart contractcode alone will be enough for parties entering into contract to understand the offer [64, 76,80, 90, 179]. Therefore, for this research we assume that a smart contract co-exists witha legal contract equivalent upon which it is based. The second aim of designing a smartcontract as a smart "legal" contract is that it can self-enforce the terms and conditions withinthat legal contract. This second aim introduces a host of additional challenges. A review ofthe literature reveals that there are 21 challenges to consider when aiming to let a smartcontract enforce the terms and conditions within a legal contracts. We will further expoundand clarify the results of this review in Chapter 5. Each of these challenges is related to adistinct phase of the life-cycle of a smart contract that will now first be briefly explained (seeFig. 1.1). The lifecycle presented here roughly coincideswith that presented byGovernatori etal. [96] with the exception of the negotiation and formation that we did not include becauseit is beyond the scope of this work. Besides this difference, we argue that there is also atesting and signing phase while we conjoined the dispute resolution and termination phasebecause our analysis shows that these phases have a strong relation.

Figure 1.1: The smart legal contract life cycle

In the drafting and coding phase the legal contract and its digital equivalent are "written" bythe contractual parties. A legal contract can be written first and thereafter a coded versionand vice versa. After the contract has been written in the next phase it needs to be deter-mined that the smart contract does what it is supposed to do and nothing more or less bytesting the code. In a next phase the compiled or coded version of the smart contract can bedeployed on the blockchain platform. Once the smart contract has been drafted, it can besigned by both parties to confirm their acceptance to the agreement. In the execution andmonitoring phase the smart contractmonitors the execution of the agreement by the partiesand undertakes action itself when stipulated to do so. When dispute resolution between theparties is required, the smart contract enters a new phase that may entail its termination.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 20PDF page: 20PDF page: 20PDF page: 20

Chapter 1. Introduction 6
Some efforts have been made to overcome these challenges that will be discussed in thesection hereafter.

1.4 Methods to Use Smart Legal Contracts as Alternative to Legal
Contracts

When Szabo [245] popularized the term smart contract in 1997 he defined it as: "a set ofpromises, specified in digital form, including protocols within which the parties perform onthese promises.". Nowadays smart contracts are predominantly used for business transac-tions other than legal agreements. Clearly, the present-day popular use of BCT based smartcontracts strongly deviates from what Nick Szabo envisioned the concept for, leading to apolysemous understanding of the concept. Since the revival of the concept other definitionshave been suggested (e.g by Clack, Bakshi, and Braine [58] and the Accord Project) that aremore aligned with the original idea as pioneered by Szabo. Hitherto, there is no definitionof smart contracts that has been universally accepted [16, 179, 236].
Despite the recent attempts to redefine smart contracts Stark [242] has argued that the cur-rent name smart contract is still imperfect, misleading, and outdated. He argues that theterm smart contract sometimes refers to a specific technology, whereas at times the termdescribes a manner of employing the technology to complement, or replace existing legalagreements. The problem therefore, he posits, is that a smart contract nowadays can beperceived from both a legal and a technical perspective but no distinction is made when theterm is used. Stark proposes the term "smart legal contract" to designate smart contractswith the specific purpose of complementing or substituting legal contracts. For this researchwe adopt the term smart legal contracts and define it as an application of a smart contractthat constitutes to a legally binding contract that can (partially) self-enforce the terms andconditions stipulated within that contract.
The term smart legal contracts can be regarded as an umbrella term for various approachesand initiatives with the shared aim of using smart contracts as an alternative to legal con-tracts. Indeed, there exists a wide spectrum of approaches to create smart legal contracts.In Figure 1.2 this spectrum is depicted. Hereafter each smart legal contract category will beexplained, and the works that fit into the respective category reviewed to delineate the fullrange of design patterns for smart legal contracts.

Figure 1.2: Spectrum of smart legal contracts. Adopted from: [186]

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 21PDF page: 21PDF page: 21PDF page: 21

Chapter 1. Introduction 7
Starting from the left of Figure 1.2 are coded smart legal contracts. Approaches to cater forsmart legal contracts that fall into this category are not coupled to a legal contract in naturallanguage. Parties using this type of smart contract regard the code as the contract [105]. Themore commonly known "normal" smart contracts would fit this approach to a smart legalcontract. Since there is no legal contract the code itself stipulates the contract between theparties. Although research on the topic of blockchain based smart contracts remains limited[5] capturing the rules and semantics stipulated in a traditional legal contract to automati-cally execute these using code is not a novelty. In most countries this would not be a viablesolution as parties are required to be able to understand the contract, which is often not thecase for coded contracts. To remedy this problem some researchers have introduced a do-main specific language (DSL) for smart legal contract development. He et al. [110] introducesSPECS a specification language for smart contracts that compiles to Solidity for Ethereumsmart contracts, and further extend the work to better cater for different asset types [286].Similarly, Wöhrer and Zdun [273] demonstrate the use of a domain specific language forsmart contract development. Although these methods provide invaluable efforts to easethe development process of smart contracts, the languages discussed only here only targetthe Solidity language and thus cannot be reused for other platforms. DSLs are commonlyused to capture and stipulate domain specific knowledge. However, it is still a programminglanguage that might be hard to understand for legal practitioners.
At the opposite end of the spectrum there are natural language smart legal contracts thatonly execute small pieces of a legal contract that concern payments. Contrary to coded con-tracts, natural language smart legal contracts are coupled to a legal contract. A prime ex-ample of this approach is that used for Ricardian contracts [99]. A Ricadian contract is anagreement model to capture the intentions of a contract before it is enacted. In a Ricardiancontract hashes are used to refer back and forth to (digital) documents and code. Becausea human readable legal contract is available the agreement between the parties can be red.The underlying legal documents can be accessed by the parties at any time as they are hash-stored on a blockchain. Using hashes the code of the Ricardian contract is coupled to clausesin the legal contract. It is important to note that for Ricardian contracts first a legal contract innatural language is written and thereafter the parts that can be automated are coded. A Ri-cardian contract also includes hidden signatures of the parties concerned with the contract.It is important to note that for these type of contracts automation is limited [186]. Only pay-ment instructions and those for signing of the (digital) documents are encoded. This scarifiesone of the attractive prospects of smart contracts; namely that the contracting process canbe automated.
In between these dichotomous types of smart contracts there are two other types of ap-proaches that can be regarded as a hybrid. A core feature of these approaches is that a
digital twin in the form of a smart contract co-exists with a legal contract. The first of theseapproaches is where a legal contract in natural language exists with a one-on-one duplicated
smart legal contract equivalent in code. In essence, for each clause in the legal contractthere is matching code that executes this clause and vice versa. The legal contract subsumesthe coded version of the contract. In other words, de jure the legal contract governs theagreements between the parties, de facto the coded version of the smart contract actuallyenforces the agreement. This has an important implication; if for any reason the techni-cal execution deviates from what the contractual parties agreed upon the legal contract isleading in resolving the issue at hand. Clearly, this needs to be known by the contractualparties in advance. Another, equally important ramification is that the legal contract is re-quired to be translated to a coded equivalent that needs to be an exact duplicate. Frantzand Nowostawski [82] present a mapping that they operationalize using a domain-specificlanguage in order to support the contractmodeling process. The statements are constructed

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 22PDF page: 22PDF page: 22PDF page: 22

Chapter 1. Introduction 8
from different components abbreviated as ADICO that include: Attributes - describing theactors’ attributes, Deontic – describing the nature of a statement as deontic logic, AIm – de-scribes the outcome that the statement regulates, Conditions – describing contextual con-ditions, Or else – describes the consequences of non-conformance. It remains unclear howexactly the ADICO concepts are translated to smart contract executable code. Furthermore,while an interesting approach to smart contract development an empirical evaluation of theproposed method is lacking.
Another example of a hybrid approach are split smart legal contractswhere non-human per-formance is encoded in code while other obligations are written in natural language. Thesetwo components work seemingly together. The split smart legal contract approach is mostlytemplate based; users fill in the required information in pre-defined templates to createsmart contracts and a paper version in natural language. Recently there have been severalattempts to design smart legal contract using this approach; In their whitepaper Norta et al.[190] introduce the Angrello framework for legal contracts that employs ontologies and tem-plates to create smart legal contracts. In two whitepapers Clack et al. [56, 58] suggest smartlegal contracts based on templates and outline their foundations. Rigorous (replicable) em-pirical verification and validation by testing these approaches is lacking however. There havenot only been scholarly attempts to design approaches that cater for smart legal contracts.Practitioners have also made notable efforts to bridge the gap between legal contracts andsmart contracts.
Monax2 and OpenLaw3 for instance, offers a method to deploy and manage smart legal con-tracts on the Ethereum blockchain. Markup language enables the visualization of the userdefined template inputs. The stipulation of the contracts in terms of possible action andso on remains limited. Moreover, models that underpin the smart legal contracts are notexplicit, making traceability between inputs and output difficult. The templates of Accord4have more relaxed templates that allow users to more freely stipulate clauses in code thatcan be deployed on a Hyperledger Fabric blockchain. However, this requires more codifiedinput from its users. Consequently, the business logic for the smart contract would need tobe coded by a developer in collaboration with a legal professional. Al Khalil et al. [3] arguethat therefore more attention should be drawn towards facilitating traditional developersof contracts, namely lawyers and other legal professionals. Despite the fact that the accordproject templates offersmore discretion when it comes to drawing contracts, users still needto use either predefined contracts or clauses. For some situations more fine-grained stipu-lation of actions might be required.
While these endeavors are invaluable to foster the widespread employment of smart con-tracts to substitute or complement traditional contracts between parties, some of their lim-itations should be mentioned: Firstly, with the exception of CommonAccord5 project, theaforementioned projects are exclusively based on either the Ethereum platform or the Hy-perledger platform. However, the concept of blockchain based smart contracts is still in itsinfancy as the field is rapidly developing. Because of this high volatility, this trend couldquickly shift towards another platform and programming language. The most obvious impli-cation of this shortcoming is thatmore rigorous, generalizable, and formalized approach thatis platform agnostic to create smart legal contracts is missing [2, 59, 217, 253, 288]. Havingto rewrite code for each platform is a time consuming and arduous process which greatlyhampers broad adoption of smart contracts. Secondly, and perhaps more important, the
2www.monax.io3www.openlaw.io4www.accordproject.org5http://www.commonaccord.org/

https://www.monax.io/
https://www.openlaw.io/
https://www.accordproject.org/
http://www.commonaccord.org/

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 23PDF page: 23PDF page: 23PDF page: 23

Chapter 1. Introduction 9
methods that underpin the transformation of the annotated legal contract to smart contractcode are not explicit. Thus, making traceability of the translation process from the legal spec-ification to code impossible. A consequence of this lack of transparency is that contractingparties again have to trust third parties that their contract is translated in line with what theyhave specified [288]. This is in stark contrast to one of the main advantages of blockchainbased smart contracts, namely their potential to capture and execute transaction logic with-out the need for a trusted third party [128].

1.5 Research Purpose and Requirements

Building on the foundations of the previous sections, this section describes the purpose ofthe research and coherent research question. Furthermore, it will discuss the requirementsof the artefact that is developed for this research.
1.5.1 Research Purpose and Question

The review in the prior section (section 1.4) shows that there exist awide range of approacheshave been undertaken to design smart legal contracts. To avoid any confusion, we deem itappropriate to clarify how we define a smart legal contract. For this research a smart legalcontract will be perceived as a specific application of a smart contract that is legally binding,and can (partially) self-enforce conditions of the legal contract upon which it is based andco-exists with.
The primary purpose of this research is to develop a deeper understanding of whatmethodwould facilitate the development of smart legal contracts that are legally binding and can(partially) self-enforce conditions within a legal contract, regardless of the blockchain plat-form. Rather than focusing on the development of novel theory or the verification thereof,this research seeks to design an artefact (method) to solve this problem. The aim of theresearch is not to investigate how smart contracts could be technically improved or theirsecurity enhanced. Though we acknowledge that testing is an important part of the life cy-cle of a smart contract we posit that this is beyond the scope of this research, as we areprimary focused on how legal concepts can be represented, mapped and how they can beenforced. Moreover, there is a considerable body of literature that has investigated howsmart contracts can be tested to ensure safety and to verify behaviour. Tools to developsmart contracts generally remain scarce however [253, 288].
To attain the overall purpose of this research, the following research question has been for-mulated: "How can smart legal contracts be developed in a manner that constitutes to alegally binding contract, and that can enforce their terms and conditions within that con-tract, regardless of the blockchain platform". In answering this research question severalknowledge questions need to be addressed first. Smart legal contracts are a specific applica-tion of smart contracts that are deployed and run on a blockchain. Understanding how BCTand smart contracts relate to each other is therefore a prerequisite to fully grapple the tech-nical (im)possibilities of a employing smart contracts to substitute legal contracts. Therefore,a sub aim of this dissertation is to create this understanding.
From the perspective of the legal domain a common understanding needs to be createdabout what concepts are used by legal professionals when writing contracts. Identifyingthese concepts aids in making knowledge about a specific domain explicit. The purpose ofmaking this domain knowledge explicit is to allow legal professionals to stipulate the re-quirements for their smart legal contract using concepts that are understood within their

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 24PDF page: 24PDF page: 24PDF page: 24

Chapter 1. Introduction 10
profession. Programmers, in turn can employ this knowledge as a specification for the trans-lation of a legal contract. Effectively this gathered domain knowledge is utilized to create a
lingua franca for legal professionals and programmers on smart legal contracts.
However, as will be discussed in Chapter 5, Section 5.5 there are several challenges whenletting smart legal contracts enforce the terms and conditions in a legal contract. Some ofthese challenges are directly related to the concepts used in the legal domain, or themannerin which legal contracts are drafted. Identifying these challenges and fleshing out to whichlegal concepts they appertain, aids in predicting, addressing and specifying potential en-forcement issues during the life cycle of a smart legal contract. Moreover, nowadays severalblockchain platforms exist that allow for the use and deployment of smart contracts. Eachof these platforms has its own technical peculiarities and instantiates of the smart contractsconcept differently. If the method designed for this research is to cater for the developmentof smart legal contracts on several platforms, the peculiarities of and commonalities relatedto the implementation need to be known. Enhancing this knowledge is another sub purposeof this research.
1.5.2 Requirements

In the previous paragraph we stated the purpose of this research, which is to develop amethod (artefact) to design smart legal contracts. A specification of what an artefact mustbe capable of is commonly formulated with requirements [39]. Requirements are conditionsor the capability of a system to address a problem or achieve an objective [13]. Gorschek andWohlin [95] discern various abstraction levels of requirements. For this research we utilisefeature level requirements that define which features the method should support withoutgoing into detail about what functions are required. This level of abstraction is warrantedbecause we aim to provide stakeholder-driven overview. The purpose of formulating re-quirements is to define a specification of an artifact that meets the stake holders’ needs[213].
Given that the problems identified for this research stem from legal and technical stakehold-ers, a solution requires to be satisfactory from both the legal and technical the perspective.Firstly, there are the legal aspects to consider tomake smart legal contracts truly a "contract"in the legal sense (see Section 1.3). An important ramification of employing smart legal con-tracts to partially substitute legal contracts is that the method needs to be understandableby programmers and legal professionals as they will need to cooperate. At the moment hereare few tools available for domain specific purposes [59, 288] and even fewer for the devel-opment of smart legal contracts. Therefore, we include the following requirement:
Requirement 1: The method needs to cater for a manner to make domain concepts explicitso that legal professionals can stipulate the requirements for their smart legal contract.
In Section 1.3.2 we discussed a life cycle model for smart contracts, and the problems thatare related to smart legal contracts. Several studies (e.g., [76, 80, 156, 223]) suggest that pro-grammers and legal professionals will need to face several problems during the coding anddrafting phase of a smart legal contract (see Section 1.3.2). These problems will be furtherdiscussed in Chapter 5. Arguing that these problems need to be anticipated we define thefollowing requirement:
Requirement 2: The method needs to cater for the specification, and potential resolution ofissues when drafting and coding.
There are several challenges to be addressed when aiming to make a smart legal contract"smart" and able to self-enforce the conditions stipulated in the legal contract (see Section

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 25PDF page: 25PDF page: 25PDF page: 25

Chapter 1. Introduction 11
1.3.2). The identified challenges are suggested in various sources (e.g., [64, 106, 179, 217,238, 270]). To address these problems, the following requirement have been formulated:
Requirement 3: The method needs to cater for the specification, and potential resolution ofissues related to enforcement of terms and conditions by a smart contract.
How the transformation from the legal contract to the smart contracts takes place is cur-rently not transparent for most existing approaches to develop smart legal contracts. Thisintroduces verifiability issues that lead to trust issues (see Section 1.2). In general, mostapproaches to develop smart contracts lack verifiability [288]. Therefore, we define the fol-lowing requirement:
Requirement 4: The method needs to cater for traceability between the specification of thelegal contract to the smart contract that will embody this specification.
From a technical perspective, current efforts that aim to support smart legal contract devel-opment are geared towards one platform (see Section 1.2). Taking a broader perspective, thesame holds true for smart contract developing methods in general [2, 59, 217, 253, 288]. Es-tablishing a platform agnostic perspective of smart contracts will enable the design of smartlegal contracts that adhere to the technical principles ofmultiple blockchain platforms. Thus,it is an aim of this research to flesh out the method in a manner that facilitates the platformagnostic development of smart legal contracts. The following requirement is therefore stip-ulated:
Requirement 5: The method needs to cater for the creation of smart contracts that are plat-form agnostic to facilitate cross platform usage.
At the same time, the smart contract ultimately needs to be deployed on a specific platformwhich requires the method to be applicable to a specific platform. Currently, there are fewmethods to cater for the development of smart contracts and even less models that capturethe concepts of a specific platform [2]. Thus, we define the following requirement:
Requirement 6: The method needs to cater for the creation of smart contracts on a specificplatform.

1.6 Outline of the Dissertation

This dissertation is organized into 8 chapters. A context of this research has been delineatedin this chapter, along with its purpose and the requirements of the method the researchseeks to develop.
Smart contracts are deployed and run on a blockchain infrastructure. Understanding howBCT works is pivotal to grapple the ramifications of this choice for smart contracts. Chap-ter 2 presents an overview of the literature on BCT, in particular on the trends within thefield. More important the chapter delineates the architectural perspectives on the technol-ogy, and how it has evolved. Related to the aforementioned, the properties and inherentcharacteristics of the technology are discussed. Finally, the chapter points out the currentchallenges for the technology and gaps in literature.
In the following Chapter 3, a background on smart contracts will be provided. Using a mo-tivating example the chapter will firstly delineate how smart contract driven business trans-actions take place. A generic meta model of most elements related to smart contract driventransactions is provided, along with a reference architecture.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 26PDF page: 26PDF page: 26PDF page: 26

Chapter 1. Introduction 12
Chapter 4 expounds our research methodology. In the chapter we firstly discuss the mainresearch paradigm for this research, design science. The design of this study is based on theMDA philosophy. An overview of the basic notions of Model Driven Architecture is providedin the chapter. We further explain how software is designed using this approach and whatadvantages it provides over other methods. Following, we discuss the rationale for adoptingMDA as the philosophy underpinning the design of themethod. An overview of the researchapproach followed for this dissertation is presented thereafter.
Following, in Chapter 5 a domain model to model smart legal contracts is presented. Thepurpose of this chapter is to demonstrate how the contents of a legal contract could becaptured in a model. A motivating example is utilized to delineate the relation among theelements of the domain model.
Building on the background provided in Chapters 2 and 3, Chapter 6 is devoted to describ-ing the models that can be employed to write smart contracts. Firstly, the platform specificmodels for the Ethereum and Hyperledger Fabric platforms are explained. Based on thecommonalities between these two platforms a platform agnostic model for blockchain tech-nology that allows for the creation of platform independent smart contracts is presentedthereafter.
Chapter 7 discusses how the main research question is addressed. Taking together the find-ings of constructing the blockchain related models and the smart legal model, the outcomesof the design process are discussed. This is followed by Section 7.3 that addresses the limi-tations and threats to validity of the study. Derived from the insights of the discussion andthe execution of the research we suggest some opportunities for future research in Section7.4 of Chapter 7.
Finally, Chapter 8 concludes the dissertation. The chapter will first give an overview of thecomplete research process. After describing the research process the contributions are pre-sented. A summary of the content of the dissertation and the relation between the chaptersis depicted in Figure 1.3

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 27PDF page: 27PDF page: 27PDF page: 27

Chapter 1. Introduction 13

Figure 1.3: Outline and structure of the dissertation

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 28PDF page: 28PDF page: 28PDF page: 28

14

Chapter 2

Blockchain Technology

2.1 Introduction

In 2008 Satoshi Nakamoto, a person or group of people1, introduced the concept of a peer-to-peer (P2P) version of electronic cash that allows for online payments to be made directlyfrom one party to another without any trusted financial institution [188]. The Nakamotoarticle preludes the rise of Bitcoin, ushering in the dawn of blockchain technology (BCT). BCTutilizes the concept of a digital distributed ledger (i.e., a record or "book" of transactions),which enables the participants of a P2P network to record transactions that are publiclyverifiable. In essence, BCT ensures trust between parties without any trusted intermediarywhen performing transactions [265]. BCT has gained considerable scholarly attention [281]— for this very reason, we seize the opportunity to conduct and report a systematic and
multivocal study of the state of the art in BCT for the benefit of furtherwell-founded researchas well as practice. As said, we operate a multivocal systematic study, namely, we not onlyfocus on research literature but consider the so-called grey literature (i.e., books, technicalreports, whitepapers, andmore) whichmay carry important information concerning the BCTsoftware architecture landscape [208].
We flesh out the results of our study starting from a rigorous definition of what BCT is andis not. Indeed, the terms BCT and distributed ledger technology (DLT) are frequently usedinterchangeably despite attempts to semantically discern them on their distinctive underly-ing architectures [112]. Second, using the well-known 4+1 software architecture frameworkby Kruchten [141] as a lens for analysis, the study outlines the design options available in thestate of the art for BCT architectures.
Third, through the scenario perspective several applications are presented to illustrate howBCT could be harnessed for different scenarios. By categorizing and summarizing the currentapplications of BCT practitioners gain more insight in the rich palette of possibilities BCT hasto offer. Fourth, with this study we highlight the properties of BCT and elucidate their arisingtrade-offs. Insights on these properties an their trade-offs aids practitioners inmaking designchoices while providing scholars means to assess blockchain architecture.
Fifth, the research delineates a comprehensive and data-driven overview of the challengesin the field of BCT. Following, this study thoroughly discusses the relation amongst BCT con-cepts based on a rigorous and systematic analysis of the literature. Establishing this relationscan help practitioners further develop BCT while scholars are provided with more accuratemeasurements to gauge its benefits. The discussion is further strengthened by presentinghighlights and observations in-depth attained from the papers under review. Finally, this
This Chapter is based on a peer-reviewed publication in: Butijn, B. J., Tamburri, D. A., & Heuvel, W. J. V. D. (2020).Blockchains: a systematic multivocal literature review. ACM Computing Surveys (CSUR), 53(3), 1-37.1To this day the identity or identities of Satoshi Nakamoto remains unkown [278].

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 29PDF page: 29PDF page: 29PDF page: 29

Chapter 2. Blockchain Technology 15
research presents a systematic overview of all current research gaps to help direct futureresearch endeavors.
The remainder of this chapter is organized as follows: The next section reviews the back-ground and basic notions of BCT. The methodology section (Sec. 2.3) elaborates on the ap-proach taken to attain the results of this study. In the section thereafter (Sec. 2.4) a definitionof BCT that has been constructed based on the literature is presented. Following, the studypresents BCT software architecture from multiple perspectives in 2.5. Section 2.6 reviewsthe scenarios for using BCT found in the literature to provide insight into the applications forwhich BCT is used. The characteristics of BCT and architectural trade-offs are presented insection 2.7. Challenges of BCT are presented in section 2.8, alongwith anoutlook. The resultsof the research are discussed thereafter (Sec. 2.9). Based on the discussion of the results,in section 2.10 suggestions for future research are presented. In section 2.11 the limitationsof this research and potential threats to validity are addressed. Section 2.12 concludes thechapter.
2.1.1 Related Work

Several previous related surveys exist in the state of the art, even though none of them havethe scope, breadth, and width we adopt in our research design. We report the most closelyrelated here below and highlight the novelty of our work. Yli-Huumo et al. [281] review andmap the extant literature to indicate research gaps. This review however, predominantlyfeatures literature related to Bitcoin and corresponding issues. On one hand, the synthesisoperated by Yli-Huumo et al. is only loosely systematic and, on the other hand, the field ofBCT has been rapidly developing since the publication of their study [281]. By comparison,ourwork also fleshes out the architecture of other blockchain networks, and provides amoreup-to-date and systematic overview of BCT developments.
In [252] a literature review on cryptocurrencies is presented, which is however not focusedon BCT architectures. Moreover, in this work we focus not only on the cryptomarket butconsider use-cases for blockchain other than cryptocurrency. The same issue recurs withother reviews focused on the literature related to smart contracts, i.e., programs that can bedeployed and run on a blockchain [5] and their applications [166]. For example, Bartoletti andPompianu [22] focus on smart contract applications, and review the platforms and designpatterns for such smart contracts. In our own work, we build from these foundations andinclude a comparison of smart contracts with the architecture principles of BCT.
Furthermore, there are several literature reviews that examine the use-cases and specificapplications of BCT, e.g., Karafiloski et al. [126]. Several other sector- and domain-specificreviews also exist, e.g., for the Internet of Things (IoT) [53, 129], or Multi-Agent Systems(MAS) [46]. While other papers review how BCT could be utilized for the aforementioneddomains, these reviews do not present BCT applications based on a rigorous scientific eval-uation — in our work we set out to operate a systematic synthesis of architecture elementsas well as the alternatives in architecture decision-making spanning multiple domains andencompassing reference literature from, e.g., Supply-chain management [134, 263], usageof BCT by governments [26], BCT in healthcare [145], and more.
By contrast, the work of Tama et al. [246] presents a brief critical review of BCT and someapplications for multiple fields. Our work however, provides a more elaborate overview ofBCT applications for these fields, and in addition an in-depth insight into the architecture ofblockchain technology that has been obtained through a grounded theory approach. Fur-thermore, our study includes a definition of BCT based on formal concept analysis. Whatis more, Casino et al. [47] present a review of BCT as a basis for multi-purpose applications

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 30PDF page: 30PDF page: 30PDF page: 30

Chapter 2. Blockchain Technology 16
design. Rather than concentrating solely on BCT applications, our work in addition providesa rigorous definition of blockchain based on formal concept analysis and offers an extensivemulti-vocal catalogue and accompanying descriptions of anything that was published aboutblockchain technology. The catalogue presented in this paper follows the well-known 4+1view framework [141] for architecture description to aid anyone in framing, operating, de-ciding upon or describing blockchain architectures in general. Hence, the scope of our workis much broader, not only discussing applications of blockchain but in addition its architec-ture in depth. Finally, we provide a data-driven, in-depth, and evidence based overview ofresearch gaps in the field of BCT.

2.2 Background and Basic Notions

As previously stated, BCT first appeared in 2008, featured in the seminal paper “Bitcoin: APeer-to-Peer Electronic Cash System" by Nakamoto [188]. The paper proposes a P2P elec-tronic cash system that allowed for the execution of transactions between one party andanother without requiring a trusted third party to act as a safeguard and check the validityof the transaction. A year later in 2009, the Bitcoin network was launched [287].
2.2.1 Historical Setting

The first solution that Nakamoto suggested to enable the transactions of digital coins is thatowners of a coin wishing to commit a transaction should digitally sign a hash of the previoustransaction and the public key of the next owner, both is added to the end of the coin. Anelectronic coin as such is defined as a chain of digital signatures. By verifying the signatures ofa coin the payee can verify the historical chain of ownership. However, this provides a payeewith no guarantee that the coin has not already been double spent as there is no way toverify that the previous owners did not sign any earlier transactions. Double-spending refersto spending the same currency in two distinct transactions at the same time. In traditionalsettings, a centralized trusted third party (e.g. bank or mint) verifies whether the owner ofa coin did not double spend the same coin. To verify transactions traditional trusted thirdparties maintain a centralized ledger which records all transactions and the order in whichthey were enacted. Moreover, the trusted third party needs to be aware of all transactionsas there is no other way to confirm the absence of a transaction.
2.2.2 Terms and Definitions

In order for transactions to be executed without a trusted third-party there also needs to befull awareness, and a single history of these transactions. In the Bitcoin paper two solutionsare proposed to accomplish the aforementioned goals: (1) Transactions should be publiclyannounced to all participants in the network. These objectives are attained by employing adistributed ledger on a P2P network. Specific network participants called nodes each storea local copy of the ledger. (2) Nodes need to reach a consensus about the history of thetransactions, and the order in which they were received. This raises another problem how-ever: Some of the nodes in the network might behave maliciously and try to change thecommunication contents. In literature this problem is referred to as the Byzantine Generals
Problem [153]. Non-malicious nodes need to be able to distinguish the information that hasbeen tampered with from the correct information by reaching a consensus over the consis-tency of the distributed ledger to determine the validity of a transaction. Consequently, thisrequires proof that when the transaction was executed, the majority of nodes have reacheda trustworthy consensus that it was the first received. In essence, these requirements are

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 31PDF page: 31PDF page: 31PDF page: 31

Chapter 2. Blockchain Technology 17
introduced to ensure that the system to a certain extent can tolerate malicious behaviorby nodes participating in the network, to which is commonly referred to as Byzantine fault
tolerance [205].
In the seminal Bitcoin paper [188] several concepts are presented to satisfy these require-ments starting with the use of a timestamp server. The server takes a hash of the block oftransactions that are required to be timestamped and publishes the hash on the network.What the timestamp proofs is that the data existed at a certain point in time. The hash is
chained to the previous hash because the latter time stamp is included in the former. Asa result, each additional hash reinforces the ones before it, and as more blocks are addedthe chain will grow ever stronger. The next concept presented enables nodes to reach aconsensus on whether the distributed ledgers are consistent with one another, thus that alltransactions are valid. A naive way of accomplishing this would be to let the majority ofnodes vote over its consistency. However, that would make the blockchain prone to Sybil
attackswhereby a malicious attacker creates or copies multiple identities in order to controlthe network.
Bitcoin diminishes the possibility of a Sybil attack by employing a Proof-of-Work (POW) con-
sensus protocol which stipulates that not the majority of IP-addresses count as the majorityvote of the network, but rather the majority of computational power. While it might be easyfor an attacker to create several nodes in a network, amassing large amounts of computa-tional power might prove to be more difficult. The PoW consensus algorithm distributesaccounting rights and rewards through a computing power competition in which all nodesof the network can participate. Nodes try to be the first to solve a computational hardmath-ematical puzzle by finding the right nonce (a random number) for the block-header basedon information of the prior block. This process is calledmining and the nodes executing thecalculations are referred to as miners in the Bitcoin nomenclature. The first miner to finishcreates the next block and is rewarded by receiving an amount of Bitcoin. However, becausethe mining process is probabilistic two or more blocks might be created and propagated bydistinct miners simultaneously. These phenomena are known as forks. In the event of a fork,nodes as a rule always trust the longest chain of blocks as the chain holding the truth withregard to transaction validity (which is analogue to the most computational work). Othernodes wait until new blocks are proposed after the occurrence of the fork to determinewhich chain will become the longest chain. Consequently, transactions are not confirmedbefore a longest chain has formed.
The longest chain rule is a safeguard to secure the blockchain against the possibility to de-lay the propagation of transactions which in turn, opens the possibility of introducing faketransactions. As the computational power and interests of the miners might vary the PoWconsensus protocol increases or decreases the difficulty of themathematical problem in sucha way that the interval between the generation of new blocks, referred to as block interval
time remains constant at 10 minutes. Tampering with the transactions recorded on the Bit-coin blockchain would therefore require an attacker not only to be the first one to generatethe latest block, but also to control the longest chain.
After the introduction of the genesis PoW-based consensus protocol for Bitcoin many othershave been introduced for blockchain such as: (1) Proof-of-Stake (PoS), which replaces PoWbased mining with a mechanism which makes the chances of mining a block proportional tothe amount of stake (currency) a miner has [88, 157, 244, 282]; (2)Delegated-Proof-of-Stake(DPoS), where the chances of mining a block are also based on a miner stake but allowsfor the delegation of voting on the correctness of a block [183, 285]; (3) Proof-of-Elapsed-Time (PoET) which used dedicated hardware to create consensus [177, 278], and (4) ZeroKnowledge Proofs (ZKP) that aim to provide users performing transactions withmore privacy

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 32PDF page: 32PDF page: 32PDF page: 32

Chapter 2. Blockchain Technology 18
[112, 274, 282]. The advent of blockchain also revived the interest in preexisting consensusprotocols such as Practical Byzantine Fault Tolerance (PBFT), which could be utilized for asimilar purpose as ZKPs [72, 274, 285].
Furthermore, Bitcoin was envisioned as a public blockchain network that anyone willing canaccess, and that is permissionless, meaning that everyone connected to the network canrequest transactions or become a miner to check the validity of transactions. By contrast,in the past decade private blockchain networks have been introduced that allow only se-lected participants from one organization to join the network which can also perform onlyactions that are permissioned on the network. Finally, Consortium blockchain networks canbe considered a hybrid approach as the number of participants that can join the network isrestricted, but they can be from different organizations. Among the connected participantsthe permissions they are granted on the network might differ [211, 274, 285].
Although the Bitcoin technology introduced the concept of BCT to allow for electronic pay-ments using cryptocurrency (digital coins) between anonymous peers, nowadays other blockchainnetworks such as Ethereum offer to possibility to deploy smart contracts, that is, programsthat can be deployed, run, and verified correct over a blockchain. Smart contracts use trig-gers, conditions andbusiness logic to enablemore complex programmable transactions [274]for the automation of (business) processes [83, 88, 231].

2.3 Research Methodology

To attain our results, we conducted a systematic Multivocal Literature Review (MLR) onblockchain technology. Specifically, we address the following research questions:
RQ1 How can blockchain technology be systematically defined?RQ2 What applications of blockchain technology have currently been published and howcan these applications be classified?RQ3 What are the properties of blockchain technology and what are their trade-offs?RQ4 What are the challenges for blockchain technology?RQ5 What are the current research gaps in the field of blockchain technology?
The first research question rotates around providing a systematically-derived definition forblockchains while RQ2 focuses on the applications for which BCT is utilized. RQ3 seeks tooffer an overview of the notable properties of BCT (architectural or otherwise) as well astheir trade-offs. The fourth research question focuses on delineating the challenges in thefield of BCT. Finally, RQ5 aims at presenting research gaps that future research endeavorscan address.
2.3.1 Data Preparation Approach

The benefit of a MLR approach is that, beyond typical systematic literature reviews [131](SLRs) which use academic peer-reviewed articles alone, a MLR also allows for the inclusionof Grey Literature (GL). GL is typically produced by practitioners, such as private industry,governments, academics and industry, and any party which is not controlled by commercialpublishers or peer-review. Generally, therefore, grey literature is not published in books orscientific journals. However, this literature can provide invaluable insights into the state ofthe practice in a field [86]. Given that at the moment of writing the field of BCT is still rela-tively in its infancy, we therefore deem it appropriate to include relevant literature createdby practitioners in the field of BCT for a better understanding of the field. Including GL in our

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 33PDF page: 33PDF page: 33PDF page: 33

Chapter 2. Blockchain Technology 19

Figure 2.1: Research methodology, an outline.

review allows us to combine and synthesize academic literature with the state-of-the-art inpractice.
In conducting ourMLR we set out to identify (a) all relevant academic peer-reviewed articles(scientific literature), (b) all relevant grey literature for this study. To reduce the possibilityof researcher bias, a predefined protocol for the identification of both the relevant scientificliterature (SL) and GL needs to be established [86]. While carrying out our systematic litera-ture review we followed three steps: (1) Create a selection of articles to review. (2) Conductthe review (3) Analyze the data. A process model of the methodology used for this researchis depicted in Figure 2.1.
2.3.2 Search strategy

The first step has been carried out using the protocol for systematic reviews suggested byKitchenham [131]. The protocol suggests three stages for a literature review: (1) elaborate thesearch string; (2) apply the string on chosen search engines; (3) Filter out and extract primarypapers based on pre-established exclusion criteria from search results. The implementationof these steps is presented in Figure 2.2.
The search string was determined by deriving relevant keywords from the research ques-tions. Before carrying out our systematic search, we conducted a preliminary pilot study byexperimenting with the search terms to select more results. This process yielded the follow-ing search terms:
(1)“Blockchain” ∨ “Blockchains” ∨ “Distributed” ∨ “Decentralized” (2) “Ledger” ∨ “Technol-ogy”∨ “Database” (3) “Applications”∨ “Use Case”∨ “Implementation”∨ “Example”∨ “CaseStudy” (4) “Architectural” ∨ “Architecture” ∨ “Form” ∨ “Fabric” ∨ “Structure” “System” ∨“Design” (5) “Choices” ∨ “Options” ∨ “Decisions”. When combined, the preceding termswere used in the following search string:

[(1 ∧ 2) ∧ 3 ∨ (4 ∧ 5)] (2.1)
In the next stage (2), the search string has been applied to the following scholarly searchengines: ACM Digital Library, SCOPUS, IEEE Xplore Digital Library, Science Direct, Springer-Link and Wiley InterScience, EBSCO electronic library, JSTOR knowledge storage and, Pro-QuestABI/Inform throughout March in 2018. The final stage (3) of the systematic review, theinitial results were screened against inclusion and exclusion criteria that are shown in Fig.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 34PDF page: 34PDF page: 34PDF page: 34

Chapter 2. Blockchain Technology 20

Figure 2.2: Sample Search and selection strategy, a process model.

2.2 (Selection based on in-and-exclusion criteria)2. For brevity’s sake we have not includeda more elaborate description and rationale behind these criteria in the paper, but they canbe accessed online (see this link for more details).
For the second part of the MLR, to identify all relevant Grey literature, we established an-other protocol to filter and extract the GL using the guidelines suggested by Garousi et al.[86]. The protocol has been conducted in three stages: (1) Search process, (2) Source selec-tion, (3) Study quality assessment. The implementation of these steps can be found on theright-and side of Fig. 2.2.
In the first stage, we applied the search string to the Google search engine. The search pro-cess yielded 8.330.000 resultswhen applying the first search string (“Blockchain”∨ “Ledger”
∨ “Applications”). Because of the significant amount of results we initially limited our reviewto the first eight pages (20 results per page) provided by the Google search engine. Incre-mentally the next pages thereafter have been reviewed using inclusion and exclusion criteriarelated to the type of grey literature source (e.g. books, magazines or video files), (see Fig.2.2). Thereafter the pages were incrementally reviewed by title and abstract, starting fromthe first results page using the inclusion and exclusion criteria depicted in Fig. 2.2 (selectionbased on in-and exclusion criteria). If <50% of the results on a page were not relevant forthis research, the search was stopped there. We further refined the GL studies we obtainedfrom the first eight Google pages using the same inclusion and exclusion criteria.
2The (N = followed by a number) in Fig 2. represents the number of papers included or excluded based on theselection criteria.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 35PDF page: 35PDF page: 35PDF page: 35

Chapter 2. Blockchain Technology 21
Table 2.1: Quality criteria grey literature.

Category Exclusion Criteria Criteria to Satisfy

Authority of the producer The publishing organization is reputable, or the individual authoris associated with a reputable organization 2/3
The author has published other work in the fieldThe author has expertise in the area (e.g. job title)Objectivity of the study The statement of the sources is objective 3/3There are no vested interestsConclusions are supported by dataMethodology The source has a clearly stated aim 4/6The source has a clearly stated methodologyThe source is supported by authoritative, documented referencesLimits are clearly statedThe work covers a specific questionThe work refers to a particular populationDate The item has a clearly stated date 1/1Position related sources Key related GL or formal sources have been linked/discussed 1/1Novelty The item enriches or adds something unique to the research 1/2The item strengthens or refutes a current position

Impact The GL source should have citations and backlinksto substantiate the arguments made in the study 1/1

During the second phase, we assessed the quality and relevance of the sources of the pri-mary GL we obtained since it cannot be assumed that the quality of GL is guaranteed. Ex-clusion criteria suggested by Garousi et al. [86] have been used for this purpose (see Fig.2.2).
The exclusion criteria used consist of 7 quality categories ranging from the authority of theproducer to the objectivity of the study that can be found in Fig. 2.2 under assessment ofquality grey literature. Combined these quality categories encompass 17 criteria that havebeen assessed one by one for each GL item. An overview of all the quality categories, qualitycriteria, and how many of these criteria had to be satisfied to include the item can be foundin Table 2.1.
The authors of this study (viz., the first two authors of this study), have indicated whethera GL item: (a) satisfied, (b) did not satisfy a criterion. In the cases where one of the criteriacould not be assessed (e.g. because this information was missing) we have assessed thesecriteria as if they did not satisfy the criterion. GL items that did not satisfy the thresholdfor each quality category were excluded from the sample. After the selection process wemerged the grey-and scientific literature into one sample as the literature under review.
2.3.3 Data Analysis

This section details the analysis methods enacted to address our research questions.
2.3.3.1 Formal Concept Analysis

To address RQ1, a Formal Concept Analysis (FCA) approach was adopted. FCA is a systematicapproach to derive a formal ontology or concept hierarchy from a set of objects and theirattributes [175]. A complete description of the FCAmethod employed to attain our definitionof BCT can be found in Appendix A.1.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 36PDF page: 36PDF page: 36PDF page: 36

Chapter 2. Blockchain Technology 22
2.3.3.2 Grounded-Theory Analysis

For step 2 and 3 of theMLR, and to address RQs 2,3 and 4 a Straussian Grounded Theory (GT)approach [93] was adopted. In the scope of straussian GT, a series of systematic steps areenacted to allow a theory to emerge from the data (hence, "grounded") using codes. For ourresearch each code represents a concept or theme related to BCT. Whenever a paragraphin the literature under review represented one of these concepts or themes, the relatedappropriate code has been attached. In GT this process known as "coding", and includes thephases that are described in Appendix A.2.
2.3.4 Inter-Rater Reliability Assessment

We employed Krippendorff coefficient (or K-α) [108], to evaluate the inter-rater reliabilityof the inclusion and exclusion of SL items, the in- and exclusion of GL items, the qualityassessment of the GL, and the coding process of the pilot study. The coefficientmeasures theagreement between two ordered lists of codes which have been applied as part of contentanalysis. The methods used to asses the inter-rater reliability between the raters, and theresults thereof can be found in Appendix A.3.
2.3.5 Sample Selection Results

This section outlines the sample results of our search strategy (Sec. 2.3.2). First the sectionpresents the distribution of the sample between grey and scientific literature, along with thedistribution the publication venues per year. Thereafter, the section showcases a frequencyanalysis of the topics discussed in the papers under review along with an overview of thesetrends per year. Finally, the distribution of these topics between grey and scientific items ispresented and discussed.
2.3.5.1 Publication Venues and Distribution Literature

After the assessment of the GL, the search strategy yielded a total of 33 GL items and 78of scientific peer-reviewed papers selected for this study. From this point on, we no longerdistinguish the results whether they were derived from GL or SL but flesh out results overthe total of 111 studies be the object of this research. Figure 2.3 depicts the number of SLand GL per publication year. The results depicted for the year 2018 have only been collecteduntil March 2018 and therefore might skew the results.
Figure 2.3 shows that from 2008 until 2013 BCT has gained little attention from either practi-tioners or scholars. The figure show an overall increase in the SL and GL published from 2014onwards. Furthermore, the statistics show that there is a growing interest from the scientificcommunity for research in BCT. More specifically, from 2017 onwards twice as many articleshave been published as compared to the years before. However, these results also indicatethat research in the field of BCT is still in its infancy given that from 2008 to 2016 little sci-entific work has been published. The search and selection results also indicate an increasein the amount of practitioners literature being published. Furthermore, the sources fromwhich these research items were identified for this study are diverse (see Fig. 2.4), rang-ing from articles in technical magazines, books, and technical reports alike. The majority ofitems however, were published in conference proceedings and reflect white literature.
In the years directly following 2008, i.e., the introduction of BCT, publications on the topicwere almost evenly distributed among different sources (e.g. books, conference papers).However, as of 2016, books on BCT have not been found by this research. Although the

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 37PDF page: 37PDF page: 37PDF page: 37

Chapter 2. Blockchain Technology 23

Figure 2.3: Sample results; Grey and Scientific Literature across primarystudies.

Figure 2.4: Sample results; Publication Venues per Year.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 38PDF page: 38PDF page: 38PDF page: 38

Chapter 2. Blockchain Technology 24

Figure 2.5: Sample results; Topics frequency analysis.

publication of conference papers shows an increase in 2017, articles published in scientificvenues are more gradually increasing in frequency.
2.3.5.2 Topics in the Field of BCT

Fig. 2.5 shows the the main topics of the papers under review, as elicited using a grounded-theory approach. More specifically, the blocks in Fig. 2.5 represent the topics found in theliterature, while the number on the arrows between the blocks represents the weight ofthe topic, in terms of number of papers where those topics were coded. The direction of thearrow itself depicts under which of the composedmain topics the sub topics are categorized.Among the items selected for this study, BCT-based applications are strongly represented(see left-hand side of Fig. 2.5) while items on BCT architecture and are represented slightlyless, with a ratio of 2/3.
In terms of applications, five sub-themes can be distilled: (1) cryptocurrencies, (2) smart con-tracts, (3) papers that provide an overview of BCT, (4) literature that suggests applicationsof BCT for specific domains, and (5) finally, literature that presents general applications forBCT. Interestingly, Fig. 2.5 again shows that the applications of BCT for a specific domain andgeneral applications of BCT has gained considerable attention. On the one hand, literatureon BCT for specific domains encompasses complex domains such as e-government, the fi-nancial sector, and relief development [52], while literature on the general topic of smartcontracts is rather limited. On the other hand, the specific technical architecture literatureover BCT reflects five categories: (1) security and fraud detection; (2) smart legal contracts;(3) securities and insurance; (4) record-keeping; (5) the Internet of Things (IoT). Among thesecategories the majority of papers has been published on utilizing BCT for record-keeping,that is, registering certain data on the blockchain to ensure its immutability. Another majorfocus of research on BCT applications is security and fraud detection, these items focus onusing blockchain for safe distribution of data among peers. A more detailed description ofthe contents of literature of applications for BCT can be found in section 2.6.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 39PDF page: 39PDF page: 39PDF page: 39

Chapter 2. Blockchain Technology 25

Figure 2.6: Trends in BCT publication topics.

2.3.5.3 Trends in Publications on BCT

Four key trends in the literature under review can be observed (see Fig. 2.6). First, there isa balance in the distribution among topics even though the overall number of works on BCTis steadily increasing.
Second, two exceptions are (a) works related to applications for specific domains and (b)general applications research, as previously discussed — for these, the years 2016 to 2018have seen a tremendous increase in research and practical work.
Third, publications on blockchain-based smart contracts have seen a rise only from 2016onwards. A similar observation can be made for items related to cryptocurrency as only onepaper was published in 2015, with 3 papers being published in 2018.
Lastly, Since 2014 an increasing amount of papers on the topic of consensus protocols havebeen published, a trend that continues to date.
What is more, in terms of past publications by both practitioners and scholars have predom-inantly been focused on applications for BCT (see Fig. 2.7) with more of the grey literaturebeing published on applications (72%) as compared to scientific literature (55%).
With respect to engineering research focus, scholars have focused their efforts on consensusprotocols whereas practitioners have mostly presented works on blockchain platforms oroverviews of BCT architecture.

2.4 A Systematic Definition of Blockchain Technology

So far we have referred to BCT as a single technology, however BCT is a clever combina-tion of several technologies and elements and there is no consensus on the definition of ablockchain [112], with a precise definition of blockchain technology often subject to contro-versial and subjective opinion [243]. Stemming from the data available to us, We strived toconstruct a rigorous definition of BCT based on (a) the identified software elements drawn

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 40PDF page: 40PDF page: 40PDF page: 40

Chapter 2. Blockchain Technology 26

Figure 2.7: Distribution topics scientific and grey literature.

from literature, (b) relations among them and (c) their properties3 reflecting the softwarearchitecture research and practice state of the art [24].
First, our data indicates that: Blockchain technology is a form of distributed ledger tech-
nology, deployed on a peer-to-peer network where all data is replicated, shared, and syn-chronously spread across multiple peers. The technology allows actors participating in thenetwork to perform, sign, and announce transactions by employing public key cryptography.Transactions are executed following a consensus protocol operated by specific nodes to en-sure the validity of transactions requested by other peers in the network, and to synchronizeall shared copies of the distributed ledger. During a consensus protocol execution, the dataof valid transactions, along with other required metadata concerning the network, and thehash of the previous block is bundled into a block using hashing functions. The essential andkey property reflecting BCT architectures is that each block contains the hash of their pre-decessor, therefore linking all prior transactions to newly appended transactions; the blockstherefore form a chain with the aim of establishing a tamper-proof historical record.

2.5 Blockchain Technology: Architecture Elements

This study examines the blockchain architecture landscape, arranging the elements foundin literature through the well-known 4+1 software architecture framework introduced byKruchten [141]. The Kruchten framework delineates the comprehensive interplay of rela-tions, properties and software elements in BCT and encompasses five views, namely: (1)logical view; (2) development view; (3) process view; (4) physical view; (5) a use case view.In Appendix B.1 a more elaborate description of these views is provided.
Using the logical view, we first delineate the architectural elements to present the function-alities that various end users ultimately use from a blockchain. Further on, the developmentview describes how building BCT can be divided into smaller chunks of programmable code.
3Public-key cryptography is the commonly used to describe the exchange of information using a set of privateand public keys. Hence, when constructing a definition the term public-key cryptography has been used insteadof private and public keys as an attribute of BCT.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 41PDF page: 41PDF page: 41PDF page: 41

Chapter 2. Blockchain Technology 27
Subsequently, the process view shows how IT systems behave during run time and is of inter-est to system integrators that need to knowabout the threadof control to execute operationsutilizing BCT. Beyond that, the physical view is of interest to system engineers that maintainoverall blockchain system, also, given that BCT completely resides on a P2P network its dif-ferent arrangements is discussed in the physical view. The use-case view of the 4+1 model isrecapped later in Sec. 2.6.
2.5.1 Logical View

The logical view emphasizes on the functional requirements and services the system shouldprovide to its end users [141]. Decomposition of the architecture aids in identifying the el-ements that are common across the system. We used an ontology for BCT as proposed in[94, 143] to organize the discussion of its main elements. A more elaborate, and in-depthdescription of BCT elements is provided online (see Appendix B.1 how to access the mate-rial).
Blockchains are transaction oriented. Transactions in a blockchain system are executed us-ing public key cryptography. Cryptographic Hash functions are used for the purpose of manyoperations, such as signing transactions (SHA-256 in the Bitcoin case[188]). The peers inthe P2P network, also referred to as nodes are devices capable of processing and verifyingtransactions. Depending on the permissions all nodes or a specific subset of nodes validatetransactions. The permissions. There exists at least three categories of blockchain networks[274, 285]; Public, private, and consortium networks that have different arrangements interms of their permissions. On a blockchain transactions are stored in blocks. Each block islinked to its predecessor known as parent block by including its blockheader hash to forman integral chain of blocks that can be traced back to the first, or genesis block. Hence theterm "blockchain" technology. Novel blocks are generated using a consensus protocol. Pro-vided that the transactions included in the newly proposed block are valid, each new blockenhances the security guarantees of the block before it [183, 188, 189]. Updates and changesto the software of a blockchain are called forks.
2.5.2 Development View

Existing blockchain networks can be leveraged to build Decentralized Applications (DApps)upon that use their services. Developers seeking to build their own blockchain platformhave to program multiple software packages. Enabling transactions forms the basis for anyblockchain network. A wallet needs to be programmed to allow clients of the platform tointeractwith other peers in the network. An address propagationmethod should be installedfor nodes to interact. Next the nodes need to connect via peer discovery. Another aspect isthe mechanism for propagating transactions [33].
Datawith regard to transactions can be stored in twoways: As a firstmethod, like the Bitcoin,one can choose to add data into transactions. Another second method is to add data intocontract storage like Ethereum [277]. Finally, an existing consensus protocol can be selectedto process transactions or the protocol can be designed from scratch. Online material thatcan be found via a link in Appendix B.1 further describes the development view.
2.5.3 Process View

The process view specifies which thread of control execute the operations of the classesidentified in the logical view. The consensus protocol is at the heart of all BCT processessince it allows for the enactment of transactions and ensures that the distributed ledger

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 42PDF page: 42PDF page: 42PDF page: 42

Chapter 2. Blockchain Technology 28
remains consistent. Online materials to whom a link is provided in Appendix B.1 delineatesthe steps, issues and potential variants of the consensus protocols discussed in this sectionmore in detail.
2.5.3.1 Practical Byzantine Fault Tolerance

(PBFT). PBFT is mostly used in a private setting for permissioned blockchains because it as-sumes authenticated nodes [72, 274, 285]. The protocol itself is exclusively based on com-munication, and nodes go engage in multiple rounds of communication to reach consensus[72]. Nodes do not get a reward for achieving consensus, rather in the event of maliciousbehavior by an authenticated node it can be held legally accountable [112, 209]. A primaryleader nodemines the blocks. The leader can be changed by other nodes via a "view-change"voting protocol, in the occurrence of a crash or when it exhibits malicious behavior [53, 183].
2.5.3.2 Proof-of-Work

(PoW) is often referred to as theNakamoto consensus protocol [121, 163, 164, 204]. The PoWconsensus protocol is designed for the case where there is little to no trust amongst users ofthe system [278]. Public blockchains need to have a high degree of Byzantine fault toleranceas users can not trust one another.
Consensus in PoW is achieved through a hashing competition between miners. Competingminers need to commit computing power to calculate the solution to the samemathematicalproblem. To incentivize miners to participate in the consensus process the miner that is thefirst to find the solution to the mathematical problem reserves the right to publish the nextblock, and is rewarded by an amount of cryptocurrency [36, 185, 274, 278]. In addition, theminer to win the competition with its peers is also be able to collect the transactions feesthat were paid by clients.
Finding the solution to a PoW problem is a computationally arduous process for which thereare no shortcuts [189, 278]. The solution to the problem is hard to find, yet easy to checkonce they have been found [163]. Given that only one miner can win the competition and isrewarded the other nodes have simply wasted resources (CPU power and energy) in their at-tempt [88, 183, 244, 274, 278]. In addition, because the difficulty of PoW problems increasesover time makes it even harder to win the competition [278].
2.5.3.3 Proof-of-Elapsed Time

(PoET) PoET is designed to address the inefficiency of PoW and replaces it with a protocolthat is based on trusted hardware. A node that uses trusted hardware however, can bechecked for certain properties such as whether it is running a certain software. This aids inrelaxing the trust model in settings were the Byzantine’s Generals Problemmight be present[72]. Sawtooth Lake, a project by Hyperledger, leverages Intel’s Software Guard Extensions(SGX) to establish a validation lottery that makes use of their CPUs capability to render atimestamp that is cryptographically singed by the hardware [115].
2.5.3.4 Proof-of-Stake

(PoS) As a response to the limitations of PoW the BCT community has turned towards Proof-of-Stake (PoS). The PoS consensus protocol has been introduced for public settings [183]with the aim to safeguard against Sybil attacks and malicious behavior by untrusted nodes[72]. The PoS protocol offers a more efficient and environmental friendly alternative to PoW

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 43PDF page: 43PDF page: 43PDF page: 43

Chapter 2. Blockchain Technology 29
as computing power is partially substituted by virtual resources (e.g. cryptocurrencies) thatminers must invest to propose blocks [88, 157, 244, 282]. Rather than using computer poweras a scarce resource to generate security, Proof of Stake uses the scarcity of the coin itself.Therefore nodes that participate in a PoS consensus protocol are more commonly referredto as forgers instead of miners [21, 158].
The idea behind the PoSmodel is that themore assets (e.g. cryptocurrency), or stake a nodehas, its incentive to undermine the system diminishes because subverting the system wouldinherently mean that the worth of the nodes’ stake would decrease [177, 278]. Logically, thisimplies that one cannot participate in the consensus protocol without owning a stake [88].A shared commonality of all PoS variants is that nodes that have more stake have a higherchance of generating new blocks [157, 183, 278, 285]. In other words, the more skin a forgerputs in the game the higher its reward will be.
2.5.3.5 Delegated-Proof-of-Stake

(DPoS) Delegated Proof-of-Stake introduces another variant of PoS [183, 285]. In DPoS stake-holders elect delegates, referred to as witnesses to forge and validate blocks in round-robinfashion [158].
Compared to PoW and Pos, DPoS is more energy efficient. Further, because the voting aboutthe validity of a block is delegated and fewer nodes are needed to validate the blocks canbe confirmed more quickly. Hence, as compared to PoW and PoS, DPoS has a low latency.Moreover, parameters including block size and block intervals can be adjusted by committee
members of the governance board. When a delegate acts malicious this dishonest delegatecan be voted out by all the other nodes [158, 285].
2.5.3.6 Zero-Knowledge-Proofs

Recently, different Zero-Knowledge-Proofs (ZKP’s) based BCT networks have been proposedto preserve users’ anonymity and confidentiality of transactions [274]. In general, ZKP’s aimto confirm a statement about a transaction such as "This is a valid transaction" without re-vealing anything about the transfer (statement) itself or the parties involved [112, 274, 282].Zerocoin was the first initiative with the aim of providing transaction unlinkability using ZKP’s[72]. Similar to the Bitcoin Zerocoin uses the PoW consensus protocol to validate transac-tions. A cryptographic mixer is implemented for Zerocoin to conceal the links between azerocoin and the corresponding Bitcoin.
Building on the ZKP approach as a foundation, Zcash, extent the privacy guarantees, andimprove the efficiency (throughput and latency) of Zerocoin. Zcash uses a variant of thePoW called Equihash. Transactions made using Zcash, including the split and merge trans-actions, are fully private [72]. Zcash employs a technique called Zero-Knowledge-Succinct
Non-Interactive Argument of Knowledge (zk-SNARKS) to provide these privacy guarantees[183, 282] that are a specific type of ZKP.
2.5.4 Physical View

The physical view is concerned with the topology of software components and their phys-ical connections. Electronic devices known as nodes constitute to a blockchains’ P2P net-work and are the only physical connection to the non-digital world. P2P networks on whichblockchain platforms are run have different arrangements; First, the network can be catego-rized on the basis of permissions (authorization). Second, networks can be categorized with

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 44PDF page: 44PDF page: 44PDF page: 44

Chapter 2. Blockchain Technology 30
regard to their accessibility. Permissions to perform operations on the blockchain might dif-fer ranging from allowing anyone to read, write and to partake in the consensus protocol toonly one of these permissions. Control over these permissions can be confined to a distinctgroup of nodes, or all nodes.
As the name suggest Permissionless grant permission to all nodes in the P2P network to readand write transactions. Permissioned blockchain platforms have confined and idiosyncraticpermissions for their nodes [181, 231, 274, 278].
The P2P network can also be described from the perspective of network accessibility. In theliterature three categories of P2P networks can be distinguished that are coupled to a permis-sionmodel [44, 112, 143, 173, 274, 285]. A Public blockchain, like the Bitcoin or Ethereumhave
open network access meaning that anyone willing is allowed to join the network. Private
blockchains are blockchains networks that are owned by one organization. Contrairy to pub-lic blockchains access is confined. Consortium blockchains are similar to private blockchainsin the sense that nodes first need to be authenticated before granted access to the net-work. However, consortium blockchains allow nodes from different organizations to accessthe blockchain network [183, 211, 274]. A more elaborate description of both models andblockchain networks can be found in Appendix B.1.

2.6 Blockchain Use-Case View: Main Usage Scenarios

The use-case view aims at providing a description of an architecture by illustrating an es-sential set of use cases and scenarios for their usage. Our data suggests there are mainlythree flavours of BCT applications: (1) Cryptocurrencies, (2) Smart contracts and (3), general-purpose applications. Following these versions we further categorize BCT applications [244].For instance, the general-purpose applications of BCT can be arranged into five additionalcategories that encompass: (1) Security and Fraud Detection, (2) Securities and Insurance,(3) Record-Keeping, (4) Internet-of-Things, (5) Smart Legal Contracts.

2.7 Blockchain Technology: Main Architecture Properties

The scope of our analysis revealed 8 essential architectural propertieswith a directedmutualinfluence relation evident from the state of the art. In fact, stemming from the relations ourGT analysis we marked with a; operator the mutual implication relation evident betweenthe following couples of properties:
• Decentralization ; Disintermediation. In traditional centralized transaction systemseach transaction needs to be validated by a (trusted) third party (e.g., a bank). Thedecentralized workings of BCT enables the direct transfers of digital assets betweentwo counter parties without this third party leading to direct disintermediation [88,189, 231, 285].
• Programmability ; Automation. BCT allows for the execution of pre-defined condi-tions that are automatically executed once certain conditions have been met. BCTenabled smart contracts extend this concept further by allowing (Turing complete)programmability of transactions [58, 115, 231]. The Bitcoin blockchain predominantlyoffers a service to exchange cryptocurrency and, accordingly provides limited supportfor smart contracts Blockchains like Ethereum or Kadena offer a fully programmablesmart contract environment [112, 177, 189, 231]. Offering smart contracts as a servicehowever, adds another layer of complexity; smart contract execution puts a higher

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 45PDF page: 45PDF page: 45PDF page: 45

Chapter 2. Blockchain Technology 31
strain on the data storage requirements, throughput and latency of a blockchain net-work [61, 112, 143]. Furthermore, arbitrary code leaves room for human errors, andthus increases the chances of bugs [88, 143, 164]. In sum, the degree of automationdepends on the services provided which is closely linked to the design of a blockchainplatform but at the cost of additional complexity.

• Transparency ; Auditability. Each node in a blockchain P2P network holds a com-plete copy of the distributed ledger making all transactions transparent [36, 88, 244,272]. However, for permissioned blockchains permissions to read the ledger can beconfined to increase transaction privacy. Decreasing the transparency of the transac-tion records makes permissioned blockchains less auditable [173, 272, 274]. In short,the auditability of the network depends on the permission arrangement of the P2Pnetwork.
• Immutability; Verifiability. The entire history of transactions performed is recordedand stored in blocks. Given that these blocks are cryptographically chained usinghashes, the record becomes immutable [173, 189, 231, 243, 247]. Provided that the en-tire history of transactions is auditable, the proof that any transaction has (not) takenplace in the past is thus verifiable since blockchains are append only [88, 193, 243].An insecure consensus protocol that allows for the introduction of blocks containingdouble spend transactions could jeopardize the immutability of the ledger. Thereforethe immutability of a blockchains distributed ledger depends on how transactions are
processed during the consensus protocol [189, 231, 278].

2.8 Blockchain Technology: Challenges and Outlook

Despite being a promising novel technology, currently BCT faces several challenges that in-hibit widespread adoption. This section highlights and discussses the challenges evidentfrom the literature.
2.8.1 Latency

One of the challenges BCT faces is that most consensus protocols have a high latency, mean-ing that the time between the submission of transactions and their confirmation is high [88,94, 112, 177, 185, 274]. This is due to the fixed blocktime interval for most blockchain net-works. Effectively this means that on average it takes the Bitcoin network roughly 60 min-utes before transactions are settled and can be regarded as final [112, 274]. Ethereum hasmade significant process in this area using the Greedy Heaviest Observed Subtree (GHOST)protocol by increasing the block interval to 14 seconds and transaction finality after 12 blocks[88, 274].
What is more, currently the finality for clearing and settling transactions is a legally de-fined moment. When using BCT to enact transactions settlement finality is probabilistic;The longer a transactions is considered settled by network participants, the less likely it willbecome that the transaction will be reversed or declared invalid [112, 181]. Clearly, thesetwo arrangements are at odds. A direction that is currently being explored to concurrentlyaddress the throughput and latency issues of BCT is that of sharding the mining network.ELASTICO [162] is an example of a consensus protocol that shards themining network. Whensharding the networkminers are uniformly partitioned into smaller committees that processa specific set of transactions. Accordingly transactions can be processed in parallel and thusthroughput capacity can be increased.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 46PDF page: 46PDF page: 46PDF page: 46

Chapter 2. Blockchain Technology 32
2.8.2 Throughput

The maximum throughput of transaction has also been shown to be a challenge [112, 183,272, 274, 285]. The concurrent throughput challenges for BCT are closely related to those ofthe latency. At the time of writing the Bitcoin network can reach a throughput of 7 transac-tions per second [72, 112].
Yet again this problem is related to the blocktime interval but also to blocksize. The size ofa block determines how many transactions can be included. For the Bitcoin the size limitof a block is 1 MB [274]. Recently there have been proposals to increase the throughput ofthe Bitcoin blockchain by increasing the blocksize from 1MB to 8 MB [274]. Proponents andopponents of this proposal have interchanged various arguments that so far has reachedno conclusive upper-hand [247]. By implementing the GHOST protocol Ethereum has man-aged to improve it’s throughput capacity to 15 transactions per second because the blocktime interval is smaller (14 seconds). Rather than following the longest chain, in GHOST aminer weights the branches in terms of the computational power spend to create them andchooses the better one to follow. Another promising novel development is the introduc-tion of off-chain payment channels such as Raiden4, Bitcoin Lightning5 and Sprites [180] thatenables two parties to directly and privately maintain a two-party micro payment channel.Khalil and Gervais [128] extend the concept of off-chain payment channels by suggestinga novel approach that enables the refunding of existing payment channels when they aredepleted without performing a transaction on the blockchain network. Recently the seg-regated witness (SegWit) proposal has been suggested in the Bitcoin community to changethe internal design of blocks to increase the throughput of transactions. The proposal entailsseparating (segregate) signatures (witnesses) from the remainder transaction data. In thismanner the size of the witnesses does not add to the data size limit of the blocks [274].
2.8.3 Data Storage

Another challenge that is pointed out by both practitioners and scholars alike is how to copewith the evergrowing need for data storage space [88, 112, 154, 244, 287]. This challengemainly stems from the fact that to verify transactions, a node needs to be aware of thewholeblockchains’ history. If the Bitcoin were to process an equal number of transactions as Visathe amount of storage required would grow by 214 PB per year [244]. Some suggestionsfor improvement of data storage have been made such as the introduction of lightweight
clients that donot download the complete record of transactions. Instead, lightweight clientsdownload only the blockheaders to validate transactions. To verify transactions these nodesuse a technique called Simplified Payment Verification (SPV) [278, 285].
2.8.4 Data Privacy

Preserving privacy of participants and confidentially of their data has turned out to be afundamental challenge [62, 112, 176, 185, 243, 272, 274, 285]. Although transparency is oneof the key characteristics of especially public blockchain networks it is at odds with privacy.For public blockchains by design every transaction needs to be visible to every participant forthe sake of public verifiability [7, 112, 278], though they can be encrypted and the identity ofthe user is hidden. In order to address this problem private and consortium blockchains suchas Hyperledger [7] and Corda [42] with a permissioned model have been introduced [189].Another approach solve this problem is the usage of mixers and ZKP (see 2.5.3.6) [20]. In astudy [112] 57% of the respondents stated that implementing privacy-enhancing techniques
4www.raiden.network5www.lightning.network

https://www.raiden.network/
https://www.lightning.network/

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 47PDF page: 47PDF page: 47PDF page: 47

Chapter 2. Blockchain Technology 33
in their BCT systems is planned for the future. Out of these respondents 78% have expressedthe desire to implement zero-knowledge proofs (ZKP). A second privacy challenge is that ablockchain ledger is immutable; Once a transaction has been stored in a block it can not beremoved. Further, in permissionless blockchain every node is able to view all transactionsand, consequently explore the entire history of transactions. The General Data ProtectionRegulation (GDPR) however, enforces restrictions on how information about EU citizens maybe used and stored [194]. One of the rules that would be difficult to comply with is the "rightto be forgotten" that allows an individual to demand the erasure of information under certainconditions. Clearly, the immutability of a blockchains ledger is incongruent with the right tobe forgotten [115, 243].
2.8.5 Governance

The governance of a blockchain with regards to updating its fundamental rules is problem-atic [189, 278, 282, 287]. A prime example is the ongoing debate within the Bitcoin com-munity about the block size which has ended in a stalemate [173, 247]. Even for centralizedsystems updating software can be difficult let alone when a system has many users, geo-graphically dispersed, as can be the case with BCT [278]. Another classic example of thegovernance problems blockchain currently faces is the response of the Ethereum commu-nity to the DAO hack6. Due to unintended flaws in the semantics of a contract an attackerwas able to obfuscate a large amount of Ether worth an estimated $50 million7. In responseto the attack, a hard fork was proposed to recover the Ether, to which 89% of Ether-holdingvoters gave their consent. Some of the remainder non-consenting voters rejected this forkof the blockchain mostly for philosophical reasons, including the principle that a blockchainis immutable. These voters decided to use the unforked Ethereum blockchain resulting in asplit into two separate currencies: Ether (containing the hard fork) and Ethereum Classic (nohard fork) [189, 278]. Another governance issue that needs to be addressed is that of key
management; BCT is decentralized and as such when a user forgets their private key there isno central authority to recover it [115]. As a solution to this problem He et al. [109] presenta wallet-management system based on semi-trusted social networks to recover wallets andthe keys they hold. However, the true Achilles heel with regard to private key managementis related to the wallets that store these key’s; If the hardware on which a users wallet get’slost, targetted with malware or is attacked the private key might get lost or stolen [20].
2.8.6 Usability

A more practical challenge that hampers the widespread adoption of BCT is the current lackof end-user support (BCT is hard to use and to understand) and adequate developer support(few developers tools available) [176, 185]. In line with these observations, research by Tap-scott and Tapscott [247] indicates that many Dapps are not accessible to the average personand that interfaces are user-unfriendly. Further, in their study they suggest that there areapproximately between 1000 and 2000 developers that understand how to develop Dapps.However, one of their interviewees stated that this number could perhaps increase by es-tablishing creative educational programmes.
6The term hackmust be qualified; The attacker exploited a vulnerability in the smart contract that allowed a splitfunction (enabling the withdrawal of funds from the contract) to be called repeatedly in order to withdrawalmore funds than entitled to. For further reading about the DAO hack the author recommend reading Annex Bin [115].7Tapscott and Tapscott [247] argue that the total worth of the obfuscated Ether was around $70million, whereasGatteschi et al. [88] suggest that it was the equivalent of $60 million.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 48PDF page: 48PDF page: 48PDF page: 48

Chapter 2. Blockchain Technology 34

Figure 2.8: Frequency of top 10 most recurring codes.

2.9 Discussion

Our GT-based analysis was used to populate the illustrated 4+1 views, properties and chal-lenges of BCT. First, this section grounds the insights on the 4+1 views of BCT architectureelements, properties, and challenges through discussion. More specifically, the GT-driven4+1 perspectives on BCT are deepened by discussing coding frequencies and trends of theconcepts in literature. Secondly, the section presents observations we made in the scope ofour analysis derived from examining the distribution of the topics found in the sample andsynthesizing their contents.
2.9.1 A Grounded-Theory of Blockchain Technology

The first step of in the data analysis procedure was to apply an open code each time the liter-ature reflected a concept (see Sec. 2.3.3). A frequency analysis of the open codes (how oftencertain codes have been applied) unravels which concept are deemed important. Figure 2.8depicts the top 10 most frequently used codes.
Blockchain challenges were mentioned most, followed by smart contracts, and consensusprotocols. These results show that blockchain challenges are widely discussed in the papersunder review and that the technology has not yet come to full fruition. The frequency anal-ysis further showed that smart contracts are most frequently discussed, and can thereforebe deemed a key concept for BCT future evolutions.
The third most often applied code is that of consensus protocols, and among them PoW.These findings resonate with the number of papers on the topic of PoW consensus proto-cols (see Sec. 2.3.5). Taken together, these findings show that literature is still predominantlyfocused on the PoW consensus protocol, whereas several other consensus protocols nowa-days exist.
Surprisingly, the term permissioned blockchain is more often mentioned than permission-less blockchain which is not mentioned as one of the top ten concepts. However, theseresults can also be attributed to the perception that blockchains generally are public and

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 49PDF page: 49PDF page: 49PDF page: 49

Chapter 2. Blockchain Technology 35

Figure 2.9: BCT software elements and properties, an overview.

permissionless and as such that permissioned blockchains are an exemption to be specifi-cally mentioned.
2.9.1.1 Grounding the Logical View of BCT

BCT encompasses several software elements that combined create the architectural prop-erties of BCT. The results of the axial coding revealed what the intricate relation among soft-ware elements and properties.
The software elements of BCT work in concert to allow for secure transactions on a P2P net-work (see Sec. 2.5.1). We found that there is a strong dependency among these elementswhich has been depicted in Fig. 2.9 by the middle row of blocks: During a consensus proto-col nodes verify transactions, which is not possible without the availability of a distributedledger. In turn, the distributed ledger employs the concept of chained blocks that dependson a Merkle Tree to summarizes the transactions. Because each software element is imple-mented to yield a particular property (see Sec. 2.7) these properties also are also connected.This relation is shown as the top row of blocks in Fig. 2.9.
Decentralization requires a consensus protocol and distributed ledger but in addition im-mutability of the transaction records. The immutability of transaction records is dependenton the degree of transparency of a ledger (see Sec. 2.7). However, transparency does notonly guaranty the immutability of the distributed ledger, but also leads to auditability of thetransaction records (bottom row Fig. 2.9). Verifiability of a blockchain requires auditability aswithout no proof can be provided that a transaction has not already been spend. An interest-ing observation is that programmability does not seem to have a direct relation to the other

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 50PDF page: 50PDF page: 50PDF page: 50

Chapter 2. Blockchain Technology 36

Figure 2.10: Consensus protocols related to challenges, in chronological or-der from left to right.

properties of blockchain. Every blockchain has a certain degree of programmability [274].However, arbitrary programmability of transactions requires the concept of smart contractswhich is optional for blockchain design [277]. The discussion of these results illustrates thecomplex relation among BCT software elements and properties. Considering these relationswill be of importance to obtain the appropriate design when implementing BCT.
2.9.1.2 Grounding the Process View of BCT

Another relation that emerged from the axial coding process is the relation between BCTchallenges and consensus protocols. In Fig. 2.10 this relation is shown simultaneously withthe introduction of consensus protocols in chronological order.
Our results from the axial coding process show that each consensus protocol developed afterthe PoW protocol aims to tackle a particular BCT challenge. Furthermore, unsatisfied withprior protocols to address the challenges of BCT novel consensus protocols were introducedover time. For instance, the development of cryptographic mixers clearly aimed at providingmore transaction privacy. To facilitate fully private transactions however, ZKP based proto-cols were introduced. While both approaches increase or facilitate fully private transactionsthese protocols were not designed to achieve faster throughput as compared to PoW.
On the other hand, PoS based protocols have aimed at improving throughput and latencyperformance as compared to PoW. Among the first of these attempts were the coin and-chain based PoS variants (see Sec. 2.5.3.4). As the performance aspects of these PoS vari-ants were still considered unsatisfactory BFT based PoS, DPoS and sharding based protocolswere introduced [158, 278]. Neither the PoS, DPoS or sharding consensus protocols addressprivacy of transactions.
Taken together the results show that there are have been desperate attempts to address BCTchallenges. A uniform approach that simultaneously addresses specific sets of problems isstill lacking. This implication might has some important ramifications for future researchefforts, for example, several research efforts by practitioners and scholars have led to con-sensus protocols that only pursue to improve one favorable property while a unified agendato develop a consensus protocol that is designedwith both privacy and performance aspects(throughput and latency) in mind is still lacking.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 51PDF page: 51PDF page: 51PDF page: 51

Chapter 2. Blockchain Technology 37
2.9.1.3 Grounding the Physical View of BCT

The grounded view describes the design patterns of a blockchain network. As discussed inSec. 2.5.3 the design of the P2P network that supports the blockchain can differ. The fre-quency of the codes concerning BCT networks have been examined to establish a notion oftheir importance. What becomes clear from these statistics is that surprisingly permissionedblockchain networks aremorementioned than permissionless BCT networks. A closer exam-ination of the papers in which the codes were used reveals that permissioned networks arepredominantly employed to contrast the properties (negative and positive) of permissionlessnetworks. Public networks are the third code that is most often applied, followed by privatenetworks. These paradoxical networks are discussed in tandem to contrast their propertieswhile Consortium networks are mentioned least. It must be noted however, that the termsconsortium and private networks are often discussed in the same context.
The trends on BCT networks also sheds an important light on the developments in the fieldof BCT. These trends have been constructed by counting each time a paper was coded thenetwork type in a given year. Thereafter the result has been divided by the total number ofpapers in the sample for a particular year. We deemed this last step appropriate to accountfor the fact that over time more work on BCT has been published. Analysis of the trends re-garding BCT networks codes (see online materials in Appendix A.2 for more details) showedthat in time more papers were mentioning private and consortium networks combined withpermissioned models. When closer examining this trend we found that over time more pa-pers were discussing private, consortium and permissioned networks. The literature underreview [71, 88, 112, 211, 231] states that these network typeswere introduced as a response tothe current challenges public oriented networks face (e.g. privacy and throughput). There-fore this trend can be explained by the fact that in time public blockchain challenges andlimitations became more evident and thus alternatives were introduced.
2.9.1.4 Grounding the Use-Case View of BCT

The axial coding process of papers concerning BCT applications revealed that these appli-cations have a distinct focus to which they have been categorized (see Fig. 2.5). A largestrand of literature is focused on cryptocurrencies and improving the interoperability be-tween chains using different coins, or fluctuations in the prices of cryptocurrency. The focusof these papers lies on transactions carried out using a blockchain or between chains andwhat influences these transactions. For these papers therefore the cryptocurrency itself be-comes the specific focus of study as they are the embodiment of blockchain transactions.This contrast with other papers that see cryptocurrency as a means to an end and tend tohave a more general focus on employing the technology as a whole. Several papers suggestthe use of BCT to enhance the utility of IoT devices. Here, BCT primary serves to improve,amongst things, security and connections of these devices. In turn, IoT devices could poten-tially be used for awide array of other applications. Discerningwhether BCT is the applicationor rather a means to an end helps to categorize papers in the field of BCT.
Another observation resulting from the axial coding process is that the general applicationcategories found in the literature sample utilize different properties of BCT. Record keepingapplications mostly benefit from the decentralized nature of BCT. Whereas applications re-lated to security and fraud detection seem to employ BCT for the sake of verifiability. Forsecurities and insurance applications the auditability of the transactions is most important.Thus, besides categorizing applications based on their primary focus, one should also takeninto account which of BCT’s properties are predominantly utilized. This observation is im-portant to take note of when developing BCT based applications as some properties can be

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 52PDF page: 52PDF page: 52PDF page: 52

Chapter 2. Blockchain Technology 38
deemed more valuable for the design than others and can therefore traded-off against eachother.
2.9.1.5 Grounding the Properties and Challenges View of BCT

BCT has been developed to attain certain properties yet also gave rise several challenges.We juxtaposed the results of a frequency analysis conducted using the codes applied forBCT properties and challenges to discuss their relation. The frequency of the codes relatedto BCT properties and challenges can be found in Appendix A.2.
Challenges related to privacy on a blockchain is mentioned most of all codes related to chal-lenges. The immutability is the most frequent applied code related to BCT properties. Para-doxically, whereas privacy the most discussed challenge for BCT, the transparency of theledger is mentioned as the second most important property of BCT. The decentralized na-ture of BCT is the single least applied code. Automatic execution is the least recurring codeof related to a property of BCT. However, papers that predominantly discuss properties fromthe perspective of the Bitcoin do notmention smart contracts which is related to the conceptof automatic execution.
A further analysis of the relation between the throughput and latency codes applied revealsthat the coding of these two concepts coincides, resulting in an almost equal number oftimes these codes are applied. Governance of blockchain networks as a challenge is almostas frequently discussed as the technical issues of BCT (throughput and latency). The datastorage and usability codes are less frequently used in comparison to the other codes con-cerning BCT challenges. Of these two codes usability is least oftenmentioned as a challenge.These results can be explained by the fact that most papers either focus on the applicationsfor BCT or on architectural aspects without regarding the users perspective.
An analysis of the applied frequency of codes over time reveals the trends in BCT challenges.Again, the analysis has been conducted by counting each time a paper was coded a certainchallenge in a given year. After obtaining the results these have been divided by the totalnumber of papers for a particular year. The weighted number of codes per are challengeand year are depicted in Fig. 2.11 to provide a fine-grained perspective. The figure showsan overall decline between 2008-2019 in the mentioning of all challenges8. What is inter-esting however, is that when the codes are weighted (I.e. per year in relation to total num-ber of papers) the results demonstrate that throughput and latency are the most importantchallenges to address. From publications in 2016 challenges related to BCT governance andusability first emerge. This shows that from 2016 onwards blockchain became mainstreamadopted as the usability of BCT (for non-programmers) for the first time were discussed in[181, 261]. Moreover, in that same year governance emerged from the literature under re-view [78, 181, 209, 261] as a challenge. This literature discusses that novel updates to existingplatforms were required due to several reasons yet that this turned out to be a challenge.In tandem, the governance issues from a legal perspective are discussed which means thatBCT is was no longer regarded as a novelty but mainstream and a technology that neededto adhere to legal standards (see Sec. 2.8.5).
8For the years 2013 and 2019 only one paper has been included in the literature sample which imbalances thestandardized weighted frequency of the codes for these years. Hence, in the scope of this analysis the resultsfor 2013 and 2019 should be regarded as outliers.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 53PDF page: 53PDF page: 53PDF page: 53

Chapter 2. Blockchain Technology 39

Figure 2.11: Trends in BCT challenges from 2008 to 2019.

2.9.2 Highlights and Observations

2.9.2.1 Chaining data using blocks

From the FCA conducted for this research we found that what sets blockchain apart fromother forms of distributed ledgers is that transactions are stored in blocks. On the one hand,transaction data is stored in blocks to ensure the integrity of the distributed ledger. On theother hand, storing data in blocks also has its drawbacks.
Blocks have fixed data sizes and can only contain a limited number of transactions. Trans-action that do not fit in the current block that is created have to wait to be processed andincluded in the next block. Given that both blocktime and blocksize for most blockchainnetworks are fixed these two parameters determine throughput capacity of a blockchainnetwork [189]. The SegWit proposal (see Sec. 2.8) might partially solve this problem byexpanding the size of blocks. However, to increase the throughput of public blockchain pro-tocols further future expansions of the blocksize will be required. What the consequencesare for the security of the network remains unknown however, because there has been noempirical investigation to test these configurations.
Nodes on a blockchain network need to keep a complete history of all transactions made ona blockchain network in order to validate them. Because the number of transactions thathave been made on a blockchain is growing over time the data storage demands grow inparallel. Consequently, on the long-term it will be unsustainable for every node to keep theentire history of transactions [244]. Conversely, if only few nodes would be able to meetthe store demands it would defeat the purpose of decentralization. A similar trend can beobserved with regards to Bitcoin mining. Initially nodes mined blocks individually. However,due to increased mining requirements (CPU power) they eventually started collaborating inmining pools andmining becamemore centralized as a result. To address this problem someblockchains are utilizing the concept of checkpoints [158, 173]. Whether this solution aides insecuring the network from attacks remains unknown. Another proposed solution is the useof lightweight clients. However, at least some nodes need to be full weight clients that keeptrack of all transactions thus, still have to burden themselves with storing large amounts ofdata.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 54PDF page: 54PDF page: 54PDF page: 54

Chapter 2. Blockchain Technology 40
Table 2.2: A complete reference over consensus protocols; instances aredescribed along their characteristics, an implementation example and thesource for argument of the claims.

ID Trust-
level

Scalability(#Nodes) Byzantine
Fault-Tolerance

Throughput Latency Example Source

PBFT High Weak < 33.3% offaulty replicas <2000 <10s HyperledgerFabricv0.69
[44, 183,285]

RAFT High Weak <51% of faultynodes >10k <10s Corda10 [44, 183]
PoW Low Strong <51% ofcomputingpower

<100 >100s Bitcoin11 [183, 285]

PoET Low - <51% ofcomputingpower
- - HyperledgerSawtooth12 [44]

PoS Low Strong <33% of stake <1000 <100s Tendermint13 [44, 183,285]DPoS Medium Strong < 51% ofvalidators <1000 <100s Bitshares14 [183, 285]
ZKP15 Low Strong <51% ofcomputingpower

- - Zcash16 [72]

2.9.2.2 Consensus in the wild

Besides the consensus protocols discussed in the results section (see Sec. 2.3.5) we reportedmore consensus protocols such as Proof of Work or Knowledge (PoWorKs) [21], Proof of Vote(PoV) [157], Proof of Sequential Work (PoSW) [60]. However, none of these protocols is sup-ported by mature implementations, practical application, or empirical evidence of opera-tional characteristics. For the sake of completeness, however, Tab. 2.2 offers an overviewof all primary consensus protocols (without any derivation, e.g., PoSWwith respect to PoW)and their claimed features in the respective literature. The table articulates every consensusprotocol (ID in column 1) using (a) the trust-level required in the P2P network setting, (b)the scalability (i.e., whether the network can scale in terms of the number of nodes [124]),(c) the throughput, i.e., how many transactions per second the protocol can successfullyprocess and (d) the latency, i.e., the time it takes to successfully confirm the transaction.
An interesting observationwith respect to consensus protocols in Tab. 2.2 is that there seemsto be a lack of systematic and empirical studies to test the claims around the proposed con-sensus protocols and their architectural properties. Of the papers reviewed, none basedtheir statements about these properties and how they behave under different circumstanceon the results of empirical testing. An exception is a study by Dihn et al. [72] that provides aframework to benchmark private blockchains. Public blockchains however, remain untested.Nevertheless some general observations can be made: With the introduction of PoW a shiftis made from protocols that require high trust among nodes to a more trustless setting. Thisis not surprising given that one of the main aims of the original Bitcoin protocol was to makeit expandable beyond a fixed number of authenticated nodes. Accordingly, an increase inbyzantine fault tolerance of consensus protocols can also be observed. However, the resultsalso demonstrate that an increase in the byzantine fault tolerance is coupledwith a decreasein throughput and latency. For instance, the Tendermint PoS variant has a higher through-put and lower latency as the Bitcoins PoW protocol, yet it is also less byzantine fault tolerant(<33% to <51%).

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 55PDF page: 55PDF page: 55PDF page: 55

Chapter 2. Blockchain Technology 41
For the PoET and ZKP proof based consensus protocols there is no data available with re-gard to their properties. Moreover, although it is stated in [53, 72] ZK-SNARK techniquesincur large overheads in terms of storage space, there is little evidence to substantiate theseclaims.
The gradual shift from PoW towards PoS based consensus can have some important ramifi-cations for the security of blockchains. With the exception of [158] little efforts have beenmade to investigate the unresolved security issues of PoS variants andhow to resolve addressthem. One such problem is how to determine the deposit forgers are required to make toparticipate in the consensus protocol (see Sec. 2.5.3.4). If the gains of introducing invalidtransactions outweigh the losses of a deposit the solution is will not be effective. Shardingof consensus seeking is a novel development mentioned in the papers under review. Yetwe view that there are many unaddressed questions concerning blockchain sharding. Whensharding a consensus protocol the nodes in the network will be distributed between severalshards. How this distribution should take place remains unclear however. Provided that asecure manner has been found to distribute the nodes then it should be determined howmany nodes must encompass a shard to make it secure as small shards (with few nodes) areeasy to attack.
2.9.2.3 Blockchain Hybrids Emerging

Our literature suggests thatmore recently several interesting combinations of public blockchainswith a permissioned model are under experimentation.
We observe from the coding process that the terms permissioned/private blockchain andpermissionless/public blockchain are used interchangeably. Based on our extensive review,we propose that blockchain-oriented networks should be categorized based on both (1) net-work authentication coupled to permissions (permissioned/permissionless) and (2) acces-sibility of the network (public, consortium, private). Although the first blockchain network(Bitcoin) was public and permissionless, from the coding process it can be observed that inthe papers under review permissioned and private/consortium blockchain networks are of-ten mentioned (see online materials in Appendix A.2). One of the main reasons remarked inliterature is that public blockchains have to utilize consensus protocols that can be regardedas slower than the ones that could be employed for private/consortiumblockchains. Further-more, having more control over the permissions each participant in the network has is an-other reason mentioned. We observe that private/consortium and permissioned networksare often regarded as a substitute to their public counterpart because of these challenges.
2.9.2.4 Mainstream Adoption of Blockchain Technology

An increase of academic works on the topic, and the overall increase of literature producedevery year can be observed (see Sec. 2.3.5). These results show that BCT has been embracedby the mainstream. The usability of BCT for end-users and developers [176] could however,hamper the further adoption of BCT. Tools to develop blockchains/smart contracts seem tobe absent. Especially for users that aim to employ smart contracts to define simple trans-action logic a more simple and user friendly approach that does not involve programmingwould benefit the mainstream adoption of smart contracts and blockchain.
The results of this research show that governance of blockchain both in terms of the gen-eral ecosystem and at the platform level are a challenge currently. In many countries theuse of BCT for applications or cryptocurrency has an opaque legal status. Making policy andregulation is difficult since a blockchain networks operate internationally and are not bound

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 56PDF page: 56PDF page: 56PDF page: 56

Chapter 2. Blockchain Technology 42
to a single jurisdiction [185, 247]. Implementing updates or changes for a public blockchainnetwork are a platform level governance challenge caused by decentralized decision makinginvolving many participants. A solution to this problem might be the centralization of up-date permissions. However, that solution would be at odds with decentralized principles ofblockchains and introduce several security hazards.
2.9.2.5 Safe Executability of Legally-binding Smart Contracts

Smart contracts are an important application for BCT as can be inferred from the numberof times the code has been applied (see Sec. 2.9.1). All primary studies focus on discussingthe security of Ethereum smart contracts. This trend is highlighted also in related work [5].The most obvious implication of this shortcoming is that more rigorous, generalisable, andformalized approach to analyzing the safe and secure executability of smart contracts is re-quired. A preliminary investigation of safe concurrent smart-contracts’ executability Dick-erson et al. [70] who describe an abstract solution to this problem without any rigorousevaluation. The trend towards sharding blockchain consensus can have implications for theexecution of smart contracts what these exactly are remains unknown till date. Conversely,the word “contract" in the smart term definition contract would imply for its legally-boundenforceability under specific operational conditions [58].
2.9.2.6 Blockchain: Properties versus Challenges

BCT offers some interesting properties such as disintermediation, programmability, trans-parency, and verifiability that could potentially be beneficial for many applications (Sec. 2.7).However, the technology also has its drawbacks (Sec. 2.8). The work of Mougayar [185] pro-vides a decision-making framework based on business parameters to aid in identifying theproblems that BCT can streamline. Our work strives to provide a technical perspective tocompound the business side explored by works such as Mougayar [185]. Gatteschi et al [88]suggest that when considering to adopt BCT one should ask: (1) Whether a shared databaseis required, (2) Multiple parties write the data, (3) Whether disintermediation is needed (4)and, whether it is required to see the linkage between transactions. In the similar vain Wüstand Gervais [272] argue that when deciding whether to adopt and design blockchain thecontingencies depicted in Fig. 2.12 should be considered. They argue that if a trusted thirdparty (TTP) always is available there is no need for a blockchain. Thereafter one has to makean analysis of the network participants to decide which type of blockchain network is mostappropriate.
Besides the considerations presented by [88] and [272] from the results of this study weobserve the following. First, a blockchain can disintermediate the transactions made on aP2P network between untrusted participants. However, as a result the throughput of mostconsensus protocols for blockchains is low and their latency high (see. Table 2.2). If theseproperties do not satisfy the requirements of the application these consensus protocols arenot themost suitable solution. Visa for instance, handles 2000 transactions per second [193,244] while most protocols currently cannot process transactions at that rate. Furthermore,when all network participants can trust each other a consensus protocol is not required. Insuch situations other solutions such as distributed databases [201] or P2P network [8] of-fer a less costly and faster way to exchange data or transactions. Second, not all blockchainplatforms allow for the deployment of smart contracts which enable the programmabilityof transactions. Moreover, currently blockchain based smart contracts present some unre-solved problems such as ensuring security [5] and legal enforceability [58]. In the past threedecades several approaches have been suggested to develop contracts that are executed

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 57PDF page: 57PDF page: 57PDF page: 57

Chapter 2. Blockchain Technology 43

Figure 2.12: Decision-making model for blockchain networks; adapted from:[272].

electronically [138, 155] known as electronic contracts that currently have a higher matu-rity for these applications. Third, transparency and verifiability are a double-edged sword.In fact, these properties ensure the correctness of the distributed ledger, however trans-parency is not always desirable. More transaction privacy could be guaranteed by usingZKP’s yet it is suggested that these incur additional overhead. An alternative is to performthe transactions on a blockchain network with a permissioned model. This could createcensorship resistance which jeopardizes the security of the blockchain (see online materialsaccessible via a link in Appendix. B.1).

2.10 Research Gaps and Roadmap

The field of BCT is rapidly developing yet the results of this study point out fourmain researchgaps that provide opportunities for future research. The research gaps and opportunities forfuture research have been identified using the results of the GT coding process (Sec. 2.9.1)combined with the descriptive (Sec. 2.3.5) and in-depth analysis of the papers under review(Sec. 2.9.2).
2.10.1 Consensus Protocols

Despite the fact that several publications discuss consensus protocols, few claims regardingthe performance of these protocols are substantiated with evidence. One of the researchgaps identified by this study is that evidence is lacking because the consensus protocols suit-able for public blockchains remain untested. Similar to the approach presented in [72] forprivate blockchains, feature research endeavors could empirically test the properties of con-sensus protocols for public blockchains. Addressing this research gap is especially importantsince the results of this study suggest that throughput and latency issues are still the majorconcern, and have a relative high urgency (see Sec. 2.9.1.5). Moreover, these empirical re-sults aid practitioners making more informed architectural design choices. There is a trendtowards developing consensus protocols based on shardingwhich could be further exploredby future research as with the exception of [162] little work on this topic has been published.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 58PDF page: 58PDF page: 58PDF page: 58

Chapter 2. Blockchain Technology 44
In the same vein, a shift towards using PoS based consensus protocol for public blockchainscan be observed (see Sec. 2.9.1.2). However, most published works on consensus protocolsonly specifically discuss PoW or provide a broad overview (see Sec. 2.3.5). Only three works[130, 158, 204] have been published on the topic of PoS, and only one of these [158] ad-dresses the security of PoS protocols. More research on how PoS consensus protocols caneffectively ensure the integrity of public blockchains is needed. Especially since there arestill open issues to address such as determining deposits required for staking [158] during aPoS based protocol.
2.10.2 Data Storage and Privacy

Privacy has been shown to be a fundamental issue for BCT (see Sec. 2.9.1.5). As a remedyzk-SNARKs have been proposed (see Sec. 2.5.3.6 and Sec. 2.9.1.2). It has been claimed zk-SNARKS incur large overheads in terms of storage space. However, there is little evidence tosubstantiate this claim. Future studies could focus on investigating this claim and if provento be true, investigate manners to decrease this overhead. Although zk-SNARKs facilitateprivate transactions in our sample no studies were found identified that investigate their ef-fects on performance aspects (throughput and latency). Forthcoming research efforts coulddetermine the impact of zk-SNARKS on performance which aids in further developing ZKPprotocols in general. There is little work on how blockchains can become made GDPR com-
pliant (see Sec. 2.8.4). However, we posit that like any other technology BCT has to operatewithin the current legal framework. The increasing amount of data storage space requiredby nodes is an unaddressed challenge. Some efforts have beenmade to address this problemsuch as the introduction of lightweight clients. The results of our study show that currentlydata storage is not perceived as a challenge with a high importance (see Sec. 2.9.1.5). Yet weposit that in time the problem might become more urgent when the throughput of consen-sus protocols will increase and in parallel, the amount of data required to be stored [244].Thus, future research should investigate more efficient ways to store data, or determine ifdata can be omitted from the ledger.
2.10.3 Smart Contracts

From the results of this study smart contracts emerge as an important concept related toBCT (see Sec. 2.9.1). All of the works in our sample investigates to smart contracts deployedon the Ethereum blockchain platform. Yet, more rigorous, generalizable, and formalized ap-
proaches to analyzing the safe and secure executability of smart contracts is lacking. Novelresearch could focus its efforts on ensuring the security and safety of smart contracts forplatforms other than Ethereum. Literature related electronic contracts (e.g. [51, 140, 171])could be a potential inspiration how to address the security issues of smart contracts. Fur-thermore, further work is required to establish the viability and implementation of legally-
enforceable smart contracts. Given the trend towards sharding the consensus protocol re-search should be conducted how cross-shard smart contract validation can be performed.
2.10.4 Usability

This study has shown that multiple applications for BCT have been explored. However,the usability of BCT and smart contracts in particular remains limited since user-friendly
blockchain-oriented tools are not widely available to non-programmers. The trends in chal-lenges mentioned (see Sec. 2.9.1.5) suggest that over time this will become a more perva-sive problem. Providing tools and approaches to ease the development of DApps or smart

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 59PDF page: 59PDF page: 59PDF page: 59

Chapter 2. Blockchain Technology 45
contract could open up BCT to a broader audience. Therefore user-friendly tools for smart
contract development would be helpful.

2.11 Limitations and Threats to Validity

Using the guidelines provided by Wohlin et al. [269] the limitations and threats to validityfor this study were identified and are discussed in this section.
External Validity. First, developments in the field of BCT are introduced at a fast pace. Hence,some of these developments may exist but have not been published yet. Some papers onthe topic are so novel that they have not been indexed yet and not included in the selecteditems. Another issue is that the terminology is still evolving and universal definitions forconcepts such as BCT based smart contracts have not yet been formalized. This issue hasbeen addressed by including search terms that are being used interchangeably in the searchstring (e.g. distributed ledger and blockchain technology) to ensure that all potential aliasesof blockchain technology were covered. Items that were found using the search terms havebeen assessed thoroughly based on various dimensions of quality employing inter-rater re-liability. Another threat to validity stems from including aliases of BCT is that findings of thestudy could also be related to distributed ledger technology. As a strategy to mitigate thesethreats we set out to define BCT based on a formal concept analysis using literature thatspecifically mentioned BCT in its introduction and background section.
Internal and Construct Validity. Second, to attain the results of the research questions aGlaserian-Straussian GT [93] Grounded-Theory coding approach has been used. Althoughan inter-rater measurement has been employed, the risk of observer bias is still present.Some additional codes were added to the list established during the pilot study. On thesecodes however, no inter-rater assessment has been performed.
Furthermore, the current body of knowledge on the topic of BCT to day remains limited.Many proposed consensus protocols in the field of BCT have not been rigorously empiricallytested in terms of their properties. A prime example being the PoS consensus protocol forwhich a thorough assessment of the properties (e.g. throughput and latency) of its manyvariants is lacking in literature. In the same vein, with the notable exception of Li et al. [158],not much research has been carried out with regard to the security of the PoS variants.
In addition, in section 2.5.3wehave discussed several consensus protocols found in literaturefrom a process view, indicating their process flow, idiosyncratic security issues and otherproperties. For the sake of space, only the consensus protocols that were recurring morethan 3 times in at least 2 different papers across our primary studies were included in thisstudy. However, as mentioned prior, this study has also identified other consensus protocolsthat were not discussed in full for space sake. Third, the findings of this research are partiallybased on grey literature sources. Inherent to grey literature is that the quality and accuracyof these sources can be disputable. In order to mitigate this threat we assessed each greyliterature item obtained through our search strategy using multiple criteria based on theguidelines providedbyGarousi et al. [86]. Furthermore, the assessment of the grey literatureby the first and second author of this study has been subjected to an inter-rater reliabilitytest (see Sec. 2.3.4).

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 60PDF page: 60PDF page: 60PDF page: 60

Chapter 2. Blockchain Technology 46
2.12 Conclusions

This study was enacted to (1) analyze how blockchain technology can be defined, (2) providea systematic overview of the state of the art concepts around that definition, (3) distill agrounded research roadmap around the topic. In section 2.4, using a Formal Concept Anal-ysis (FCA) [175] approach, a systematic definition of BCT was distilled.
Beyond the operational definition above, using the well known 4+1 software architectureviewpoint framework [141], the architecture elements of BCT were fleshed out, specifically,our results recap: (1) theway a platform can be designed: (2) how transactions are processedand, (3) the architectural arrangements typically used for the P2P network underlying BCT.The third aim of this research was to flesh out what blockchain based applications have beendiscussed in the state of the art and how these can be categorized. The study reveals thatthere are three types of use cases for BCT: (1) cryptocurrencies, (2) smart contracts and (3) anarray ofmore general applicationswhich can be sub-categorized into five categories, namely,(a) security and fraud detection, (b) securities and insurance, (c) record-keeping, (d) Internet-of-Things (IoT) as well as (e) smart legal contracts. As a fourth objective of this study, we setout to determine the architecture properties of blockchain technology and their trade-offs.Data analysis reveals 8 coupled architectural characteristics — these properties are trade-
offs exercised during blockchain architectural design. The fifth objective of this research wasto identify the challenges for BCT. In the future, 6 main challenges for blockchain technol-ogy need to be addressed: (1) decreasing latency for the conformation of transactions; (2)increasing the throughput of transactions which is related to the design of the consensusprotocol; (3) decreasing data storage requirement; (4) protecting the privacy of blockchainusers; (5) data governance of blockchain networks; (6) the usability of the technology.
Finally, an analysis of the papers under review demonstrates that there are four researchgaps that need to be addressed by future research concerning: (1) consensus protocols, (2)Data privacy and storage, (3) smart contracts, and (4) the usability of blockchain for endusers. In our own research agenda, we plan to further analyse the results and data stem-ming from our study to further provide architectural and decision-making instruments forpractitioners and academics alike. Furthermore, we plan to focus around the social and so-cietal concerns around BCT, namely, its privacy-by-design [101] aspects as well as its end-useracceptance and maturity.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 61PDF page: 61PDF page: 61PDF page: 61

47

Chapter 3

Smart contracts

3.1 Introduction

Business processes that span organization boundaries pose a number of significant businessand system level challenges [117, 203, 265]. Once the legal contracts between the tradingpartners are established, those should bemonitored, enforced, andmanaged (including han-dling contract violations, termination, and update). As there exist often a lack of trust amongthe organizations, they face the delicate situation of trusting a specific partner for enforcingcontractual obligations. To avoid relying on one trusted party, the business transactions needto be made transparent across partners. The transaction data including business interactionstates, business objects and events should be shared among partners using a trustworthy,privacy-preserving, non-reputable medium.
Blockchain is an emerging digital technology that can execute and verify transactions be-tween multiple parties without involving a trusted third party, and can record the transac-tions permanently [48, 72, 176, 188, 231, 262, 274]. It can provide a promising solution toaddress the contract enforcement and management challenges in untrusted business net-works [176]. The two key enabling features of Blockchain are the distributed shared ledger,and computer programs (so-called smart contracts) that run on the ledger [117, 265]. Theformer can store immutable records of transactions in a peer-to-peer network of machines.Every allowed participant can access the data. The smart contracts are executed by all con-sensus nodes in the network. A participant can invoke the coded functions of a deployedcontract by sending messages. The outcomes of the contract innovations are stored in theshared ledger, providing transparency to all relevant parties if conflicts arise. Note that whilethese computer programs are called "smart contracts", they are generally not very smart,and lacks the contracts to represent legal contracts [275].
Blockchain is gaining popularity in enterprises. According to Gartner "Hype Cycle for Emerg-ing Technologies for 2018", blockchain will reach "Maturity" within 10 years. According toGartner, by 2022, smart contracts will be adopted by more than 25% of global enterprises.There are already several blockchain providers such as Hyperledger, Ethereum, BigChainDB,and Kadena. Blockchain have promising use cases in areas such as trade finance, insurance,security industry, digital properties and rights management, organizational management,IoT, and energy [262]
The transparency and accountability enabled by the blockchain make it suitable to imple-ment a (logical) trusted third party that can execute business transactions in untrusted busi-ness networks. The business transactions are much more complex operations than sending
This Chapter is based on a peer-reviewed publication in: Butijn, B. J., van den Heuvel, W. J., & Kumara, I. (2019).Smart Contract-Driven Business Transactions. In Essentials of Blockchain Technology (pp. 81-98). Chapman andHall/CRC.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 62PDF page: 62PDF page: 62PDF page: 62

Chapter 3. Smart contracts 48
monetary resources from one party to the other [278, 285], and require enforcing the legalcontractual obligations and rights of the involved parties [172].
In this chapter, we discuss the roles of the blockchain for enabling decentralized collaborativebusiness processes across untrusted business partners. In particular, we present a meta-model that captures the key abstractions and constructs of smart contract driven businesstransactions. It maps the business-related aspects of business transactions to the system-related aspects that are necessary for executing transactions using the blockchain. We alsodescribe the life cycle of smart contract driven business transactions, from the negotiation oflegal contracts to the enactment of the transactions on a blockchain platform. To guide theimplementation of the smart contract driven business processes, we also provide a referencearchitecture that supports our meta-model and life cycle model.

3.2 Motivating Example

Figure 3.1: Supply chain example, Adopted from [265]
In this section we present a simple supply chain scenario (adopted from [265]) to motivatethe smart contract driven the business transactions in the collaborative business processes.
As shown in Figure 3.1, the supply chain business network consists of four business entities:the Bulk Buyer, the Manufacturer, the Supplier, and the Special Carrier. Each entity can per-form some business functions. For example, the Manufacturer can produce products, andcalculate the demands for products, and the Supplier can produce rawmaterials. The supplychain business processes are often carried out as a set of multi-step business transactions.In a business transaction, an initiating partner requests the business functions from one ormore partners, who perform the requested business functions, and may in turn request thebusiness functions from some other partners. For example, the Bulk Buyer places a new or-derwith theManufacturer, which either accepts or rejects the order. If the order is accepted,the Manufacturer calculates the product demands, and orders the raw materials from theSupplier. Once the raw materials are ready, the Supplier asks the Special Carrier to trans-port them to the Manufacturer, which produces the products, and delivers the producedproducts to the Bulk Buyer.
The business transactions (and thus processes) are governed by the legal contracts betweenthe business entities. Typically, the contracts express the obligations of the contract parties

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 63PDF page: 63PDF page: 63PDF page: 63

Chapter 3. Smart contracts 49
to each other, and outlines services provided, business interactions allowed, performance,resources, conditions of providing services, and handling of contract violations. For example,the contract between the Bulk Buyer and theManufacturer can state that theManufacturermust deliver the requested products within 7 days after the order.
In business collaborations, as there often exist lack of trust between parties, the resolutionof the conflicts between them can be challenging. Consider the case that the Buyer receivesthe products that do not match the requested product specifications, and thus refuse toaccept the products. As the product are tailor-made for the Buyer, and cannot be sold toanother buyer, the Manufacturer argues that the products are exactly matched with whatwere ordered. To resolve this conflict, the business interactions between parties must bemade transparent while preserving privacy and security constraints, so that the maliciousbehaviors of parties can be readily spotted and legally penalized. Blockchain can help tobuild a trusted coordination environment for automating business collaborations betweenthe untrusted business entities.

3.3 Lifecycle of Smart Contract Driven Business Transactions

Figure 3.2: Life cycle of smart contract driven business transactions
Figure 3.2 depicts the life cycle of a business process running on top of the blockchain. Itconsists of three main phases: 1) negotiation and commitment, 2) design and implementa-tion, and 3) deployment, execution, monitoring, and adaptation. The first phase considersthe business related aspects, and the latter two phases consider the system related aspects.
In the negotiation and commitment phase, the participating business entities need to ne-gotiate and agree upon the services provided and required, the terms and conditions of

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 64PDF page: 64PDF page: 64PDF page: 64

Chapter 3. Smart contracts 50
service provisioning and requesting, and Quality of Service (QoS) requirements. Next, thelegal contracts (documents) are created based on the mutual agreements, and the createdcontracts are singed by the relevant partners. The contracts generally express the rights andobligations of the contract parties to each other, and also outlines the guidelines for handlingcontract violations, and the conditions of commencement, continuation, and termination ofthe contract.
In the design and implementation phase, the required system-level artifacts are createdand/or (partially) generated based on the legal contracts and the information about the tech-nical capabilities (e.g., service interfaces, data format andmessage exchange standards used)of the participants. The key artifacts include the functional and not-functional requirementsfor the overall business process and the partners, Service Level Agreements (SLAs) betweenpartners, executable smart contracts (in the contract programming language of the targetblockchain platform), and business process models. The requirements and SLAsdrive thedesign of the business process models. The business partners offer their business capabili-ties as business services, and the process models express the coordination of these servicesto realize the desired requirements while respecting the service level objectives of all theinvolved parties. These coordination logics in the process models can also be implementedwith the smart contracts [265].
In the deployment, execution, monitoring, and adaptation phase, the implementation arti-facts are deployed on on-chain (i.e., a blockchain network) and off-chain infrastructures. Therelevant users should be able to enact a business process by sending the application-levelmessages to the system. The choreographymodel can be used to execute the process, wherethe deployed smart contracts act as the trusted coordinator. The enactment of the processinstances are monitored to detect potential contract violations, and to trigger the relevantprocesses for handling each identified violation. The dynamics of the partner behaviors andthe computing infrastructures, and the changing requirements and physical legal contractsrequire adapting the running business process, including deployed smart contracts.

3.4 A Reference Architecture for Smart Contract Driven Business
Transactions

This section presents a reference architecture that provides a top-down layered approach tothe development of the smart contract-driven business processes and transactions. It is in-spired by the Service-Oriented Architecture (SOA) reference architecture [202]. As shown inFigure 3.3, the proposed reference architecture consists of six layers: physical business net-work (or business domain), business process, business transaction, business service, smartcontract, and computing infrastructure.
Similar to the SOA reference architecture, the layer 1 presents the business domains in anenterprise such as production, finance, and human resources. Each domain consists of a setof current and future business processes that implement the requirements of the domain.Multiple business partners bound by legal contracts collaborate to realize these businessprocesses, forming a business network. Layer 2, the business process layer, in our refer-ence architecture is also similar to the business process layer in the SOA model. It capturesthe core business processes in a business domain, such as order management, productionscheduling, shipping, and inventory management in the production domain.
Typically, the business processes need to integrate and coordinate business functions frommultiple partners across the business network into multi-step business transactions. For

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 65PDF page: 65PDF page: 65PDF page: 65

Chapter 3. Smart contracts 51

Figure 3.3: A reference architecture for smart contract driven business trans-actions

example, in the production business process, purchasing raw materials is a business trans-action between the manufacturer, the supplier, and the special carrier. This transaction con-sists of steps such as place orders, produce materials, delivery materials, pay materials, andpay delivery. It may only be considered as successful once all raw materials are delivered tothe manufacturer, and the relevant payments have been issued. Such business transactionscan take days or even weeks. The legal contracts between the involved participants regulatethese business transactions. Layer 3 in our reference architecture is to decompose a businessprocess into a set of composable business transactions (reflecting the business semantics).
In service-oriented business environments, the participants expose their real world busi-ness capabilities as business (IT) services. Internally, a participant may realize its service asa complex business process that automates and coordinates its internal business tasks. Forexample, themanufacturer can provide a service that can be used by the bulk buyer to placeorders, pay orders, cancel orders, and track delivery. Generally, the business services pro-videwell-defined interfaces to hide their internal implementation details fromother services(and thus other partners in the business network). A business transaction coordinates multi-ple business services into a logical atomic unit of work. The services interact will each otherby requesting and providing service capabilities (business conversations). A transaction putsbusiness constraints and invariants over these business conversations, for example, timingand ordering constraints on individual interactions. Layer 4 in our reference architectureincludes the business services that can be coordinated to realize end-to-end business pro-cesses. Note that, in addition to the business services, utility (or commodity) services suchas services implementing calculations and data processing algorithms are also necessary toimplement business processes.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 66PDF page: 66PDF page: 66PDF page: 66

Chapter 3. Smart contracts 52
Business collaborations among untrusted parties require incorporating the transparency andaccountability into the relevant business processes. The participants expects the contractualobligations and rights are duly enforced. They need to be able share a trusted representationof the contract enforcement including the transactions and assets of each participant, andthe decision making processes (e.g., handling of a contract breach or selection of a specificpartner). With the blockchain technology, smart contracts can regulate the transactions us-ing the business rules that the parties have agreed on. Ideally, the smart contracts shouldbe derived from the relevant legal contracts. When the business interactions among partic-ipants are processed (as part of a business transaction), the smart contracts can apply therules to check the compliance of the interactions, and produce the immutable records, re-flecting the states of the individual interactions as well as the overall transactions and busi-ness processes. This shared trusted representation of the transaction data can give trans-parency to all relevant stakeholders if conflicts arise. Layer 5 in our reference architectureis to define the smart contracts for monitoring, regulating, and governing business transac-tions and processes.
Infrastructure services are necessary for automating and executing the smart contract drivenbusiness processes. We categorize them broadly into on-chain services and off-chain ser-vices. The former services are those provided by the blockchain platform to manage thelife cycle of smart contracts, invoke the contract functions, store and access data, and so on.There are several blockchain platforms that support smart contracts, for example, Ethereum,Kadena, and Hyperledger.
Theoff-chain infrastructure services constitute the infrastructure services in the SOAreferencearchitecture. Among them, technical services can provide the technical infrastructure en-abling the development, delivery, maintenance, and provisioning of business services. Theyalso offer capabilities to provide and maintain QoSsuch as security and performance. In thisarticle, we assume that the choreographymodel is employed to coordinate the business ser-vices into business transactions and processes. The some of these coordination logics mayalso be realized by the smart contracts [55]. Infrastructure services also include monitoringandmanagement services for monitoring the health and state of the business processes andresources, for detecting the potential contractual violations and trigger resolution policies,and so on. As the contract enforcement process should also be transparent to all parties,the smart contracts can also be used to realize it.
A smart contract can only access information that is stored on the ledger. However, somesmart contracts operate in a wider ecosystem, and it might therefore be needed to acquireinformation about the outside world state and events. Moreover, the business services ofthe partners should be able to be triggered by the smart contracts, and vice versa [265]. Thisrequires blockchain adapters/connectors that can receive messages or events from smartcontracts and call external services, or receive service calls and sendmessages to smart con-tracts accordingly [265]. In the blockchain terminology, the trusted external data feeds arecalled oracles. Two current examples of oracles are Town Crier [284] and Oraclize [1].

3.5 Motivating Example with Smart Contracts

In this section, we present the realization of our motivating example using smart contracts.We first provide an overview of the case study design, and then describe the some of thesmart contracts used.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 67PDF page: 67PDF page: 67PDF page: 67

Chapter 3. Smart contracts 53

Figure 3.4: Motivating example with smart contracts

3.5.1 Case Study Design

Figure 3.4 shows the high-level architecture of the system. Each partner exposes its inter-nal business processes as SOA services. For example, the service of the manufacturer offersthe capabilities to ordering the products, canceling and revising an order, paying for theproducts, and tracking the statues of an order. The implementations of these capabilitiesare internal to the manufacturer, and potentially use heterogeneous resources such as hu-man workers, robots, software systems, and utility services. The blockchain-based smartcontracts provide a trusted communication and coordination infrastructure for the businesscollaborations. The smart contracts between parties aim to implement the terms in the cor-responding legal contracts. All the interactions (service requesting or transaction initiatinginteractions, and responding interactions) pass through the relevant smart contracts. A validrecord of the each interaction is recorded in the blockchain as a blockchain transaction. Theprocessing of an interaction by a contract rule may generate events and business objects.The services use a blockchain connector (e.g., the trigger component in [265] or a Web3.jsbased connector (https://github.com/ethereum/web3.js/)) to send interaction messages tothe contracts, to read the business objects from the ledger, and to listen to the events gener-ated. The detection of the event patterns can trigger the execution of the service operations(as in event-driven process chains).
Figure 3.5 illustrates the progress of a business transaction. The bulk buyer sends the productorder request via a blockchain connector (client), which triggers the relevant coded functionof the smart contract to process the interaction, and to record the state of the interaction(a transaction in Ethereum). The processing may generate events indicating the state ofthe interaction, e.g., ProductOrderReq event. The blockchain connector associated with theservice of the manufacturer listens to this event type (or an event pattern), and execute theplace order operation of the service. This service operation may trigger internal businessprocesses for processing the order and deciding the next actions, for example, acceptanceor rejection of the order, estimating the production demands, and ordering raw materials ifnecessary. Upon the completion of the place order operation, themanufacturermay interactwith one or more partners, for example, notifying the order acceptance to the buyer, andplacing a raw material order with the supplier. These interactions are also passed through

https://github.com/ethereum/web3.js/

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 68PDF page: 68PDF page: 68PDF page: 68

Chapter 3. Smart contracts 54
the relevant smart contracts (BB-MF and MF-SP). The smart contracts process and regulateinteractions, and create a shared, trusted complete record of the transaction data, events,and assets, enabling the validation of the past transactions and the enforcement of the legalcontracts.

Figure 3.5: Sequence diagram illustrating part of a business transaction

3.5.2 Ethereum Solidity Smart Contracts

Let us consider the some of the Ethereum solidity smart contracts used in the case study. Allevents, business objects, and the state of the contract function executions are recorded inthe blockchain.
1 pragma solidity >==0.4.22 <0.7.0;2 contract BB_MF {3 // adresses of the parties4 address payable public mfAddr;5 address public bbAddr;6 //The Order business object7 struct Order{8 string goods;9 uint quantity;10 uint number;11 bool init;12 }1314 mapping(unit => Order)orders; //The mapping to store orders business

objects15 uint orderseq; //The sequence number of orders1617 //Event triggerd for every new order from the bulk buyer18 event OrderProductReqd(adresses buyer , string goods , uint quantity ,
uint orderno);19 //Event triggered when the manufacturer sends the order acceptance20 event OrderConfirmed(adresses manufacturer , uint orderno , uint
delivery_date);21 constructor(adresses_buyerAddr) public payable {22 mfAddr = msg.sender;23 bbAddr = _buyerAddr;24 }25 function sendOrder(string memory goods , uint quantity) payable public
{26 require(msg.sender == bbAddr); // Accepts orders just from buyer27 orderseq ++ // Increment the order sequence28 //Store the Order Business Object29 orders[orderseq] = Order(goods , quantity , orderseq , true);

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 69PDF page: 69PDF page: 69PDF page: 69

Chapter 3. Smart contracts 55
30 //Emit the event31 emit OrderProductReqd(msg.sender , goods , quantity , orderno)32 }3334 function confirmOrder(uint orderno , uint delivery_date) payable public

{35 require(orders[orderno].init); // Validate the order number36 //Only manufacturer can confirm the order37 require(mfAddr == msg.sender);38 //Emit the event39 emit OrderConfirmed(msg.sender , orderno , delivery_date);40 }41 }

Listing 3.1: Solidity smart contract between the manufacturer and a buyer(BB-MF)
Listing 3.1 shows a fragment of the contract BB-MF. It includes the addresses of the bulkbuyer and the manufacturer. It also defines the business object Order and the events Or-
derProductReq and OrderConformed. The two functions sendOrder and confirmOrder areto intercept and validate the relevant service interactions. Listing 3.2 shows a fragment ofthe contract MF-SP. It binds the manufacturer and the raw materials supplier. The contractdefines the business object MaterialOrder, the event OrderMaterialReq, and the function
placeMaterialOrder. Each function generates the events and populates business objects asnecessary.

1 pragma solidity >=0.4.22 <0.70;2 contract MF_SP{3 // adresses of the parties4 address payable public spAddr;5 address public mfAddr;6 //The material order business object7 struct MaterialOrder{8 string materials;9 uint quantity;10 uint orderNumber;11 bool init;12 }13 mapping(uint => MaterialOrder)mOrders; //to store material orders
business objects14 uint orderseq; //The sequence number of material orders15 //Event triggered for every new order from the manufacturer16 event OrderMaterialReqd(address manufacturer , string materials , uint
quantity , uint orderno);17 constructor (address payable _supplierAddr) public payable {18 mfAddr = msg.sender;19 spAddr = _supplierAddr;20 }21 function placeMaterialOrder(string memory materials , uint quantity)
payable public {22 require(msg.sender == mfAddr); //Only accepts order from manufacturer23 orderseq ++; // Increment the order sequence24 //Store the Order Business Object25 mOrders[orderseq] = MaterialOrder(materials , quantity , orderseq , true);26 //Emit the event27 emit OrderMaterialReqd(msg.sender , materials , quantity , orderno);28 }29 }

Listing 3.2: Solidity smart contract between the manufacturer and thesupplier (MF-SP)

3.6 Discussion

In this chapter we discussed how blockchain enables decentralized collaborative businessprocesses among untrusted business partners using amotivational example. Themotivating

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 70PDF page: 70PDF page: 70PDF page: 70

Chapter 3. Smart contracts 56
example delineates a standard process of a manufacturer handling an order. This is a rathercommon scenario in manufacturing.
Section 3.3 discusses the life cycle of a smart contract driven business transaction. This life-cycle on some phases coincides with that of a smart legal contract and also deviates onpoints. For instance, for smart legal contracts it is assumed that negotiation and commit-ment of parties is beyond their scope. The designing and implementation phase do roughlycoincide with the akin life cycle phase of smart legal contracts. In the same vein, the exe-cuting, monitoring and adaptation phase are similar. However, smart legal contracts as wewill demonstrate also have a dispute resolution and termination phase. These differencescan be explained by the fact that smart contract used for business transactions only pertainbusiness processes while smart legal contracts also need to cater for legal processes such asarbitration. A smart contract is a multi-purpose artefact that is deployed for a wide varietyof use cases. Indeed, as we discuss in Section 3.2 smart contracts can be used for severalbusiness processes. This chapter only highlights one of these use cases.
An important consideration from Section 3.4 is that smart contracts are part of a larger ar-chitecture. This architecture enables trusted transactions between parties following a strictbusiness logic that is represented in layers 2 to 4 with a particular notation. In case of asmart legal contract this logic is based on the clauses in a legal contract that needs to be rep-resented in these layers. Since the logic stipulated in these layers also serves as the input forthe design of the smart contracts, they link the legal and smart contract together. This alsosets smart contracts used for generic business processes apart from smart legal contracts;When the smart contract is not used in a legal context, the business process, transaction,and service layers are designed based on any business process. Smart legal contracts on theother hand are based on the logic stipulated in a contract that is represented in these layers.
Another interesting observation to point out from Section 3.4 is that smart contracts forma self-contained system with the blockchain technology that it uses as the infrastructureunderpinning their execution. However, it is not just the blockchain infrastructure that isconnected to the smart contract. Some off-chain services such as Oracles might providedata to the smart contract as well. Effectively this makes the blockchain system less self-contained, but it also introduces several problems. Furthermore, the stipulation of the logicthat a smart contract follows is predominantly specified at the business layer. In otherwords,the requirements for the development of the smart contract have to be obtained from thedomain.
Ultimately smart contracts are code and using the case study in Section 3.2 we demonstratehow a process would be translated into a smart contract. This case study demonstratesthat at least for simple business transactions, smart contracts can facilitate them. One ofthe limitations that can be noticed from this case study however, is that all actions needto be formulated as functions. Moreover, the majority of actions within the process willbe performed by human agents and not by the contract itself. This highlights an importantlimitation of smart contracts.

3.7 Conclusion

The current chapter expounds on the concept of smart contracts using a case study. Animportant conclusion of the chapter is that smart contract are strongly tied to the infras-tructure they are deployed on. Further, using smart contracts for business transactions willrequire another approach as compared to smart contract that are used for legal contracts.The life-cycle between smart contracts designed for business transactions and that for legal

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 71PDF page: 71PDF page: 71PDF page: 71

Chapter 3. Smart contracts 57
contracts differs which has some important ramifications for their design. One of the advan-tages of smart contracts is their potential to enforce predefined logic. Blockchain platformsprovide different languages to stipulate the logic of a smart contract. However, the mannerto denote the logic within a domain is not specified. It is from that respective domain thatthe requirements for the development of the smart contract need to be obtained.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 72PDF page: 72PDF page: 72PDF page: 72

58

Chapter 4

Research Methodology

4.1 Introduction

In this chapter the choices made for the research paradigm and research design are dis-cussed. Every research encompasses some assumptions stemming from the paradigm thatthe researcher has adopted, and follows a reasoning that has led to the selection of a spe-cific research method. Researchers should make these assumptions explicit and argue thesuitability of the method in light of the of the paradigm [198].
This chapter firstly presents and discusses the main research paradigm adopted for this re-search: Design Science Research (DSR). DSR originates from the engineering discipline andfocuses on science of the artificial [232]. The DSR approach will reoccur throughout the dis-sertation as it is an artefact development centered paradigm that is well-aligned with thepurposes of this study. After discussing design science research itself, it will be argued whydesign science has been adopted as the primary paradigm for this research.
Whileweargue thatDSRprovides a suitable lens to study the development of novel artefacts,the paradigm does not prescribe a method to build an artefact and evaluate the outcomesof the design process. We take on the call from Von Alan et al. [260] that existing knowl-edge should not be ignored. Seeking to leverage the current knowledge base on softwaredevelopment, this research sets out to design an artefact (method) that caters for the cod-ing of smart legal contracts based on the requirements stated in Section 1.5.2 using theMDAphilosophy.
Adopting the MDA philosophy to software development has several advantages such as in-creased productivity, portability of code, interoperability between platforms, maintenanceof the code, and the models themselves foster communication between stakeholders [37,118, 133]. However, to attain these advantages a specific method must be followed. Thischapter will further discuss what using the MDA approach for the software developmententails. Models used for MDA need to be written in a language that caters this purpose, thechapter will discuss how these languages are used. Further, a more detailed explanation isprovided how mapping enable the transformation process.
The advantages of using the MDA philosophy connote directly to some of the requirementswe have defined for the design of a method to support the creation of smart legal contracts.Employing MDA requires the creation of several models that have shaped the methods em-ployed to conduct this research. These methods and the design for this research will bemade explicit and discussed.
In this chapter we will proceed in the following manner: In the next section (4.2) we will dis-cuss DSR paradigm and it’s suitability for this research. To provide an understanding ofMDA,we provide a further explanation of the foundations underpinning the philosophy. First we

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 73PDF page: 73PDF page: 73PDF page: 73

Chapter 4. Research Methodology 59
will discuss how the three viewpoints of MDA are linked to different modeling levels in 4.3.2.Next, thereafter in 4.3.1 we will discuss the languages available to denote the models. Insubsection 4.3.3 we discuss how models are transformed into code using mappings. Someimportant ramifications of adopting the MDA approach to software development are dis-cussed thereafter in Section 4.3.4. The rationale of the research design will be discussed inSection 4.4. Thereafter, in Section 4.5 we will discuss the benefits against considerations ofMDA as the philosophy underpinning the design of the artefact. The chapter concludes inSection 4.6.

4.2 Research Paradigm

Most information systems studies are characterized as behavioral science or design science.The behavioral science paradigm seeks to develop and verify theory. By developing noveland innovative artefacts the design science paradigm aims to enhance both human and or-ganizational capabilities [260]. Design Science Research, pioneered by Simon [232], sup-ports a logical research model that advocates the design of innovative artefacts that solvereal-world problems. Within DSR artefacts can include but are not limited to models, meth-ods, constructs, instantiations and design theories, and social innovations. Employing DSRto develop an artefact like a method designed for this research would therefore be suitable.Such an artefact is perceived to contain knowledge ranging from the design logic, methodsof construction, and tools to information related to the environment in which the artefactwill operate.
Within design science research a strong emphasis is placed on the relevance that the artefacthas to the application domain. The emphasis on the aspect of design science to cater for,or enhance the efficacy of artefacts in context of real-world problems sparked a debate onwhat the nature of design science is. In their seminal paper Von Alan et al. [260] address thisissue and argue that design science is most suitable for wicked problems. Wicked problemshave the characteristic that there are unstable requirements for their solution, flexibility inthe design process is required, complex interactions among sub-components exist, and de-veloping an adequate solution relies on creativity [41, 218]. Given the rapid pace of legaland technical developments in the field of BCT the requirements for the artefact might bechange. Flexibility is consequently required to face the changing demands from the envi-ronment. Furthermore, there exists a complex interaction between sub-components thatstem from two different disciplines and that are reciprocally affected by their respective im-pediments. Taken together, these reasons constitute to another argument to choose an DSRapproach over others.
Hevner et al. further suggest that design science should address wicked problems throughthe development and rigorous evaluation of an artifact in its context. According to the DSRparadigm an artefact is constructed based on requirements stemming from the environmentand current knowledge base. Thereafter the artefact is evaluated using these requirementsand measuring performance measures. In the same vein, Peffers et al. [206] argue that anartefact developed using a design science must be: (1) developed to address a problem, (2)relevant to an unsolved business problem, (3) rigorously evaluated on quality and efficiency.However, design science as a paradigmprovides little guidance on how to concretely conductthe research process as it is not a methodology [23]. To address this need Peffers et al.[206] proposed the Design Science Research Model (DSRM). The DSRM encompasses sixconsecutive steps that are depicted in Fig. 4.1.
The first step is the identification of the problem and motivation to solve it. A second step isto define the objectives the artefact tries to solve, these must be in line with the problems

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 74PDF page: 74PDF page: 74PDF page: 74

Chapter 4. Research Methodology 60

Figure 4.1: Design Science Research Model (DSRM)

identified in the first step. Based upon these objectives and the current knowledge basethe artefact is designed and developed thereafter. A fourth activity is the demonstrationof the artefact. This can be done in many manners, yet showing instances of the artefactis most common. Thereafter the design of the artefact can be evaluated against the objec-tives formulated in activity 2. The design and outcomes of the artefact can thereafter becommunicated. Researchers employing the DSRM are not expected to go through all sixsteps sequentially because it is possible to initiate research at almost every step and movetowards the last step. There are four potential starting points when employing the DSRM:(1) problem-centered initiation, (2) objective-centered initiation, (3) design & developmentcentered initiation, and (4) client/contract initiated. For this research we initiate the designcycle from a problem-centered perspective by first fleshing out the problems and clarifyingtheir definition.
Wieringa [266] proposed a design cycle with the aim of further specifying the steps of theDSRM and framework of Hevner. The design cycles proposed by Wierenga aids in bridgingthe gap between the DSRM and the framework proposed by Hevner by including specificknowledge questions on the artefacts’ design and evaluation. Wierenga’s cycle encompassesfour steps problem investigation, artefact design, artefact validation, and when the artefactsatisfies the requirements, implementation. Note that when the artefacts do not satisfy therequirements, the cycle will be re-iterated until satisfactory. As can be inferred from thework by Wierenga and Peffers et al. from the perspective of DSR the design process of anartefact is not linear but rather iterative.
The DSR paradigm is a lens often employed in the field of software engineering to developsoftware artifacts [266]. As mentioned, DSR does not prescribe a specific method or ap-proach to develop software. Software development is a process that costs valuable resourcesand time [77]. To ease the process of software development practitioners and scholars alikehave suggested various approaches to ease the development of software. One of these ap-proaches proposed by the Object Management Group is that of MDA [27] that will now bediscussed.

4.3 Model Driven Architecture

The cornerstone of theMDA philosophy is the usage of models to abstract the viewpoints ofa system required for development with corresponding models. Another central aspect ofMDA is the concept of model transformation, in which one model is converted into another

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 75PDF page: 75PDF page: 75PDF page: 75

Chapter 4. Research Methodology 61
model of the same system. The transformations between the models allow the developerto develop a system from an abstract viewpoint and materialize these viewpoints into code[228].
4.3.1 Modeling Levels

Software systems are a set of elements grouped together to attain a particular goal. A de-scription and specification of a system, and its environment can be viewed from variousviewpoints. Viewpoints are a technique for abstraction that use a select set of architecturalconcepts and structural rules to address specific concerns about that system [37]. The MDAapproach specifies three viewpoints on a system: a computation independent, platform in-dependent, and platform specific viewpoint [27]. These viewpoints are hierarchically orga-nized from more to less abstract respectively. Each viewpoint requires at least one modelthat specifies the concepts required to stipulate the viewpoint. Models are a reduced repre-sentation of a software system that portray the properties of interest and their environmentfrom a particular viewpoint, that are denoted graphical or textual [37]. The models requiredfor software development following the MDA philosophy include, a Computation Indepen-dent Model (CIM), Platform Independent Model (PIM) and a Platform Specific Model (PSM)for each platform [27]. If needed, each viewpoint can be further specified using additionalmeta-models. All of the models have a specific purpose within the MDA philosophy that isportrayed in Figure 4.2.

Figure 4.2: Use of different models within MDA. Inspired by [233]
A computation independentmodel focuses on the domain of the system, and stipulates con-cepts and requirements for the system. Concrete details on the structure and processeswithin in the system are not specified from this viewpoint. This is not required as the mainpurpose of a CIM is to encompass any relevant knowledge or to gather requirements fromthe domain. Domain ontologies and business models are often employed to define a CIMwith a vocabulary that is familiar to domain stakeholders [87].
The aim of the platform independent model is to view the operations of a system in a plat-form agnostic manner. Platform agnostic means that the viewpoint only pertains a speci-fication of the system that does not differ between platforms. The PIM is constructed in afashion where commonalities and differences between platforms are laid bare.
Platform specificmodels incorporate the platform independent viewpoint, and further spec-ifies deployment of a system for a specific platform. A PIM needs to adhere to any architec-tural standards and constraints that the platform for which it is created specifies. The model

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 76PDF page: 76PDF page: 76PDF page: 76

Chapter 4. Research Methodology 62
provides a set of technical concepts that represent the distinct parts that the platform en-compasses, and the services that are provided by the platform. In conjunction with the PIMit is a vital part of MDA as it allows for the translation between a platform agnostic contextto a platform specific specification [37].
The ultimate goal of stipulating these models is to enable the generation of code. Albeitthat a PSM enables the specification of the requirements of the system for a platform, itdoes not generate the code itself. Cartridges or code generators "write" the code based onthe specification of the PSM.
4.3.2 Modeling Languages

The MDA philosophy revolves around a meta-modeling architecture that encompasses fourlayers and additional standards that are all supported by a formal language [133]. In Figure4.3 the hierarchy of these layers is depicted. Elements within a lower layer are instances ofan element within a higher top layer. Effectively, higher level layers models can be used tospecify languages at a lower level.

Figure 4.3: Hierarchy of metamodels and languages. Based on [144].
The M3 level of the meta-meta-model is the highest level within the architecture. MDA ad-vocates the Meta Object Facility as the language for this layer. Meta Object Facility (MOF)is an abstract language that is self-defined to support the specification, construction andmanagement of technology agnostic meta models [37]. It provides a foundation for the def-inition of other meta modeling languages such as the Universal Modeling Language (UML)[220] or itself. At the M2 meta model level the elements allowed within a model at a M1level are defined. The UML is a common language to define these models that encompassclasses, attributes and associations amongst them. In other words, metamodels are mod-els of languages employed to define other (modeling) languages. Modeling languages aredefined by a metamodel and specify all possible model variants that are conform that metamodel. Elements included in models at the M1 level are instances of elements of the M2level. Models on this level include abstract elements such as classes (e.g., Person) and theirattributes (e.g., Name). TheM0 level pertains the reality where there are concrete instancesof models at the M1 level such as objects in a programming language [15].
Themodels at the different levelsmust bewritten in awell-defined language. However, CIMscan be modelled in any language. Given that the aim of a CIM is to gather domain related

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 77PDF page: 77PDF page: 77PDF page: 77

Chapter 4. Research Methodology 63
requirements a Domain-Specific Language (DSL) is often employed [87]. A domain-specificlanguage is a language that is developed for a particular domain, context, or organization tosimplify the task of domain practitioners that are required to describe things within that do-main [255]. Examples of a domain-specific languages include HTML for the internet, SQL fordatabase queries. Some domain-specific languages have as a goal to model this knowledge,in which case they are also called domain-specific modeling language. A prominent exam-ple of a domain-specific modeling language is the Business Process Model Notation (BPMN)that is used to model processes within and between organizations [195]. Domain ontologiesare often specified in the Web Ontology Language [239]. However, the Web Ontology Lan-guage is designed for knowledge representation and is not suitable to build systems, whileUML does support the construction of software systems [227]. Moreover, UML is machinereadable, and if used in conjunction with the object constraint language allows for the spec-ification of first order logic. Therefore, UML is sometimes used to define an ontology [87].
Contrary to a CIM, a PIM and PSM aremodelled using a formal modeling language, for whichthe UML is the standard proposed by the OMG [197] and the de facto standard in practice[118]. UML is a general-purpose modeling language for object oriented-oriented modelingthat can be applied across multiple sectors and is not restricted to one domain. When usingUML several aspects of a system are portrayed with activity, use case, sequence and classdiagrams. Class diagrams aim to depict the classes and their attributes of things that areinstantiated as objects. AlthoughUML is a versatile language, it can only partially express theinformation needed to define a modeling language. In fact, most general-purpose modelinglanguages only cater for the definition of simple modeling constraints of novel languages.Oftentimes these are basic cardinality constraints which restrain the number of associationsbetween elements within a model [37].
To support a more elaborate specification of constraints the Object Constraint Language(OCL) was introduced [264]. The OCL is a formal general-purpose language that is standard-ized for MDA by the OMG. OCL complements models with additional textual rules to whichthese models must adhere. It is typed meaning that every expression in OCL has a type andcomplies to the rules and processes of that type. The syntax to define a constraint in the OCLis always written as follows:
context <classifier>

inv <constraint name>:<Boolean OCL expression>

The context defines the class to which the constraint applies, the optional constraint nameserves to identify the constraint, and the Boolean expression that must hold true to sat-isfy the constraint. When the OCL is stipulated it does not create any side-effects such asmodifying the state of the system, it can only constraint said state. Related to this property,expression about these constraints are declarative in nature. The definition of OCL does notinclude any specific implementation, and requires a tool to be used. Hereunder we providea brief example of a constraint denoted in OCL.
context Meeting

inv EndBeforeStart:self.end > self.start

In the example the class meeting has the attributes (indicated by the keyword self) endand start. Logically, it does not make sense that date and time the meeting ends is beforethe start date and time of a meeting. The constraint above guards against such errors bystipulating that the value of the self.end attribute must be larger than the self.startattribute. Boolean expressions in OCL do not only have to contain operational operators,the OCL provides a wide array of keywords such as implies or if statements that enablesthe definition of fine-grained specifications of a constraint.

forestart:self.end

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 78PDF page: 78PDF page: 78PDF page: 78

Chapter 4. Research Methodology 64
4.3.3 Mappings and Transformations

A central aspect ofMDA is the process ofmodel transformation, duringwhich a sourcemodelis converted into a target model of the same system [228]. Transformations therefore inessence effectuate the translation between a source language and a target language. Thetransformation process between the models allows developers to develop a system from anabstract viewpoint, and materialize these viewpoints into code. Model transformations inMDA focus solely on conversion from a PIM to a PSM and vice versa. The literature on MDAremains silent on transformations from a CIM to a PIM, and PSM to code [235]. Figure 4.4depicts the translation process and how it is related to the MDA architecture.

Figure 4.4: Model transformations in MDA. Based on: [104]
A transformation between a PIM and PSM is enabled by employing a transformation enginethat executes the transformation following mappings. Mappings1 are a specification of thetransformation rules, constraints and other information required to transform a PIM into aPSM. The OMG provides a standardized model transformation language that fits within theMeta Object Facility environment called the Query View Transformation language. Anothercommonly used transformation language is Atlas Transformation Language (ATL) [120]. Eachmapping specifies the correspondence between one or multiple elements in a source modelto the target model. Three categories of mappings can be discerned: (1) one-to-one map-pings, where an element in a source model corresponds to another element in the targetmodel, (2) a mapping of the one-to-many kind specifies the correspondence between oneelement in the source model to several elements in the target model. (3) Many-to-one map-pings denote howmultiple elements in the targetmodel are translated to one element in thesource model [37, 160]. To exemplify how mappings are specified in the ATL please considerlisting 4.1 that denotes a simple one-to-one mapping.

1 module Person2Contact:2 create OUT : MMb from IN : MMa ;34 rule Boss2Contact {

1Mappings are sometimes referred to as transformation rules, and unfortunately the terms are often used inter-changeably creating unnecessary confusion [104].

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 79PDF page: 79PDF page: 79PDF page: 79

Chapter 4. Research Methodology 65
56 from7 p: MMa!Person(8 p.function = ’Boss ’9)10 to11 c: MMb!Contact(12 name <- p.first_name + p.last_name13)14 }

Listing 4.1: Example of a mapping in the ATL
The example in listing 4.1 specifies how an object of the Person class is transformed into aninstance of the Contact class. To enable this transformation a specific module, in this casePerson2Contact, is used that inspects MMa (Meta Model a) and transforms it to elementsin MMb (Meta Model b). The keyword "rule" indicates the start of the transformation rule,followed by the name of the rule (Boss2Contact). For the transformation a parameter (inthe example a p) is used to capture the object. In this example only objects of the Personclass are transformed into a contact when they have the function ’Boss’. The "to" keywordspecifies the targeted element, in this case Contact that has a property called name. Thisproperty is created by combining the first_name and last_name properties of the Personobject as indicated with the arrow.
In some instances, it is not possible to stipulatemappings that fully automatically and directlytransform elements in the source model to the target model without additional knowledge.To remedy this problem, in practice two types of mappings are used [144]:

1. Model type mapping that defines the mapping rules at a model element level. Map-ping rules of this type define how elements in a PIM are directly translated into ele-ments in the PSM.
2. A model instance mapping stipulates how elements within a model are specificallytransformed using user provided marks. The markings indicate the user choice for thetranslation of certain elements.

Marks are applied by a user to elements within a PIM to indicate in which manner the el-ement in question is transformed. Elements in the PIM may be marked multiple times bydisparate mappings, and as a result are transformed according to each of these respectivemappings. The marked or unmarked version of the PIM is thereafter transformed to a PSMand a record of the transformation is generated [37]. A record of transformation includes amap from each element of the PIM to the corresponding elements of the PSM, and showswhich parts of the mapping were used for each part of the transformation. The main pur-pose of a transformation record is to provide traceability between the inputs and outputsof the transformation process, and transparency on the transformation process itself. Themodels themselves are captured using an intermediate representation such as XML or JSON[228]. Ultimately the models need to be transformed into code, these types of conversionsare referred to as model to text (read code) (M2T) transformations. Generating code frommodels is achieved by a code generator or cartridge, however templates can be employed tospecify how the code should be rendered. Templates define a specific type of transformationthat utilizes parameterized models, or patterns of elements within a model to complementor substitute model type mappings and model instance mappings.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 80PDF page: 80PDF page: 80PDF page: 80

Chapter 4. Research Methodology 66
4.3.4 MDA: Benefits and Considerations

Models themselves do not make for transformations and require an architecture such asthe one discussed in subsection 4.3.2 for this purpose. Once the models and the systemto support the transformation have been built practitioners can enjoy the increased pro-ductivity and ease of code creation that the MDA approach enables. While acknowledgingthe benefits of MDA some actually important considerations of the MDA philosophy haveto be taken into account. Although MDA offers many benefits for software development, inparallel there are some important considerations that are associated with these benefits.
Communication – The use of models for MDA aids in bridging a communication gap be-tween requirements analysis and implementation. As discussed in subsection 4.3.1 modelsare meant to represent a certain reality and can be used by domain experts to communicateconcepts and relations relevant to their respective domain. Models have shown to be a vi-able solution to provide a lingua franca between stakeholders from business and IT [37]. Thistranslates to bridging the gap between the needs within business and IT realization. How-ever, a model is a simplified representation of a certain reality. Thus, models might not beable to fully capture the complexity and particularities of a domain or reality [144]. On theflip side, this is perhaps actually one of the strengths of models. It is becausemodels presenta simplified view on a reality that allows for the creation of workable and real solutions [37].
The language used to describe a model strongly determines what can be modeled and how[144]. Some researchers have criticized UML for being too simplistic and lacking expressive-ness to really capture real-world complexity. In contrast, others [103, 235] observe that UMLhas become a complex language that requires an experienced modeler to create sound andworkable models. Not all domain experts possess this expertise besides that of their ownfield. Notwithstanding this criticism, the use of the UML to draw models has several advan-tages and is the most commonly used and understood language among programmers [118].
Portability – The portability of the models and code is another benefit that MDA provides.Because a PIM is a platform agnostic and abstract representation of a system, themodel andspecifications stipulated therein can be reused for several platforms. The platform agnosticapproach makes defining shared requirements for each individual platform redundant onan abstract level [118, 133]. Only at the PSM level more specification is needed for individualplatforms. Hailpern and Tarr [103] argue that while abstracting a viewpoint intomodel mightreduce complexity of a domain, in concert it might only move complexity to another levelbecause several artifacts are now needed to create the instance of that domain. They arguethat therefore using models to create software does not really reduce complexity, but rathermoves it.
Productivity - MDA promotes productivity by advocating the use of standardized models.Once these models have been created the models and coherent code can be reused. There-fore, writing custom code for each application becomes redundant. More important, themodels themselves can be reused for identical or similar applications often with little adjust-ments lowering the cost of software development [118, 133]. However, initially the upfrontinvestment costs to achieve the desired gain in productivity might be high. Researchers [103]have argued that initially more expertise is required to make themodels as compared to tra-ditional approaches of software development. The kind of expertise needed might also bedifferent, and thus increase the number of experts involved. Besides this upfront investmentin MDA each viewpoint needs its own specification language and a system to execute thislanguage creating redundancy in the process. Subsection 4.3.1 and Subsection 4.3.2 substan-tiate this point: for the creation of an architecture that supportsMDAaplethora of languagesare required and several tools.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 81PDF page: 81PDF page: 81PDF page: 81

Chapter 4. Research Methodology 67
Interoperability - The CIM and PIM models ensure that the relations between PSM’s for dif-ferent software platforms are linked by bridges so that the concepts of a PSM specified forone platform can be used for the PSM of another platform [133]. Achieving amodel transfor-mation from and between models might be rather difficult. When MDA was initially intro-duced this problem was further magnified by the fact that few suitable tools were availableto support the MDA philosophy [43, 235]. Although this problem has been remedied by theintroduction of tools like Eclipse not all problems are solved. A clear example of a caveat notaddressed yet is that hitherto mappings between a domain-specific language used for a CIMare not supported [235].
Maintenance –MDA also promotes the ease of conducting softwaremaintenance. Themap-pings between the models are known, and thus the outcomes of the model-transformationare known and replicable. Bymaking themappings betweenmodels explicit tracing back thecode to the original requirements is facilitated. [37, 118]. Rather than having to change in-dividual modules or even bits of code, the models can directly be changed to make changesto the software.
While MDA might have strong merits, the discussion presented here highlights some im-portant ramifications of using the MDA approach to develop software. These ramificationsshould be taken into consideration when designing systems based on the MDA philosophy.Informed by both the benefits of and considerations forMDA this study has set out to designthe research approach.

4.4 Research Design

The benefits of employing the MDA led the writer of this dissertation to adopt it as the phi-losophy informing the design of the method to develop smart legal contracts that addressesthe main research question. In this section the rationale to adoptMDA is explained and howit influenced the design of this research. An overview of the research method is providedthereafter.
4.4.1 Rationale for the Use of MDA

An important benefit of usingMDA is that the use ofmodels within ourmethod supports theexpertise of both legal experts and programmers. Figure 4.5 depicts the relation betweenthe models and how they support various stakeholders during communication and carryingout their tasks. Because legal professionals are usually tasked with drafting legal contractsbased on the requirements of the party they represent, the contracting parties themselveswould not directly be involved in the creation of a smart legal contract.
Secondly, employingMDA to develop smart legal contracts promotes the communication be-tween stakeholders by providing a lingua franca. This benefit is attained by the creation of aCIM that allows legal professionals to stipulate the requirements for their legal contract bymodeling it using concepts they are familiar with. The creation of a CIM therefore addressesrequirement 1. Another purpose of the CIM is to make potential issues when drafting andcoding smart legal contracts explicit, in line with requirement 2 to aid programmers in ad-dressing them. The result of the modeling efforts made by the legal professionals can beanalyzed by programmers to specify a PIM for the smart legal contract, or alternatively letthemethod generate it. Because the relations between the concepts in the legal contract areknown, problems of letting the smart legal contract enforce the legal contract can be fore-seen which supports addressing requirement 3. Thereafter programmers can use the PIMs

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 82PDF page: 82PDF page: 82PDF page: 82

Chapter 4. Research Methodology 68

Figure 4.5: Research method in relation to stakeholders and requirements

to specify high level smart contract concepts that are to be translated into smart contractcode.
Besides enhancing the ease of communication between the stakeholders, MDA allows forportability of specifications between platforms by the use of PIMs. The specification for thesmart legal contract modelled as a PIM can be directly translated into the desired PSM. Thisfeature greatly decreases the effort ofwriting smart legal contract for different platforms andthus increases productivity. More important is that smart contract related expertise requiredto create the models is only required once, and commonalities between the different plat-forms is reused. The method therefore supports requirement 5 and addresses the need forplatform agnostic methods to create smart legal contracts. Bridges also enable the interop-erability of specifications from one platform to another, further strengthening the potentialof platform agnostic smart contract design.
MDA has also been reported to ease the maintenance of software once deployed. Althoughthis benefit does not directly resonate with any of the requirements stipulated for the designof the method, the traces that are generated during the model transformation process formaintenance are. These traces are used to register the transformation of concepts betweenmodels. These traces would allow parties to generate smart legal contracts while being in-formed about how concepts are transformed. The information that the traces created duringthe transformation provide therefore coincide with requirement 4 that has been defined todiminish the reliance of the parties on third parties to translate their code.
4.4.2 Research Overview

Given this rationale we deem MDA an appropriate philosophy underpinning our method todevelop smart legal contracts. The overarching method to develop smart legal is the mainartefact that is designed to address the main research question. However, to realize thebenefits ofMDA a prescribed philosophymust be followed. The research design of this studywas therefore designed in a manner that follows this philosophy. Figure 4.6 portrays theoverall research design that has been employed to attain the results for this dissertation.
Employing the MDA philosophy requires the creation of a CIM, PIM and PSM(s), to enablesoftware development. Each of these individual models is a distinct artefact constitutesto the overarching artefact requiring an idiosyncratic method to develop it. The distinctmethods employed to develop each model are discussed in more detail in the chapters that

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 83PDF page: 83PDF page: 83PDF page: 83

Chapter 4. Research Methodology 69

Figure 4.6: Overview overall research approach

present these models (Chapter 5 and Chapter 6). The first step to attain the results for thisstudy was the development of a CIM. A CIM is a generic model that describes the systemfrom a computation independent viewpoint. As discussed, they are described with a widevariety of modeling languages and manners. For this research we opted to design a domainontology specified in the UML because they are specifically meant to capture the conceptsin a domain. To construct the domain ontology, we first identified all issues related to devel-oping smart legal contracts from the extant literature. Following, we identified the conceptsused in a legal contract again through a literature review. The concepts and issues identifiedwere used to inform the design of the domain ontology. By combining the insights attainedabout the issues and concepts, the relations between the both were laid bare. Finally, thedomain ontology was evaluated by creating an instance based on a motivating example.
The domain ontology serves as the basis to capture the concepts used in the legal domain.When using MDA to generate code, it is common that thereafter these concepts are trans-lated into one or more platform agnostic models. A metamodel to generate platform agnos-tic models for a smart contract is currently absent in literature. However, a PIM aggregatesplatform specific concepts that are shared across platforms. Thus, the concepts for the plat-forms targeted for the transformation are required to be identified first. Platform specificconcepts were identified as second step to develop two PSMs for Hyperledger Fabric andEthereum smart contracts. These two platforms are the most popular for smart contractdeployment. A thorough examination laid bare the commonalities and differences betweenthe concepts related to smart contracts that are used on these platforms. Informed by thesetwo PSMs and the examination as a third step we set out to develop a platform agnosticmodel that can be used for multiple platforms.

4.5 Discussion

The use of MDA as a method to develop smart legal contracts introduces has several ad-vantages. Among these advantages are increased productivity, portability of code, interop-erability between platforms, maintenance of the code, and the models themselves fostercommunication between stakeholders. While the MDA philosophy offers these advantages,like any approach it also has some drawbacks for smart legal contract development.
The creation of a CIMmore specifically in the form of a domain ontology will aid in the com-munication between stakeholders. A CIM portrays all relevant concepts that are native to

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 84PDF page: 84PDF page: 84PDF page: 84

Chapter 4. Research Methodology 70
a business and thus specify the domain itself. Although domain-specific languages are sim-ilar in that they also encompass domain concepts, the use of these languages still requiressome programming skills that the legal professional in question might not possess. Modelscan remedy this problem by allowing the modelling of concepts instead of having to pro-gram these. Both domain-specific languages and domain specific models have an inherentdrawback in that they only capture a limited set of concepts and thus are a simplified rep-resentation of that domain. Therefore, a domain-specific language or domain model cannotcapture all of the nuances and particularities of a domain.
Another important advantage of MDA is that a PIM depicts an abstract representation of asystem that can be used across different platforms. This is one of the most prominent ad-vantages MDA has over traditional software development that requires developing distinctprograms for each platform. However, at the moment much remains unclear on what tech-niques to use to transform a CIM into a PIM (see Section 4.3.3) making it hard to achieve afully automatic transformation from the former to the latter. Somework has been conductedwith regard to this problem for instance [87]. This might not be surprising however as do-main ontologies or models are specific to that domain and therefore require an idiosyncraticset of transformation rules. Besides the aforementioned problem, by creating a PIM special-ists run the risk of abstracting their model to the degree that much further specification isrequired when transforming the PIM to a PSM.
MDA offers bridges between platform software to enable a cross platform transformation.How these bridges are implemented largely determineswhether this feature is possible how-ever, and not all tools currently available support such a transformation [37].
The maintenance of programs built using the MDA philosophy is eased because mappingsare known and traces are logged about how the transformation was executed. Perhaps themost interesting prospect of employing MDA to develop smart legal contracts is that thelegal specification of the legal professional can be traced back to the code. This feature en-ables traceability between a contract and the smart contract. Consequently, this removesthe need for yet another third party that transforms the legal specification to a smart con-tract. We argue that this is in linewith the philosophy of BCT to remove third parties from thetransaction process. Without explicit mappings between a CIM and a PIM this still difficulthowever.
Productivity can be increased by creating models that are re-used for multiple smart con-tracts. In addition, at the moment writing smart contracts is a labor-intensive process thatdemands vast amounts of expertise. By modelling smart contracts this expertise is capturedand can be re-used for many developers. Domain experts that are to create the metamodelsneed to be well-educated about the inner workings of blockchain based smart contracts.Moreover, creating the models themselves however will require additional expertise be-cause the designer of the model needs to be knowledgeable about UML.

4.6 Conclusion

To conclude, this research is conducted through the lens of the DSR paradigm. This paradigmis considered appropriate for this research as the direct aim of the study is to develop anartefact suitable to address a problem in a specific context. The complexity of the problem,combined with the required flexibility to develop a solution further confirms DSR as a suit-able candidate to design the artefact. DSR itself does not specify any method to design orevaluate an artefact.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 85PDF page: 85PDF page: 85PDF page: 85

Chapter 4. Research Methodology 71
This research employs the MDA philosophy to fulfill the requirements stipulated for themethod that this research aims to develop. MDA is a software development philosophythat employs models to ease the translation from domain specific knowledge to code. Thechapter discusses the modeling levels in 4.3.1 used for MDA and relates these to the specificpurposes they serve. A CIM aims to capture the domain for which the software is developed,including concepts related to that domain. Platform independent models portray the ab-stract and platform agnostic perspectives on a system. A further specification of the systemfor a particular platform is provided by a PSM. With MDA specifying models requires a met-alanguage supported by an architecture. In 4.3.2 we present and discuss this architectureand how it is related to domain-specific languages and general-purpose modeling languagessuch as UML. At the heart of MDA is model transformation which is the process of trans-forming a PIM to a PSM. The role of model transformations and the mechanisms requiredto enable the process are discussed in Section 4.3.3. Mappings enable the transformationprocess, that can be divided into several categories and types.
In this chapter it has been argued why the advantages of MDA strongly resonate with therequirements stipulated for the artefact. From a technical perspective the approach supportportability and platform agnostic abstraction while from a legal perspective it provides abasis for the specification of domain concepts and related requirements. To enable the useof MDA however, a CIM, PIM and PSM need to be developed. Hence, this research sets outto develop said models. In the next two chapters, Chapter 5 we will present the CIM in theform of a domain ontology, two PSMs and a PIMs for smart contracts in Chapter 6.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 86PDF page: 86PDF page: 86PDF page: 86

72

Chapter 5

Domain Ontology For Smart Legal Contracts

5.1 Introduction

As the digitization of society is becoming ever more pervasive in all aspects of life, the desireto express contracts and other legal agreements in a digital manner has gained momentum.The recently revived concept of smart contracts is a potential candidate for this application.Smart contracts are programming scripts deployed on a blockchain stipulating variables, con-ditions and functions that combined constitute to transaction logic [62]. However, currentlysmart contracts are application agnostic and not geared towards executing and enforcing le-gal agreements. The term smart legal contracts has been coined to describe smart contractsthat digitally resemble a traditional contract.
With some exceptions [58, 82, 142, 150], to date most studies have considered smart con-tracts as a method solely to develop DApp’s. Other Works on smart legal contracts [110, 273,286] assume that the technical smart contract code is the contract.
This approach raises several problems however, the first being that contracting parties arerequired by law to understand the contract in most, if not all countries [64, 76, 80, 90, 179].Not all legal practitioners are able to read code thus such an approach would not meet thisrequirement. Second, legal contracts have a complex structure. A direct representation ofa contract as a smart contract is not be able to capture this complexity or the subsequentproblems that arise from it. Third, while such approaches aim to represent concepts usedin legal contracts directly as smart contract code it remains unclear if the set of conceptsunderpinning the model is complete and whether they are native to legal professionals.
An analysis of the concepts used in legal contracts is pivotal to attain an understanding ofwhat concepts are relevant when modeling smart legal contracts. Domain ontologies arecommonly used for this purpose. A domain ontology captures the concepts, and representsknowledge within a domain in a manner that is understandable by practitioners. This aidsin creating a shared understanding of the information structure, promotes the reuse andanalysis of domain specific knowledge, while making domain assumptions explicit [191].
This work presents a domain ontology to model smart legal contracts, and to delineate therelation among the elements contained therein. The ontology is specified in the UnifiedModeling Language (UML) [220] to provide practical usability, and to cater for the transfor-mation of the ontology into a blockchain related model like would be possible for a Compu-tation Independent Model. An initial model was created by identifying concepts used to de-note legal contracts from studies in the field of multi-agent systems and electronic contracts.Departing from prior studies, in the current work problems identified by other research arerelated to concepts used in legal contracts. The domain ontology presented here offers anotation for these problems so they may be incorporated in the notation of a contract.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 87PDF page: 87PDF page: 87PDF page: 87

Chapter 5. Domain Ontology For Smart Legal Contracts 73
The remainder of this chapter will be organized as follows: The section hereafter (Section5.2), presents an overview of related works. In (Section 5.3) an overview will be providedof literature in the field of legal knowledge modeling, multi-agent systems and electroniccontracts. Thereafter, in Section 5.4 the methodology followed to attain the results of thischapter will be discussed. Continuing, Section 5.5 will expound on the problems of draftingsmart legal contracts and how they are related to the legal domain. To illustrate our ontology,in Section 5.6 a motivating example is presented that contains a condensed version of acontract. The 5.7th section presents the proposeddomainmodel, anddiscusses the conceptsdescribed therein. Following, in Section 5.8 the domain ontology is evaluated by instantiatingthe motivating example presented in Section 5.6. In the discussion Section (Section 5.9) theresults presented in this chapter will be further discussed. Finally, Section 5.10 concludes theChapter.

5.2 Related Work: Modeling Smart Legal Contracts

Ladleif and Weske [150] suggest a unified model for legal smart contracts. Their model isbased upon prior modeling languages and legal ontologies. As discussed, some researchersfrom the requirements engineering field have espoused their doubts whether these con-cepts are native to legal practice. Furthermore, the ontology only contains abstract conceptsthat are unsuitable for practical notation. Moreover, the ontology takes on a technical per-spective that encompasses little legal concepts. To illustrate this point: it is commonplace inresearch on e-contracts like [10, 50, 127, 139, 184] to introduce the notion of clauses, yet thisconcept is missing in the work of Ladleif et al. In two subsequent works [149, 152] Lafleif sug-gest approaches to cater for the modeling and enforcement of smart legal contracts usingBPMN. Boella et al. [34] argue however, that BPMN is unsuitable tomodel legal requirementsas this would provide a oversimplified view of laws or legal relations.
Kruijff and Weigand [142] introduce an ontology for commitments based smart contracts.However, in their work concepts related to deontic logic are missing. These concepts area crucial when stipulating the relation between legal clauses [57]. Furthermore, while thenotion of definition clauses is introduced little guidance is provided as to how this conceptis implemented. Again, this work takes on a technical angle towards developing smart le-gal contracts. Some other works [110, 273] propose to remedy this problem by introducingdomain specific languages that are more alike legal prose and use nomenclature similar tothat used by legal professionals. Despite that these efforts have greatly enhancing the legalrealism and understandability of smart legal contracts, domain languages still require coding.
A recent review (May 2021) conducted by Dwivedi et al. [75] provides an overview of allcurrent efforts regarding legally enforceable smart contract languages. In their review theauthors suggest 10 critical properties categorized as semantic suitability, workflow suitabilityand expressive, that are required to constitute to a legally enforceable smart contract. Ananalysis reveals that none current works satisfies their suggested suitability and expressive-ness properties.
Similar to this research other scholars have recently further examined the problems relatedto using smart contracts as legal contracts. In their very recent study Drummer and Neu-mann [74] analyze the challenges underlying the slow adoption of smart contracts in thelegal domain. They dissect the shortcomings of smart contract into three levels: (1) Howsmart contracts conflict with current legislation, (2) the limitations of smart contracts on thecontract level, (3) impediments caused by their current technical design. Although we iden-tify several of the same problems as [74] there are some differences that sets this work apartfrom theirs. Firstly, we relate these problems to different phases of a smart contract life-cycle

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 88PDF page: 88PDF page: 88PDF page: 88

Chapter 5. Domain Ontology For Smart Legal Contracts 74
whereas their work does not. Secondly, in this study other problems that we identify troughan analysis of the literature are related to legal concepts like clauses or actions. Thirdly, thework by Drummer andNeumann also presents solutions for some of the problems they iden-tified. However, the relation between these problems and legal concepts within a contractis not explicit, it is difficult to grapple the overarching relations on a contract level.

5.3 Digitizing Legal Contracts

The direction toward digitization of everyday processes has also taken affect on legal prac-tice and contracting. Digitization refers to the process of converting information into a com-putable format (I.e. machine readable). Nowadays, there are multiple desperate fieldslike legal requirements engineering that aims to retrieve information legal knowledge fromlaws and contracts, multi agent systems literature seeking to model the interaction betweencontracting agents, while research on electronic contracts focuses on methods to modelcontracts and generate executable code. Initially however, most research endeavors weregeared towards the digitization of laws.
The desire to digitize the logic of laws can be traced back to thewritings of Gottfried Leibniz in1664 that sought to reduce laws to mathematical computations. Already in his early writingsLeibniz advocated the need for law to engage in an interdisciplinary dialogue, especially withlogic and philosophy [11]. Over the past decades considerable efforts have been made toadvance techniques that cater the digitization of laws. Legal requirements engineering isa field that focuses on extracting, modeling, and visualizing information denoted in lawsor norms. The moniker norm encompasses a broad spectrum of "rules" that encompasslaws and regulations, as well as social norms that are not necessary legally underpinned butare perceived as socially desirable. A common characteristic among norms is that they aimto govern the behavior of persons, institutions and organizations and prescribe what theseentities ought to do, ought not to do, may or are allowed to do [271] in order to achieve aspecific goal.
Studies in the field of legal requirements engineering have proposed several ontologies tomodel and conceptualize norms or laws. Two works by Breaux and Antón [40] and Masseyet al. [174] present a methodology that caters for the analysis of rules with regard to privacyand security. Kralingen [136] suggested an ontology encompassing several frames that canbe used to structure norms, acts, and the concepts stipulated in a law. The norm frame isused to capture information regarding the subject, modality and conditions under which thenorm is applicable. Norms include several acts that in their own frame include temporalaspects, agents involved, and the aim of the act among things. The concept frame is usedto denote definitions, deeming provisions, factors, and meta concepts. A study by Sleimiet al. [237] presents an ontology to conceptualize norms. Their work is based upon a reviewof ontologies used for legal knowledge modeling (UFO-L, NOMOS2, LKIF, GiausT). However,in a critical analysis Boella et al. [34] criticize the UFO-L, NOMOS2, LKIF, GiausT ontologiesfor lacking grounding in practice. In fact, they observe that most methodologies suggestedto gather legal requirements are seldom developed in cooperation with legal practitioners.Consequently, such approaches present a simplistic view of law using concepts that are es-trange to legal practice.
Research in the field of electronic contracts does not only aspire to model concepts usedin legal contracts, but to provide approaches to translate executable code that can enacttransactions. In the past two decades electronic contracts (e-contracts) have become com-monplacemethod to cater digitized agreements between parties. E-contracts are often used

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 89PDF page: 89PDF page: 89PDF page: 89

Chapter 5. Domain Ontology For Smart Legal Contracts 75
in an e-service or e-commerce setting. In the former setting services are provided by a ser-vice provider to a recipient, while in the latter setting physical goods, funds, and data ex-change ownership. In both settings an IT platform is employed to facilitate the enactmentof the agreement [267]. The utilization of domain languages, formal procedures, logic andthe standardization contract classes to cater digital agreements is collectively referred to aselectronic contracting [127]. Works in the field of electronic contracting have touched uponsome, or all of these aspects.
Lee [155] was among the first to pioneer the concept of e-contracts, provide a notation, andpropose a concomitant logic model. However, it was not until 1995 with the publicationof two founding papers by Marjanovic and Milosevic [171] and Daskalopulu and Sergot [65]that research in the field of e-contracting really gained momentum. The notion of electroniccontracting was further enhanced in 1997 when Nick Szabo [245] coined the term "smartcontract" referring to the automation of legal contracts. Crucially however, at the time a plat-form tomonitor the execution of a contract, and safely exchange any assets between partieswas absent [83]. Later works on electronic contracting [10, 50, 139, 184] have acknowledgedthis problem and did not only focus on modeling or providing formal languages, but in ad-dition proposed architectures that support the enactment, monitoring and management ofelectronic contracts.
However, the introduction of these architectures and coherentmodels have led to a disparityof standards onhow tomodel and enforce e-contracts. And, in practice noneof the platformshas reached mainstream adoption. Other works [98, 184] present models only suitable tobe used for specific types of contracts. Perhaps the most pervasive issue plaguing currente-contract solutions is their inability to enforce and manage payments [258]. This problemstems from the fact that e-contract architectures are not payment platforms and thus cannotexecute payment orders.

5.4 Research Methodology

In carrying out our research we utilized a Design Science Research (DSR) [260] approach inwhich the design of an artifact is central. Given that the aim of this study is to construct adomain ontology for smart legal contracts as an artefact, we deemed a DSR approach ap-propriate. A first step in DSR is creating an initial version of the artefact. In constructing adomain ontology it is important to identify what terms, or concepts are used in the domain[191]. Another aim of this research is to lay bare what problems arise when using smart con-tract as legal contracts and how these are related to concepts used in contract practice. Thuswe aim to answer the following research questions:
RQ1: What are the concepts related to legal contracts?RQ2: What problems have been identified that are related to using smart contracts as legalcontracts?RQ3: How can the concepts related to legal contracts be modelled?
The first research question evolves around identifying problems related to using smart con-tracts in legal practice. The focus of RQ2 are the concepts or terms used in contracts. RQ3seeks to offer an insight as to how these contract concepts are related by creating a do-main ontology, while coupling these to the problems identified trough RQ2. In designing thedomain ontology presented here we followed the steps suggested by Noy and McGuinness[191]:
1. Determine the domain and scope of the ontology.2. Consider reusing existing ontologies.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 90PDF page: 90PDF page: 90PDF page: 90

Chapter 5. Domain Ontology For Smart Legal Contracts 76
3. Enumerate important terms in the ontology.4. Define the classes and the class hierarchy following a bottom-up or top-down ap-proach.5. Define the properties of classes—slots.6. Define the facets of the slots (slot value type).7. Create instances.
As a first step the domain and scope of the ontology was determined. For this research wehave limited the scope of our ontology to legal contracts.
5.4.1 Data Gathering

Noy andMcGuinness [191] suggest that as a second step the developer of an ontology shouldconsider reusing existing ontologies. Considering that there are several works in the fields oflegal requirements engineering, MAS and e-contracts that present metamodels, ontologies,languages and frameworks that describe digitized forms of legal contracts we informed theconstruction of our ontology with these studies. Therefore these literature strands werereviewed for relevant concepts to built our ontology with. For this research, a total of 19papers were reviewed to identify relevant concepts.
Several legal practitioners and scholars have suggested that employing smart contracts forcontracting introduces several problems. Thus, the author of this dissertation has in additionreviewed works that discuss these problems. In this second review 29 works were analyzed.
5.4.2 Data Analysis

After selecting a set of papers that contained concepts relevant for building our ontologythese were analyzed to aid in answering RQ1. The analysis also aided in conducting the thirdstep proposed by Noy and McGuinness [191]: the enumeration of important terms. Anotheranalysis was performed to identify problems related to using smart contracts as legal con-tracts. Both analyses were conducted using a qualitative content analysis method [137] thatencompasses the following steps:
1. Select unit of analysis - A first step was to select the unit of analysis for both sets ofpapers. For the execution of the analyses the author of this dissertation selected theparagraph level as the unit of analysis.2. Open coding - As a second step, the author of this dissertation red all papers that wereselected to extract concepts from for our domain ontology. Codes were applied toparagraphs that contained a concept. Then, the author went examined the set of pa-pers that discuss legal problems related to smart contracts. Again, codes were appliedto portions of the text that directly described a problem.3. Revise codes - After the initial open coding process the codes were revised to createmore uniformity among the codes that described a similar concept or problem. Thisstep aided in reducing the number of codes, and easing the process of creating cat-egories. For instance, the codes "activity" and "actions" were thereafter re-coded asaction.4. Create categories - The final step included the creation of categories for the conceptsand the problems. A part of the process was to bundle concept codes and problemcodes into an overarching category. This led to categories like events or actions thatwere directly used as classes in our ontology. Different codes were thereafter used toinform the design of sub-choices (e.g. clause types). The problem codes were catego-rized in the same vein, however the categories were coupled to

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 91PDF page: 91PDF page: 91PDF page: 91

Chapter 5. Domain Ontology For Smart Legal Contracts 77
The content analysis performed on the set of works that contained concepts related to legalcontracts yielded interesting insight on what concepts are used to specify legal contracts.An interesting observation is that while most works propose meta models, or entity relationmodels they do so with a different degree of granularity. Someworks only propose conceptswithout directly relating other concepts like definitions. A definition always defines some-thing (a word) as something else (things), yet this explanation is missing. Whenever thisoccurred further explanation was sought in literature not included in the initial set.
The results of the analysis of theworks that discuss problems related to smart legal contractsreveals that these difficulties are related to distinct parts of the smart contract life-cycle.Further analysis, reasoning and reexamining of categories, codes and similarities led to thecoupling of the identified problems to concepts identified. For example, as we will furtherexplain hereafter the lack of a clause in a smart contract that stipulates the jurisdiction forthe contract is a problem.
5.4.3 Constructing the ontology

Results from the analysis were used to construct the ontology and to answer RQ3. Followinga bottom-up approach classes where create and a hierarchy between these classes was es-tablished as the fourth step. After the creation the classes for each class it’s properties weredefined. Some properties of the classes were not only the result of the analysis, but werealso included for practical purposes. For instance, the Party class is given an id attribute thatprovides an unique id. As a fifth step the facets of the slots were defined. Finally, the laststep suggested by Noy and McGuinness [191] is the creation of instances of the ontology.This final step serves to verify that the classes and terminology are suitable and sufficientto model the domain. The author of this chapter created instances of the domain ontologyfor four different types of contracts. In Appendix C an example of one of these contractsis showed, other instances of the contracts are accessible online1 Other direct examples ofinstances are presented in listings hereafter.

5.5 Smart Contracts: Legal Challenges

The results of the analysis performed on the literature that discusses the difficulties of us-ing smart contracts as legal contracts are presented in this section. Some of these problemsdirectly related to the technical impediments of a smart contract. Other problems are di-rectly related to legal concepts that are used for legal contracts. Further analysis revealsthat these difficulties are related to distinct parts of the smart contract life-cycle. Table 5.1provides an overview of the challenges identified that have been related to the smart legalcontract life-cycle phases.
1https://github.com/BJBut/ContractInstances

https://github.com/BJBut/ContractInstances

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 92PDF page: 92PDF page: 92PDF page: 92

Chapter 5. Domain Ontology For Smart Legal Contracts 78
Table 5.1: Overview of Legal Challenges Related to Smart Contracts

Lifecycle Phase Nr. Problem: Problem Description:

Drafting & Coding

1 Understandeability A contract needs to be understood by all contract parties.2 Proving existence Proving the existence of an agreement without a written version is difficult.3 Vagueness Legal contracts can contain non-computable quantities of time and resources.4 Modality The complexity of action modality complicates the specification of legal contracts.5 Ambiguity Legal contracts can contain declarations of promises with coordinating conjunctions.6 Illegal clause If a clause contradicts a law that clause might become illegal.7 References Text in clauses might refer to other clauses and laws not directly accessible.
Testing 8 Unintended transactions Transactions cannot be reverted even if the parties both agree to do so.9 Responsibility bugs Which party bears the responsibility for bugs in the smart contract code is unclear.
Deployment 10 Applicable law A specification of the applicable law might be missing.11 Jurisdiction The jurisdiction that applies to a smart contract is sometimes lacking.12 Amendments Once deployed a smart contract cannot be amended, while this might be required.Signing 13 Signature requirements Whether both a digital and analogue contract need to be signed remains unknown.

Execution & Monitoring
14 Alignment of data External data is not accesible to a smart contract if not on-chain.15 Digital representation Real world assets needs to digital representation to monitor ownership.16 Freedom of choice Permissioned actions disable automatic execution of transactions by a smart contract.17 Wide range of actions Contracts contain a wide range of action types that lack a representation.18 Flexibility Smart contracts automatically enforce sanctions while parties might want to refrain.

Dispute Resolution & Termination 19 Termination clause Without a termination clause a the conditions for terminating a smart contract are unknown.20 Undoing contract A court can order to undo a contract or the contracting can agree to do so, yet blockchain transactions are irreversible.21 Force de Majeure Situations can occur that discharges contracting parties from their obligations.

5.5.1 Drafting and Coding

Scholars [64, 90, 179] and practitioners [76, 80] have suggested that it seems unlikely thatsmart contract (code) can be used without a conventional legal contract equivalent writtenin natural language because the contract is required to be understandable. For any legalcontract to have a legally binding effect party’s must be able to understand the contract.However, most legal professionals cannot read code, and moreover it is likely that the con-tractual party’s concerned also cannot. Furthermore, when only a smart contract version ofthe contract exists proving existence in court of such a contract might be difficult [80, 187].
Several studies in the field of requirements engineering have identified complications re-lated to translating laws to formal specifications [200]. Among these problems are vaguelyformulated quantities for resources and vague deadlines. For instance, the phrase "that aParty shall make sufficient payments" is arbitrary. An example of a vaguely defined dead-line is the use of demanding that an action is performed within "reasonable time". Thesecomplex terms are not measurable and therefore cannot be processed by a computer. Al-beit that there is undesirable unintentional vagueness in contracts, contract lawyers oftenintentionally include vaguely defined quantities and deadlines to create leeway for unfore-seen context-dependent contingencies. Hart [107] refers to this intentional vagueness withina law as open texture. The point of this explicit vagueness is to let the contractual partiesdecide when the situation occurs what they deem reasonable or sufficient [57, 64, 92, 96,106, 236, 238]. Therefore problem with these vague deadlines and quantities is that theycannot be specified a priori without defeating their own purpose.
Ambiguity in contracts or laws further complicates the translation of these text into spec-ifications that can be processed by programs [57]. In a study Kamsties et al. [125] identifymultiple causes of ambiguity. Actions are often denoted with the coordinating conjunctions"and" and "or". For example, a party will pay the rent and the fee for electricity. The coor-dinating conjunction "and" indicates that both the rent and the electricity fee needs to bepayed, which fact entails two to separate actions. Contrary, the coordinating conjunction"or" indicates an exclusive choice. A study conducted by Kamsties et al. [125] regarding thetranslation of laws shows that attempts to simply remove these ambiguities simply result inwrong or incomplete specification.
A related problem is that contracts contain complexmodal verbs (e.g. shall, must, and may)that dictate the intended deontic logic [57]. However, the connotation of a modal and itsrelation to an action is dependent on the context it is used in. The modals will and wouldfor instance, can mean an obligation or a forthcoming event. Modals that signal the nega-tion of an action further increase complexity. However, understanding these modals are

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 93PDF page: 93PDF page: 93PDF page: 93

Chapter 5. Domain Ontology For Smart Legal Contracts 79
quintessential to discern obligatory from permissioned and prohibited actions, and thus un-derstand contracts [57].
Another potential issue is that conventional contracts contain clauses with actions that con-tradict a law that prohibits these actions, making them illegal. As a consequence, the (partsof) clauses that are contradicting the law may be declared invalid. Some authors [76, 80,156, 223, 249] have argued that when translating these clauses to code the smart contractinherently also becomes illegal. A remedy used in conventional contract practice is to referin the clause to the relevant article of the law, stipulating that whatever the law dictates willbe in effect. Incorporating references to laws in smart contracts might prove to be difficultbecause it would require external access to a coded version of the corresponding law. Al-ternatively, the codified version of these laws would be stored in the smart contract itself.However, this would significantly increase the size of the smart contract. Other referencespoint to articles or clauses in the contract itself which may be easier to translate [57, 64,106].
5.5.2 Testing

After the smart contract has been written a testing phase commences to establish that itwill execute and enforce the clauses in a contract as stipulated. According to Magazzeni,McBurney, and Nash [167] the testing phase further underpins the need for a written con-tract: If the expected behaviour for the smart contract is not specified then verification isimpossible. For smart contracts the testing phase is paramount as unintended transactionswhen made cannot be reverted. Indeed, the irreversibly of smart contract transactions hasbeen pointed out as an issue [230]. Unintended bugs in the code might cause unintendedtransactions which cannot be overturned. In these situations the question arises who shall
responsibility for the errors [106, 230].
5.5.3 Deployment

The compiled version of a smart contract can be deployed on the blockchain platform onceit has been tested. Uploading a natural language version of the conventional contract willensure that third parties and the parties in contract themselves are able to read the con-tract. A smart contract is deployed on an international decentralized network and thereforetranscend boundaries and have no physical location. Determining the applicable law for asmart contract is impossible if the parties in contract do not provide this information [76,199, 217, 230]. Consequently, the jurisdiction for the appropriate court to settle a disputebetween the parties is also unknown [80, 217, 230, 238]. Once deployed on a blockchain,smart contracts are immutable, impeding any amendments to their code. In traditional legalpractice however, amending a contract is a common solution to settle disputes or to alignthe contract with the requirements of the law [236].
5.5.4 Signing

Once the smart contract has been deployed it can be signed by both parties to confirm theiragreement. Nowadays several countries world wide have accepted forms of electronic con-tracts as legally enforceable for as long as these are digitally signed. For example, severalstates in the United States have passed the Uniform Computer Information Transactions Act(ESIGN). In the European Union the eIDAS enables electronic contracting. It is likely thatsmart contracts are equally enforceable if they are signed by the contracting parties [106,270]. There is little clarity however about signature requirements when a smart contractrepresents a co-existing conventional contract.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 94PDF page: 94PDF page: 94PDF page: 94

Chapter 5. Domain Ontology For Smart Legal Contracts 80
5.5.5 Monitoring and Execution

Smart contracts are touted for their potential to independently whether conditions are sat-isfied. Data to evaluate conditions needs to be stored on-chain as smart contracts reside ina self-contained system [94]. Data not stored on-chain is therefore not accessible. Yet, toestablish whether a transfer of physical resources has taken place a smart contracts mustbe able to attain data from the analogue world. This makes the alignment of data availableto a smart contract and that required to evaluate reality difficult [179, 217, 238, 270]. Ora-cles have been suggested as a potential solution for smart contracts to attain external data.However, external data originating from oracles is required to be requested or provided tothe smart contract, hampering automatic execution of the smart contract [179].
Another key benefit of smart contracts is the automatic execution of transactions based onconditional logic. However, some clauses in contracts permit parties to perform an actionor refrain from it, providing a freedom of choice. The decision of a party to exercise its per-mission must be known to a smart contract before it can execute said action. Consequentlythis greatly diminishes the potential of a smart contract to automatically execute a trans-action [179]. Another property that is often attributed to smart contracts is their abilityto self-enforce the agreement in case a party does not uphold its promise. The rigid self-enforcement of a smart contract, combined with its automatic execution of actions confinesthe flexibility of the parties in contract to refrain from punitive sanctions when conditionsin the contract are violated. Refraining from punitive sanctions is desirable under some cir-cumstances, for instance to preserve relational contracts [64, 76, 80, 156, 179, 236].
A blockchain was initially envisioned as a system to facilitate transactions between partieswithout a trusted intermediary. As a result of this fundamental design focus, the actionsa smart contract is able to perform is limited to transactions. However, contracts containa wider range of action types that are equally important to represent. What portion of theother action types stipulated in a conventional contract can actually be performed by a smartcontract remains a question [270]. Promises to exchange the ownership of assets are a com-monality in contracts. To exchange the ownership of an asset existing in the real world itneeds a digital representation on the blockchain to signal the transaction. Without this digi-tal representation a smart contract also does not dispose over the data to monitor whetherconditions are met [106].
5.5.6 Dispute Resolution and Termination

Termination of a contract occurs for several reasons, one of them being that one of theparties intentionally may want to breach the contract. If the benefits outweigh the potentialbenefits of a breach this might be a viable strategy for a party [217]. However, as a resultof a breach sanctions might be applicable that are to be executed before the contract isterminated. In other contracts a termination clausemight be missing, thus lacking clarity onwhen it is allowed to terminate the contract by right [236].
During the lifespan of the smart contract disputes between the parties might arise. For in-stance because one of the parties has breached the contract. When dispute resolution isrequired a common practice is to resolve the conflict via arbitration or litigation [96]. Thelack of a clause that stipulates how disputes are resolved is problematic because oftentimesthe contracts need to be undone as if the acts performed under the contract were neverperformed. The problem is that transactions executed using a smart contract cannot be re-versed [217, 236, 270]. Another outcome of the dispute resolutionmight be that the contractis terminated be court order or mutual consent [170].

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 95PDF page: 95PDF page: 95PDF page: 95

Chapter 5. Domain Ontology For Smart Legal Contracts 81
Finally, there are some events or conditions under which it becomes virtually impossible toperform the obligations. These events and conditions can constitute to Force de Majeurewhere a party is discharged from its obligations as it can not reasonably expected that theyare performed [249]. However, even in the face of force de majeure smart contracts auto-matically execute or enforce the logic they contain once triggered.
In sum, there are the requirements that smart contracts need to meet in order to become alegally binding agreement while there are also more granular challenges related to distinctphases within the life-cycle of a smart contract. The problems discussed here constitute togenuine challenges when utilizing smart contract as an alternative to traditional legal con-tracts.

5.6 Motivating Example

Using a motivational example we will illustrate and demonstrate the domain ontology pre-sented hereafter. The example is a condensed version of standard lease agreement, of whichthe full version can be found in Appendix C.
Lease Agreement1. This Lease is made on 19th of July, 2021 between Bob Book, (hereafter called the Landlord)and John Doe, (hereafter called the Tenant).2. The term of this lease is: of 2 Years starting on 1 January, 2021 and ending on 1 January,2023.3. If the Landlord cannot give possession within 30 days after the starting date, the Tenantmay cancel this Lease.4. The rent of the Premises will be $1000.5. The Tenant will pay the rent, in advance, on the 1st day of each month.6. The first payment of rent and any security deposit is due by 01 January, 2021 prior tomoving in.7. The Tenant must pay a late charge of $500 for each payment that is more than 30 dayslate.8. The Tenant will deposit the sum of $2000 with the Landlord as security that the Tenantwill comply with all the terms of this Lease.9. If the Tenant complies with the terms of this Lease, the Landlord will return this depositwithin 30 days after the end of the Lease.10. The Landlord may use as much of the security deposit as necessary to pay for damagesresulting from the Tenant’s occupancy or, at Landlord’s sole option and election, to pay fordelinquent or unpaid rent and late charges.11. The Landlord will pay for the following utilities: Garbage Removal, Gas, and Oil.12. The Tenant will pay for the following utilities: Water, Sewer, and Electricity.13. If the Tenant does not pay the rent within 60 days of the date when it is due, the Tenantmay be evicted.14. The Landlord may also evict the Tenant if the Tenant does not comply with all of theterms of this Lease, or for any other causes allowed by law.15. If evicted, the Tenant must continue to pay the rent during the remainder of the term.16. The Tenant must also pay all costs, including reasonable attorney fees, related to theeviction and the collection of any monies owed to the Landlord, along with the cost of re-entering, re-renting, cleaning and repairing the Premises.17. If the Premises are destroyed through no fault of the Tenant, the Tenant’s employeesor Tenant’s visitors, then the Lease will end, and the Tenant will pay rent up to the date ofdestruction.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 96PDF page: 96PDF page: 96PDF page: 96

Chapter 5. Domain Ontology For Smart Legal Contracts 82
5.7 A Domain Ontology For Smart Legal Contracts

A contract is a legally binding written agreement between two or more parties, that havemade mutual promises of performance towards one another [251, 283]. The actors in acontract are referred to as the contractual parties [50, 127, 283], that own assets pertaininga certain value. Definitions define the concepts used in a contract [40]. A contracting partyhas to perform a set of actions to full fill its promises to perform against the other party. From[10, 50, 127, 215, 283] we adopt the concept of clauses that specify the relation between aset of actions. The elements used to model contracts are clauses, definitions, parties, assetsand actions. In Fig 5.1 the relation between these elements is depicted. The elements willnow be discussed more in detail.

Figure 5.1: Composition of a contract

5.7.1 Asset and Party

Contract are always formed between two or more parties wishing to formalize their agree-ment in written form. Typically a contract starts with the recitals defining who the contrac-tual parties are [127]. A definition could state who is a party involved in the contract, andmore importantly how they are referred to in the contract. Example sentence 1 states for in-stance that "John Doe" is the Tenant, whereas "Bob Book" is the Landlord. Persons enteringinto a contract are considered parties to the contract. However, it must be noted that theterm "person" actually refers to legal entities of which two types can be distinguished: First,there are natural persons, individuals like in our example. Second, there are juridical personslike companies. In ourmodel we cater for this distinction by providing the field entityType,that can contain the value natural or juridical. The importance and ramifications of thisdesign choice will be further explained in 5.7.4.2. Listing 5.1 portrays an example of how theparty "Bob Book" mentioned in line 1 of the motivating example would be denoted.
1 {"party ":2 {" partyId ": "Party1",3 "partyName ": "Bob Book",4 "entityType ": "natural "}5 }

Listing 5.1: Example format Party

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 97PDF page: 97PDF page: 97PDF page: 97

Chapter 5. Domain Ontology For Smart Legal Contracts 83
Parties own assets that are the subject of the promises made by the parties. For each assetthe owner of an asset is registered in the field owner that can only contain the id of a party.Another important aspect of an asset is what kind of asset it is. Asset types like euro’s aretypically not unique, whereas a painting or a the lease of a house are. This distinction isrequired to determine the intrinsic value of the asset to a party. The type field is used tospecify the type of asset.
5.7.2 Definition

Definitions represent concepts that are used throughout the contract and define that a par-ticular concept is equal to another concept. As an example, "The rent" might be defined tobe 5000 euro (See line 4 of motivating ex.). In essence, definitions pertain concepts thatare relevant to understand the contract. Some definitions apply to most, if not all clausesstipulated in a contract. Again consider example line 1 stating who the Tenant and Landlordare. The composition of the elements related to a definition is depicted in 5.2.

Figure 5.2: Model elements related to a definition

A Definition encompasses a definiendum and definiens, a concept (definiendum) that is de-fined as another thing (definiens). By expressing logical relations the limits of the definiens isset. Such a logical expression could mean the equivalence of two things (A means B), or theinclusion of onemore things (A includes B). In the specificationWhen the inclusion of one ormore things is defined, the definition will encompass several definiens elements. Contrarylogical expressions that include a negation, or a combination of the aforementioned logicalexpressions also exist. The quantities of the definiendum and definiens are specified witheither a quantity or an arbitrary quantity. Definitions can also only apply under a con-dition. For instance, a person can only be regarded as an adult for the purposes in a contractwhen that persons’ age is over 18 (equation), or when something has occurred (action).
To illustrate how the domain ontology would cater for the notation of a definition, considerline 4 of the motivating example: "The rent of the Premises will be $1000". How this linewould be notated using the domain ontology is depicted in listing 5.2.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 98PDF page: 98PDF page: 98PDF page: 98

Chapter 5. Domain Ontology For Smart Legal Contracts 84
1 {" definition ":{2 "definitionId ":" Definition4",3 "definition ":[4 {" definiens ":{" definiensName ":" the rent",5 "definiensId ":" Definiens4"}},6 {" defiendum ":[7 {" resource ":{" resourceId ":" Resource1",8 "resourceName ":"$",9 "quantity ":{" quantName ":" the",10 "quantId ":" Quantity1",11 "value ": "500"}}}]}]}12 }

Listing 5.2: Example of modeled definition
In line with the domain ontology, and for identification purposes the definition has the id"Definition4". The most important information here is that "the rent" (see definiensName)is actually equal the amount of $500. Therefore, in the defiendum a resource is enclosedsince the definition actually defines a resource (Dollar) with a quantity value of 500.
5.7.3 Clause

A clause contains a subset of the promises to perform made by the parties in the form ofseveral actions. In other works [50, 127, 139] on electronic contracting the structure of aclause is denoted in Event Condition and Action rules [19]. ECA rules take the form of On(event), If (condition), Do (actions) rules, meaning that on the occurrence of an event, ifcertain conditions are met a party executes an action. The structure of ECA rules resemblesthe notion of conditional promises that are promises made by a party to perform (an action)provided that the other party full fills its promise to perform an action. Related to the non-performance of a conditional promise, remedies might be stipulated in a contract. This workenhances the standard ECA rules by adding the notion of remedies, that are a specific typeof actions only applicable when the conditions stipulated in the clause are violated. Figure5.3 depicts the composition of the elements within a clause.

Figure 5.3: Model elements related to a clause

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 99PDF page: 99PDF page: 99PDF page: 99

Chapter 5. Domain Ontology For Smart Legal Contracts 85
5.7.3.1 Triggering Event

Parties involved in the contract might perform actions, or an eventmight occur that promptsother actions to be performed by the parties. For instance, in line 8 the Tenants will make adeposit and the Landlord will return the deposit if the Tenant has complied with the termsof the lease. Hence, a contract event contains a set of actions that are the starting point fora clause to become applicable given a situation. We refer to the type of triggering eventsthat are instigated by one of the parties in the contract as actions.
Not only a set of actions can effectuate a clause, a set of events can also be considered tomake a clause applicable. We regard events as things that occur and which are not causedby the doing of one of the contractual parties. We discern two types of events (denotedas eventType): First, external events are occurrences of a change in the situation of thecontracting parties that makes the performance of promises by another party pertinent. Anexternal event or a set of external events that reasonably renders it impossible for a partyto perform its promises is called Force de Majeure (See problem 21). The result of a Forcede Majeure situation is that a Party may be promised to be discharged of its obligations.Second, temporal events are a are dates in the future that effect a clause.
5.7.3.2 Conditional Promise

A conditional promise is an action or event, that affects an obligation to render a promisedperformance of an action that is specified in a contract. Thus, a condition may be regardedas a qualification placed upon a promise [12], and the result of full filling that promise. Con-ditional promises stipulated in a clause may encompass one or more actions that are to beperformed by the parties, or an evaluation of a situation based on certain criteria. The eval-uation of a situation can be modeled as equations, that can be either true or false in theproposed model. Equations need to be evaluated first to determine whether the equationis true or false. In most contracts this entails evaluating the quantity of a resource to thequantity of another equated resource. A relational expression is used to denote how the re-source and equated resource are evaluated. These relational expressions are greater than,equal to, smaller than, and equal to. The relations between the resources, equated resourcesand equated resources is further specified in Figure 5.4.

Figure 5.4: Model elements related to an equations

Conditional promises stipulated in a clause are always related to a promise to enact one ormore actions stated in the clause. That is, when modeling legal contracts a clause cannotlogically contain conditions without a promise to enact a set of actions. Clauses can containmultiple nested conditions where a condition entails the performance of another action,

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 100PDF page: 100PDF page: 100PDF page: 100

Chapter 5. Domain Ontology For Smart Legal Contracts 86
that in turn full-fills a promise and renders the performance of a another promise. Besidesconditional promises, a contract may contain unconditional promises. The performance ofunconditional promises are as the name suggest, not tied to any condition.
5.7.3.3 Remedy

A clausemight also contain remedies forwhenever one of the contractual parties violates theconditions of the clause. A violation of a condition occurswhenoneof the contractual partiesdoes not perform one or more actions that it has obligated itself to. When the violation of acondition occurs, the contract might describe remedies to resolve the breach, or a sanction.To illustration this: line 5 of the motivating example states that the Tenant promises to paythe rent. As a sanction line 7 states that if the the Tenant does not pay the rent, the Tenantmust pay a late charge. Thus, a clause remedy contains an alternative set of actions thatare enacted only if one of the contractual parties has failed to perform the actions specifiedin the clause conditions. From this line of reasoning it follows that a clause cannot containremedies if there are no conditions formulated for the clause.
5.7.3.4 References

References denote the pointers to other paragraphs or sections in legal contract (e.g. in sec-tion 2 or in Schedule 1) [237]. In turn, these section can contain definitions or other clauses,effectively suggesting to read the referenced text to determine the outcome of a clause, orwhether it is applicable. For each reference there is at least one corresponding clause orlaw to which it refers denoted in the field refersTo. References have been included in ourmodel to address Problem 7 and cater resolution of such instances.
5.7.3.5 Combined Actions

Clauses might stipulate that a combination of actions is required to be performed to makeitself applicable. In the same vein, such requirements might also hold for conditions andpromises. Take line 6 of the motivating example, where the paying the "first payment" and"security deposit" are meant as a condition before being allowed to move in. Our modelcaters for combined actions by including these actions in one condition to denote that theyare promised to be performed both. Whenever the combination of events with actionsis required the same logic holds. Conversely, clauses triggers might state that the perfor-mance of an action is mutually exclusive to that of another. The coordinating conjunction"or" for instance, usually signals such exclusions. Whenever an exclusion is applicable thefield exclusiveTo is used to capture the id’s of actions, events, or a combination thereofrespectively. Note that as exclusions are not always required, the exclusiveTo field is op-tional.
5.7.3.6 Clause Type

While other works [50, 127] consider clauses as one uniform element of a contract, or dis-cern two types of clauses such as norm clauses and definition clauses [142, 182] we discernseveral types of clauses. A distinction between clauses is made by assigning a type for eachclause. Examples of clause types are termination clauses, such as the one in line 3 or a clausestating the governing law. The lack of a termination, jurisdiction an applicable law clause isdeemed problematic (See problem 10 and 11). We posit therefore that to model a smartlegal contracts, each contract model needs to contain at least one of the aforementionedclause types. In the absence of a termination clause, the contractual parties may resort to

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 101PDF page: 101PDF page: 101PDF page: 101

Chapter 5. Domain Ontology For Smart Legal Contracts 87
a standardized ("boilerplate") clause for contract termination. Similar, when the jurisdictionor applicable law are not explicitly specified, parties can choose to adopt a governing lawor jurisdiction clause. In the same vein the absence of a clause to amend the contract in-troduces several problems (See problem 12). When modelling a contract there needs to bean amendment clause a boilerplate amendment clause may be when this clause is absent.Furthermore, the lack of a dispute resolution clause or mechanism is considered a problemwithin the current legal framework (See problem 20) as else contracts cannot be undone.Therefore, a smart legal contractmodel should include at least one dispute resolution clause.Finally, some but not all contracts specify the conditions that constitute to Force deMajeure(See problem 21). We suggest that a Force de Majeure clause is not required, yet if presentshould be taken into account.
5.7.4 Action

Conditions in a clause an subsequent promise of performance need to be materialized byparties through actions. For instance in line 5 of the motivating example the Tenant hascommitted to "pay" the rent. It can be noted that the verb will indicates that the action payin the example is obligated. Furthermore, in the example the action has its own scope thatcomprises a resource (the Rent) and an agent (the Tenant). In other words, the parties thatthe action applies to, and the resources that are the target of the action. Finally, the action"pay" is to be performedby the Tenant, on the first day of eachmonthmeaning that temporalaspects are relevant. Furthermore, "each month" (time unit) indicates that the action isrepeated. For identification purposes each action will have an unique identifier (actionId)and name that is derived from the action and the resource involved in the action. Figure5.5 depicts the relation between actions, agents, resources and terms. Hereunder, we willfurther explain the relations between these concepts.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 102PDF page: 102PDF page: 102PDF page: 102

Chapter 5. Domain Ontology For Smart Legal Contracts 88

Figure 5.5: Relation between actions, resources, agents and terms.

5.7.4.1 Resources

In a contract there is usually an exchange of goods or services in other words, resources[31]. Examples of resources are a receipt, a lease deposit, 5000 euro’s, or other materials.Example line 5 states only one resource. However, line 12 mentions that the tenant willpay for water sewer and electricity. While this seems one to be one action the statementactually comprises three actions: pay forwater and for water and for electricity (See Problem5). Thus, we can regard this as three separate actions that all need to be performed. Thesame line of reasoning can be followed for statements with an or coordinating conjunction.However, in the case of an coordinating "or" conjunction, the actions are exclusive and thesame notation can be used as under 5.7.4.
Further required information is how much, or the quantity of the resource is involved in theaction. In example 8, the quantity of the resource Dollar ($) is clearly and directly statedas "2000" expressed as a number. The quantity of resources is not always directly statedbut an article (e.g. "The", "A", or "Any") is used. Some articles can be expressed as realnumbers, for instance "A" receipt can be said to mean 1 receipt. However, "The" suggests

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 103PDF page: 103PDF page: 103PDF page: 103

Chapter 5. Domain Ontology For Smart Legal Contracts 89
that the specific quantity and resource are defined elsewhere. Take for instance line 5 ofthe motivating example that states "to pay the rent". The rent as a concept is defined in thecontract to be $1000 in line 4. To cater these links the notation presented here includes thefield alias, that can be used to refer to the definition.
Another issue is that legal contracts are known to stipulate quantities of resources that arearbitrary expressions that are typically subjective like "reasonable" and "sufficient". A prob-lem that arises from such statements is that they are not directly quantifiable (See problem3). We refer to these as arbitrary quantities, that in our notation are mutually exclusive toquantities. That is, the quantity of any resource involved in an action is either arbitrary or inthe form of an number.
5.7.4.2 Parties their Roles, and Agents

Each action in a contract needs to be performed by a party. When performing actions a partyfull-fills a specific role, that is related to whether it made the promise or not. For each actionwe discern two roles that a party may have, it is either:
1. A promissor, meaning that the party will perform the action, or:2. A promissee, when the party is a recipient to an action.
A party that has the role of promissor will be tied to its role by denoting the correspondingidentification number (partyId) in the field party. The same approach can be followed todenote the party that has a role as promissee. Ultimately the contracting parties themselvesare responsible for full-filling their promises by performing actions.
However, in some contract scenarios a party is an juridical person (e.g. company), or likein the motivating example, a natural person. Whether the actions concern an juridical ornatural person the actions need to be materialized by an individual. In line with other litera-ture [31, 98], in our ontology we refer to these individuals as agents. It can be assumed thatwhenever a party is a natural party it will perform the promise itself. This might not be thecase for a juridical entity like a company. Defining the legal relation between a party and anagent is complex and beyond the scope of this work. However, the field onBehalf is usedto denote the link between a party and the agent operating on their behalf.
For some actions there is not always a receiving party stated, but only a providing agent. Line5 of the motivating example illustrates this point. The contrary might also be true: contractsoften contain such implicit statements regarding the providing and receiving agent of anaction. Each action requires at least one agent that has the role of the providing agent andanother agent that has the role of receiving agent. In the same vein as resources, when thereis more than one agent related to an action this should be regarded as two separate actions.
5.7.4.3 Modality: Obligated, Permissioned and Prohibited Actions

The modality of actions are mostly described using deontic modal logic [271]. In literatureregarding multi-agent systems [31, 234] and e-contracts [155, 171] three types of modalityare discerned: an obligation, a permission and a prohibition. When an action is obligated itmeans that a party has promised to another party to perform an action. The Tenants promisein line 5 to pay the rent is an example of an obligation. Some actions are not obligated,but permitted meaning that they may be enacted. An example of a permissioned action ismentioned in first part of line 9: The Landlordmay use asmuch of the security deposit. Thereare also prohibited actions that are not allowed to be performed by a party. In our notation,the modality of an action is denoted as an attribute of that action.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 104PDF page: 104PDF page: 104PDF page: 104

Chapter 5. Domain Ontology For Smart Legal Contracts 90
The debate about deontic logic has been influenced by the work of Hohfeld [113], that madesignificant efforts to identify fundamental legal concepts and establish the relationship be-tween them. Hohfeld demonstrated that a duty (obligation) for a party, has as a naturalopposite, a privilege (permission). A later work by Alexy [4] added the concept of duty-not(prohibition) which is the opposite from another parties right-not. From this reasoning itfollows that actions cannot be obligated and permissioned simultaneously, nor can they beboth prohibited and permissioned. Finally, actions can not be both prohibited and obligatedas this would inevitably result in conflict [91]. Another important finding from the work ofHohfeld is that legal concepts like duty (obligation), right (permission), duty-not (prohibition)have correlative concepts. That is, the obligation for a party to perform an action is a liability,conversely it is the privilege of another party. In his work on norms Singh [234] maps nor-mative concepts, that are akin to the aforementioned legal concepts, to the roles of a party.Based on this mapping we relate the proposed modalities to a parties’ roles in Table 5.2.

Table 5.2: Liabilities and privileges by party role.
Promissor PromisseeObligation Liability PrivilegePermission Privilege LiabilityProhibition Liability Privilege

5.7.4.4 Terms

Terms are deadlines that bind the performance of action to a point in future time. A termalways contains a time expression, that indicates the relation between the time points. Thecomplete set of types of time expressions thatwediscern is before, on, after, and betweenadopted from thework of Allen [6]. From other literature [155, 171] we identify three types ofterms: absolute, relative, and timespan. Additionally we propose arbitrary terms.A time expression determines the type of the term, which we will now further explain.
A time expression might state that an action has to be performed before a specified date.Other time expressions require that an action was performed by one of the parties on adate, so that the performance of an action coincides with the date. Another form of a timeexpressions have a time expression stating that the action should be performed after a cer-tain point in time. These are examples of absolute terms as the time point when the actionneeds to be finished is affixed. It can also be noted that absolute terms always specify a timepoint.
However, legal contractsmight also contain relative term. An example of such a term is statedin line 9. The time expression "within" in this example is not related to a concrete date, butrather to time when the contract has been terminated. This example illustrates that actionsthat are bound to these types of terms are always preceded by one or more actions or theoccurrence of an event. Rather than stipulating an absolute time point, relative terms havea relative time point. To determine the relative time point, the time point related to whenan action was finished (actionId) or that an event has occurred (eventId) needs to beknown. Further, the time unit stipulated in either days, weeks, months or years and thequantity thereof needs to be specified.
Other terms are arbitrary in that they have arbitrary time points that are subjective to in-terpretation. For instance the sentence "you will pay within reasonable time" is arbitraryas what is reasonable is subjective. Note that in this example a time point has not beenspecified. The time point needs to be agreed upon by the contractual agents involved in the

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 105PDF page: 105PDF page: 105PDF page: 105

Chapter 5. Domain Ontology For Smart Legal Contracts 91
action. To facilitate this process the point needs an arbiPointId and a value that containsthe expression (e.g. "reasonable" or "sufficient").
A term might be formulated in the form a timespan as it contains a time expression that theaction is to be performed between two dates. Time spans always have a start date thatspecifies the start date of the time span, and an end date. Temporal constraints tied to anaction can also be repeated, like in line 5 of the motivating example. On the 1st day of eachmonth indicates a repeated payment for each time unit, in this example amonth. If the termis repeated the repetition should be denoted in time units (e.g. months etc). Not all actionshave an explicitly specified temporal constraint. In these cases it can be assumed that theaction needs to be performed eventually, that is, before the contract is terminated.
5.7.4.5 Status of Actions

An important benefit of smart contracts besides the potential to automatically execute trans-actions is that a smart contract offers the possibilities to monitor the state of a contract. Toachieve this goal, the state of each separate action needs to be captured. Transactions in asmart contract are atomic, thereforewe assume that performance of an action is also atomic,they have either occurred or they have not. Here the input of the agent (performing an ac-tion) changes the status of an action from unfinished to finished. Given that an actionstill needs to be performed or has been performed by an agent the status for an action canhave the value finished or unfinished. However, if there is a term tied to the performanceof an action, and the action is not performed in line with this term, the conditions for thataction are violated. We introduce a third status, namely that of a violation to denote thisstatus. Therefore the status of all actions would be denoted as either unfinished, finished orviolated. By default all actions are set to unfinished.
5.7.4.6 Action Group

A contract may stipulate a myriad of actions that need to be represented in a smart contractto cater for monitoring and execution. Actions in a contract could be transformed into spe-cific code patterns that serve this purpose. It would be impossible to design and create acode pattern for each individual action. Even if this would be possible it would consume vastamounts of resources rendering this approach to be practically infeasible. Fortunately, whenclosely examining actions in contracts it can be noted that actions can be "grouped" basedon their semantic equivalence. This observation is useful as it greatly reduces the numberof patterns required to be designed.
To illustrate this point, the action "give" usually indicates that someone will provide some-thing to someone else for instance. The action exchange has a similar meaning to the actiongive as it implies the change in ownership. Thus, these actions could be grouped into onegroup. Payments are related to the action "giving" yet specifically involves the exchangeof currency. In the context of smart contracts this is a special group that requires a spe-cific pattern. For other purposes assigning a group to an action might be equally beneficial.In section 5.7.3.6 we discussed the existence of several types of clauses. The types of ac-tions that a clause contains can aid in identifying the clause type. Consider a sentence thatincludes the action "terminate", this action is usually mentioned in the context of a termi-nation clause. Similarly, when the action "amend" is described this hints that the sentenceis part of an amendment clause.
When we bring together all of this information and we take line 5 of the motivational exam-ple: "The Tenant will pay the rent, in advance, on the 1st day of each month." We can modelthe information concerning the action as shown in listing 5.3:

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 106PDF page: 106PDF page: 106PDF page: 106

Chapter 5. Domain Ontology For Smart Legal Contracts 92
1 {" action ": {2 "actionId ": "Action2",3 "name": "pay the Rent",4 "modal": "OBLIGATION",5 "group": "Pay",6 "repeated ": false ,7 "status ": "unfinished",8 "resource ": {9 "resourceId ": "Resource5",10 "resourceName ": "rent",11 "definedAs ": "Definition4",12 "quantity ": {13 "quantName ": "the",14 "quantId ": "Quantity5",15 "value": 500,16 "definedAs ": "Definition4"17 }18 },19 "promissor ": {20 "promissorName ": "the tenant",21 "promissorId ": "Promissor2",22 "party": "Party1"23 },24 "promissee ": {25 "promisseeName ": "the landlord",26 "promisseeId ": "Promissee2",27 "party": "Party ?"28 },29 "term": {30 "termId ": "Term3",31 "type": "span",32 "timeexpression ": {33 "timeExpressionId ": "TimeExpression2",34 "type": "on"35 },36 "timePoint ": {37 "timeSpan ": {38 "timeSpanId ": "TimeSpan2",39 "start": {40 "date": {41 "day": 1,42 "month": 1,43 "year": 202144 }45 },46 "end": {47 "date": {48 "day": 1,49 "month": 1,50 "year": 202351 }52 }53 }54 }55 },56 "repeatedEach ": {57 "timeUnitId ": "TimeUnit1",58 "type": "month",59 "quantity ": {60 "quantName ": "1",61 "quantId ": "Quantity6",62 "value": 1}}}}

Listing 5.3: Example of modeled action
A first important observation from the example is that the resource involved in the action"paying" is "the rent". However, the rent is not a resource or a direct quantified amount.What the rent actually is is defined somewhere else, more specifically in line 4 of the moti-vational example. The example of how the ontology could be used to denote this definitionis shown in listing 5.2. Therefore, in listing 5.3 the resource name is "rent" while the quantity

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 107PDF page: 107PDF page: 107PDF page: 107

Chapter 5. Domain Ontology For Smart Legal Contracts 93
name (quantName) is set to "the". To cater for the reference to the correct definition, thefield definedAs contains the name of the definition where the rent is defined. A secondimportant observation is that in the example the action must be repeated each month. Inlisting 5.3 the attribute repeated is thus set to "true". The action has a timePoint with theattribute repeatedEach to stipulate that the action is repeated each month. What is alsoimportant to denote is the time span during which the action needs to be required. In thiscase the rent needs to be paid by the tenant from the start of the contract, 1st of January2021 to the end of the contract on the 1st of January 2023. Both dates are denotes in theattribute timeSpan under start and end.

5.8 Evaluation: Instantiating the Domain Ontology

In line with the final step proposed by Noy and McGuinness we created instances of the on-tology to evaluate whether it can be used in practice. When following Noy andMcGuinness’methodology this final step serves to evaluate an ontology based on one or multiple cases.Themotivating example presented in section 3.2 and has been used throughout this chapterto exemplify the concepts of the ontology has been instantiated, and is shown in AppendixD. Given that the modeling of individual concepts has been discussed in the prior sectionswe emphasize on explaining how clauses are modelled. For brevity’s sake, we will illustratethe instance of only one clause of the motivating example here (shown in listing 5.4).
1 {" clause ": {2 "clauseId ": 1,3 "clauseType ": "Normal",4 "TriggeringEvent ": {5 "triggerId ": "Trigger1",6 "Contains ": [7 {8 "event": {9 "eventName ": "start lease",10 "eventId ": "Event1",11 "eventType ": "temporal"12 }}],13 "Conditions ": [14 {15 "condition ": {16 "conditionId ": "Condition1",17 "Contains ": [18 {19 "action ": {20 "actionId ": "Action1",21 "name": "pay the Rent",22 "modal": "OBLIGATION",23 "group": "Pay",24 "repeated ": false ,25 "status ": "unfinished",26 "resource ": {27 "resourceId ": "Resource4",28 "resourceName ": "rent",29 "definedAs ": "Definition4",30 "quantity ": {31 "quantName ": "the",32 "quantId ": "Quantity4",33 "value": 500,34 "definedAs ": "Definition4"35 }36 },37 "promissor ": {38 "promissorName ": "the tenant",39 "promissorId ": "Promissor1",40 "party": "Party1"41 },

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 108PDF page: 108PDF page: 108PDF page: 108

Chapter 5. Domain Ontology For Smart Legal Contracts 94
42 "promissee ": {43 "promisseeName ": "the landlord",44 "promisseeId ": "Promissee1",45 "party": "Party2"46 },47 "term": {48 "termId ": "Term3",49 "type": "span",50 "timeexpression ": {51 "timeExpressionId ": "TimeExpression2",52 "type": "on"53 },54 "timePoint ": {55 "timeSpan ": {56 "timeSpanId ": "TimeSpan2",57 "start": {58 "date": {59 "day": 1,60 "month": 1,61 "year": 202162 }63 },64 "end": {65 "date": {66 "day": 1,67 "month": 1,68 "year": 202369 }70 }71 }72 }73 },74 "repeatedEach ": {75 "timeUnitId ": "TimeUnit1",76 "type": "month",77 "quantity ": {78 "quantName ": "1",79 "quantId ": "Quantity5",80 "value": 181 }82 }83 }84 }85],86 "Remedies ": [87 {88 "remedy ": {89 "remedyId ": "Remedy1",90 "Contains ": [91 {92 "action ": {93 "actionId ": "Action2",94 "name": "pay a late charge",95 "modal": "OBLIGATION",96 "group": "Pay",97 "repeated ": false ,98 "status ": "unfinished",99 "resource ": {100 "resourceId ": "Resource5",101 "resourceName ": "late charge",102 "definedAs ": "Definition6",103 "quantity ": {104 "quantName ": "the",105 "quantId ": "Quantity6",106 "value": 500,107 "definedAs ": "Definition6"108 }109 },110 "promissor ": {111 "promissorName ": "the tenant",112 "promissorId ": "Promissor2",113 "party": "Party1"

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 109PDF page: 109PDF page: 109PDF page: 109

Chapter 5. Domain Ontology For Smart Legal Contracts 95
114 },115 "promissee ": {116 "promisseeName ": "the landlord",117 "promisseeId ": "Promissee2",118 "party": "Party2"119 },120 "term": {121 "termId ": "Term4",122 "type": "relative",123 "timeexpression ": {124 "timeExpressionId ": "TimeExpression4",125 "type": "after"126 },127 "timepoint ": {128 "relativeTimePoint ": {129 "relatTimePointId ": "

relatTimePoint1",130 "relatedTo ": "Action1",131 "timeUnit ": {132 "timeUnitId ": "timeUnit2",133 "type": "day",134 "quantity ": {135 "quantName ": "30",136 "quantId ": "Quantity7",137 "value": 30138 }139 }140 }141 }142 }143 }144 }]}},145 {146 "remedy ": {147 "remedyId ": "Remedy2",148 "Contains ": [149 {150 "action ": {151 "actionId ": "Action3",152 "name": "evict tenant",153 "modal": "PERMISSION",154 "group": "terminate",155 "repeated ": false ,156 "status ": "unfinished",157 "resource ": {158 "resourceId ": "Resource6",159 "resourceName ": "evict",160 "quantity ": {161 "quantName ": "the",162 "quantId ": "Quantity8",163 "value": 1164 }165 },166 "promissor ": {167 "promissorName ": "the landlord",168 "promissorId ": "Promissor3",169 "party": "Party2"170 },171 "promissee ": {172 "promisseeName ": "the tenant",173 "promisseeId ": "Promissee3",174 "party": "Party1"175 },176 "term": {177 "termId ": "Term5",178 "type": "relative",179 "timeexpression ": {180 "timeExpressionId ": "TimeExpression5",181 "type": "after"182 },183 "timepoint ": {184 "relativeTimePoint ": {

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 110PDF page: 110PDF page: 110PDF page: 110

Chapter 5. Domain Ontology For Smart Legal Contracts 96
185 "relatTimePointId ": "

relatTimePoint2",186 "relatedTo ": "Action1",187 "timeUnit ": {188 "timeUnitId ": "timeUnit3",189 "type": "day",190 "quantity ": {191 "quantName ": "60",192 "quantId ": "Quantity9",193 "value": 60194 }195 }196 }197 }198 }199 }200 }201]}}]}}] ,202 "Promises ": [203 {204 "promise ": {205 "promiseId ": "Promise1",206 "Contains ": [207 {208 "action ": {209 "actionId ": "Action4",210 "name": "pay the security deposit",211 "modal": "OBLIGATION",212 "group": "deposit",213 "repeated ": false ,214 "status ": "unfinished",215 "resource ": {216 "resourceId ": "Resource7",217 "resourceName ": "security deposit",218 "definedAs ": "Definition5",219 "quantity ": {220 "quantName ": "the",221 "quantId ": "Quantity10",222 "value": 2000,223 "definedAs ": "Definition5"224 }225 },226 "promissor ": {227 "promissorName ": "the tenant",228 "promissorId ": "Promissor4",229 "party": "Party1"230 },231 "promissee ": {232 "promisseeName ": "the landlord",233 "promisseeId ": "Promissee4",234 "party": "Party2"235 },236 "term": {237 "termId ": "Term2",238 "type": "absolute",239 "timeexpression ": {240 "timeExpressionId ": "TimeExpression2",241 "type": "before"242 },243 "timePoint ": {244 "absoluteTimePoint ": {245 "absolutePointId ": "TimePoint1",246 "date": {247 "day": 1,248 "month": 1,249 "year": 2021250 }251 }252 }253 }254 }255 }

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 111PDF page: 111PDF page: 111PDF page: 111

Chapter 5. Domain Ontology For Smart Legal Contracts 97
256]}},257 {258 "promise ": {259 "promiseId ": "Promise2",260 "Contains ": [261 {262 "action ": {263 "actionId ": "Action5",264 "name": "pay for gas",265 "modal": "OBLIGATION",266 "group": "Pay",267 "repeated ": false ,268 "status ": "unfinished",269 "resource ": {270 "resourceId ": "Resource8",271 "resourceName ": "gas",272 "quantity ": {273 "quantName ": "the",274 "quantId ": "Quantity?",275 "value": "?"276 }277 },278 "promissor ": {279 "promissorName ": "the tenant",280 "promissorId ": "Promissor5",281 "party": "Party1"282 },283 "promissee ": {284 "promisseeName ": "the landlord",285 "promisseeId ": "Promissee5",286 "party": "Party2"287 },288 "term": {289 "termId ": "Term6",290 "type": "span",291 "timeexpression ": {292 "timeExpressionId ": "TimeExpression6",293 "type": "during"294 },295 "timePoint ": {296 "timeSpan ": {297 "timeSpanId ": "TimeSpan3",298 "start": {299 "date": {300 "day": 1,301 "month": 1,302 "year": 2021303 }304 },305 "end": {306 "date": {307 "day": 1,308 "month": 1,309 "year": 2023310 }311 }312 }313 }314 }315 }316 },317 {318 "action ": {319 "actionId ": "Action6",320 "name": "pay for water",321 "modal": "OBLIGATION",322 "group": "Pay",323 "repeated ": false ,324 "status ": "unfinished",325 "resource ": {326 "resourceId ": "Resource9",327 "resourceName ": "water",

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 112PDF page: 112PDF page: 112PDF page: 112

Chapter 5. Domain Ontology For Smart Legal Contracts 98
328 "definedAs ": "Definition5",329 "quantity ": {330 "quantName ": "the",331 "quantId ": "Quantity11",332 "value": 2000333 }334 },335 "promissor ": {336 "promissorName ": "the tenant",337 "promissorId ": "Promissor5",338 "party": "Party1"339 },340 "promissee ": {341 "promisseeName ": "the landlord",342 "promisseeId ": "Promissee5",343 "party": "Party2"344 },345 "term": {346 "termId ": "Term6",347 "type": "span",348 "timeexpression ": {349 "timeExpressionId ": "TimeExpression6",350 "type": "during"351 },352 "timePoint ": {353 "timeSpan ": {354 "timeSpanId ": "TimeSpan4",355 "start": {356 "date": {357 "day": 1,358 "month": 1,359 "year": 2021360 }361 }362 },363 "end": {364 "date": {365 "day": 1,366 "month": 1,367 "year": 2023368 }369 }370 }371 }372 }373 }374]375 }376 }377]}}},

Listing 5.4: Instance of a clause within the motivational example
The first thing that needs to be established is which actions are part of a clause. In case ofthemotivating example the clause becomes applicable at the start of the contract (see line 2motivating example) that is modelled in listing 5.4 as an a temporal event under the attribute
TriggeringEvent (See line 5 to 12 in Listing). Attached to this event is the condition pre-sented in line 5 of the motivational example. The modeling of the action has already beendiscussed prior and is shown in listing 5.3. Two specific remedies are mentioned when thetenants does not pay the rent and violates the condition. The first of these remedies is thatthe tenant shall pay a late charge of $500 for each payment due after 30 days (line 7 moti-vational example). Thus, remedy 1 containing Action 2 on line 92 is included in the model forsuch circumstances. However, if any payment is missed then the landlord is allowed to evictthe tenant after 60 days and effectively terminating the lease. Note that because this notan obligation but rather a permission, the modal on line 95 of Action 3 is set to permission.Similar to Action 2, in the information for Action 3 a relative timepoint is included with the

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 113PDF page: 113PDF page: 113PDF page: 113

Chapter 5. Domain Ontology For Smart Legal Contracts 99
attribute relatedTo to signal that the related action here is Action 1. Note that the groupattribute is set to terminate.
The motivational example also includes the promise of the Tenant to pay a security deposit(line 8 of motivational example). In the model this becomes promise 1 starting on line 205listing 5.4. There are no conditions tied to the promise to pay the security deposit when thecontract commences. Besides this promise, the Landlord promises to pay for Garbage Re-moval, Gas, and Oil utilities in line 11. The tenant will pay for theWater, Sewer, and Electricityutilities as described in line 12. All of these promises are described in lines 259 trough 377.For brevity’s sake we have not included all actions here, but paying for Garbage Removal,Gas, and Oil utilities should be regarded as separate actions. Similarly, so should paying forWater, Sewer, and Electricity utilities.
So far, we have presented how information about the contract is stored using the domainontology. As the final usability test of the domain ontology, the information about the con-tract is implemented in Contract Custodian2. Figure 5.6 depicts the motivational examplewhen used in combination with Contract Custodian a green box indicates a frame that willnow be explained.

Figure 5.6: Contract level concepts displayed in Contract Custodian

The first frame shows contract level information such as the parties and assets. The contractinformation can be changed using several buttons. In the second frame the contract textis shown with all actions, definitions and events underlined in blue, green and turquoiserespectively. The third frame is black and shows a field where could generated using thecontractmodel is placed. Because the code is placed directly next to the contract text a directcomparison is possible thus facilitating direct traceability between text and code. End-userswill also need require information at the action, definition or event level. To visualize thisinformation, end-users can hover over actions, definitions and events. Basic informationabout these concepts can be shown directly in this manner. A more detailed overview iscreated once the end-user has clicked on the concept. Figure 5.7 shows Contract Custodianwhen a concept is clicked.
2Contract Custodian is a program written by the author of this dissertation to visualize the information in thecontract. Please note that the program is a Proof of concept, and work in progress.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 114PDF page: 114PDF page: 114PDF page: 114

Chapter 5. Domain Ontology For Smart Legal Contracts 100

Figure 5.7: Action level concepts displayed in Contract Custodian

In frame 1 in Figure 5.7 the action level is again showed, along with the information that is inthe contract text. All generic information about the action is shown in the top part of frame1. Note that although in the sentence the promissee is not mentioned (the Landlord), it isshown in the menu as there is always a promissee for each action. Further, the resourceinvolved in the action is shown. The second frame contains again the contract text. How-ever, when an action is activated by clicking it information related to action is shown in thetext. With several colors things like where the resources and information is mentioned ishighlighted in the text. The relation that the action has with other actions is also displayed.In this case for instance, the action "pay a late charge" is shown as a remedy.
5.9 Discussion

The domain ontology presented in this chapter serves as a basis to model contracts as smartlegal contracts, and to delineate the relation among elements contained therein. Conceptsfrom related work was used to design the domain model.
An observation wemake is that currently researchers from several desperate fields are mak-ing related efforts, with different accents however. Most studies on legal requirements en-gineering predominantly focus on capturing information with regard to norms, not on howthe enforcement of these norms can be monitored. On the contrary, multi agent systemsfocus on the interactions between agents yet might lack the depth of an ontology to sup-port contracts. The current division of efforts has led to a fractured research landscape.Researchers conducting work on e-contracts have attempted to propose solutions that in-clude various aspects of electronic contracting. Despite the advances and the subsequentinvaluable insights the field has offered, each solution has idiosyncratic platform supportingthe e-contract. An implication of the diversification of these platform is that the exchangeof data or value between platforms might be hampered. More important, parties engagingin electronic contracting have little choice than to trust the platform that they are utilizingin terms of security because the security standards might be unknown for the different plat-forms.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 115PDF page: 115PDF page: 115PDF page: 115

Chapter 5. Domain Ontology For Smart Legal Contracts 101
Smart legal contracts provide the unique opportunity to unite the efforts of several relatedfields under one banner. Their underpinning by a blockchain means that a trustworthy ex-change of value between parties is possible. Other studies presenting ontologies for commit-ment based smart contracts [142] or smart legal contracts ([273] and [110, 286]) have takenon an approach were the code is the contract of smart legal contracts. A review of litera-ture reveals that this approach will introduce several problems, not in the last place that acode is not understandable. In an attempt to resolve this problem Ladleif and Weske [149]present a BPMN based notation to stipulate the logic of the contract. Yet, some scholars[34] have argued against BPMN approaches to model laws and legal relations. In addition,we posit that a BPMN approach to model smart legal contracts might introduce several con-cepts that are not native to legal practice thus hampering the understandability of what isactually modeled.
Reviewing research on e-contracts reveals that clauses are among the most commonly usedconcepts. The inclusion of particular types of clauses in a contract (e.g. termination, juris-diction) are required to avoid enforcement problems. Seeking to find a remedy for this prob-lem, we suggested that clauses can be classified into types. In 5.7.3.6 four types of clauses arediscussed that are derived from literature [50, 127]. Milosevic, Sadiq, and Orlowska [182] dis-cuss definition, termination, and reporting and notification clauses, that are all included astypes in the ontology except the reporting and notification clause. However, hitherto theiris no all-encompassing overview of the types of clauses that are used to formulate a con-tract. Similarly, in Section 5.7.1 we introduce the concept of assets. A list of asset types is notincluded. While the discussion in the section hints at discerning several asset types basedon their uniqueness, to our knowledge there exists no exhaustive classification list of assettypes described in legal contracts. Some work has been done in this regard tough. Buildingon the work of He et al. [110], discern several types of assets like digital currency assets, dataassets, physical assets, intangible assets. However, it must be noted that it remains unclearhow the authors established this set of asset types and whether it is exhaustive. Furtherresearch is needed to verify whether this fact holds true.
In our ontology clauses can encompass several conditional promises to perform. From alegal perspective conditional promises to perform are akin to concurrent conditions, thathave to hold during the execution of the contract. In legal practice two additional types ofconditions are also used [12]: conditions precedent and conditions consequent. A conditionprecedent refers to conditions which require that an event occurs before the promissor(s)are obligated to perform any of their promises becomedue. Line 3 of themotivating examplepresents a condition precedent. On the other end, conditions subsequent entail that a partywill be discharged from its promises to perform under the contract whenever (1) some eventoccurs, or (2) fails to continue to occur. In line 15 of the motivating example such a conditionis stipulated.
Remedies in our ontology serve as an alternative set of actions to a promise whenever aconditional promise to perform is violated. Some studies refer to actions as sanctions. Con-trary to sanctions, remedies are not always intended to punish a person, while sanctionsare always punitive. Nevertheless, remedies and sanctions are similar in that they refer toa loss that a party must bear if it is found liable when it does not uphold its promise [79].Therefore no distinction has been made between sanctions and remedies in our ontology.Another aspect about remedies to consider is that some contracts stipulate specific reme-dies for a given situation while others do not. However, most legal traditions also providesupplementary remedies based on laws.
A problem left partially unaddressed by our ontology is that legal contracts can contain sev-eral types of actions like, pay, send or others. The ontology provides a manner to specify the

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 116PDF page: 116PDF page: 116PDF page: 116

Chapter 5. Domain Ontology For Smart Legal Contracts 102
type of actions (See Section 5.7.4) based on a group. However, we do not provide a list of ac-tions that users of the domain ontology can use to stipulate the type of action. In the futureresearch endeavours could be committed to empirically investigate what types of actionsare described in contracts.
The use of references in a contract has been signaled as problematic (See problem 7 in Sec-tion 5.5). References to clausesmight be easy solvable as the related information is containedwithin the contract. The same might not hold true for references to laws as this informationis stored outside of the contract. Solutionsmight be close however, recently an executive de-cree from the presidents office in the U.S. ordained that every law should become machinereadable [192]. To date this remains an unresolved problem.
We have limited the roles that a party can have for promises to that of promissor and promis-see. Although beyond the scope of this work, other role might be discerned. In U.S. contractlaw for instance, besides the roles of promissor and promissee a party can have the role ofbeneficiaries. Beneficiaries are third-parties that, despite not being an active party in thecontract, attain certain rights from a contract. Our ontology caters for the fact that an indi-vidual agents materialize the promises to perform on behalf of a party, especially when theparty is a judicial entity. However, other authors [234] include the idea of an authorization toact on behalf of this party or the concept of delegation [123]. The ontology presented heredoes not include a notation to attribute an agent with an authority. Neither is there a directmanner to verify whether an agent is actually authorized to perform the action on behalf ofa party. This is is complex issue that needs further investigation that is beyond the scope ofthis work.
Overall the domain ontology presented here provides a starting point for discussion withinthe field of smart contracts, and we hope serve as a stimulus to engage in a dialogue withlegal practitioners. A thorough discussion were practice and science meet will arguably con-tribute to an international standard for smart legal contracts.

5.10 Conclusion

The main goal of the research presented in this chapter was to construct a domain ontol-ogy for smart legal contracts that can be used to specify the design of a smart contract. Byreviewing the extant literature on legal requirements engineering, multi-agent systems andelectronic contracts we identify several concepts required to model smart legal contracts.Examples of these concepts are the notion of a contract, between party’s that own assets.Clauses govern the behaviour of the party’s and contain the (conditional) promises that theparties agreed upon to perform. Each promise must be performed by a party by undertak-ing an action. The relations among these concepts is also explained, further enhancing thecurrent knowledge on how smart contracts can be used to represent legal contracts. Moreimportant it provides legal practitioners and with a lingua franca for the design and creationof smart legal contracts.
Heeding the warnings and critiques espoused by both scholars and practitioners however,this research commenced by first identifying problems related to using smart contracts torepresent legal contracts. A total of 21 issues was identified. Departing from prior researchwe acknowledge these problems, and specify how the concepts in the ontology are relatedto these problems. With the aim of making these problems explicit we couple these directlyto the concepts in the domain ontology. In doing so we make domain explicit and providelegal practitioners and software engineers with a common understanding about about theseproblems.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 117PDF page: 117PDF page: 117PDF page: 117

Chapter 5. Domain Ontology For Smart Legal Contracts 103
The domain ontology presented in this work is notwithout limitations. We argue that severaltypes of assets, clauses, action groups can be discerned. However, we do not provide anextant or exhaustive list for each of these concepts. Although we acknowledge this as acurrent limitation of the ontology presented here, we designed the ontology in a mannerthat can be extended to cater for different types. Besides these limitations the ontologycurrently lacks the possibility to specify that a certain agent is authorized to perform anaction.
We hope that the domain ontology presented in this chapter will provide a starting point forfurther dialogue between the legal community and the software development community.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 118PDF page: 118PDF page: 118PDF page: 118

104

Chapter 6

Towards a Unified Platform Independent Model for
Smart Contracts

6.1 Introduction

Blockchain is an auspicious technology that can support a wide variety of decentralized ap-plications. Smart contracts are the cornerstone beneath a DApp as they allow user to definetheir own transaction logic, and ensures that the execution of transactions is compliant. An-other quintessential function that smart contracts full-fill in DApp development is providingan interface between a blockchains’ architecture that processes transaction requests, andthe front-end that allows users to interact with the blockchain. Blockchain technology inturn, provides a safeguarded storage for smart contract and a means to transact. Nowadaysa plethora of blockchain platformswith an idiosyncratic architecture exist, despite their com-mon characteristic of storing transaction data in blocks. A smart contract and the blockchainarchitecture on which it is deployed are intertwined, and as a result the implementation ofthe smart contract concept varies among blockchain platforms [274].
Regardless of the targeted blockchain platform, developing smart contracts has been provento be arduous, because existing development tools are primitive and there is still limited on-line support available [288]. The difficulty of developing smart contracts for DApps is furthermagnified by the fact that the current strand of literature on smart contracts predominantlyfocuses on Ethereumsmart contracts [253], which greatly reduces the portability of the tools,methods and approaches presented in theseworks for other blockchain platforms. However,these problems are not unique to smart contract development.
Research in the field of software engineering has already faced similar problems, and ad-dressed them by suggesting approaches and methods. Model Driven Engineering approachhas been touted as a solution for problems like portability, productivity, and interoperability[133]. When developing software by employing an MDA approach, several models are uti-lized reflecting the viewpoints from which a system can be developed. At the heart of theMDA approach is the use of computation independent, platform independent and platformspecific models to capture all relevant information for software design. Mappings betweenthe models enable the transformation from abstract specifications to code. The abstractionof the viewpoints of a software system allows developers to specify novel software in aman-ner that can bemore readily used formultiple platforms, and reuse commonly shared designpatterns.
This chapter is based on a publication: A Validated Meta-Model for Blockchain Smart Contracts, submitted toInternational Journal on Software and Systems Modeling (SoSyM) by B.J. Butijn, D. A. Tamburri &W. J. A. M. vanden Heuvel

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 119PDF page: 119PDF page: 119PDF page: 119

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 105
These attractive prospects have recently sparked researchers and practitioners to leverageMDA for the development of smart contracts. Unfortunately, some prior work [165, 241,250] presenting an MDA driven blockchain application development method has not madethe models underpinning their approach explicit. As a result such methods cannot be repli-cated or instantiated. Other studies do not take on a platform independent perspective thatcan be used formultiple blockchains, or contrary, present the approach from an abstract per-spective without specifying a platform specific implementation. This study addresses theseissues by presenting a platform independentmodel for the two blockchain platforms that aremost often used for smart contract development: EthereumandHyperledger Fabric. Besidesproviding an overview of the architecture of these two platforms, a meta model for smartcontracts, and related concepts is presented. Finally, using a bottom-up approach this re-search aims to further enhance knowledge on blockchains and foster the reusability of codeacross platforms by presenting a proto-platform independent model for smart contracts.
Hereafter, this chapter reviews all past work that suggests anMDA drivenmethod to developDApps. Thereafter, in Section 6.3 we elaborate on the research method used to constructand validate the models that are introduced in Section 6.4.1.2 and 6.4.2. The fourth Sectionpresents a PIM for the Ethereum blockchain, and a meta model for Ethereum smart con-tracts. Another PIM for Hyperledger Fabric networks is presented in Section 6.4.2, alongwith a meta model for Fabric concepts and smart contract meta model. Section 6.5 pro-vides a PIM for smart contracts and other coherent concepts. The models and findings arethereafter discussed (Section 6.7) and some conclusions are drawn (Section 6.8).

6.2 Related Work: Model Driven Smart Contract Development

Like traditional software development, developing DApps have been shown to consumevasts amount of time and resources. Moreover, developing DApps on top of blockchain plat-forms has proven requires a significant amount of expertise, while little development toolsare available [253]. Seeking to leverage the advantages of MDA for business processes, re-searchers have introduced several MDA based methods to develop DApps. Boubeta-Puig,Rosa-Bilbao & Mendling present CEPchain in their work [35], a method that supports mod-eling of smart contract for the Ethereum blockchain. Jurgelaitis et al. [122] present an MDAbased method to model Solidity based smart contracts. In an other study [122] they alsopresent an MDA driven approach to develop smart contracts in the GO language for Hyper-ledger Fabric. A commonality among these works is that they present methods that onlycater for the development of smart contracts for a specific platform.
Sousa, Burnay, and Snoeck [241] introduce B-MERODE, a model-driven and artifact-centricapproach based on business processes to generate blockchain based information systems.Lorikeet [250] is a Model-Driven Engineering tool for Blockchain-Based Business Process Ex-ecution and Asset Management. The tool can generate smart contract code from businessprocesses and data registry models based on model transformations. In their work López-Pintado et al. [165] introduce Caterpillar, a module that generates a smart contract basedon a BPMN model. The generated smart contract encapsulates the workflow of the BPMNmodel.
Ladleif and Weske [150] introduce a unified model that encapsulates components requiredfor smart legal contracts. In three subsequent works [146, 147, 151] the authors expandtheir prior work by introducing modeling support for data sources that reside outside of theblockchain, for cross chain business process choreographies and process execution basedon time. However, their model is geared towards smart legal contracts and does not regard

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 120PDF page: 120PDF page: 120PDF page: 120

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 106
blockchain architecture from a platform specific view point. Neither are any of the abstractconcepts presented in the model mapped to a technical realization of a smart contract.
In their work de Kruijf andWeigand employ Enterprise ontology to enhance the understand-ing of blockchain technology [67] and smart contracts [142]. The model provides invaluableinsights into the inner workings of blockchain technology and smart contracts. Yet again,misses a technical specification for the implementation of the concepts presented in theirwork. While not being a blockchain, Górski and Bednarski [102] present a MDA approach todeveloping DApps for the Corda distributed ledger.
The studies discussed here provide invaluable insights into how the transaction logic of smartcontract could be specified in a domain-specific language. An inherent implication of this ap-proach is that it is not portable to other platforms. Contrary, theMDA approaches discussedhere do not present an implementable platform specific viewpoint of smart contracts. Be-sides these limitations a fundamental model about the infrastructure underpinning smartcontracts is missing. However, smart contracts are supported by a blockchain infrastructureand thus cannot be regarded in isolation [94]. Understanding the relation between smartcontracts and their environment is therefore crucial for DApp development.
Future research endeavours would greatly benefit from a further specification of the archi-tectures facilitating smart contracts, and a clarification of the relation between smart con-tracts and the architecture itself. Towards this end our work presents a Platform specificmodel (PSM) of the architecture for the two largest blockchain platforms: Ethereum and Hy-perledger. Besides providing a platform specific viewpoint of the architecture for these twoplatforms, metamodels for the smart contracts for each platform respectively. To provideresearchers and scholars a platform independent viewpoint we provide a unified platformindependent model for smart contract development. Contrary to previous research we takeon a bottom-up approach in attaining our platform independent model (PIM). That is, webuild our unified platform independent model by identifying commonalities between theplatforms derived from the platform specific models.

6.3 Research Methodology

This research set out to create three artefacts: (1) a platform specific metamodel for Hyper-ledger smart contracts, (2) a platform specificmetamodel for Ethereum smart contract, bothin the context of their blockchain. (3) A metamodel for smart contract development that isplatform agnostic. The models are modeled in the UML as it provides a meta-language tosupport the stipulation of other languages such as the ones we define for each platform.One of the drawbacks of UML is that it offers little support for class related constraints. Weremedy this problem by defining class related constraints in the OCL [196]. To develop theplatform specific metamodel for Hyperledger and Ethereumwe aim to answer the followingresearch questions:
RQ1: What concepts are used to develop Ethereum smart contracts?RQ2: What concepts are used to develop Hyperledger Fabric smart contracts?RQ3: How can smart contracts be modelled in a platform agnostic manner?
There is no uniformly accepted method to develop metamodels to our best of knowledge.However, it has been broadly argued that domain ontologies satisfy the criteria for beingmodels, yet are specializations in an object oriented sense. In fact, some authors have evenequated domain ontologies to models [111]. Given that ontologies andmetamodels are akin,and research in the field of domain ontologies offers several well-established methods tomodels we adopt such a method. More specifically, in building and evaluating of the models

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 121PDF page: 121PDF page: 121PDF page: 121

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 107
we employed a "collaborative"method suggested by Holsapple and Joshi [114] where severaldomain experts collaborate with the designer of the ontology for its development, and aDelphimethod [69] is employed evaluation purposes. Themethod encompasses four phasesthat are depicted in Figure 6.1.

Figure 6.1: Delphi methodology. Adopted from [114]

6.3.1 Phase 1: Preparation

During the first phase of the method we defined the design criteria, boundary conditionsand the evaluation standards for the models. In line with Holsapple and Joshi the followingdesign criteria have been selected for the metamodels:
1. Clarity - Whether the concepts are familiar.2. Comprehensiveness - To measure whether all concepts are covered in the model.3. Correctness - That the classes, properties and the relation among them are correctlymodeled.4. Consistency - Means that the model does not include any contradictions.5. Conciseness - As a criterion means that there are no irrelevant concepts included inthe model.
Models or ontologies aim to capture the knowledge on a domain or a system within cer-tain boundary conditions to which the design criteria are applied. In this research we de-fined the domain for each model to smart contracts and required related concepts, ratherthan blockchain in general. We set another boundary condition by limiting the scope ofthe metamodels to smart contracts on the Ethereum or Hyperledger platform. A relatedboundary condition that we set is that the platform independent metamodel should onlyencompasses concepts required to generate a PSM for smart contracts on each of the re-spective platforms. We proceed from a bottum-up fashion with several layers of depth. Theevaluation standards served as a benchmark to compare the outcomes of the developmentprocess with. These standards included a set of other related works, and especially the con-cepts proposed in these models. Standards were further shaped by critiques and feedbackfrom the next phase.
6.3.2 Phase 2: Anchoring

During the Anchoring phase of the study, we specified an initial version of the Hyperledgerand Ethereum PSM’s. The method proposed by Holsapple and Joshi [114] does not provide

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 122PDF page: 122PDF page: 122PDF page: 122

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 108
any guidelines as to how to develop an initial version of an ontology. Therefore we followedthe steps suggested by Noy and McGuinness [191] to design our PSM models:
1. Determine the domain and scope of the ontology.2. Consider reusing existing ontologies.3. Enumerate important terms in the ontology.4. Define the classes and the class hierarchy following a bottum up or top down ap-proach.5. Define the properties of classes—slots.6. Define the facets of the slots (slot value type).7. Create instances.
The first step suggested by Noy and McGuinness is to determine the domain and scopeof the ontology which is akin to setting its boundary conditions. Hence, for this study weskipped this step as they have already been set in the first phase (Preparation). Thereafteras a second step, we considered how concepts of existing ontologies could be reused for athe development of the domain ontology. Drawing from other related works, [7, 274, 285],the documentation of the respective blockchain platforms [61, 119], we identified relevantconcepts. This step helped to compare and contrast the ontology against the evaluationstandards. Furthermore, the process aided in conducting the third step: the enumerationof important terms. Following a bottum-up approach classes where create and a hierarchybetween these classes was established for each of the two platforms. After the creation theclasses for each class its properties were defined. As a fifth step the facets of the slots weredefined. Finally, the last step suggested by Noy and McGuinness [191] is the creation of in-stances of the ontology. This final step serves to verify that the classes and terminology aresuitable and sufficient to model the domain.
6.3.3 Phase 3: Iterative Improvement

Two important subsequent steps in Design Science are (1) a rigorous evaluation of the arte-fact(s) and (2) the refinement of the artefact based on the feedback attained through theevaluation of the artefact. In line with the method proposed by Holsapple and Joshi a Delphimethod was employed to gather feedback from domain experts to refine and evaluate themodels.
6.3.3.1 Participant selection

When employing a Delphi method to gather data a specific emphasis must be placed on theselection of the panellists as the method strongly relies on the expertise of the participants[69]. The participants selected for our study are 11 senior blockchain developers that arefamiliar with blockchain architecture and have hands-on experience in developing DApps. Inselecting the participants for the panel we used the following selection criteria:
1. The developer has developed at least one Decentralized app for the Ethereum or Hy-perledger platform respectively.2. Thedeveloper has deployed at least a smart contract on either the Ethereumblockchainplatform or a Hyperledger Fabric network.3. The developer has attained a certificate, degree or other formal evidence proving thathe or she is educated about the architecture of Hyperledger Fabric or the Ethereumarchitecture.
Participants were approached on the basis of whether they were acquainted with the au-thor of this dissertation. To complement the pool of participants, selected participants were

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 123PDF page: 123PDF page: 123PDF page: 123

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 109
allowed to recommend potential other participants. After careful consideration and selec-tion based on the selection criteria a total of 3 additional participants were admitted to thepanel. In Table 6.1 some descriptive statistics of the participants can be found.

Table 6.1: Descriptive statistics respondents
Ethereum Hyperledger FabricNumber of developers 7 4Avg. years experience 4 3Avg. Smart contracts developed 11 8

6.3.3.2 Data gathering and analysis

When conducting their research Holsapple and Joshi presented their panelists with a fulldrawing of the ontology they created. Instead of presenting metamodels, for our researchpanellist were provided a list of concepts related to the blockchain platform they were ques-tioned about.
The Delphi study itself was organized in iterative consecutive rounds. During each round asurvey was administered to the panelists to gather feedback on the concepts used for themetamodels. An example of the survey administered for each round can be found in Ap-pendix E. In the first round of the Delphi study a list containing concepts extracted from theextant literature was presented to the respondents. Thereafter a total of 3 rounds continueduntil no new concepts were identified by the panellists and thus a consensus was reached.An updated list accompanied with a questionnaire was thereafter administered during con-secutive rounds.
Several questions were included in the survey to verify whether the concepts were in linewith the design criteria. First, to verify whether the concepts in the list satisfied the claritydesign criterion panellists were asked whether concepts are unclear to them. Another ques-tion was included to verify the comprehensiveness of the current concept list that askedrespondents to indicate whether there were any concepts missing. Respondents that indi-cated that a concept was missing where asked to provide a description of the missing con-cept. Suggestions made by respondents to include a concept in the list were compared tosuggestions made by other respondents. The suggested concepts where then included inthe list of concepts for a consecutive round.
The correctness of the list of concepts a question was in the survey allowing the respondentsto indicate how sure they are that a specific concepts belongs to the model. This feedbackwas then processed by further investigating the proposed omission and comparing whethera similar suggestion was made by other respondents. Finally, to address conciseness and
consistency criterion of the list of concepts we asked respondents to point out concepts thatwere aliases. Identified aliases where omitted from the list when two panellists suggestedthe same alias.
The concepts identified through the Delphi were used to construct two meta models en-compassing all of the concepts relevant to smart contracts on the Hyperledger Fabric orEthereum platform. These models will be presented hereafter. By synthesizing the com-monalities between concepts of both platforms the two models were then compared. Sim-ilar concepts were placed in a table until all concepts were checked. Using the concept thatboth blockchain platforms have in common a platform independent model was constructedthat is presented in Section 6.5.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 124PDF page: 124PDF page: 124PDF page: 124

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 110
6.4 Platform Specific Perspectives On Smart Contract Platforms

Nowadays several blockchain platforms exist that support smart contracts. Ethereum isthe most widely used public network that introduced blockchain based smart contracts isEthereum [274]. On theother hand, Hyperledger Fabric blockchains are the preferred blockchainin a private setting. For both platforms hereafter an architectural overview is presented asUML class diagrams [197]. Note that in themodels several Enum types are used. For brevity’ssake we have not included these in the model but included these in the Appendix F.
6.4.1 A Platform Specific Perspective of Ethereum

Ethereum is themost widely used blockchain platform for smart contracts [274]. Wewill firstpresent an overview of its architecture hereafter. Figure 6.2 depicts Ethereums’ blockchainarchitecture from an overall architectural perspective, and denotes the relations betweenthe elements. In section 6.4.1.2 we further elaborate on the elements contained within anEthereum smart contract metamodel.
6.4.1.1 Ethereum Blockchain Architecture

Figure 6.2: A model of Ethereum blockchain architecture

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 125PDF page: 125PDF page: 125PDF page: 125

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 111
Ethereum offers user accounts, referred to as Externally Owned Accounts (EOA), that arecontrolled using private keys which have an Ether balance [61]. To send transactions userscan make use of dedicated software called a wallet. A wallet is a convenient user friendlyinterface to manage and store several accounts. One password provides access to each ac-count and therefore also to the balances of each account.
Transactions transfer the ownership of a digital asset from a sender to a recipient. There arethree types of digital assets, Ether the native token (crypto currency) of the Ethereum plat-form, a Fungible token and a Non-Fungible Token (NFT)1. Cryptocurrency directly representsmonetary value. Indeed, there are several exchanges available that allow for the exchangeof fiat currency (e.g. Euro or Dollar) and cryptocurrency2. For fungible tokens the worth ofone token always has the same worth as another token (e.g. one Dollar is equal to another),whereas NFTs represent unique assets such as art that do not have a one-to-one equality.To ensure the quality, security and interoperability of tokens, the Enterprise Ethereum Al-liance (related to Ethereum) has suggested standards such as ERC20 and ERC721 for fungibleand NFTs [257]. Fungible and Non-Fungible tokens need their own smart contract. Severalattributes need to be specified for a token to be compliant with the ERC20 and ERC721 stan-dards: a name and symbol are used to identify the token, where non-fungible tokens addi-tionally need an unique id. As fungible tokens do not represent unique assets it is possible tomint them to increase the supply, or to burn them to achieve the opposite. For non-fungibletokens this is not possible as these tokens represent unique assets. The total supply of eachtoken denotes the maximum of tokens that can be distributed.
A key characteristic of blockchain technology is the use of blocks to store data and safeguardthe validity of transactions [285]. Bitcoin and other non-smart contract supporting systemsonly capture the balance from input accounts to novel-created output accounts in a block.Because smart contracts can invoke multiple transactions Ethereum blocks also store thecumulative effect of transactions captured in other blocks. In other words, Ethereum blockscapture not only transactions performed by the contracts but also the final states that wereproduced while carrying out these contracts. The smart contracts state variables and asso-ciated code are stored in unique contract accounts on the Ethereum blockchain in bytecodeformat. Contract accounts also have an Ether balance. In essence, therefore the contractaccount is the smart contract.
The execution of smart contracts can be triggered in two ways: A transaction that has beensend by a user from an EOA account, or by messages (calls) that have been send from othercontracts. Each transaction includes at least the recipients address, a signature of the sender,the amount to be transferred, andoptionally data. In addition, transactions contain a startLimitvalue that express the maximum number of computational steps the transaction is allowedto execute, and the coherent gasPrice value that represents the fee a sender is willing tocommit in order these steps among things.
Each gas unit committed allows for the execution of an atomic instruction that reflects acomputational step [61, 163]. Gas was introduced as a transaction fee for the execution ofsmart contracts to make distributed denial of service attacks expensive. On the Ethereumblockchain Smart contracts can sendmessages to one another. Messages from one contractcan trigger a function in another contract. Messages can be perceived as function calls in theform of virtual objects that are serialized and not exist other than on the Ethereum VirtualMachine (EVM)[61].
1Note that it is also possible to create "normal" tokens that do not adhere to the ERC20 and ERC721 standard.However, the use of such tokens is highly discouraged due to safety concerns.2See for instance www.binance.org or www.idex.market

https://www.binance.org/
https://www.idex.market/

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 126PDF page: 126PDF page: 126PDF page: 126

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 112
Ethereum supports several high-level programming languages that are turing complete tosupport users in writing their smart contracts. These high level language smart contractsare then compiled into bytecode that can be executed in the EVM environment, which cantherefore be regarded as the core of the Ethereum platform [61]. Only operations and con-cepts that are part of one of Ethereums’ languages can be performed by a smart contract.However, an important feature of each of these languages is the possibility to define func-tions that can be triggered by sending transactions to the smart contract. These functions inturn, canmutate the state variables defined in the smart contract code. As ameans to notifyusers that a function has been called a smart contract can emit events and write event logsto the blockchain. Decentralized applications can listen to these events and process the datastored in the event logs, creating an interface between the smart contracts activity and theuser.
6.4.1.2 Ethereum Smart Contract Model

Smart contracts are written in code that stipulate the desired transaction logic. Solidity is themost popular language for Ethereum smart contract development. It resembles Javascriptand is a statically typed language that can be compiled using the EVM. Smart contracts writ-ten in solidity are akin to a class in an object-oriented language. Figure 6.3 depicts a modelin the UML that encompasses the classes and their attributes related to a smart contract,inspired by the Solidity documentation (version 0.7.5) and other generic smart contract con-cepts. We will now discuss the relationship between these classes and their attributes.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 127PDF page: 127PDF page: 127PDF page: 127

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 113

Figure 6.3: A metamodel of Ethereum smart contracts

Meta: Although not native to Ethereum smart contracts a Meta class has been added to themodel for Ethereum it has two attributes: target and nameSpace. The former captures theplatform that has been the target of the transformation. This information is important espe-cially for cross-platform transformations. The nameSpace here is always public as Ethereumonly has a public space.
Agent: Agents are users that own and interact with the smart contract. Within the modelagents are included as an element that require an unique agentName and agentId. Theaddress of the agent is not directly known to the system and needs to be provided by userinput.
Asset: From the discussion in the previous section it can be noted that there are two typesof standardized tokens to represent assets. We capture this difference using the assetTypeattribute. Other required attributes are assetId, assetName and a Symbol to representthe asset. Some other information might be required such as minters’ addresses and so on.Assets are always owned by an agent.
Smart Contract: a smart contract always has a name and holds the several code elements toexpress transaction logic. These elements are Structs, Enums, Constructor, State Variables,Global Variables, Events, Modifiers and Functions. Other elements are all nested in one ofthese elements. The exception is however, when the smart contract is abstract in which casethe contract can contain only functions, none of which implemented. Other smart contractscan inherit from an abstract smart contract.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 128PDF page: 128PDF page: 128PDF page: 128

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 114
Global Variable: are variables used to get information about the blockchain. Examples ofglobal variables aremsg.sender that returns the sender of a message, and .now that returnsthe timestamp of the current block. The respective data the global variable holds is denotedin the gType property. A global variable can be assigned to a variable.
Enum: an Enum is a custom variable type that for which multiple values can be defined.However, it requires at least one value. An unique name is required to declare the Enumvariable type.
Struct: akin to an object, in a struct multiple variables are bundled as attributes. A structneeds a name to be instantiated. Besides a name the visibility of the struct must be set inthe visibility attribute. A struct can have multiple attributes that are declared as vari-ables. Structs can also contain another Struct element.
Constructor: the use of constructor functions is an optional function that initializes the statevariables of a smart contract. The function contains several state variables (of any type) thatcan be set to a particular value. The visibility denotes who can access the constructor.
State Variable: A state variable enables the persistent storage of a state on the blockchain.State variables have a stateName, dType, Visibility, Value attribute. Each variablemustbe assigned a name to declare the variable. The dType denotes the data type of the vari-able. Besides standard variable types like integer and string or address, a variable it is alsoallowed to declare the variable type to be an Enum. State variables declared with a Enumtype can only take on the values declared for the Enum type and cannot also be an array.The structure of the variable can be either a standard variable, an array or aMapping. Whenmappings are employed the valueType attribute also needs to be defined. Visibility speci-fies who can see the values, the visibility of a state variable is by default public.
Modifier: modifiers guard a function, meaning that a function will not be executed if theconditions in the modifier are not satisfied. A modifier always has a Name, Argument, andthe coherent argument types (argTypes). Themodifier always contains a Conditional State-ment. This condition serves to guard a function and therefore is related to a custom function.
Event: users can be notified using events that again, always have a enuName, argument and
argType property. Events are emitted when a function is executed and must be declaredwithin the statements of a function.
Function: functions have a functionName, argument, argumentType, interaction,
visibility and return attribute. The name attribute of a function states its nameand the argument attribute the arguments required for the function. The argumentTypeattribute stipulates the type of argument. If the function has a modifier, the function willalso have a set of Modifier elements contain in Modifiers. The type of interaction thatthe user can have with the function is captured in the interaction attribute with the
InteractionType enum. Functions are allowed to have three interaction levels: None,Invokable, and Payable. A function is can be ended by a return statement, and execute sev-eral statements.
Local Variable: functions can contain several local variables that are used to perform localoperations. The values of these variables are not stored in the smart contract. A local vari-able needs a localName, value, visibility, and dType. Similar to a state variable thestructure type needs to be known. Operations to local variables are performed using state-ments within the function.
Conditional Statement: stipulating conditions for a function can be achieved using condi-tional statements. Solidity supports If statements need to contain at least one variable in the
If attribute, a relational operator (RelOperator) with an argument. A Catch can be definedthat contains a statement that is executed when the condition is not satisfied. Alternatively,for when the condition is not satisfied a message can be specified. A conditional statementcan contain another conditional statement. To support logical negation the negation prop-erty can be set to true or false

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 129PDF page: 129PDF page: 129PDF page: 129

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 115
Message: messages can be stipulated as a fallback mechanism to notify a user calling a func-tion that the operation has failed. Themessage element is a catch to a conditional statementand only has a string as payload held within the value attribute.
Statement: are the lines of code that execute commands. A statement always needs to con-tain at least an argumentwith a variable name, and a second variable to assign the value ofthe first variable to. Besides the assignment of the value of a variable, multiple other opera-tion types are possible for Ethereum smart contracts. Whenever an operation is performed,a third variable is required. Standard operations like subtraction, addition, multiplication aresupported. These operations are denoted with an Operator. For operations to an array the
Index also needs to be specified. An operations available for mappings that adds a key andvalue using the optional addAssign property. Statements are allowed to contain events, inwhich case the eventName and arguments are required.
Return Statement: a return function is always contained within a function. It returns thevalue specified for that function which must be either a direct value (e.g. "5") or the nameof a variable with an assigned value.
Transfer: transfer is a special function that enables the transfer of an asset between owners.Three fields need to specified for this function: Sender, Receiver and the Amount to betransferred from what asset.
Library: a library is a data structure that contains only functions. These functions can beused by many contracts. If there are contracts that have common code, then that code canbe deployed as library. Each library needs to have a name. Libraries are imported by a smartcontract using a statement that imports the library that contains the name.
Interface: Interfaces are expressed using the interface keyword and are allowed only to con-tain non-implemented functions. Each interface needs a name to refer to. Smart contractsmay inherit from an interface, interfaces themselves cannot inherit other contracts or inter-faces.
6.4.2 A Platform Specific perspective of Hyperledger Fabric blockchains

An important characteristic of public blockchains like Ethereum is that anyone can read andwrite to the blockchain. However, this characteristicmight be less desirable for co-operationsthat require their transaction information to remain private. To address this need, Hyper-ledger Fabric was introduced as an alternative to public blockchains for consortia [7]. Figure6.4 depicts an overview of the architecture of a Hyperledger Fabric blockchain. A more in-depth perspective on Hyperledger smart contracts is discussed in section 6.4.2.2.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 130PDF page: 130PDF page: 130PDF page: 130

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 116
6.4.2.1 Hyperledger Fabric Blockchain Architecture

Figure 6.4: A model of the Hyperledger Fabric blockchain architecture

Contrary to the Ethereum platform, Hyperledger Fabric blockchains are characterized as pri-vate blockchains that are owned by a cooperation of organizations. Within the network eachorganization within the network maintains their own Certificate Authority (CA). The CA canbe the standard Fabric CA or an already existing CA. By default a CA issues X500 certificates,but other types of certificates are also allowed. Certificates are a paramount feature that setsa Hyperledger Fabric blockchain apart from public blockchains (e.g. Ethereum) as it providesa means to identify users, peers and other nodes in the network. To identify all sub-units ofan organization and its members, organizations have a Membership Service Provider.
Two or more organizations can create a consortium and in that capacity, create channelsto privately communicate between their organizations. Communication via the channel re-mains hidden for other organizations within the blockchain network that are not part of theconsortium that instantiated the channel. Organizations within the blockchain network de-ploy peers (nodes) for several tasks. Among these tasks are hosting a copy of theworld state,the blockchain, Chain Code or ordering blocks.
Any participantwithin the network owns assets ofwhich the states are stored in a distributedledger called the world state. A world state is bound to a channel, and thus only organiza-tions connected to that channel are able to inspect the state of the assets. Because on a

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 131PDF page: 131PDF page: 131PDF page: 131

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 117
Hyperledger Fabric network the state of each asset is stored as a key value system in theworld state, the attributes for each asset can be uniquely defined [7]. Users update the stateof their assets by requesting transactions using decentralized applications, also referred to asclient applications. By requesting a transaction on a Hyperledger Fabric network Chaincodeis invoked. Chaincode is code that can encompass several smart contracts, a implementationthat differs from Ethereum smart contracts were the notion of Chain Code does not exist.In a Hyperledger Fabric network the Chaincode encompasses all the concepts required forthe execution of the smart contract, whereas in the smart contract the transaction logic isstored.
Upon receipt of a transaction the endorsing peers that host the invoked Chain Code executeit and the smart contract that contains the transaction function. Smart contracts in a Hy-perledger Fabric blockchain allow developers to define events that will be emitted once afunction is executed. There are several types of events: there are block events that signalthe production of a block, transaction events that inform about a transaction request, andevents related to smart contracts. The endorsing peer then verifies the outcomes of the ex-ecution of the Chaincode and whether the proposed changes to the world state are correct.After signing the transaction the endorsing peer sends back the response to the transactionrequest to the decentralized application.
The DApp then forwards the signed to an ordering service which packs several transactionsinto a block. Peers ordering the transactions and broadcasting the blocks are called orderingnodes. Another type of peer, committing peers host the blockchain and commit novel blocksto their version of the blockchain. Besides hosting the blockchain committing peers host acopy of the world state of a channel.
6.4.2.2 Hyperledger Smart Contract Model

Writting Hyperledger Fabric chaincode and smart contracts is supported in Java, JavaScriptand Go. To ease the development of decentralized applications built on top of a HyperledgerFabric network, Hyperledger Composer3 was introduced. Unfortunately now depreciated,Hyperledger Composer was a tool that allows developers to define the resources requiredfor their DApp, and coherent Smart Contracts. Still the concepts proposed for the Hyper-ledger Composer tool sheds a light on the concepts used when developing smart contracts.After the depreciation of Hyperledger Composer, the Hyperledger Fabric SDK (Software De-velopment Kit) was released with the same purpose. The chaincode generated by the SDKstores a JSON schema for each asset that needs to be managed by the network.
3https://hyperledger.github.io/composer/latest/index.html

https://hyperledger.github.io/composer/latest/index.html

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 132PDF page: 132PDF page: 132PDF page: 132

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 118

Figure 6.5: An overview of resources for Hyperledger Fabric

Participant: the participant class is used to specify the participants organizations or personsthat will use the DApp to govern their transactions. Each participant element needs at least aname (partName) and Id to be created. The partId attribute is used as a reference in otherelements and to identify the participant on the Hyperledger Fabric network. A participantelement can be defined as being abstract.
Asset: again, like an Ethereum asset an asset for Hyperledger Fabric needs a name and Id soit can be recognized by the network. An asset can extend other assets to take all attributesand fields, or be abstract itself.
Transaction: within any blockchain network enabling transactions is the main service pro-vided. Similar to assets and participants, transactions require a name and Id, can be abstractor extended by other transactions.
Attribute: albeit that there are pre-defined base classes for Hyperledger Composer, eachTransaction, Asset and Participant element are allowed to have user defined attributes. Eachattribute requires a name and the data type needs to be specified. If the attribute containsan array this also needs to be specified.
Concept: to specify classes other than participants, assets or transactions concepts are used.Concepts have a name for referencing in other concepts or participants, assets and transac-tions. An example of a concepts is an address with the attribute street, city etc. Any conceptis allowed to be abstract.
Enum: Enums are user defined variable types that have a name and one or more values. AnEnum that has been declared is allowed to be used to declare as the type of an attribute.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 133PDF page: 133PDF page: 133PDF page: 133

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 119
Event: users can be notified using events that again, always have a eventName, argumentand argumentType property. Events are emitted when a function is executed and must bedeclared within the statements of a function.
Relationships: between all of the aforementioned concepts relations can be defined. Therelationships are mappings between the concepts. For all relationships the nameSpace ofthe file where the element is defined needs to be known, along with its type. Another im-portant specification is the direct Id of the concept.
Import: an import statement is used to obtain information or function from other files. Tospecify fromwhich file this information needs to be imported, an importNamemust be giventhat refers to another file.
In the smart contract, the transaction logic is defined using callable functions. One of thefeatures that sets a Hyperledger Fabric network apart from other platforms is the possibilityto define policies who can perform what operations on the functions in the smart contract.Each rule is stored in an Access Control File (ACL) that is managed by the Chaincode. Queriesare stored in a separate file.

Figure 6.6: A Metamodel of Hyperledger Fabric smart contracts

Meta: For administrative purposes and to bind the CTO, ACL and Query file together a metaelement is added that contains all meta information needed for the creation of the models.The nameSpace attribute is the most important information that the class provides. Thisattribute denotes on which of the many chains a consortium network can encompass thesmart contracts should be deployed using the model.
Function: within a hyperledger fabric smart contract functions update the states of assets.Each function requires a unique name to prevent function overloading, and an argumentthat is always equal to the name of the parameter provided by their decorator. Wheneverthe function has contains a return statement that should be denoted in addition. There aretwo categories of functions: the ones that are meant to be interacted with by users and

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 134PDF page: 134PDF page: 134PDF page: 134

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 120
those that are not. To cater for this difference the attribute interaction denotes the typeinteraction possible with the function.
Decorator: functions declared within the smart contract need to have a decorator that dec-orates the function with the required information and enforces the parameter or returntype. Any required information to decorate the function is contained in the decorator field(decField). The first information that the decorator field requires is whether the decoratoris linked to the parameters or return value. Second, the value field needs to contain thename of a parameter or return value that is to be enforced. Finally, a parameter or returnvalue needs to be created with a name to identify it that is linked to a function
Parameter: the parameter generated by the decorator is only used for the function linkedto the decorator that created it. The parameter is then connected to the function.
Variable: Unlike the Ethereum blockchain Hyperledger Fabric smart contracts do not havestate variables that are directly linked to the contracts. Instead, states are stored separate inthe World State. The concept of state variables can be achieved by querying the value of acertain asset or participant and assigning it to a variable. This would require the creation ofa query for each state however. Within a function, local variables are allowed to be declaredfor briefly memorizing values. Local variables need a name and a value to be declared. Anyvalue contained in the local variable is not persevered as data storage. To discern between"states" and local variables the Scope attribute is used.
Conditional statement: conditions for the enactment of a transaction are formulated usingconditional statements. The if within a conditional statement needs to contain a parame-ter name (paraName), additionally an relational operator can be added in which case a anargument is required argument. A catch is allowed as a fallback when the condition is notsatisfied and contain a message.
Query: a query will read the current state of the world state and return it back to the user.Queries are predominantly used to retrieve information about states and as such linked tovariables containing this information. To create a query a name for the query needs to bedeclared, optionally a description of what information the query returns can be included.The statement attribute of the query needs to contain the name of the channel the assetis stored (netName) and the name of the name of the asset that the query is performed on(assetName).
Global Parameter: a special type of variable is allowed to be declared that bears its ownname and is akin to a local variable. Like a local variable a global variable has a value, thisvalue is the result of a query however and therefore includes a queryName. Since the theselocal variables only preserve global information about the ledger state a differentiating be-tween a local and global variable is warranted.
Statement: functions and conditional statements may include a statement. A statementneeds to have at least an argument, and optionally an assign field that contains the name ofa local variable or parameter. Hyperledger Fabric smart contracts support various operationsto be performed on variables. Whenever these operations are performed a third argumentis needed. Some variables are arrays and have multiple values. The index in a statementdenotes what value or variable name should be inserted at what index, the addAssign op-eration allows to add an new value to the array. Events are emitted using the emit keyword,to perform this operation three fields are needed: first the name of the event(eveName),the coherent arguments (eveArgument) and the name of the channel on which the event isconveyed (eventChannel).
Return: conditional statement or functions are allowed to contain a return statement, thatcan either return a value or when they stipulate the name of a variable the value of this vari-able.
Update: instead of making a transaction and updating the balance of one or more of theparticipants, on a Hyperledger Fabric network a transaction updates the states of an asset.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 135PDF page: 135PDF page: 135PDF page: 135

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 121
Rule: a rule within the network defines which participants are allowed to call the functionandwhat operations they commandwhen calling the function. A rule has a name as an iden-tifier, a description is optionally added to provide a user friendly description of what the ruledoes. Participants denoted for a rule can be set to a specific participant by proving the nameof that participant (partName) or stipulating that the rule encompasses all participants. Byproviding the name of the transaction (txName) a link can be established between the ruleand a function. An operation field defines what operations are allowed to be performed.The set of operations that can be defined are: Create, Read, Update, Delete and All. Withina rule the resource that it concerns must also be given: for each resource the nameSpacemust be known and its name. Further specifying the actions allowed for each participant ispossible by stating the action that is limited to allow and deny. Rules themselves can includea conditional statement that verifies for instance whether the requester of a transaction isthe owner of the asset.

6.5 Towards a Platform Independent Metamodel for Smart Con-
tracts

The results of the Delphi study has been used to construct a platform independent metamodel for smart contracts. A PIM encapsulates concepts that are platform-dependent with-out confining themodel to specific technology platform, in this the case blockchain platform.We identified several commonalities and differences between the two platforms that willnow first be discussed. Thereafter we present a PIM model that caters for the modeling ofplatform agnostic smart contracts.
6.5.1 Finding Common Ground

On a Hyperledger Fabric blockchain each agent is part of an organization that manages theidentities of agents, this concept is not present on the Ethereum blockchain as it is public.A commonality is that both platforms cater for the registration of agents by providing useraccounts that have a public key that acts as an address. Transactions can be requested totransfer assets using a wallet as it stores both an owners private and public keys.
The Ethereumplatform has its own native token (Ether) better known as cryptocurrency, andcaters for the creation of custom tokens that represent specific assets. The Hyperledger plat-form does not have any native token (cryptocurrency), but allows its users to create tailor-made assets to represent monetary value. To promote the portability and interoperabilityof tokens between Hyperledger Fabric blockchains and the Ethereum blockchain the Hyper-ledger platform has adopted the ERC20 and ERC721 standards. Although users are allowedto deviate from these standards it provides a common ground for the standardization forthe representation of assets on both platforms. Regardless of the underlying platform bothtypes of tokens are created by deploying a smart contract.
A noticeable difference between the platforms is that the approaches to store data and cre-ate consensus on the validity of transactions varies among the twoplatforms [274]. Ethereumuses blocks to store the states of smart contracts and other required information, while thestates of assets on the Hyperledger Fabric platform are stored on both a blockchain and theworld state of a channel. Another important difference is where and how smart contracts aredeployed. Ethereum smart contracts are deployed on the respective blockchain by sendingits contentswith a transaction. The initial agent that deployed the smart contract is its owner.Hyperledger Fabric smart contracts are deployed by installation on a number of nodes andthe owner can be anyone. Another distinction between the platforms is that to reduce the

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 136PDF page: 136PDF page: 136PDF page: 136

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 122
size of the smart contract, Ethereum allows that functions are imported from libraries. Hy-perledger does not allow for such imports, in fact Hyperledger Fabric smart contracts aredeployed in Docker containers [274] that are isolated.
The manner of interaction between the smart contract and a user is similar for the plat-forms. Throughout the life-cycle of a smart contract, agents interact with the smart contractto change its state by sending it transactions, that in turn call functions. On the Ethereumplatform smart contracts have their own balance and state. Functions can update the bal-ance of a smart contract or change a state, however these are considered two different oper-ations. When calling Hyperledger smart contract functions no distinction is made as in bothcases the state is updated trough the World State. An interesting observation is that whilefunctions are meant as means for users to interact with a smart contract there are also alarge host of functions that are not meant to be interacted with.
Hyperledger and Ethereum smart contracts both include the notion of conditional state-ments and statements. Whereas most conditions in the smart contract need to be satisfiedby agents performing (trans) actions, the statements inside the function that is called bythe transaction are executed by the smart contract. Smart contracts can automatically sendmessages (Ethereum) or transaction proposals (Hyperledger) to transfer ownership of as-sets. Events are used on both platforms to signal that user action with a smart contract hastaken place. Dapps can listen to events and accordingly, display any relevant informationwhen required [45]. Other information about the state of the blockchain is retrieved usingqueries. Ethereums’ Solidity has built-in queries to get global variables like the current time,block size and sender of a message. Within the Hyperledger Fabric framework there arebuilt-in queries to get global variables yet these need to be assigned to a dedicated variable.
The execution of a function restricted using a concept that both platforms have in commoncalled pre-conditions. Preconditions are conditions that must be true before the executionof before the execution of a section of code or a function. When writing Ethereum smartcontracts in Solidity these pre-conditions are stipulated usingmodifiers. Vyper [248] anotherprogramming language for Ethereum, also allows writers of smart contracts to state pre-conditions with corresponding post-conditions. In a Hyperledger Fabric smart contract theconcept of a precondition is implemented as a rule. However, rules for Hyperledger Fabricsmart contracts only govern who can access and perform certain operations (e.g. read anwrite transaction information). Such patterns are known as access control rules [222]. Thetypes of precondition for Solidity and Vyper is not restricted to access control rules, but canbe freely formulated.
However, some patterns for smart contract conditions can be identified. In their work LadleifandWeske [150] identify three other types of conditions: evaluative conditions, causal condi-tions and temporal conditions. Evaluative condition compare two variables that might stemfrom different data sources, and can be used for non-specific patterns. The concept of tem-poral conditions is that other conditions are bound to a deadline in combination with thistype of conditions. Causal conditions denote the casual relations between a condition. How-ever, they fail to include access control related patterns that are also used for Ethereumsmartcontracts4. Thus, we identify access control patterns as a fourth type of precondition.
This raises a problemhowever, as rules on aHyperledger blockchain not only governwho canperform an action, but in addition what operation (read, write, delete, create). The principle
4For an example of such patterns see Open Zeppelin https://docs.openzeppelin.com/contracts/2.x/
access-control

https://docs.openzeppelin.com/contracts/2.x/

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 137PDF page: 137PDF page: 137PDF page: 137

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 123
of the Ethereum blockchain is that once created assets or transactions cannot be deleted5,nor can they be just created. This is at odds with the aforementioned delete and createoperations that a Hyperledger blockchain allows for.
6.5.2 A Platform Independent Model for Smart Contracts

Based on the commonalities and differences discussed in the previous paragraph we con-structed a PIM model that allows for the development of smart contracts in a platform spe-cific context. The PIMmodel requires some specification of meta-data like the targeted plat-form. On both platforms agents have an address, yet the implementation of this conceptdiffers and depends on the platform. To cater for this difference, users need to define theaddress of the agent on the Ethereum blockchain or the certificate and nameSpace on theHyperledger private blockchain. These will then be incorporated into the model as meta-data. Fig. 6.7 portrays the elements that themodel encompasses that will now be discussed.Enums depicted in the model can de found in Appendix F.3.

Figure 6.7: A platform independent model for smart contracts

Meta: Again, the first element included in themodel is Meta, that has two attributes: the at-tributetarget contains the platform that is targetted for the transformation. ThenameSpaceproperty captures where the smart contracts are deployed. When the target of the transfor-mation is the Ethereum platform this could denote any string, whereas if the HyperledgerFabric platform is targetted the nameSpace contains the blockchain within the consortiumnetwork where it should be deployed. The meta class also binds the agents and assets withthe smart contracts into one model.
5This statement needs qualification as smart contract on the Ethereum blockchain actually can selfdestruct.However, any transaction and the smart contract itself remain present on the blockchain.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 138PDF page: 138PDF page: 138PDF page: 138

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 124
Asset: The safe anddisintermediated exchangeof assets the primary raisond’être of blockchains.Standards like the ERC20 and ERC721 provide a common manner to represent assets in aplatform agnostic manner. The prerequisite knowledge is that it is known whether the as-set is unique or not, which is denoted using the AssetType attribute. In line with thesestandards the assetName, and initial amount of the asset must me known. Agents can ownportions of fungible tokens and the owners field is used to denote the list of initial owners.The initAmounts attribute must contain an equal number of amounts that correspond tothese owners. For traceability purposes the asset will have an unique id assetId. Furtherinformation that is required to adhere to the standards needs to be provided by the user.
Agent: Another common concept is that of agents. Agents are the owners of assets and theentities that interact with the smart contract. All agents have an agentName attribute, andunique agentId.
Smart Contract:A first element that obviously needs to be included is a smart contract. Forthe PIM the smart contract needs the attribute SmartContractName as string. To avoidcollision with other smart contracts the name needs to be unique. The attribute abstractdenotes whether the smart contract is abstract or not.
Global Parameter: Global parameters are used in the PIM as means to retrieve informationabout the platform. The nameattribute is used to declare the variable name. Users can stipu-late what type of information theywant the global variable to contain using the GlobalTypeattribute. The type of information is limited to currentTime, valueTransaction,
senderTransaction. On the Ethereum blockchain all global information is stored in onone chain. When using Hyperledger multiple private chains can exist and to get any globalparameter the NameSpace needs to be known during translation.
Event: As both platforms include the notion of events this element is included into themeta-model. Based on the similarities between the platforms it has the properties of eventName,one or more argument with a coherent equal amount of arguments in the argumentTypeattribute.
Enum: Enums are another common concept that allow for a restricted set of values. AnEnum has an enuName attribute that denotes the name of the enum. Like on Hyperlegderblockchains and Ethereum the enuValue property contains the set of values the enum isallowed to have.
Variable: Variables have a unique name in string format. A variable is optionally declaredwith a value. When drafting Ethereum smart contracts, a distinctionmust bemade betweenstate variables and local variables. Hyperlegder does not make this distinction but statesare captured in the World State that can be queried. To cater for this difference the generalconcept of variable is included that has a specific scope (variableScope); Local or Global.Local variables must be declared within a function while global variables can be declaredanywhere. The type of variable denotes whether it is a primitive type or an enum, in whichcase the name of the Enum must be declared and must correspond with a structType ofEnum. The valueType attribute is optional and only used when the structType attributeis equal to KeyValue.
Concept: Concepts represent "things" within a smart contract and are used to define theconcepts of Structs (Ethereum) or Concepts on a Hyperledger Fabric blockchain. Platformagnostic concepts are named using the conceptName attribute. Each concept in turn, in-cludes several variables that constitute to the attributes of the concept. Concepts can benested and include another concept.
Constructor: The constructor is an integral part of the smart contract that sets the initial val-ues (if any) for variables, and concepts. It only contains variables and concepts in the formof (varName) and coherent values, and Concepts.
PreCondition: The discussion in the previous section highlights that both platforms have aconcept that strongly resembles preconditions, yet the types of conditions differ. To cater for

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 139PDF page: 139PDF page: 139PDF page: 139

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 125
this difference, the type of precondition is restricted to the Evaluative, Temporal, Causal andAccess Control specified in the cType attribute. Each PreCondition contains one conditionalstatement that follows the patterns for the respective type of PreCondition. Depending onthe precondition type different variables are used for the condition. Whenever the type ofthe PreCondition is Access Control and the targetted platform is Ethereum, only read andupdate restrictions may be denoted in the operation attribute.
Function: Functions are arguably one of themost important concepts as they allow for inter-action of a user with the smart contract. From the comparison between platforms it can beobserved that there are different kinds of interaction possible with functions ranging fromnone, invokable to allowing for the exchange of assets. The property interaction againcaptures these options. Besides the type of interaction, the function name must be knownfor which the funcName property caters. The arguments of the function and coherent argu-ment types can be are captured in the argument and argumentType attributes respectively.Functions can be associated with none or several preconditions.
Condition: Conditions are shared concept, that always include a statement. The condi-tional statement always needs an if attribute requires a value or the name of a variable.The relational operator (relOperator) stipulates the comparison for the condition with the
argument. A catch can include either a statement or a message.
Message: A message has one attribute called value that holds a string with a message forwhen the execution of a conditional statement has failed.
Statement: Statement are also included as a concept as this is the main manner to let thesmart contract execute commands other than transfers. From the comparison of the twoblockchains it follows that a statement is used to emit events and perform actions. Thus, torepresent this a statement must contain at least the name of an event to emit or an argu-ment.
Transfer: The transfers of assets is commanded by the transfer statement. Hyperledgersmart contracts do not transfer an asset but rather update the ownership of an asset. Weadopt the transfer statement as means to signal what is transferred to whom. For the execu-tion of the transfer we need information on sender, recipient, amount, and which assetis being transferred.
Return: In line with themodels for Ethereum and Hyperledger a return statement concludesa function. It will only have the value property that contain either a value or the name of avariable.
Import: The Import class has as a sole function to import a library the nameSpace propertyfunctions as an information holder where the file with the library is stored.
Library: We cater for the possibility to import libraries by including the Library class in themodel. It has a dedicated name stored in the libName attribute and has several functionsattached to it.
Hereunder some constraints specified in the OCL for the Smart Contract, Global Parameterand Conditional Statement classes of the platform independent model. Each constraint isrelated to a class (context), has a name (e.g. SmartContract), with the invariant specifyingthe exact constraint (inv) that must hold. For brevity’s sake However, all constraints relatedto the models can be found in Appendix G.
context SmartContract

inv: scPIM!SmartContract.allInstancesFrom(’scPIM’)->isUnique(SCName)
and SCName->size()>0

inv: Functions->notEmpty()
inv: owner->size()>0
inv: Functions->notEmpty()

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 140PDF page: 140PDF page: 140PDF page: 140

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 126
In line with the explanation in section 6.5.2, elements representing a platform independentsmart contract require a unique name that has a lenght of at least one. The first invariantensures this property by checking the name of the smart contract against other known smartcontracts. All smart contracts also need at least one function which the second invariantensures by stating that the Functions collection cannot be empty. Finally, each smart contractmust have an owner (third constraint).
context GlobalParameter

inv: scPIM!GlobalParameter.allInstancesFrom(’scPIM’)->
isUnique(globalName) and globalName->size()>0

inv: Set{’CurrentTime’, ’SenderTransaction’,
’ValueTransaction’}->includes(gType)

Global parameter elements again need a unique name with a length of at least 1. The at-tribute global type (gType) can only be a specific set of values, in this case "CurrentTime","SenderTransaction" and "ValueTransaction".
context Conditional Statement

inv: scPIM!Variable.allInstancesFrom(’scPIM’)->exists(v | v.varName = if)
xor scPIM!GlobalParameter.allInstancesFrom(’scPIM’)->exists(gp |
gp.globalName = if)
xor scPIM!Agent.allInstancesFrom(’scPIM’)->exists(ag | ag.agentId =
if)

inv: scPIM!Variable.allInstancesFrom(’scPIM’)->exists(v | v.varName =
argument)
xor scPIM!GlobalParameter.allInstancesFrom(’scPIM’)->exists(gp |
gp.globalName = argument)
xor scPIM!Agent.allInstancesFrom(’scPIM’)->exists(ag | ag.agentId =
argument)

inv: Set{’greaterThan’, ’equalTo’, ’smallerThan’,
’notEqualTo’}->includes(relOperator)

inv: Set{’true’, ’false’}->includes(negation)
inv: Catch->notEmpty() implies Message->isEmpty()
inv: Message->notEmpty() implies Catch->isEmpty()

Constraints for conditional statements elements are more complex. The if attribute can onlycontain an existing variable name, global parameter name, or agent id. An argument cap-tured in the argument attribute must adhere to the same constraint. The purpose of thesefirst two constraints is to ensure that conditional statements are not declared with non-existing variables. Whenever a conditional statement is false either some code is executedor a message is send. The last two constraints ensure that if a message is specified no state-ment is executed and vice versa.
6.5.3 Transformation Rules

The transformations between the PIM and PSM’s are enabled using transformation rules(a.k.a. mappings). Transformation rules consist of an input pattern introduced by the key-word From and an output pattern with the keyword To. A source pattern specifies whichpart of the PIM maps to what target pattern indicated with the word out. The implemen-tation of the targeted pattern shows the specifics of the transformation. This specification

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 141PDF page: 141PDF page: 141PDF page: 141

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 127
may contain one or several pattern elements. A target pattern consists of a variable declara-tion and a set of bindings (assignments) shown with the arrows. Listing 6.1 encompasses thetransformation rules for the transformation of the PIM smart contract to a Ethereum smartcontract. A complete overview of all transformation rules to transform a PIM to a EthereumPSM can be found in Appendix G.

1 lazy rule SC2SC{2 from sc : scPIM!SmartContract2SmartContract3 to4 ssc : solPSM!SmartContract(5 SCName <-sc.SmartContractName ,6 abstract <-sc.abstract ,7 owner <-sc.owner ,8 Interfaces <-sc.9 Imports <-sc.10 Enums <-sc.Enums ->collect(el | thisModule.createEnum(el)),11 StateVariables <-sc.GlobalVariables ->collect(el | thisModule.
createStateVariable(el)),12 GlobalVariables <-sc.GlobalParameters ->collect(el | thisModule.
createGlobalVariable(el)),13 Structs <-sc.Concepts ->collect(el | thisModule.createStruct(el)),14 Events <-sc.Events ->collect(el | thisModule.createEvent(el)),15 Modifiers <-sc.getModifiers (),16 Functions <-sc.Functions ->collect(el | thisModule.createFunction(el))17 Constructor <-thisModule.setConstructor(sc.Constructor)18)19 }

Listing 6.1: Transformation rules to transform platform independent smartcontract to an Ethereum smart contract
The transformation rule in Listing 6.2 delineates how functions are in a user specified PIM aretransformed to a function for a Hyperledger smart contract. Appendix G presents all othertransformation rules for a transformation from the PIM for smart contracts to a Hyperledgersmart contract model.

1 lazy rule createFunction{2 from3 fu : scPIM!Function4 using5 otherPrecon: Sequence(scPIM!PreCondition) =6 select(pre | pre.cType = ’Temporal ’ or pre.cType = ’Evaluative ’ or pre.
cType = ’Causal ’)7 to8 hfu : hyperPSM!solFunction(9 funcName <-fu.funcName ,10 return <-fu.return ,11 interaction <-fu.interaction ->setInterActionType(fu.interaction),12 Argument <-createParameters(fu.argument , fu.argumenType),13 EndedBy <-fu.EndedBy ->collect(el | thisModule.createReturnStatement(el))14 Decorators <-createDecorators (),15 Rules <-fu.preConditions ->select(pre | pre.cType = ’AccessControl ’)->
collect(el | thisModule.createRule(el)),16 LocalVariables <-fu.LocalVariables ->collect(el | thisModule.
createVariable(el)),17 LocalGlobals <-fu.LocalGlobals ->collect(el | thisModule.
createGlobalParameter(el)),18 Contains <-thisModule.createConditions(fu.Contains , otherPrecon),19 Execute <-fu.Execute ->collect(el | thisModule.createStatement(el)),20 Can <-fu.Can ->collect(el | thisModule.createUpdate(el))21)22 }

Listing 6.2: Transformation rules to transform platform independentfunction element to an Hyperledger Fabric smart contract function
Only two examples transformation rules have been presented here. While these rules par-tially reveal how a transformation from a PIM to a PSM takes place, some more clarification

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 142PDF page: 142PDF page: 142PDF page: 142

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 128
is needed to fully understand the interplay between the transformation rules. In the sectionhereafter we will further expound on how the actual transformation takes place based onthese rules.

6.6 Smart Contract Generation

So far the artefacts required to model smart contracts have been discussed. However, thetransformation from a PIM to a PSM, and ultimately to the platform specific code, requires atool. The tool is written in TypeScript [32] a superset of JavaScript the standard programminglanguage for the world wide web6. TypeScript allows for static typing during compilation toensure that only the appropriate data type is assigned to a variable, and allows users todefine the shape of objects. The initial input for the tool, and the intermediate results ofthe model transformations are stored in JSON format, to ensure that they are transferablebetween the generated models. The activity diagram in Figure 6.8 portrays the workflow ofthe smart contract generator.

Figure 6.8: Algorithmic steps for Smart Contract generation

6.6.1 Validation Platform Independent Model

The input for the tool is a JSON formatted file that pertains all information required to createthe smart contract for a platform. Thus, when the smart contract generation the tool is used
6For the sake of replicability all code related to the tool is available as online suplement https://github.com/
BJBut/TransformSC

https://github.com/

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 143PDF page: 143PDF page: 143PDF page: 143

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 129
it expects a JSON file as input. To guard against errors created by the wrong file type it willvalidate whether an input has the correct file extension (.JSON). Thereafter it will analyzethe correctness of the input file in terms of syntax.
TypeScript ensures run time verification of types, however it cannot do so from externalinput. Therefore ex ante validation of the JSON file containing data on the PIM is requiredbefore commencing the transformation fromPIM to PSM. The JSON schema language [210] isemployed for JSON instance validation in combination with the AJV library7. A JSON schemais written in the JSON syntax and is programming language agnostic. Its vocabulary caters forthe definition of objects, their attributes, coherent data types and constraints. Combined,this info results in a schema that contains info on the shape and conditions of objects, ar-rays and standard variables. In turn, schema’s enforce type checking of variables, but alsofor more complex checks such as whether an object has all required properties. Listing 6.3depicts an example of a schema for a Variable, that enforces and objects’ property types,and related other constraints.

1 VariableDef = {2 type: "object",3 required: [" Variable"],4 properties: {5 Variable: {6 type: "object",7 required: [" varName", "dType", "structType", "variableScope "],8 properties: {9 //@dev: the isUnique attribute in the schema ensures that
the variable name is unique.10 "varName ": { type: "string", minLength: 1,11 "isUnique ": {"$data ": "1/PimRegister/varNames

"} },12 "value": { type: "array", minItems: 1},13 "structType ": { enum: ["Enum", "Variable", "KeyValue", "
Array "] },14 "variableScope ": { enum: [" Global", "Local "] }15 },16 //@dev: these are the constraints related to the Variable

object.17 dependencies: {18 "structType ": {19 oneOf: [20 {2122 "properties ": {23 "structType ": { "const": "KeyValue" },24 "dType": { enum: [" String", "Byte", "
Integer", "Address "] }25 },26 required: [" valueType "]27 },28 {2930 "properties ": {31 "structType ": { "const": "Array" },32 "dType": { enum: [" String", "Byte", "
Integer", "Address "] }33 },34 },35 {3637 "properties ": {38 "structType ": { "const": "Enum" },39 "dType": { type: "string" }40 },41 },42 {

7https://ajv.js.org

https://ajv.js.org/

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 144PDF page: 144PDF page: 144PDF page: 144

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 130
4344 "properties ": {45 "structType ": { "const ": "Variable" },46 "dType ": { enum: [" String", "Byte", "

Integer", "Address "] }47 },48 },4950]51 }52 }53 }54 }55 }

Listing 6.3: Example schema variables
Besides testing for supported classes and their attributes, the validator checks data type dis-crepancies such as when the datatype of a variable is declared to be a "string" while it isvalue is an integer. When a discrepancy is detected the validator will log an error and haltthe generation process. Using JSON schema it is also checked whether for instance a smartcontract contains at least one supporting element. Duplicate function, smart contract, pre-condition and variables with a global scope names are validated with the isUnique keywordto ensure their uniqueness. Variables with a local scope that stem from different functionsare exempted and will not throw an error. After passing the validations, the creation processfor a PSM that the user chose commences. The choice for a platform is expected upon thevalidation of the JSON file, along with any information related to agent addresses.
6.6.2 Ethereum PSM Creation and Code Generation

The tool provides support for smart contract code generation in Solidity based on a PSM gen-erated trough the solEngine. Each object within the PIMmodel is translated by the solEngineto an instance of the Ethereum model using mappings. From a high-level perspective firstmain element such as agents, assets and smart contracts are mapped tomatching Ethereumclasses. Dedicated functions then form instances that are included in the model. Assets re-quire their own smart contracts that are generated using the Asset2solAsset function. Thededicated SC2SC function contains an algorithm to further generate elements like events,functions and modifiers. The algorithm to generate a smart contract model proceeds in theorder depicted in the activity model of Figure 6.9.

Figure 6.9: Activities of algorithm to create Ethereum smart contracts

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 145PDF page: 145PDF page: 145PDF page: 145

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 131
All element handled by the SC2SC function are registered and attached to the smart contract.Functions are important elementswithin smart contracts and contain several local elements.During the generation of a function a copy of the function is dynamically populated to ensurethat local elements are only used locally. Listing 6.4 portrays the function and the requiredfunctions in themodule to transform a function in the platform agnostic model to one in theEthereum model.

12 const thisModule = {3 setInteractionType(interactionType){45 let interaction : InteractionType6 switch(interactionType){7 case "None":8 interaction = InteractionType.NONE9 break;10 case "Invokable":11 interaction = InteractionType.INVOKABLE12 break;13 case "Transfers":14 interaction = InteractionType.PAYABLE15 break;16 }17 return interaction18 }1920 setVisibilityType () {21 return FunctionVisibility.PUBLIC22 }23 createModifier(PreConditions) {24 //set preconditions25 var Sequence : Array <ModifierElement > = [];26 PreConditions.forEach(element => {27 let newSolElement: solModifier = new solModifier(element.
PreCondition);28 let localVarEl: ModifierElement = { Modifier: newSolElement }29 Sequence.push(localVarEl);30 })31 return Sequence32 }33 createGlobalVariable(LocalGlobals) {34 //set Local Global35 var Sequence : Array <GlobalVarElement > = [];36 LocalGlobals.forEach(element => {37 let newSolElement: solGlobalVariable = new solGlobalVariable(
element.GlobalParameter);38 let localGlobalEl: GlobalVarElement = { GlobalVariable:
newSolElement }39 Sequence.push(localGlobalEl);40 })41 return Sequence42 }43 createLocalVariable(LocalVariables) {44 //set Local Variable45 var Sequence : Array <LocalVariableElement > = [];46 LocalVariables.forEach(element => {47 let newSolElement: solLocalVariable = new solLocalVariable(
element.Variable);48 let localVarEl: LocalVariableElement = { LocalVariable:
newSolElement }49 Sequence.push(localVarEl);50 })51 return Sequence52 }53 createStruct(LocalConcepts) {54 //set Local Structs55 var Sequence : Array <StructElement > = [];56 LocalConcepts.forEach(element => {57 let newSolElement: solStruct = new solStruct(element.Concept);58 let structEl: StructElement = { Struct: newSolElement }59 Sequence.push(structEl);

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 146PDF page: 146PDF page: 146PDF page: 146

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 132
60 })61 return Sequence62 }63 createConditionalStatement(Contains) {64 //set Conditional Statement65 var Sequence : Array <ConditionalStatementElement > = [];66 Contains.forEach(element => {67 let newSolElement: solConditionalStatement = new

solConditionalStatement(element.ConditionalStatement);68 let conditionEl: ConditionalStatementElement = {
ConditionalStatement: newSolElement }69 Sequence.push(conditionEl);70 })71 return Sequence72 }73 createStatement(Execute) {74 //set Statement75 var Sequence : Array <StatementElement > = [];76 Execute.forEach(element => {77 let newSolElement: solStatement = new solStatement(element.
Statement);78 let statementEl: StatementElement = { Statement: newSolElement
}79 Sequence.push(statementEl);80 })81 return Sequence82 }83 createTransfer(Can) {84 //set Transfer85 var Sequence : Array <TransferElement > = [];86 Can.forEach(element => {87 let newSolElement: solTransfer = new solTransfer(element.

Transfer);88 let transferEl: TransferElement = { Transfer: newSolElement }89 Sequence.push(transferEl);90 })91 return Sequence92 }93 createReturnStatement(EndedBy) {94 //set Return Statement95 var Sequence : Array <ReturnStatementElement > = [];96 EndedBy.forEach(element => {97 let newSolElement: solReturnStatement = new solReturnStatement
(element.ReturnStatement);98 let returnStatementEl: ReturnStatementElement = {
ReturnStatement: newSolElement }99 Sequence.push(returnStatementEl);100 })101 return Sequence102 }103 }104105 class solFunction {106107 constructor(fu) {108 this.functionName = fu.funcName109 this.return = fu.return110 this.interaction = thisModule.setInteractionType(fu.interaction)111 this.argument = fu.argument112 this.argumentType = fu.argumentType113 this.visibility = thisModule.setVisibilityType ()114115 //Set the contents of the function116 this.Modifiers = thisModule.createModifier(fu.PreConditions)117 this.LocalGlobals = thisModule.createGlobalVariable(fu.

LocalGlobals)118 this.LocalVariables = thisModule.createLocalVariable(fu.
LocalVariables)119 this.LocalStructs = thisModule.createStruct(fu.LocalConcepts)120 this.Contains = thisModule.createConditionalStatement(fu.Contains)121 this.Can = thisModule.createTransfer(fu.Can)122 this.Execute = thisModule.createStatement(fu.Execute)

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 147PDF page: 147PDF page: 147PDF page: 147

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 133
123 this.EndedBy = thisModule.createReturnStatement(fu.EndedBy)124 }125 }

Listing 6.4: Transformation to Ethereum function
Upon completion of the platform specific model without errors the solidity code generationcommences. This task is executed by the solCodeGenerator. The solCodeGenerator writesa string for each asset, agent and smart contract. In the exact same order as depicted inFigure 6.9 thereafter the other elements are written as string. Events are written using thegenerator (function) depicted in Listing 6.5.

1 class solCodeGenerator {23 generateSolEvent(_eventName: string , argument: Array <string >,
argumentType: Array <string >) {4 var eventString : string5 eventString = "\tevent "+_eventName;67 //@dev: to match the arguments and argumentTypes8 let matchedArgumentandTypes = zip(argument , argumentType);910 var argCount = 1;11 eventString = eventString + "("1213 //@dev: to append each paired argument and type to the event code.14 for(let matchedArgs of matchedArgumentandTypes){15 if(argCount < matchedArgs.length){16 eventString = " "+ eventString + matchedArgs [0] +" "+

matchedArgs [1] + ", ";17 }18 else{19 eventString = eventString + matchedArgs [0] + matchedArgs
[1]+ ");";20 break21 }22 argCount ++23 }24 }25 }

Listing 6.5: Solidity event code generation
The combined strings of all elements constitute to for instance a smart contract. Any resultsof this step can thereafter be implemented in the Solidity Remix editor that can compile thehigh level code to EVM instructions.
6.6.3 Hyperledger Fabric PSM Creation and Code Generation

For Hyperledger fabric the tool enables for the creation of JavaScript based smart contracts.First a PSM is created using the hyperledgerEngine. Like for the Ethereum platform, eachelement in the PIM is mapped to one or more elements in the PSM. With the distinctionhowever, that the elements are stored in separate files. As a first step a meta element iscreated that contains the ACL, Query and CTO file. These files, or rather themodels for thesefiles are transformed in this order. The CTO file containing Events, Participants and so onfunctions as a register for the possibilities in the smart contract. The hyperledgerEngine firsttransforms the Enums in the PIM to Enums suitable for Hyperledger. Thereafter the conceptsin the PIM are transformed into concepts for the PSM. Following, the algorithm proceedsin the order depicted in Figure 6.10. Relationships stipulate an association between twoelements within the model and during the execution it is checked if the associated elementsexist.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 148PDF page: 148PDF page: 148PDF page: 148

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 134

Figure 6.10: Activities of algorithm to create Hyperledger smart contracts

When the algorithm has finished with the elements related to the model needed to createthe PSM it will commence to write the logic within the smart contracts themselves. First alltypical properties like name and whether the contract is abstract are set. The nameSpaceattribute from the Meta class is used here to set the nameSpace property to capture wherethe smart contract is deployed. This is important in the translation is without this propertythe smart contracts would not be able to connect to the network. Thereafter the programproceeds to creates the states of the smart contract and simultaneously the related, andrequired queries. Listing 6.6 shows the code used for the tool to transform a platform ag-nostic smart contract into a smart contract that can be deployed on a Hyperledger Fabricblockchain.
1 const thisModule = {23 createStatement(Functions) {4 //set Statement5 var Sequence: Array <hyperFunctionElement > = [];6 Functions.forEach(element => {7 let newSolElement: hyperFunction = new hyperFunction(element.

Statement);8 let statementEl: hyperFunctionElement = { Function:
newSolElement }9 Sequence.push(statementEl);10 })11 return Sequence12 },1314 createStatement(GlobalVariables) {15 //set Statement16 var Sequence: Array <hyperVariableElement > = [];17 GlobalVariables.forEach(element => {18 let newSolElement: hyperVariable = new hyperVariable(element.
Statement);19 let statementEl: hyperVariableElement = { Variable :
newSolElement }20 Sequence.push(statementEl);21 })22 return Sequence23 }2425 }2627 class hyperSmartContract {2829 constructor(sc) {30 var imp: Array <hyperFunctionElement > = sc.Import.forEach(el => {31 let collect = []

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 149PDF page: 149PDF page: 149PDF page: 149

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 135
32 el.Import.Imports.forEach(lib => {33 collect.push(lib.Library.Functions)34 });35 });3637 var afu = this.createFunction(imp);3839 this.SCName = sc.SmartContractName ,40 this.abstract = sc.abstract ,41 this.nameSpace = thisModule.nameSpace ,42 this.States = thisModule.createState(sc.GlobalVariables),43 this.Functions = thisModule.createFunction(sc.Functions).push(

imp)44 }4546 }

Listing 6.6: Hyperledger Fabric smart contract transformation
Next, functions are created with coherent elements like parameters and decorators. Con-trary to Ethereum smart contracts, Hyperledger Fabric smart contracts cannot use the con-cept of a modifier. Only rules are available that control the access to a function. Rules arefirst created to govern who can call the functions, and when from the set of preconditionsrelated to the function in the PIM. To cater for the translation of the other PreConditiontypes like "temporal", "evaluative", and "causal" an equivalent solution needs to be devel-oped. Any PreCondition with the aforementioned type will first be filtered out of the com-plete set of preconditions and thereafter translated into a conditional statement. From thispoint onward the generator follows an almost identical as the algorithm used for creating anEthereum smart contract model.

6.7 Discussion

The models presented in this chapter delineates the blockchain architecture of two of themost popular blockchain platforms: Ethereum, a public blockchain and Hyperledger Fabric,a framework for private blockchains in the context of smart contracts. By investigating thearchitecture of these distinct platform especially in the context of smart contracts we laybare the relation among smart contract concepts and those on the blockchain. Some otherworks [274, 276] also investigated this relation yet not in the breadth and depth as we have.Other research tends to sketch abstract perspectives on smart contracts while we soughtto make implementable models that are employed for the specific purpose of MDA. Thepresentation of these models further advances our understanding of the two most popularblockchain platforms. In doing so we not only discussed the relation between blockchainand smart contracts, but in addition the concepts used for the smart contracts themselves.
Perhaps the most important contribution of this work are not the PSMs, but more the analy-sis that resulted in the creation of the PIM.We presentedmodels for the twomost dominantblockchain platforms, and demonstrated that their design principles (private vs. public) canbe reconciled into a PIM. At the moment most DApps are developed for, and deployed onthe Ethereum blockchain or a Hyperledger Fabric network. However, myriad of blockchainplatforms exist that cater for the development of smart contracts. Further investigation intothe architecture and smart contracts of these platforms is needed to identifymore common-alities and whether these fit the models.
In constructing our PSMs and PIMweemployed aDelphimethodwith a bottom-up approachwith relevant literature as support. Although these models were built following a structuredapproach the number of smart contract developers that participated in the Delphi study (11

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 150PDF page: 150PDF page: 150PDF page: 150

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 136
participants) is limited. This could potentially pose a threat to the validity of the constructionof the model. Given the maturity and rapid developments in the field of BCT and smart con-tracts there is not a large pool of senior developers available however, which an impedimentto the further development of BCT in general [247]. Although the relationships between theconcepts have been verified and validated by experts, the attributes and data types havenot.
From our analysis in Section 6.5.1 it seems that Blockchain and MDA seem to be a good fit.The nature of BCT inherently restricts some options of the options when programming asmart contract. In contrast, when programming regular applications programmers are notconfined by the rules a blockchain infrastructure imposes on the design of the application.This research pointed out some interesting commonalities and differences between the plat-forms. For instance, the fact that Ethereum has one unified blockchain allows any blockchainto retrieve information on its state while this requires somewhat more complex operationsfor a Hyperledger chain.
Another important difference is how the platforms arrange their preconditions. In additionto the three patterns identified by Ladleif and Weske [150] we argue that a fourth is ob-servable: the access control pattern. We therefore included this pattern in the model andspecified how they are modeled. Albeit that OpenZepelin suggest offers off-the-shelf codefor all of these patterns, users are free to define their own preconditions. Hyperledger hasonly the Access Control pattern (Rule) as a precondition type. However, the concept of aRule on a Hyperledger blockchain caters for fine-grained specification of the operations thatconflict with the principles of a public blockchain such as transparency and immutability.This problem was resolved in this work by stipulating constraints for when the targeted plat-form is Ethereum, and dis-allowing the option to confine read and delete operations. Giventhe distinct principles of these blockchains we argue that there was little leeway for otheroptions.
Both platforms support the notion of For and While iterations (loops) over data. Iterationsare not supported within the current platform agnostic and specific models. Further studiesthat take these notions into account, will need to be undertaken. Another concern is theverbosity that PIM model presented here introduces, as it is difficult to incorporate the useof "syntactic sugar" into the metamodel. For example, a global variable in Ethereum couldsimply be declared using the statement msg.sender. Instead in our PIM the global variablewould first need to be declared and only thereafter operations could be performed withit. While this approach would only increase execution time when using such declarationsfor Hyperledger, for Ethereum it would incur unnecessary costs. On the Ethereum platformusers pay for each executed operation and thus more operations amount to higher costs.
One of the advantages of MDA is that it allows for the stipulation of constraints that can beemployed specify what associations a class might have or what values its attributes mightcontain. Testing smart contract remains a pervasive issue that remains to be solved and lim-ited tools for development are available [253]. Models that are presented in this chapterare usable for MDA and therefore aid in the latter. The former is only addressed in a lim-ited fashion. Constraints for the models avoid some problems like function overloading andthe performance of operations on non-declared variables. Future research endeavors couldinvestigate how the combination of MDA and other testing tools could further diminish po-tential bugs of the semantic kind.
Finally, all information regarding the PIM is administered to the tool in a JSON format. Weexplain in Section 6.6.1 how the file is thereafter validated in terms of the correctness ofthe PIM. However, a more user friendly input interface might be desirable when the models

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 151PDF page: 151PDF page: 151PDF page: 151

Chapter 6. Towards a Unified Platform Independent Model for Smart Contracts 137
are to be used in practice. Besides this consideration, in Chapter 3 we discussed that smartcontract are part of a blockchain system and cannot be regarded in isolation. This researchdiscusses how to write smart contracts using MDA, it does not investigate how the smartcontract could be directly connected to several other componentswithin the blockchain plat-forms. An example of a such a component is a front-end that serves as an interface betweenthe smart contract and the user.

6.8 Conclusion

The current chapter set out to develop an platform independent model from the perspec-tives of the two most prominent blockchain platforms: Ethereum and Hyperledger Fabric.Metamodels encompass several elements that combined constitute to a model. Followinga collaborative method we developed the metamodels for these platforms with the help of11 experts. During several consecutive rounds in a Delphi study we identified all relevantconcepts requires to built the metamodels. With this data we made implementable modelsthat are employed for the specific purpose of MDA. The construction of these models fur-ther advances our understanding of the two most popular blockchain platforms. In doing sowe not only discussed the relation between blockchain and smart contracts, but in additionthe concepts used for the smart contracts themselves.
Thereafter the research has set out to create a PIMbased on the commonalities between theconcepts that both platforms use. The comparison identified a large set of commonalitieshowever some distinctions were also identified. Among these distinctions is the differencehow user interaction with the smart contracts is restricted by preconditions. Another dis-similarity between the platforms is the manner smart contract can obtain data concerningtheir own state(s) or that of the blockchain. By investigating the architecture of these distinctplatformbased on commonalities and differences especially in the context of smart contractswe lay bare the relation among smart contract concepts and those on the blockchain. Theidentification of these relations aid in the design of future systems that will further ease thedevelopment of smart contracts.
Perhaps the most important contribution of this work are not the PSMs, but more the anal-ysis that resulted in the creation of the PIM. We presented metamodels for the two mostdominant blockchain platforms, and demonstrated that their design principles (private vs.public) can be reconciled into a PIM. Moreover, the PIM provides the basis for a system thataids in the creation of smart contracts that can be designed in a platform agnostic mannerand can thereafter be deployed on any blockchain.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 152PDF page: 152PDF page: 152PDF page: 152

138

Chapter 7

Discussion

7.1 Introduction

The research question this study aims to address is how can smart legal contracts be de-veloped in a manner that constitutes to a legally binding contract, and that can enforcetheir terms and conditions within that contract, regardless of the blockchain platform. Inthis chapter we will formulate an answer to this question to enhance our understanding ofwhat method would facilitate the development of smart legal contracts. Due to the inter-disciplinary nature of smart legal contracts the development of such a method entails thatprerequisites from two distinct domains are to be met. A set of six requirements at the fea-ture level are specified in Chapter 1, Section 1.5 to make these prerequisites explicit. Basedon these requirements we set out to develop an artefact in the form of a method that sat-isfies these requirements. The MDA philosophy is a suitable theoretical underpinning forthe design of a method that enables the development of smart legal contracts. Thus, thecornerstone of the overall method proposed in this dissertation to develop smart legal con-tracts is theMDA philosophy. In linewith this philosophy for software development, we havepresented a domain ontology in Chapter 5 that enables users to create CIMs that capturesrequirements from the legal perspective. Chapter 6 presents a platform agnostic and spe-cific meta model for smart contracts. The current chapter reflects on the results attainedby constructing the metamodels and discusses the evaluation of these results in light of therequirements for the overall method. This evaluation points out demarcations, limitations,and opportunities for future research. The outline of this chapter will be as follows: First wewill discuss the results of this research in Section 7.2 following the requirements defined inChapter 1, Section 1.5. Next, the chapter discusses the limitations and threats to the valid-ity of this research. Suggestions for future research are thereafter discussed in Section 7.4.Finally, in Section 7.5 conclusions are drawn on the findings of the discussion.

7.2 Design Principles and Lessons Learned

In this section we will further discuss the results of Chapter 5 and Chapter 6. One of the firstfindings of this research is that the creation of smart legal contracts touches upon aspectfrom two distinct disciplines: the legal and software engineering. Therefore, what methodwould cater stakeholders from both domains when developing smart legal contracts? Doesthe method allow for the incorporation of the domain specific knowledge stemming fromboth disciplines? The results of this research demonstrate thatMDA provides a solidmethodto facilitate stakeholders from both disciplines in several ways: First, it provides a manner tocapture domain knowledge and makes it explicit to all stakeholders providing and providesa lingua franca for communication between stakeholders. Second, MDA emphasizes on the

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 153PDF page: 153PDF page: 153PDF page: 153

Chapter 7. Discussion 139
platform agnostic development of software that can be re-used for different platforms. Fi-nally, explicit transformation rules allow for traceability throughout the translation from legalspecifications to a smart contract. These advantages have led to the adoption of MDA as thephilosophy underpinning the approach to develop a solution that satisfies the requirements.
7.2.1 A Unified Domain Ontology for Smart Legal Contracts

Legal professionals require a low code or no code software solution to understand how con-cepts in a legal contract are related to the translation to programming concepts in a smartcontract. On the other hand, programmers would benefit from such a solution because itmakes domain concepts explicit easing the coding process. The combination of these twoconsiderations led us formulate the following requirement:
Requirement 1: The method needs to cater for a manner to make domain concepts explicitso that legal professionals can stipulate the requirements for their smart legal contract.
The proposed solution fully satisfies this requirement. In identifying relevant concepts, andconstructing our ontology we aimed at using concepts familiar to legal practice. Informed bypast efforts in the field of legal requirements engineering, multi agent systems and electroniccontracting we set out to extract all relevant concepts to legal contracts. Our investigationencompasses 29 works and we are confident that the breadth and depth of our analysisensures that most relevant concepts are identified. That is, with the exception of some con-cepts discussed in Section 5.9 like a condition precedent and subsequent that arementionedin law literature. Our ontology is primary developed as a means for legal experts to specifytheir smart legal contract. An interesting observation is that each of the concepts in the do-main ontology is in essence a user requirement at what Gorschek and Wohlin [95] woulddescribe as the functional level for a smart contract. Each concept in the domain modelshould correspond to a kind of representation in the smart contract. With the main objec-tive of requirement 1 in mind, we argue that the domain ontology assists smart contractprogrammers in understanding the legal requirements that a legal expert has provided.
Albeit that our ontology enables the creation of a model that encompasses domain specificconcepts, the specification of themodel is stored as a JSON format. We posit that this formatis difficult to read for most legal practitioners. The method we proposed in this researchdoes not facilitate the visualization of a model created by a legal experts and would requirean additional presentation layer. Ladleiff et al. havemade efforts [150, 152] to visualize smartlegal contracts using BPMN. It has been argued however, that such an approach would beto simplistic to model the intricacies of a legal document [34]. An alternative approach isto directly couple parts of the user specified model to words in the legal contract. Systemsto develop smart legal contract the likes of OpenLaw1, and Accord Project2 provide a mark-up language to allow legal practitioners to manually denote specific concepts within thedigitally stored version of the legal contract. However, it remains to be seen whether themarkup language is understandable for a legal practitioner.
Bench-Capon and Gordon [29] argue that one of the most important requirements for rep-resenting legal knowledge is isomorphism. Isomorphism in the context of legal knowledgesystems means that there is a well-defined correspondence between the source documentand the representation of the information they contain used in the system. To achieve thisfeat would require anothermetamodel suitable tomodel the contract document, potentially
1https://www.openlaw.io/2www.accordproject.org

https://www.openlaw.io/
https://www.accordproject.org/

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 154PDF page: 154PDF page: 154PDF page: 154

Chapter 7. Discussion 140
with lay-out. Some preliminary research results3 demonstrate that the model for the con-tract document could be easily incorporated and coupled to themodel specified by the legalexpert. An example of how this could be achieved can be found in Listing 7.1.

1 {" contractName ":" ContractExample",2 "contractId ":1,3 "contractStructure ":{4 "pages": [{5 "page ":{6 "pageNumber ":1,7 "sentences ": [8 {" sentence ":9 {"words ":[" The","rent","of","the","premises","will","be","$","1000
","."],10 "font ":" Times","nr":"1",11 "info ":{" Definiens1":[0, 1]," Definition1":[6],"Resource1":[7],12 "Quantity1":[8]}}},13 {" sentence ":14 {"words ":[" The","tenant","will","pay","the","rent",",","in",15 "advance ",",","on","the","1st","day ,"of","each","month ","."],16 "font ":" Times","nr":"2",17 "info ":{" Promissor1":[0, 1],"Action1":[3],"Quantity4":[4],18 "Resource4": [5]," TimeExpression4":[10]," RelativeTimepoint1":[12],19 "TimeUnit2":[15, 16]}}},20 {" sentence ":21 {"words ": ["The","tenant","must","pay","a","late","charge","of","$
","500","for","each","payment","that","is","more","than","30
","days","late","."],22 "font ":" Times","nr":"3",23 "info ":{" Promissor2":[0, 1],"Action2":[3],"Quantity6":[9],"
Resource5":[8]}}}24]}}]},2526 "contractModel ": [27 {"party ": { "partyId ": "Party1",28 "partyName ": "Bob Book",29 "entityType ": "natural" }},30 {"party ": { "partyId ": "Party2",31 "partyName ": "John Doe",32 "entityType ": "natural" }},33 {" definition ":{34 "definitionId ":" Definition4",35 "definition ":[36 {" definiens ":{" definiensName ":" the rent",37 "definiensId ":" Definiens4"}},38 {" defiendum ":[39 {" resource ":{" resourceId ":" Resource1",40 "resourceName ":" rent",41 "quantity ":{42 "quantName ":" the",43 "quantId ":" Quantity1",44 "value ":"500"}}}]}]}} ,45 {" clause ": {46 "clauseId ": 1,47 "clauseType ": "Normal",48 "TriggeringEvent ": {49 "triggerId ": "Trigger1",50 "Contains ": [51 {52 "event": {53 "eventName ": "start lease",54 "eventId ": "Event1",55 "eventType ": "temporal "}}],56 "Conditions ": [57 {" condition ": {58 "conditionId ": "Condition1",59 "Contains ": [

3The author of this dissertation has conducted additional research to investigate how the structure of legal doc-uments could be modelled.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 155PDF page: 155PDF page: 155PDF page: 155

Chapter 7. Discussion 141
60 {61 "action ": {62 "actionId ": "Action1",63 "name": "pay the Rent",64 "modal": "OBLIGATION",65 "group": "Pay",66 "repeated ": false ,67 "status ": "unfinished",68 "resource ": {69 "resourceId ": "Resource4",70 "resourceName ": "rent",71 "definedAs ": "Definition4",72 "quantity ": {73 "quantName ": "the",74 "quantId ": "Quantity4",75 "value": 500,76 "definedAs ": "Definition4"77 }78 },79 "promissor ": {80 "promissorName ": "the tenant",81 "promissorId ": "Promissor1",82 "party": "Party1"83 },84 "promissee ": {85 "promisseeName ": "the landlord",86 "promisseeId ": "Promissee1",87 "party": "Party2"88 },89 "term": {90 "termId ": "Term3",91 "type": "span",92 "timeexpression ": {93 "timeExpressionId ": "TimeExpression2",94 "type": "on"95 },96 "timePoint ": {97 "timeSpan ": {98 "timeSpanId ": "TimeSpan2",99 "start": {100 "date": {101 "day": 1,102 "month": 1,103 "year": 2021104 }105 },106 "end": {107 "date": {108 "day": 1,109 "month": 1,110 "year": 2023111 }112 }113 }114 }115 },116 "repeatedEach ": {117 "timeUnitId ": "TimeUnit1",118 "type": "month",119 "quantity ": {120 "quantName ": "1",121 "quantId ": "Quantity5",122 "value": 1123 }124 }125 }126 }127],128 "Remedies ": [129 {" remedy ": {130 "remedyId ": "Remedy1",131 "Contains ": [

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 156PDF page: 156PDF page: 156PDF page: 156

Chapter 7. Discussion 142
132 {133 "action ": {134 "actionId ": "Action2",135 "name": "pay a late charge",136 "modal": "OBLIGATION",137 "group": "Pay",138 "repeated ": false ,139 "status ": "unfinished",140 "resource ": {141 "resourceId ": "Resource5",142 "resourceName ": "late charge",143 "definedAs ": "Definition6",144 "quantity ": {145 "quantName ": "the",146 "quantId ": "Quantity6",147 "value": 500,148 "definedAs ": "Definition6"149 }150 },151 "promissor ": {152 "promissorName ": "the tenant",153 "promissorId ": "Promissor2",154 "party": "Party1"155 },156 "promissee ": {157 "promisseeName ": "the landlord",158 "promisseeId ": "Promissee2",159 "party": "Party2"160 },161 "term": {162 "termId ": "Term4",163 "type": "relative",164 "timeexpression ": {165 "timeExpressionId ": "TimeExpression4",166 "type": "after"167 },168 "timepoint ": {169 "relativeTimePoint ": {170 "relatTimePointId ": "

relatTimePoint1",171 "relatedTo ": "Action1",172 "timeUnit ": {173 "timeUnitId ": "timeUnit2",174 "type": "day",175 "quantity ": {176 "quantName ": "30",177 "quantId ": "Quantity7",178 "value": 30}}}}}}}]}}179]180 }

Listing 7.1: Representing a contracts’ structure to achieve isomorphism
In the example shown in Listing 7.1 the file for the contract encompasses two parts: (1)
constractStructure and (2) contractModel where the former denotes the direct cou-pling between words in the contract and the concepts within the user defined model, andthe latter the user defined model itself. The contract structure is defined in line 7 to 24 ofthe listing. As can be seen on these lines, sentences included in the contract structure havea words and info attribute. In the info set of each sentence concepts are linked to wordsby attaching the index number of the word(s) (in brackets) to the concepts Id (e.g., Action1).Further information about other concepts related to Action1 can be found on line 62.
7.2.2 Representation of legal contracts

Translating legal contracts into smart contracts is no trivial task. How arduous this task ac-tually is becomes apparent from the results presented in Chapter 5 Section 5.5 where 21

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 157PDF page: 157PDF page: 157PDF page: 157

Chapter 7. Discussion 143
problems are fleshed out that hamper the adoption of smart legal contracts. An interest-ing finding is that when closely examining the concepts proposed in literature we observethat problems are related to specific parts of a smart legal contracts’ life-cycle: There areproblems that are related to the drafting and coding and other problem that are related tomonitoring, execution and enforcement. This finding resonates with those of Beydoun et al.[31] that in their work onMAS discern between designtime and runtime concepts. Drummerand Neumann [74] do notmake this distinction but rather map these problems to a legal andregulatory level, contract level, technical implementation level. None of the problems theyidentify at the technical implementation level such as scalability, privacy and interoperabilityare included in our 21 problems. We posit that these problems are not uniquely related tosmart legal contracts but as discussed in Chapter 2, to BCT in general. Being aware of theproblems related to different parts of the life-cycle, the method devised for this researchhad to satisfy the following requirement:
Requirement 2: The method needs to cater for the specification, and potential resolution ofissues when coding and drafting.
By fleshing out the problems and relating these to concepts in the domain ontology ourmethod partially fulfills this requirement. We found that what can be perceived vaguenessin a contract is not always unintentional but rather open texture often employed to createleeway for unforeseen future situations. However, it is exactly these unforeseen situationsthat can create problems when translating them to smart contracts. Smart contracts canonly compute on exact concepts like numbers. Although we did not provide a direct solutionto solve this part of the problem the ontology offers amanner to denote open texture so thatit may become explicit. On the other hand, because the problem is explicit any future statethat the smart legal contract would encounter during it’s execution would be known. Thatis, if there is a manner to inform a smart legal contract what a promissee would understandunder that specific circumstance as "reasonable" and "promptly".
Another problem we identified was the use of modalities in contracts. The results of ourstudy suggest that modalities are always related to an action that one of the parties has toperform. In their work Ladleif and Weske [149] expound on how to model obligations andpermissions using BPMN choreographies. The notion of legal states is introduced to denotewhich activities have been performed. Similarly, our ontology encompasses actionwith theirown unique status. Modalities like permissioned actions are problematic because the smartcontract does not know in advancewhat choice the party that is permittedwants and is goingto make. Ladleif and Weske [149] indeed suggest that this choice should be made before-hand by the party who is granted the permission. They suggest the use of events to notify aparty that they are allowed to make a choice. How the choice is then conveyed to the smartcontract remains unclear however. Despite it’s invaluable contribution their study does notinclude a choreography for prohibitions that we besides obligations and permissions identi-fied as important modalities.
An interesting observation is that a solution to solve the problem of permissions seems torequire the same design characteristics as one that resolves vagueness: (1) The smart con-tract knows that a party must be consulted. (2) The appropriate party should be notifiedthat they are allowed to make a choice what action to take or to determine what they findreasonable. (3) The appropriate party makes a choice and communicates this choice to thesmart contract. Thereafter the smart contract would be able to act upon the choice madeby the party. The findings from our research suggest that ambiguity, in the form of coordi-nating conjunctions in contracts, is another problem that is hampering the translation of alegal contract to a smart contract. We tackle this problem first by specifying in the ontologythat attached to each action, there is one promissor, promissee, and resource. The notion

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 158PDF page: 158PDF page: 158PDF page: 158

Chapter 7. Discussion 144
of exclusivity (or coordination conjunction) is catered for by adding an attribute exclusive to.Again, we can detect a pattern here similar to that for permitted actions the smart contracthere needs to be aware which of the two actions has been performed.
While the domain ontology offers a notation to make most problems explicit there are twoproblems that we did not address: Firstly, we did not address the problem of understand-ability directly but provided as domain ontology constructed with concepts we argue arenative to legal professionals. As argued in the prior section the ontology can be extendedto also serves as the foundation for a more direct coupling between the legal contract andthe specification. Secondly, resolving the issue of proving the existence of a contract is notdiscussed in this work. For our method we assume that a written version of the legal con-tract in question exists. Ideally the legal contract would be stored simultaneously with thesmart contract upon deployment. Naturally, a smart legal contract is stored on a blockchainhowever, it is beyond the scope of this research to investigate how this storage could be fa-cilitated for the legal contract. However, we posit that this is an important problem for tworeasons namely, given that the legal contract serves as the specification document for thesmart contract each line of code should be traceable to the original document. Most im-portant it would provide the contracting parties with a readable format of the agreement.Prior work has investigated how to store files using a BCT based system and might providea solution for this problem. A study by Magrahi et al. [168] presents a system to store andshare files off-chain while guaranteeing the existence of said files using the blockchain. Anon-chain approach to store files is suggested in the work by Huang, Chang, and Wu [116].Both approaches could potentially be integrated in the method.
7.2.3 Enforcement with smart legal contracts

An important finding of this research is a second set of problems are related to the parts ofa smart legal contracts’ life-cycle throughout when the smart contract is deployed, monitorsand enforces the contract and when disputes arise. This second set of problems coincideswith another set of requirements. This led us to define the following feature requirement:
Requirement 3: The method needs to cater for the specification, and potential resolution ofissues related to enforcement of terms and conditions by a smart contract.
By constructing the domain ontologywe provide ameans to foresee the problems thatmightarise during the deployment or execution and monitoring of the contract. A comparison ofthe findings with those of Drummer and Neumann [74] shows that they identify three iden-tical issues at the legal and regulatory level. Among these problems is the problem that towhich the authors refer to as "Unclear domiciling and jurisdiction" this resonates with thetwo problems we have labelled as the Applicable Law and Jurisdiction problem. Anotheridentical finding is that a smart contract itself and any transaction a smart legal contract hasproduced cannot be reversed. We observe that consequently this causes a potential compli-cation: Similar to Drummer andNeumannwe found that this leads to the problem that whendisputes arise. Parties might resort to litigation or arbitration to settle their dispute resultingin a court order or agreement to undo parts of the contract. In the same vein, Drummer andNeumann discuss this problem in the context of whenever a violation of consumer rightsoccurs and the court orders the contract to be declared void yet it cannot be reversed. Glob-ally consumers are protected by several consumer rights that safeguard fair trading practices.The aforementioned authors found that in such cases there are no remedies for consumerswhen their rights are being violated or illegal agreements are made. Closely related to theiridentified problem, we have referred to as illegal contracts where clauses in a contract mightcontradict existing laws making them illegal.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 159PDF page: 159PDF page: 159PDF page: 159

Chapter 7. Discussion 145
Taken together, a broad observation is that currently inmost countriesmuch remains unclearabout how smart legal contracts should be regarded in light of current legislation [106]. Fur-thermore, even in spite of legislation for smart contracts this might not directly result insmart contracts adhering to these standards as the jurisdiction and applicable laws mightnot be apparent and are thus not incorporated. Taking into consideration these observa-tions and combining themwith the insights attained from the discussion in the prior sectionon the issue of references in contractswe argue that these problems compound one another.Assuming that the smart legal contract has a legal contract equivalent there needs be a refer-ence to these laws as a smart contract most likely does not operate in a legal vacuum. Theselaws are not available in digital form and thus referring to said laws is not possible. Anotherconsequence of the current lack of a legal framework for smart contracts and blockchain ingeneral is that both technologies are prone to criminal abuse. Especially given the pseudo-anonymity that a blockchain provides that prevents criminal investigation. Drummer andNeumann mention this as a specific issue that hampers the adoption of smart contracts forlegal contracting practice because parties engaging in contracting via a smart contract couldtheoretically not know each other.
One of themost prospects of smart contracts is their potential tomonitor and execute trans-actions autonomously. Moreover, based upon a priori defined conditions a smart contract isable to self-enforce conditions. However, as discussed in Chapter 5, section 5.5 the charac-teristics of a smart contract will raise several issues when tasked with monitoring, executingand enforcing legal contracts. Smart contracts tasked with monitoring a legal contract re-quire information on the activities actors promised to or external data stemming from the’real world’ outside of the self-contained blockchain system. Through their research Drum-mer and Neumann similar to ours, identify the need to align data that the smart contractrequires to the ’real world’ and how this can become problematic.
Because in our ontology actions have their own unique status information concerning thecurrent state of affairs on promises of performance can be captured. A problem posited inliterature is that initially smart contracts have been designed to predominantly to monitorand execution of payments, legal contracts might contain a wider range of action types. Anobservation therefore is that not only should the smart contract be able to monitor thatan action has been performed but whether it was the type of action specified in the legalcontract. As a remedy the ontology includes the possibility to specify the type of an action. Inthis manner users canmake a distinction between different types of actions. For each actiontype specific patterns could be devised in line with the desired semantics of the action.
When monitoring conditions by verifying facts with regard to the fulfillment of promisesor other facts smart contracts require access to information or data outside of their self-contained system. Ladleif and Weske [150] notice that several types of data sources can bediscerned that a smart contract can consult to attain this information. In Chapter 3 we havediscussed the pivotal role of oracles in providing smart contracts with the data they requireto establish such facts. Further investigation into oracles by Ladleif, Weber, and Weske [148]suggests that several oracle-based implementation strategies are required as there are differ-ent types of oracles. In their study storage and request-response oracles types are discussed.Storage oracles store their data in a smart contract and this data is updated regularly, whilerequest-response oracles are implemented using a smart contract that returns informationfrom another blockchain upon request of a smart contract. An important ramification of thisdesign is however, that smart contracts only posses data in hindsight after it has called theoracle smart contract.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 160PDF page: 160PDF page: 160PDF page: 160

Chapter 7. Discussion 146
Another important observation from the discussion in Chapter 5 is that several types of as-sets exist. When further dissecting the digital representation problemwe identified in Chap-ter 5, Section 5.5 we noticed that there are some parallels between the ’wide range of ac-tions’ problem and this problem. When executing monitoring itself or executing transfersfrom one agent to another the smart contract needs to be knowledgeable about what kindof asset is involved in the exchange, similar to action types. The ontology presented in Chap-ter 5 caters for the specification of the asset type yet we did not provide a complete set ofall asset types. Research conducted by Zhu et al. [286] provides an interesting classificationof assets that encompasses digital currency assets, data assets, physical assets and intangi-ble assets. The former are Ether, Bitcoin and other cryptocurrencies we have referred to as"native assets" in Chapter 6. Data assets concern data related to companies, persons andalgorithms these assets have the commonalities that they are data products. Physical assetshave a physical substance and are related to things like house, cars, paintings etc. whereasintangible assets do not. Examples of such assets are intellectual property, goodwill andbrand recognition. We discussed in Chapter 6, Section 6.5.1 that currently fungible tokensand NFTs are predominantly used to represent assets. The work by Zhu et al. [286] does notdiscuss how these asset types are related to theirs, with the exception of the digital currencyassets. Taken together, it seems that the last three categories of assets posited by Zhu et al.[286] seem to be in line with the use of NFTs. Furthermore, we observe that akin to actions,further investigation is required to classify and standardize assets on the blockchain.
Smart contracts rigidly enforce the terms and conditions contained in their logic. However,in some cases this characteristic is not be desirable. Fostering relationships is an importantaspect of the purpose of a legal contract [179]. Maintaining a cordial and harmonious rela-tionship can outweigh enforcing sanctions and administering remedies. Contracting partiescan expect no flexibility from a smart contract as at the moment a mechanism to preventthe automatic enforcement of it’s terms are absent. On the other hand, the introduction ofsaid mechanisms would again scarify the automatizing properties of the smart contract. Asolution that might be viable is the inclusion of an emergency break that terminates the en-forcement. Such a mechanism would already be required in situations of Force de Majeurewhere parties are discharged from their obligations. Tjong Tjin Tai [249] discusses severalsolutions to solve this issue. Our ontology does not provide a mechanism to solve the prob-lem directly yet we argue that any legal contract modelled should contain such a clause tocater for these events.
The non-performance of a party can also lead to disputes for which the law provides severalremedies. One solution would be to amend the legal contract, in tandem the smart con-tract would also be required to adjusted. However, since smart contracts are immutable thiswould not be possible. Another solution would be that parties engage in arbitration. A prob-lem identified in the study by Drummer and Neumann [74] and not by ours is that hithertoa mechanism that facilitates arbitration between parties is absent. Moreover, they consortlike the problem we identified as undoing smart contracts is that litigation might order theundoing of the contract as if it had never existed in the first place. Marino and Juels [170]discuss how to develop standards for altering and undoing smart contracts. More important,they flesh out the conditions under which the smart contract is ought to be amended andundone. The work provide invaluable contributions to a solution for the amendment andundoing problem identified through this research. It is important to note that the solutionsproposed in the work is based on Ethereum smart contracts. Thus it remains unclear howsmart contracts based on other blockchains can implement these solutions. By presentinga platform independent meta model for smart contracts in this dissertation these patternscan be translated to multiple platforms.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 161PDF page: 161PDF page: 161PDF page: 161

Chapter 7. Discussion 147
7.2.4 Achieving Complete Traceability

The final requirement we have formulated is that the traceability between the legal specifi-cation (I.o. the domain ontology) and the smart legal contract created using the method isexplicit. An omission of this requirement would mean that contracting parties again have totrust third parties that their contract is translated in line with what they have specified. Inline with this reasoning the following requirement is specified:
Requirement 4: The method needs to cater for traceability between the specification of thelegal contract to the smart contract that will embody this specification.
MDA supports traceability as the philosophy provides a record of the transformation thatspecifies how elements in one model have been translated to another model. In addition,if made explicit transformation rules further describe the transformation process. However,the solution partially satisfies this requirement to the extent that the transformation rulesthat enable the transformation between the platform agnostic metamodel and the platformspecific models for Ethereum and Hyperledger are explicit (see Section 6.5.3). A declarationof these transformation rules would allow anyone willing to trace how elements in the plat-form agnostic metamodel are translated. A set of transformation rules that this work doesnot discuss is the transformation from concepts used in the domain ontology to those in theplatform independent metamodel for smart contracts.
An adequate transformation from the concepts in the domain ontology to a smart con-tract PIM requires a fine-grained specification of the transformation rules between thesetwo metamodels. Although many of these transformation rules seem intuitively obvious,further research is needed to determine how specific concepts should be represented in asmart contract. An important aspect to consider when carrying out this research is to consultlegal professionals and inquirewhether the representation of the concepts in the domain on-tology is accurately reflected as smart contract concepts. Moreover, we observe that eachproblem discussed in Chapter 5, section 5.5 demands a solution that entails that a novelmechanism or routine is developed. Although some of these mechanisms or routines havebeen suggested [149, 170, 249] many open issues remain.
7.2.5 Development of Platform Agnostic Smart Contracts

The cornerstone of the MDA philosophy to develop software is the use of several modelsportraying several abstraction layers. One of the benefits of usingMDA for the developmentof software is the potential to re-use code across platforms. In Chapter 1, Section 1.5.2 wediscussed that one of the problems of current approaches to write smart legal contract isthat they are not platform agnostic. Consequently, this dissertation set out to develop amethod in line with the following requirement:
Requirement 5: The method to needs to cater for the creation of smart contracts that areplatform agnostic to facilitate cross platform usage.
The construction of these meta models led to several findings that we will now further dis-cuss. Firstly, the distinction between private and public blockchains lies in the limitationsthat they impose on participants part of the blockchain not directly related as parties in asmart contract. Both Hyperledger Fabric and Ethereum smart contracts include the notionof pre-conditions. Whereas other work [150] identifies three types of pre-conditions wenotice a fourth in the form of access control patterns. Another observation is that otherresearch in software engineering has introduced the notion of Role Based Access Control(RBAC). The distinction between access control and RBAC is AC patterns stipulate rules foran operations that are directly coupled to an actor whereas when using RBAC patterns the

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 162PDF page: 162PDF page: 162PDF page: 162

Chapter 7. Discussion 148
operations is tied to a role [221]. The Hyperledger Fabric framework already caters for RBACpatterns as a participants wallet can contain multiple identities for several roles. On theEthereum blockchain these mechanisms are not explicitly available although our literaturereview in Chapter 2 shows that some work by Cruz, Kaji, and Yanai [63] has aimed to resolvethis problem.
Secondly, this research finds that due to it’s public nature of Ethereum does not allow usersof smart contracts to limit the readability of their transactions or smart contracts. Privateblockchains the likes of Hyperledger Fabric have been designed with this feature in mind[274]. Paradoxically, the findings from Chapter 2 suggest that public blockchains acknowl-edge these privacy concerns and have started to adopt methods to provide similar features.A clear example is the utilization of ZK-SNARKS to obfuscate transaction data while making itverifiable tominers. In [135] this method is further extendedwith amechanism called HAWKthat allows for the obfuscation of code or state variables that should not be publicly visible.The findings of our research suggests that the inclusion of a pattern to govern the readabilityof transactions and potentially smart contracts themselves would be an invaluable additionfor public blockchains as of now this specification is not available for Ethereum. Likewise,Drummer and Neumann [74] found that the absence of such options hamper the adoptionof smart contracts.
Ultimately the goal of creating a platform agnostic model of the smart contract is to trans-form it into a platform specific model, and subsequently generate code using this model.The transformation requires a platform specific metamodel for each targeted platform thatled to the following requirement:
Requirement 6: The method needs to cater for the creation of smart contracts on a specificplatform.
In order to satisfy this requirement a platform specific metamodel for Ethereum and hyper-ledger fabric smart contract is presented in Chapter 6. An important consideration that thisresearch lays bare is that the creation of the platform specific metamodels requires signif-icant expertise and time. At the time of writing a multitude of blockchain platforms existthat support smart contracts. A practical consideration is whether creating a metamodel foreach of these platforms is worthwhile. In some cases the time and costs associated with theconstruction of the metamodel outweigh the gains of doing so. Moreover, although thereare several smart contract supporting platforms at the moment, in the future only a smallselection of these platforms might remain in existence.

7.3 Limitations and Threats to Validity

Like any other study this research has limitations that will be discussed here. Employingthe guidelines by Wohlin et al. [269] again, the threats to the validity for this study wereidentified and are discussed in this section.
7.3.1 Internal Validity

First, in constructing the domain ontology presented in Chapter 5 we reviewed literature inthe field of legal requirements engineering, e-contracts and MAS. While we are confidentthat the number of works and the depth of our investigation covers most relevant conceptsfor legal contracts the search to identify studies is not conducted in a systematic fashion.Because of this method other important studies could potentially be overlooked, and thusnot included in the selected works. Consequently, some of the concepts presented in such

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 163PDF page: 163PDF page: 163PDF page: 163

Chapter 7. Discussion 149
works would not be included in this research. Likewise, studies that discussed the problemspresented in Chapter 5, Section 5.5 were not identified using a systematic search strategy.Another option is to carry out the searches following the approach presented in Chapter 2.
In attaining the concepts deemed relevant for the construction of the domain ontology weemployed a qualitative content analysis. An identical method has been used to flesh out theproblems related to smart legal contracts. Although qualitative content analysis providesa systematic method to analyze data, there are some factors that could have influences theoutcomes of the analysis. When employing a qualitative analysis method the unit of analysisis an important factor influencing the observations [137]. For the construction of the domainontology and when extracting problems a paragraph is adopted as the unit of analysis. Itis recommended that researchers use the smallest unit of analysis possible to get the mostdetailed analysis [137]. However, for this research we posit that paragraphs were the mostappropriate unit of analysis given that in most works entire paragraphs were dedicated toexplaining one concept. Thus, focusing on individual sentences might not yield the sameresults.
The second phase of the data analysis process to identify the problems related to smartlegal contracts and relevant concepts included open coding. Open coding in an inductiveprocess that requires interpretation from the researcher with regard to the object of study.Any researcher conducting such an analysis is prone to several bias that could influence theinterpretation of the data and thus the results. The same line of reasoning applies to therevision of the initial codes and the creation of the categories. However, the comparison inthe prior section of our work to that of Drummer and Neumann demonstrated that severalidentical problem were identified, albeit with a different category names. A potential threatto validity would be whether all relevant concepts were included in the model. Further ver-ification is needed to examine whether this is the case.
7.3.2 Construct Validity

Second, to construct the platform specificmetamodels for smart contracts therewas a coop-eration with several blockchain experts. An initial list of concepts was derived from existingliterature on the subject. The fields of BCT and blockchain smart contracts are still in theirinfancy as the review in Chapter 2 demonstrates. An inherent consequence of this statusmight be that not all blockchains are currently discussed in literature.
Questionnaires have been administered to the blockchain experts to gauge whether all con-cepts required for thesemetamodelswere identified, to identify aliases and to verifywhetherthe concepts are familiar. Although metrics like clarity, comprehensiveness, correctness,consistency and conciseness of the concepts used for the models have been assessed usingdifferent questions, the relationships between these concepts has not. Another approach isto like Holsapple and Joshi [114] present the models to the panelists.
In Chapter 5, the domain ontology is evaluated using a lease contract as a motivational ex-ample. Furthermore, the chapter also discusses the problems that arise when using smartlegal contracts. However, this research did not investigate whether factors like the type ofcontract or other contingencies influence the plausibility of employing smart legal contracts.
7.3.3 External validity

Third, there are some threats to the external validity of this study. The platform indepen-dent meta model presented in Chapter 6, Section 6.5.2 is based on the two most prominentblockchain platforms Ethereum and Hyperledger Fabric. However, as discussed in Chapter

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 164PDF page: 164PDF page: 164PDF page: 164

Chapter 7. Discussion 150
2 nowadays a myriad of blockchain platforms exist that cater for smart contracts. Giventhat the platform agnostic meta model presented in this research is constructed using theconcepts of these two platforms there might be concepts native to other platforms thatcannot be modeled using the current meta model. Further expansion and refinement ofthe platform independent metamodel based on research that includes more platforms iswarranted. Besides this consideration there are some limitations inherent to the use of theDelphi method for content evaluation. A Delphi method is suitable to explore novel phe-nomena with the help of a discrete group of experts. The method should be perceived asinductive [69]. Therefore, further deductive research among a broader group of experts isappropriate to gathered to strengthen the empirical evidence.
The domain ontology that is presented in Chapter 5 is constructed using concepts that arefound in legal requirements engineering, e-contracts, and multi-agent systems literature.However, something that remains to be tested is if the domain ontology is complete enoughto specify legal contracts in all legal traditions. For instance, does the ontology covers all con-cepts related to legal contracts in civil law versus common law. A more broad investigationwould be required to establish whether this holds true. It can be regarded as a limitationof this study that the domain ontology has not been evaluated content wise. Similar to theplatform agnostic smart contract metamodel, a future evaluation of the domain ontology isan important second step towards the refinement of the domain ontology. Such an effortwould require a group of legal experts with a diverse background that practice law in sev-eral legal traditions. Given the time-scope for this research assembling a group of said legalexperts was deemed not feasible.

7.4 A Research Agenda for Smart Legal Contracts

The research conducted for this dissertation answers some important questions about thepotential of smart legal contracts to constitute to a legally binding and enforceable legalcontract. Despite the fact that this research demonstrates that smart legal contracts havethis potential, like all studies it is not without limitations. These limitations are interestingvenues for future research. Besides answering questions, in tandem this research raisessome novel questions that future research can investigate. This section points out severalopportunities for future research from a legal, technical, and business perspective.
7.4.1 Legal Research Opportunities

We hope that the ontology presented in this dissertation is the starting point of a discussionbetween legal scholars and smart contract developers. To further validate whether the con-cepts used for our domain ontology are rooted in practice, legal experts should be engagedin the further development of the domain ontology. As far as we are aware of none of therelated works reviewed in Chapter 5 has involved domain experts in the creation of theirmodels. Another interesting question that future studies can address is whether there is adifference between the concepts used in legal contracts based on the civil versus commonlaw tradition.
In the prior section it is discussed that assets, clauses, and actions are actually umbrellaterms that encompass a wide variety of more specific assets, actions and clauses types. Thedomain ontology presented in this dissertation includes a generic class for each of these.However, the plurality of asset, clause and action types need to be fleshed out so it becomesclear what options there are and how they should be implemented. Some attempts have

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 165PDF page: 165PDF page: 165PDF page: 165

Chapter 7. Discussion 151
been made by practitioners using NLP techniques4. Similar, there is no clear overview of theactions used to denote (conditional) promises to perform or how they could potentially begrouped by semantic equivalence. Future research could focus on identifying the types ofclauses and promises to perform used by legal practitioners.
Another aspect this research has not touched upon is the invaluable yet equally importantmatter of how to ease the specification process for legal experts. Assuming that the domainontology presented in Chapter 5 eventually encompasses all relevant concepts, legal profes-sionals have to work with the tool presented in Section 5.8 to indicate the concepts that theyare using for the smart legal contract that they are drafting. Further evaluation is required toinvestigate whether this tooling is sufficient to stipulate several types of legal contracts. Theevaluation of the legal tool could be carried out by letting legal professionals stipulate severallegal contracts (e.g., insurance contracts, buyer-supplier contracts and temporary employ-ment contracts) using the tool. Semi-structured interviews could be conducted thereafterto ask the legal professionals their opinion about the tool. These interviews can also serveto gather data on current the current functionalities of the tool, and to gather additionalrequirements.
Although the tooling would allow legal professionals to define their smart legal contracts,gathering legal requirements for a software program and by extension, requirements fora contract is a time consuming and arduous process [125]. Some research [132, 237] hasintroduced automated approaches to gather legal requirements that might greatly increasethe ease and speed of gathering requirements for smart legal contracts. However, of therelated practitioners’ projects or the scholarly works none provides a specification of howtheir models are populated.
7.4.2 Technical Research Opportunities

A limitation of this research is that in this research two blockchain platforms are discussedand platform specificmetamodels thereof presented. The field of BCT and smart contracts israpidly advancing and changing. Since the introduction of EthereumandHyperledger severalother blockchain platforms have been established. Future research could develop platformspecific metamodels for blockchain platforms other than Hyperledger and Ethereum. Oncethe platform specific metamodels have been constructed, then an evaluation could be con-ducted to determine if the platform independent metamodel can be employed to abstractsmart contracts for other blockchain platforms. Developers would greatly benefit from theknowledge and perspective such an inquiry would yield.
Although blockchains are considered to be a self-contained system, in practice connectingsmart contracts to oracles and other blockchains is required to get important data from out-side of the system. The smart contract models presented in this research did not include anyconcepts related to oracles, or take into account the possibility of cross-chain transactions.Further investigation is required to determine which concepts need to be included in themodels to enable the retrieval of data from oracles, and cross-chain communication. Mam-madzada et al. [169] provide an interesting overview and framework of blockchain oraclesthat could serve as the foundation for the analysis of what code patterns would be neededto integrate the different types of oracles. The works by Lo et al. [159] and Sheldon [229]could be used to assess potential vulnerabilities in the code patterns.
4See LawInsider https://www.lawinsider.com/clauses for an example.

https://www.lawinsider.com/clauses

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 166PDF page: 166PDF page: 166PDF page: 166

Chapter 7. Discussion 152
A review by Belchior et al. [28] provides an excellent starting point for comparison betweenseven different cross-chain communicationmethods. Future research endeavours could fur-ther examinewhich cross-chain communicationmethod is supportedby a specific blockchain.This examination can serve to create novel concepts related to cross-chain communicationand stipulate constraints to extend the smart contract models. In the same vein, other ar-chitectural options could also be further explored to create a broader systems perspectivethat also includes off-chain components working in interplay with on-chain contracts. Whilecarrying out this exploration an emphasis should be placed on the integration of decision-making options with regard to which components are off and on chain.
The blockchain and smart contract models presented in this research are to be used in com-bination with a tool that supports and eases the process of writing smart contracts. A lim-itation of this research is that the user friendliness of the tool has not yet been evaluated.Future research endeavors could engage smart contract developers in the further develop-ment of the tool to evaluate the user friendliness of the tool. A manner to further evaluatethe user friendliness of the tool is to invite several smart contract developers to model a setof use cases. Tomake a solid comparison possible, these use cases could include well-knownsmart contract examples like a Solidity Simple Storage5 contract, Open Auction smart con-tract6, and the Hyperledger format for the Non-Fungible ERC-721 standardized token7. Af-ter the modeling experiment semi-structured interviews could be organized with the smartcontract developers to ask their opinion about the tool. The results obtained through theseinterviews can be employed to assess the user friendliness of the tool, and gather furtheruser and functional requirements.
The tool itself is used to generate smart contract code for a specific platform. Novel researchis required to determine howwell the code works based on a specific of criteria. Existing for-mal verification methods to evaluate access control to an Ethereum smart contract [225],and methods based on automated test-case generation for smart contract code [73] are inparticular useful when assessing such criteria. Other works are instrumental to evaluatethe performance of the code generated for Hyperledger smart contracts [81] and potentialvulnerabilities [279]. Such an inquiry should also consider howwell any code patterns devel-oped to address the issues related to smart legal contractswork as a solution froma technicaland legal perspective.
7.4.3 Business Research Opportunities

The discussion in Section 7.2.3 highlights that there might be several factors that determinewhether a smart legal contract can be used instead, or in tandem with a legal contract. Lu-mineau, Wang, and Schilke [161] suggest that one of these factors could be codifiability, thatis whether it is possible to structure information or knowledge into code. An important otherfactor could be whether the contingencies in a legal contract that are known in advance. Allconditions in a smart legal contract need to be known a priori to their deployment and there-fore so must all contingencies related to these conditions. Future research could furtherinvestigate when to pursue smart contracts.
Even if it is technically possible to pursue smart legal contracts theremight be economic con-siderations to take into account when deciding to do so. As discussed in Chapter 5 in Section5.5, there are many problems when translating legal contracts in smart contracts. Althoughthese problems could potentially be remedied by the introduction of novel mechanisms, this
5https://docs.soliditylang.org/en/v0.4.24/introduction-to-smart-contracts.html6https://docs.soliditylang.org/en/v0.5.2/solidity-by-example.html7https://hyperledger.github.io/firefly/tutorials/tokens/erc721.html

https://docs.soliditylang.org/en/v0.4.24/introduction-to-smart-contracts.html
https://docs.soliditylang.org/en/v0.5.2/solidity-by-example.html
https://hyperledger.github.io/firefly/tutorials/tokens/erc721.html

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 167PDF page: 167PDF page: 167PDF page: 167

Chapter 7. Discussion 153
would require the inclusion of additional code in the smart contract. Each execution step thatthe smart contract has to perform increases the cost of its execution. Moreover, even whensmart contract development tools become widely available it is likely that a smart contractdeveloper will still have to review the code. As a result, when parties employ a smart legalcontract to govern their transactions, theymight incur considerable costs for their execution.This raises the question whether it is worthwhile, and if so under which circumstances, toemploy smart legal contracts. The transaction cost theory [268] may be of great assistancein answering these questions.
Blockchain and by extension smart contracts may be a completely novel way of organizingcollaborations and to govern transactions [161]. While smart legal contracts can rigidly en-force conditions like a legal contract, fostering relationships is another important functionof a legal contract (See Section 7.2.3). The question remains how well smart legal contractsmay fulfill this function. Furthermore, parties may resort to relational mechanisms to com-plement their legal contracts. Little is known hitherto about the implications of using smartlegal contracts in concert with these relational mechanisms.

7.5 Conclusion

The current research sets out to answer one main research question: How can smart legalcontracts be developed in a manner that constitutes to a legally binding contract, and thatcan enforce their terms and conditions within that contract, regardless of the blockchainplatform. Taking into consideration the requirements that are formulated in Chapter 1, Sec-tion 1.5.2 this study sets out investigate a method that allows for the design smart legal con-tracts. From the discussion in this chapter and thus the overall research we can draw severalconclusions.
Firstly, we posit thatMDA is a suitable philosophy to develop smart legal contracts. TheMDAphilosophy allows for the generation of platform agnostic smart contract code by employ-ing transformations between models thus satisfying requirement 5 while also addressingrequirement 6. The transformation from the concepts in the domain ontology present inchapter 5.7 is more problematic, and results in our second observation. Secondly, we ob-serve that problems related to using smart legal contracts to either complement or replacelegal contracts predominantly emerge during two life cycle phases of a smart legal contract.The first set of problems arise when translating concepts of a legal contract to smart con-tract code. During the construction of the domain ontology we found that generic conceptsin legal contracts like actions, clauses and assets can cover most part of the translation froma legal contract. However, we also found that several types of modalities, actions, assets andclauses should be discerned. Each class of these concepts requires a different code patternfor each of their respective types. The second set of problems emerge during the monitor-ing and enforcement phase of the smart legal contract. A noteworthy observation from thediscussion in this chapter is that some problems like what actions the smart contract shouldmonitor have relation to the first set of problems occurring during translation. The secondobservation that wemake with regard to letting smart legal contracts enforce legal contractsis that especially once disputes arise, or when the contract is breached currently there arefew code patterns that cater for such events.
Thirdly, the results of our study demonstrate that the development of platform agnosticsmart contracts is feasible yet hard to achieve. For our research we reconciled conceptsthat are used to write Ethereum and Hyperledger smart contracts into one platform agnos-tic metamodel. What strongly sets Ethereum and Hyperledger Fabric smart contracts apartis the manner that both platforms have implemented the notion of access control and data

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 168PDF page: 168PDF page: 168PDF page: 168

Chapter 7. Discussion 154
privacy. Although it is possible when writing Ethereum smart contracts to specify whom caninteract with a set of functions, there is no direct method to guarantee the privacy of thecode or of the transactions resulting from the execution of the smart contract. In contrast,for smart contracts these options are available to users. The literature review in Chapter2 shows however, that ZK-SNARKS are further being developed to remedy these problemsfor Ethereum smart contracts. An important consideration that this research presents iswhether it is worthwhile to develop a platform specificmetamodel for all smart contract sup-porting blockchain platforms currently in existence. We experienced that creating a smartcontract metamodel requires vast amounts of expertise and time.
Fourth, achieving full traceability as stipulated in Requirement 4 could be fully addressedby designing routines that resolve potential translation and runtime problems. However,working out and constructing routines or mechanisms requires additional multidisciplinaryresearch efforts that demand the involvement of several stakeholder groups and thus is fornow beyond the scope of this research. We would however, like to emphasize that someinvaluable efforts have already been undertaken in this direction. In section 7.4 we suggestthat scholars and practitioners should focus future research on devising such mechanismsor routines.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 169PDF page: 169PDF page: 169PDF page: 169

155

Chapter 8

Conclusion

8.1 Introduction

The final chapter of this dissertation draws conclusions on the findings and discussion weconducted. This chapter is hereafter organized as follows: Firstly, the chapter will recap theresearch conducted for this dissertation in light of the purposewe have defined and highlightmain observations. Thereafter in the second section (Section 8.3) we state the theoreticalcontributions of this research. Continuing, Section 8.4 expounds the practical implicationsof this research.

8.2 Overview of the Research and Main Observations

The primary purpose of this research is to develop an understanding of whatmethodwouldfacilitate the development of smart legal contracts that are legally binding and can (partially)self-enforce conditions within a legal contract, regardless of the blockchain platform. In thisdissertation a method is presented for this purpose founded on the MDA philosophy. Inchapter 1 we argue why this study is warranted, and Section 1.5.2 further discusses the re-quirements for the method. Given that the problems identified for this research stem fromlegal and technical stakeholders, a solution requires to be satisfactory from both the legaland technical the perspective. There are a myriad of blockchain platforms that facilitate thedeployment of smart contracts. A review of the state-of-the-art reveals that most of not allmethods currently employed to develop smart legal contracts are focused on one blockchainplatform. Therefore, another requirement deemed appropriate for the method is that it en-ables the development of blockchain platform agnostic smart contracts. On the other hand,the method needs to facilitate the creation of a smart legal contract on a specific platform.Legal professionals most likely will not be able to understand code, and programmers mightnot have the required legal expertise to directly translate the legal requirements into code.Therefore, another important requirement for the method is that domain knowledge can bemade explicit so both groups of stakeholders can understand each other. The use of smartcontract within the legal domain introduces several challenges. Each of these challenges isrelated to distinct parts of a smart legal contracts’ life cycle.
In the second chapter the extant literature on BCT is discussed to create an understanding ofthe technology underpinning smart contracts. The chapter presents a FCA [175] that definesBCT, provides a systematic overview of the of the art concepts in the domain and distillsa grounded research roadmap. Using the well-known 4+1 software architecture viewpointframework [141], the architecture elements of BCT were fleshed out, specifically, our resultsrecap: (1) the way a platform can be designed: (2) how transactions are processed and,(3) the architectural arrangements typically used for the P2P network underlying BCT. The

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 170PDF page: 170PDF page: 170PDF page: 170

Chapter 8. Conclusion 156
chapter also expounds on the architecture properties of blockchain technology and theirtrade-offs. Data analysis reveals 8 coupled architectural characteristics — these propertiesare trade-offs exercised during blockchain architectural design. The fifth objective of theresearch conducted for the chapter was to identify the challenges for BCT. In the future,6 main challenges for blockchain technology need to be addressed: (1) decreasing latencyfor the conformation of transactions; (2) increasing the throughput of transactions which isrelated to the design of the consensus protocol; (3) decreasing data storage requirement; (4)protecting the privacy of blockchain users; (5) data governance of blockchain networks; (6)the usability of the technology. Finally, an analysis of the papers under review demonstratesthat there are four research gaps that need to be addressed by future research concerning:(1) consensus protocols, (2) Data privacy and storage, (3) smart contracts, and (4) the usabilityof blockchain for end users.
Further background on smart contracts is provided in chapter 3. The chapter exemplifiesthe use of smart contracts using a motivational example. From our investigation into smartcontract supporting blockchain architecture we can conclude that (1) smart contracts arestrongly tied to the infrastructure they are deployed on. The infrastructure usually consistsof six layers including: the infrastructure layer (blockchain), smart contract layer, businessservice layer, business transaction layer, business process layer and finally a business processlayer. (2) blockchains are self-contained systems that allow for the inclusion of some externaldata from Oracles. However, oracles introduce several problems when used. (3) most smartcontracts are currently employed for business transactions with a life-cycle different fromsmart legal contracts. This difference can be attributed to the fact that legal requirementsimply the inclusion of additional phases like a dispute resolution and termination phase. Inchapter 3 a case study further delineates the use of smart contracts for a simple transactionscenario. Something that can be observed from this case study is that most actions withinthe smart contracts are executed by human agents and not the smart contract.
Chapter 4.3 discusses the MDA philosophy that underpins the method presented in this dis-sertation. For the employment of MDA to develop software two metamodels are at leastneeded: (1) a platform agnostic model (2), and a platform specific model. The former allowsfor the abstraction of common concepts shared across platforms, regardless of the platform.A specification of a platform independent metamodel allows users to create PIM’s that cap-ture the design of their application from a platform independent perspective. The latterencompasses concepts that are used to write code for a specific platform. Transformationrules enable the transformation from the abstract platform independentmodel to a platformspecific model. Another optional third metamodel that can be used in concert with a PIMand PSM is one from a computation independent perspective. Several types of metamod-els are employed for this purpose like domain ideologies and domain models. Ultimatelyall of these models have the same aim of providing end-users a manner to stipulate a CIMthat depicts concepts relevant to their domain. Although employing MDA to develop soft-ware has its merits, we found that it also has some disadvantages. (1) models are simplifiedrepresentations of a certain reality. This simplification inherently results in a less detailed de-piction of that reality when developing software. (2) the modeling language used to modela metamodel determines the expressive power of that model. (3) Once the metamodels areconstructed developers can reap the benefits of the method. Initially however, a significantamount of expertise is required to create these models. (4) Although the number of toolsavailable forMDA has increased over time some caveats remain. For instance, tools to trans-form a CIM into a PIM are not supported. Despite these disadvantages our research suggeststhat employing the MDA philosophy to design smart contracts increases productivity andpromotes interoperability of models. Combined, these we thus formulate the propositions

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 171PDF page: 171PDF page: 171PDF page: 171

Chapter 8. Conclusion 157
that MDA increases productivity and promotes interoperability of models when developingsmart contracts.
In chapter 5 a domain ontology for smart legal contracts is presented that can be used tospecify the design of a smart contract. By reviewing the extant literature on legal require-ments engineering, MAS and e-contracts we have identified several concepts required tomodel smart legal contracts. Examples of these concepts are the notion of a contract, be-tween party’s that own assets. Clauses govern the behavior of the party’s and contain the(conditional) promises that the parties agreed upon to perform. Each promise must be per-formed by a party by undertaking an action. The domain ontology is not without limitations.Several types of assets, clauses, action groups can be discerned. However, the current studydoes not provide an extant or exhaustive list of types for each of these concepts. Besidesthese limitations the ontology currently lacks the possibility to specify that a certain agent isauthorized to perform an action. Scholars and practitioners have suggested that employingsmart contracts to represent legal contracts introduces several challenges. Being aware ofthese challenges, this dissertation presents a total of 21 challenges that are identified througha literature review. In turn, these challenges are coupled directly to concepts of the domainontology. The discussion in Section 7.2.3 suggests that these challenges are not easily toovercome as it is difficult to codify them, meaning to structure them into code. This leadsus formulate the research proposition that legal contracts with a lower codifiability, are lesssuitable to translate into a smart legal contract. This same discussion also prompted us toformulate the proposition that when less contingencies are specified in a legal contract, theless suitable it is to translate it into a smart legal contract.
Chapter 6 presents a platform specific model for the two most prominent blockchain plat-forms: Ethereum and Hyperledger Fabric. Following a collaborative method, we developedthe platform specific metamodels for these platforms with the help of 11 blockchain experts.During several consecutive rounds in a Delphi study, we identified all relevant concepts re-quires to build the platform specific metamodels. Thereafter the research has set out to cre-ate a PIM based on the commonalities between the concepts that both platforms use. Thecomparison identified a large set of commonalities. However, some distinctions were alsoidentified. Among these distinctions is the difference how user interaction with the smartcontracts is restricted by preconditions. Whereas Ethereum is a public blockchain meaningthat transactions and smart contracts can be publicly audited and actions be performed byanyone, Hyperledger Fabric smart contract developers can restrict the operations of a userdepending on their role. Examples of these operations are creating new assets, update thestate of an asset, or restricting the visibility of a transaction. Another dissimilarity betweenthe platforms is the manner smart contract can obtain data concerning their own state(s) orthat of the blockchain. The chapter demonstrates that the design principles of private andpublic blockchain platforms that support smart contracts can be reconciled into a PIM.

8.3 Theoretical Contributions

The the findings of this research suggest that MDA is a method suitable for the developmentof smart legal contracts. When developing software based on the MDA philosophy meta-models are required to enable the translation process. The creation of these models hasyielded interesting theoretical insights that can be employed to advance our knowledge onBCT and smart contracts. From a theoretical perspective, this research contributes to thetheoretical bases of blockchain and smart contract literature in several ways:

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 172PDF page: 172PDF page: 172PDF page: 172

Chapter 8. Conclusion 158
First, in Chapter 2 we systematically review the extant literature to create an understandingof BCT architecture. This understanding aids in theorizing blockchain architecture and identi-fying commonalities between different blockchains. Furthermore, we discuss the challengesand characteristics of the technology. Identifying the challenges raises awareness on the po-tential challenges that BCT faces. By determining challenges and characteristics in concertsome important trade-offs emerge. Information with regard to these trade-offs can be em-ployed to inform future research. In addition, the chapter provides a research roadmap thatassists practitioners and scholars in addressing current research gaps.
Second, understanding the relation between BCT and smart contracts is pivotal as the for-mer providing the infrastructure underpinning the latter. In Chapter 3 of the dissertationthis relation is further clarified and exemplified. The relation is clarified by presenting anddiscussing the layered architecture of BCT and how it supports smart contracts to enhancethe present knowledge on the topic. The discussion of the architecture offers researchers anintegrated perspective on smart contract supporting blockchain architecture. By further ex-plaining themachinations of smart contracts using a case studywe provide a practical insightinto the use of the technology.
Third, this work presents a domain ontology that can be used for several types of legal con-tracts. Therefore the domain ontology provides the foundation for a unified perspective onsmart legal contracts. We argue that a unified perspective allows formore abstract reasoningon the use of smart legal contracts in legal practice. Furthermore, by providing this unifiedview a common understanding of the domain is cultivatedwithin otherwise desperate fields.
Fourth, the disciplines of computer science and law are complex an both have their ownnomenclature [57]. The ontology enables programmers and legal professionals to commu-nicate with one another by providing a lingua franca for the domain. Therefore the ontologyeases and enables the communication of advances in research among the disciplines. Cru-cially the ontology serves as a stepping stone for further inter-disciplinary research that inthe past has hampered similar efforts.
Fifth, even though prior work has addressed the issues of understandability or made ef-forts to provide a faithful representation of legal concepts, legal realism is still lacking. Legalscholars have espoused various problemswhen translating legislature to code [125], or morespecifically legal contracts to smart contracts [74]. In the works most related to ours theseproblems are not taken into consideration. Indeed, most practitioners and scholars that ad-vocate the idea of smart contracts assume that it is always possible to draft complete and un-ambiguous contracts [179]. Contrary to prior literature we acknowledge the existence theseproblems and relate them to the concepts of the ontology presented in this study. By layingbare the legal challenges related to smart legal contracts, the ontology aids practitioners inpredicting, addressing, and specifying potential issues. Besides, researchers will be betterable to direct their research efforts towards solving these problems as they are explicit.
Sixth, the platform independent metamodel in chapter 6 provides an overview of smartcontracts that goes beyond piecemeal initiatives to investigate the inner workings of smartcontract for a specific platform. By identifying the shared commonalities of smart contractsupporting blockchain platforms this work contributes to an understanding of a generic per-spective on the matter. Generalization enables further theorizing of smart contracts andthus easing the identification of problems across platforms.
Seventh, in spite of its limitations, the study adds to our understanding of the limitationsand problems related to employing smart legal contracts for legal contracts. The combina-tion of models in this work delineates a potential method to develop smart legal contractsthat sheds a light how this could be achieved. The emerging limitations and gaps that this

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 173PDF page: 173PDF page: 173PDF page: 173

Chapter 8. Conclusion 159
research has are employed to suggest a framework for future research that we hope invokesa call to action.

8.4 Practical Contributions and Implications

From the results of this study, we also identify some practical implications. An importantpractical implication of using blockchain and smart contracts is that parties no longer rely onthrusted third parties to execute their transactions, but algorithms and code. Consequently,if the parties do not trust blockchain technology or smart contracts they will most likely re-frain from using it. Widespread adoption of smart contracts will only take place once partiesand other stakeholders that operate on behalf of these parties trust the technology. How-ever, as Al Khalil et al. [3] suggest, trust in smart contracts is a process as well. This researchcontributes to the growth of this trust in several ways.
The disciplines of computer science and law are complex an both have their own nomen-clature [57]. Our work presents a domain ontology that can be used for several types ofcontracts. One the practical contributions of this work is that the ontology enables pro-grammers and legal professionals to communicate with one another by providing a commonunderstanding of the domain. We hope that this common understanding will enhance themutual trust between legal experts and programmers. However, one implication for practicethat this research lays bare is that to further the development of smart legal contracts in thefuture far more cooperation between legal experts and programmers is needed to furtherfoster trust.
Legal experts need to trust the ontology to be sound and relevant for their work. Therefore,it is important to engage legal experts in future development efforts. Besides that, engaginglegal experts in the development process further enrich the ontologywith relevant concepts,it might also lead to a stronger support base and thus broader adoption of the ontology. Abroad adoption of the ontology is needed if smart legal contracts are to be accepted as a(partial) legitimate substitute for legal contracts used nowadays.
A domain ontology with a strong support base among legal experts, offers a solid founda-tion for the realization of standards. Standards are crucial foster trust among users. Mostblockchain platforms openly discuss proposals for standardization and anyone is welcome tosubmit a proposal 1. We also note that disparate fields have addressed different aspects of e-contracting. This has led to a fractured perspective on electronic contracting and the require-ments thereof. In the same vein, hitherto three noticeable but disparate efforts have beenmade to standardize smart legal contracts. Among these are the Common Accord project,Accord project and the work of Ladleif and Weske [150]. A unified research effort directedtowards the development of a standard for smart legal contracts that can be implementedacross platforms is needed. This is important as without a unified standard organizationsmay be inclined to postpone the adoption of smart legal contracts until a dominant designhas established itself [74]. The models presented in this thesis present the first step towardthis standardization.
Even though prior work has addressed the issues of understandability or made efforts toprovide a faithful representation of the concepts used in legal contract, legal realism is stilllacking. Legal scholars have espoused various problemswhen translating legislature to code,or more specifically legal contracts to smart contracts. Contrary to prior literature we ac-knowledge the existence these problems and relate them to the concepts of the ontology
1See for instance the Ethereum EIP site where proposals are discussed, and the site where Bitcoin proposals arediscussed.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 174PDF page: 174PDF page: 174PDF page: 174

Chapter 8. Conclusion 160
presented in this study. By laying bare the legal challenges related to smart legal contracts,the ontology aids practitioners in predicting, addressing, and specifying potential issues. Ul-timately, this makes for more realistic and trustworthy smart legal contracts.
Other practical contributions of this study are the platform agnostic metamodel for smartcontracts and the platform specific metamodels for the Ethereum and Hyperledger Fabricplatforms. The insights that are obtained by creating these models show that most conceptsfor both platforms can be reconciled into one platform agnostic metamodel. From a practi-cal perspective this means that although programmers need to learn distinct programminglanguages to write smart contracts for these platforms the concepts employed are similar.The differences between the platforms that we identified also provide useful insights forpractice. When coding smart contracts for the Ethereum platform developers will have todefine their own access control rules to restrict and enable access to a smart contracts’ oper-ations. These aspects are more easily defined for Hyperledger Fabric smart contracts yet asour research shows the blockchain onwhich the smart contract is deployed ismore complex.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 175PDF page: 175PDF page: 175PDF page: 175

161

Appendix A

Research Methodology Blockchain Technology

This appendix provides a full description of the methodology used to attain the results pre-sented in Chapter 2.

A.1 Formal Concept Analysis Methodology

For this researchwe aim to define BCT froma software architecture perspective based on theextant literature (as stated in research question 1). Hence, the objects used for conductingthe FCA were all GL and SL items selected for this study. We first selected the definition ofsoftware architecture provided by Bass, Clements, and Kazman [25]:
"The software architecture of a system is the structure or structures of the sys-tem, which comprise software elements, the externally visible properties ofthose elements, and the relationships among them."

We have perceived software elements as the main attributes of BCT. The FCA has been con-ducted in the following steps:
1. Each selected item has been reviewed to identify all software elements of BCT (e.g.nodes and block) stated in the introduction or background sections using the codesthat were generated during the open coding process of the GT approach.2. Whenever a software element was identified it was given a specific code (BCTEL).3. All of the identified software elements were identified for the FCA were placed in amatrix. The rows of the matrix represented the GL and SL items whereas the columnsrepresented the software elements that were identified in these items. If one of theitems described a particular software element an X was placed in the correspondingcell.4. From the analysis a pattern of 10 attributes emerged that were most recurring. Theseattributes have been used to construct a definition of BCT.

A.2 Grounded Theory Analysis Method

Our GT coding process encompassed the following phases:
1. Open coding - (four phases). During the first phase of the open coding we have con-ducted a pilot study: Fifteen primary studies form the selected items have been ran-domly selected to establish an initial set of codes using open coding. A second passhas been made on the pilot papers to generate a final list of codes, in order to mini-mize inconsistencies during the coding process. In the second phase, using the priorlyestablished set of codes, an initial theory about the relation between codes has beendeveloped based on the pilot study. The third phase consists of constant comparison:

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 176PDF page: 176PDF page: 176PDF page: 176

Appendix A. Research Methodology Blockchain Technology 162
the pilot study initially generated 266 codes. Next, these initial codes were organizedinto a hierarchy of codes based on emerging relations between concepts. The result-ing structured start-up list of codes was used to code the remainder of the primarypapers. The coding has been executed in parallel by two different coders, over twoequally divided splits, to ensure avoidance of observer bias. Each primary paper hasbeen analyzed line by line with the list of codes. Codes were applied if they reflecteda concept in a paragraph. For example, the paragraph: "An important component of
the blockchain technology is the use of cryptographic hash functions for many oper-
ations, such as hashing the content of a block. Hashing is a method of calculating a
relatively unique fixed-size output (called a message digest, or just digest) for an in-
put of nearly any size (e.g., a file, some text, or an image)." would be coded with thecode “FUNC-HASH", where FUNC denotes the code’s reference to functional aspectsof blockchains while the -HASH refers to a refinement of such functional aspects to re-fer to hash-functions, in the specific. The fourth phase, constant memoing, has beenconducted simultaneously with the third phase. During this phase we have kept notesto capture key messages, relations and observations on the analysed texts.

2. Axial coding - (two phases). In the first phase comparing the concepts coded has ledus to inductively generate relations among coded concepts (e.g. between consensusprotocols and blockchain challenges); For the second phase, the definitions of all con-cepts coded have been compared with each other to identify aliases.
3. Selective coding - (three phases). The third step involved the selection and arrange-ment of codes to form a relationship model. As a first phase have we arranged thedata: Every portion of text that was coded with a certain code has been placed in atable. Each of these codes represented a core concept observed in the literature (e.g.consensus protocol, blockchain networks and applications). Next, in the second phasewe have modeled the data. The data was represented in a view consisting of severaldiagrams. Whenever possible these diagrams were connected to one another, result-ing in the construction of the views of BCT architecture. Finally, as part of this phase,the diagrams and all the data at hand has been analyzed and sorted to address theresearch questions behind this study.

A.3 Inter-rater process

The first two authors of this paper examined their inter-rater reliability via the following ap-proach: First, the inter-rater reliability of the assessment of the SL items was determined.The Krippendorff test revealed that there was 86% inter-rater agreement (α 86%). Second,another Krippendorff α test was employed to determine the inter-rater reliability betweenboth observers with regard to the in- and exclusion criteria for GL. The resulting K-α statistic(α 93%) showed that there was a high inter-rater agreement on the exclusion and inclusionof GL items. Third, an inter-rater reliability of the analysis that was conducted concerningthe quality of the GL studies was tested using a Krippendorff α test. The results of the testindicated that there was a 99% agreement (α 99%) between both observers. Finally, thefindings presented in the sections hereafter were attained by adopting a thematic codingprocess. Therefore as a precautionary measure to avoid observer bias during the codingprocess we conducted an inter rater reliability assessment test to the codes that were ob-tained from the pilot study. The results of the Krippendorff’s α test suggest that there was

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 177PDF page: 177PDF page: 177PDF page: 177

Appendix A. Research Methodology Blockchain Technology 163
a 69% agreement between the observers. Because this result was bellow the commonly ac-cepted threshold of an α of 80%, the first two authors deliberated over the differences toform one consistent initial coding set.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 178PDF page: 178PDF page: 178PDF page: 178

164

Appendix B

A 4+1 Architectural View of Blockchain Technology

This appendix contains additional material that has beenwritten for the research concerningthe architectural design of blockchains. Taking on different perspectives the viewpoints of ablockchain architecture are discussed in this Appendix.

B.1 A 4+1 View of Blockchain Technology

B.1.1 Logical View

The logical view emphasizes on the functional requirements and services the system shouldprovide to its end users [141]. Decomposition of the architecture aids in identifying the ele-ments that are common across the system. We used an ontology for BCT as proposed in [94,143] to organize the discussion of its main elements.
B.1.1.1 Transactions

Transactions in a blockchain system are executed using public key cryptography. Actors thatsend transactions between themselves and other beneficiary actors. Two pairs of keys areused to allow actors to interact with one another; a private and a public key that are math-ematically related to each other [14, 17, 53, 278].
Actors can use their secret private key to sign transactions, that are addressable on the net-work via their public key. Private keys are stored in software called a wallet that is installedon a hardware device. A wallet can also store public keys and associated addresses to sendtransactions to [189, 278, 280]. The public key is widely disseminated without reducing thesecurity of the transaction process [115, 278]. Public keys have various functions they areused to derive addresses and to verify the signatures generated with the private keys [181,278] (e.g., the Elliptic Curve Digital Signature Algorithm (ECDSA) [183, 254, 280]). A transac-tion transfers an amount of coins from one input address owned by the private key owner toone or several output addresses [219]. An address is created using the public key, the privatekey, and a cryptographic hash function [68].
Cryptographic Hash functions are used for the purpose of many operations, such as signingtransactions (SHA-256 in the Bitcoin case[188]). Hashing is the process of converting any dataof arbitrary size to data of fixed sizewhere the output is a bit-string known as the digest, hashvalue, hash code or hash sum [173, 189, 209, 278]. Tampering with the original transactiondata would immediately get noticed as the hash would differ from that previously generatedand recorded on the blockchain [14, 173, 189, 194]. Hash algorithms are generally designedto be one-way, meaning that one cannot compute and extract original data from a hash [14,173, 193, 278].

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 179PDF page: 179PDF page: 179PDF page: 179

Appendix B. A 4+1 Architectural View of Blockchain Technology 165
B.1.1.2 Nodes

The peers in the P2P network, also referred to as nodes are devices capable of processing andverifying transactions. Depending on the permissions all nodes or a specific subset of nodesvalidate transactions. The permissions, refer to the rights that are granted to the nodes in ablockchain network. There are three major types of permissions [112]: Read permission thatdictates which nodes can access the ledger and audit transactions, Write permission thatstipulates who can create transactions and broadcast them to the network, and Commit
permission that describe who can update the ledger. Some nodes may only have permis-sion to use the services in a blockchain network such as announcing an transaction, whileother nodes are permitted to propose to include certain unspent transactions in a block toupdate the ledger [212, 259, 272]. Other blockchains (e.g. MultiChain [97]) allow for morefine grained permissions, for example the permission to create assets [112, 231, 274, 278].
Updates and changes to the software of a blockchain are called forks [189, 278]. During themining process two miners might propose a block at the simultaneously. This type of forkcan be described as an accidental fork that stems from the probabilistic nature of the miningprocess [189]. To resolve the fork the miners as a rule follow the longest chain. The longestchain rule can also effectively be employed to invoke two other types of forks and proposeupdates to the blockchain [189]. The first of these types of forks is a hard fork.
A hard fork brings about updates to the BCT that prevents nodes that do not accept the forkfrom using the changed BCT or the nodes can continue to use the original protocol withoutthe update. Nodes that use dissimilar hard forks cannot interact. Structural changes to ablockchain requires hard fork [278] and can also effectively create a new blockchain [274].
The second type of fork is a soft fork. Only a super majority of nodes need to upgrade toimplement the novel rules stipulated by the soft fork. Nodes that did not update still acceptnewly created blocks as valid after the soft fork [18, 278]. At a later point in time the twochains are reconciled with one another. The possibility to make updates to a blockchain ordistributed ledger implies that there are also Update permissions.
There exists at least three categories of blockchain networks [274, 285]; Public, private, andconsortiumnetworks that have different arrangements in terms of their permissions. A nodethat has permissions and function to verify transactions that are executed on a private orconsortium blockchains is a validator [44, 62, 143, 193, 247]. On a public network a node canalso validate transactions by proposing blocks [72]. Nodes that fulfill the aforementioned arealso calledminers or forgers. Miners or forgers have two separate functions; (a) to correctlyconstruct and propose new blocks, and (b) to check the validity of the transactions in eachblock [163]. In the specific case of some blockchain platforms (e.g. Ethereum) that allowsfor the creation of smart contracts, miners, forgers and validators have the additional taskof executing the smart contracts to check for the validity of their outcomes.
B.1.1.3 Blocks

On a blockchain transactions are stored in blocks. Blocks can be divided into two parts [183,280, 282]; (1) a blockbody that contains the verified transaction data, which is recorded inthe form of a Merkle tree [274, 282], a Patricia Merkle tree [72, 93] or Bucket hash tree [72],and (2) a blockheader that specifies the elements required to guarantee safety. Rather thanstoring the hash of each transaction individually these are stored in a data structure knownas a Merkle tree to further diminish the storage requirements.
A Merkle tree combines the hash values of the transaction data by re-hashing them untilthere is a single root left which is called the root hash [72, 188, 278, 285]. Since the root

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 180PDF page: 180PDF page: 180PDF page: 180

Appendix B. A 4+1 Architectural View of Blockchain Technology 166
hash is a hash function it can be used as a mechanism to summarize transactions that havebeen stored in a block, any alterations to the underlying transactions would be detected[94, 274, 278]. Some blockchains employ other means of data structuring that also facilitatein capturing smart contract states besides transactions. For instance, Ethereum employs aPatricia merkle tree whose leaves record key-value states [72]. Hyperledger implements aBucket-Merkle tree that groups states into a pre-defined number of buckets [71]. The max-imum number of transactions that a block can contain depends on the block size and thetransaction size [183]. The blockheader encompasses six elements [115, 183, 282, 285]; (1)a root hash, (2) a block version number that specifies the software version of the block, (3)Blockheader hash of the previous block, (4) the timestamp of the block, (5) the difficulty(target) required to create the block and;(6) a nonce random number.
B.1.1.4 Chains

Each block is linked to its predecessor known as parent block by including its blockheaderhash to form an integral chain of blocks that can be traced back to the first, or genesis block.Hence the term "blockchain" technology. By hashing transactions and chaining all blocks toone another a blockchain provides a data model that allows to track all historical changes tothe distributed ledger. Moreover, by combining the hashing of transactions and the chainingof blocks the distributed ledger becomes tamper proof1.
Novel blocks are generated using a consensus protocol. Provided that the transactions in-cluded in the newly proposed block are valid, each new block enhances the security guaran-tees of the block before it [183, 188, 189]. The number of blocks in the chain between the lastcreated block and the genesis block is called the block height (So a genesis block has height0.). Because of the probabilistic nature of some consensus protocols (e.g. PoW and PoS) twominers can propose a valid block simultaneously; This can result in the situation where stale
blocks are created which will never be included in the longest chain, and can therefore beconsidered as wasted efforts [163]. The Ethereum platform refers to these blocks as uncle
blocks [61, 285]. Forks that occur accidentally or are invokedwith ill intend are resolved usinga fork choice rule function [212] (e.g. longest chain rule). Eventually, one of these chains willbecome the longest chain and the other shorter chains will be abandoned. Blocks that areincluded in the abandoned are colloquially known as orphan blocks [212, 259].
B.1.2 Development View

The deployment viewpoint defines how the various elements identified in the logical, pro-cess, and implementation viewpoints mapped onto the various nodes [141].
Every node in a blockchain network has two layers; an application layer and a blockchainlayer [277]. Therefore, there are two groups of developers to be considered: First, Devel-opers utilizing the services of a blockchain platforms (e.g. Bitcoin or Ethereum) to developdecentralized applications. Second, developers that seek to create a new blockchain plat-form.
B.1.2.1 DApp developers

The blockchain networks can be leveraged to build decentralized applications (DApps) thatuse their services. DApps are applications designed have a distributed nature as they arerun on a P2P network instead of one computer. At first sight a DApp looks similar to that
1According to Stark [243] this term needs to be qualified because there is a very high probabilistic guarantee thatthe data recorded on the blockchain is not changed.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 181PDF page: 181PDF page: 181PDF page: 181

Appendix B. A 4+1 Architectural View of Blockchain Technology 167
of a normal (web) application. Instead of using an API to connect to a database, a smartcontract will connect the DApp to the blockchain for all required information. The frontend of a DApp can therefore be regarded as a facade that allow users to interact with theservices providedby the blockchain platform. Using the smart contract services of blockchainnetworks such as Ethereum allows developers to create custom DApps suitable for a widerrange of applications. Developing a DApp might include coding a smart contract that needsto be compiled using a virtual machine that is offered by a blockchain platform. The finalstep is to deploy the smart contract on the blockchain network by using a wallet. Once thefinal step has taken place the DApp can interact with the blockchain platform by invokingsmart contracts.
B.1.2.2 Establishing the P2P network

Developers seeking to build their own blockchain platform have to program multiple soft-ware packages. Enabling transactions forms the basis for any blockchain network. A walletneeds to be programmed to allow clients of the platform to interact with other peers inthe network. In order for peers on the networks to interact they need to be knowledge-able about one another. Therefore there should be a address propagationmethod installed.Next the nodes need to connect via peer discovery. Peers of the Bitcoin network for instance,connect to each other over an unencrypted TCP channel. Every node keeps a list of IP ad-dresses associated with its connections since there is no authentication of nodes. However,for networks that consist of peers that already know each other a different approach to peerdiscovery might be possible. Another aspect is the mechanism for propagating transactions[33]. The Bitcoin uses a propagation mechanism where the nodes in the P2P network for-ward transactions to their neighbors (known nodes). Other platforms such as Ripple [226]use a pre-defined node list that a node must store to process transactions.
B.1.2.3 Data Model

Datawith regard to transactions can be stored in twoways: As a firstmethod, like the Bitcoin,one can choose to add data into transactions. Another second method is to add data intocontract storage like Ethereum [277]. The state of the distributed ledger is a collection of allthe accounts that have not been spend yet, referred to as the unspent transaction output
model (UTxO) [115, 285]. The Bitcoin can therefore be regarded as having a transaction basedmodel. Another choice that could be made is to offer smart contracts as a service. In theseinstances the transactions resulting from the execution of smart contracts need to be stored.Ethereumstores smart contracts in specific accounts using an account based datamodel [72].The state of transactions in the system are the changes of the complete contract storageexpressed as key-values [277]. Other platforms such as Hyperledger simply use key-values tostore data in Docker containers [72].
B.1.2.4 Consensus protocol

A consensus protocol can be regarded as a sequential set of steps that stipulate the rules ofengagement for the network to process transactions and smart contracts. Various consensusprotocols are available for this purpose with idiosyncratic properties in terms of throughput,latency and security. However, developers can also opt to design a novel consensus protocolfrom scratch. To verify transactions during a consensus protocol the wallet should be ableto import a copy of the distributed ledger. To compile the smart contracts written by usersof the platform into bytecode that can executed by the platform, the creation of a virtualmachine might be needed. This virtual machine is also used to verify the outcomes of the

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 182PDF page: 182PDF page: 182PDF page: 182

Appendix B. A 4+1 Architectural View of Blockchain Technology 168
execution of smart contracts. Platforms like Kadena use an interpreter language to writesmart contracts which makes a virtual machine redundant. Permissions should be allocatedand distributed among nodes to confine permissions of nodes to participate in the consensusprotocol if desired. A mechanism to distribute economic incentives need to be devised fornodes that verify transactions [183, 277, 282].
B.1.3 Process view

The process view specifies which thread of control execute the operations of the classesidentified in the logical view. It also takes into account non-functional requirements suchas performance and system availability. The consensus protocol is at the heart of all BCTprocesses since it allows for the enactment of transactions and ensures that the distributedledger remains consistent. Consensus protocols are discussed in chronological order.
B.1.3.1 Practical Byzantine Fault Tolerance

(PBFT). PBFT is mostly used in a private setting for permissioned blockchains because it as-sumes authenticated nodes [72, 274, 285]. The protocol itself is exclusively based on com-munication, and nodes go engage in multiple rounds of communication to reach consensus[72]. Nodes do not get a reward for achieving consensus, rather in the event of maliciousbehavior by an authenticated node it can be held legally accountable [112, 209]. A primaryleader nodemines the blocks. The leader can be changed by other nodes via a "view-change"voting protocol, in the occurrence of a crash or when it exhibits malicious behavior [53, 183].PBFT as has five phases to reach consensus [183]:
1. Request. A client sends a request for a transaction to a leader node, that accordinglygives the request a timestamp.
2. Pre-prepare. The leader node records the requestmessage and renders an order num-ber for it. Then the leader node broadcasts a pre-prepare message with a value to theother nodes. Initially the nodes decide on whether to accept the request or to rejectit.
3. Prepare. When a node decides to accept the request it broadcasts its values in theform of a message to other nodes. Nodes then receive prepare messages from oneanother. Once a node has collected sufficiently enough messages from other nodes(2f+1 messages), hence if a majority of nodes decides to accept the request, it willenter the commit phase.
4. Commit. All nodes that are involved in the commit state send a commit message tothe other nodes. Concurrently, if a node receives amessage of acceptance from 2/3 ofthe other nodes in the network a consensus has been reached to accept the request.Next, the node executes the instructions that are stated in the request message.
5. Reply. The nodes in the network reply to a request of a client. If a delay in the networkoccurs and the client did not receive a reply message, the request will be resend. Inthe case that the request did get executed the nodes in the network need to send areply message repeatedly.

The protocol require nodes to have a high degree of trust and is not suitable for permission-less blockchain. PBFT is purely communication based rather than on cryptographic primi-tives. Therefore, whenever an authenticated peer is attacked, the blockchain could easily bemanipulated [173]. PBFT does not scale well as executing the PBFT consensus protocol can

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 183PDF page: 183PDF page: 183PDF page: 183

Appendix B. A 4+1 Architectural View of Blockchain Technology 169
be time consuming. As more nodes join the network the latency increases and throughputdecreases [183].
B.1.3.2 Proof-of-Work

(PoW) is often referred to as the Nakamoto consensus protocol [121, 163, 164, 204]. Recentestimations indicate that the majority of public blockchains use PoW as their mechanism tocreate a consensus [71, 173]. Public blockchains need to have a high degree of Byzantine faulttolerance as users can not trust one another. The PoW consensus protocol is designed forthe case where there is little to no trust amongst users of the system [278]. Furthermore, itsafeguards against Sybil attacks which are common in open, decentralized environments inwhich a malicious actor can acquire multiple identities [71].
Consensus in PoW is achieved through a hashing competition between miners. Competingminers need to commit computing power to calculate the solution to the samemathematicalproblem. To incentivize miners to participate in the consensus process the miner that is thefirst to find the solution to the mathematical problem reserves the right to publish the nextblock, and is rewarded by an amount of cryptocurrency2 [36, 183, 274, 278]. In addition, theminer to win the competition with its peers is also be able to collect the transactions feesthat were paid by clients3.
Finding the solution to a PoW problem is a computationally arduous process for which thereare no shortcuts [189, 278]. The solution to the problem is hard to find, yet easy to checkonce they have been found [163]. Given that only one miner can win the competition andis rewarded the other nodes have simply wasted resources (CPU power and energy) in theirattempt [88, 183, 244, 274, 278]. In addition, because the difficulty of PoW problems in-creases over time makes it even harder to win the competition [278]. Some miners have asa result started collaborations called mining pools to address this problem. When partici-pating in mining pools miners combine their computing power and divide the work to findthe solution [247]. The rewards for proposing the next block are split based on each node’scontribution [121]. However, pooled mining could open the opportunity for a 51% attack if acartel of large mining pools were to control more than 50% of the hashrate [183, 247]. Thelarge accumulation and centralization of hashing power could constitute to a majority voteof miners which could endanger the integrity of the ledger. The steps in the mining processare as follows [84, 85]:

1. Get the difficulty. The difficulty of the PoW problem changes every epoch (fixed num-ber of blocks) and depends on the target that is generated for each block [85, 183, 278,287]. Therefore, a miner first needs to use a target recalculation algorithm to deter-mine the correct target for the problem, which depends on the hash rate of the wholenetwork. The hash rate is the number attempts required to solve the PoW [178, 183].
2. Collecting Unspent Transactions. All requested transactions that have not been pro-cessed since the generation of the last block are stalled in a transaction pool [212,278]. During mining, miners collect and verify all of the transactions that are kept inthe transaction pool and hash them to a root hash. To mine the block the miner alsoneeds to include the block version number, blockheader hash of the previous block,nonce random number and the target found during step 1 [183].

2In the case of Bitcoin the amount of cryptocurrency that is provided to miners for their services decreases tozero over time as it halved every 210,000 blocks [53]. From that point on, miners can only be compensated bytransaction fees alone [188]3Note that transaction fees are not obligated to execute Bitcoin transactions but rather have been paid by clientsto prioritize their transactions [247].

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 184PDF page: 184PDF page: 184PDF page: 184

Appendix B. A 4+1 Architectural View of Blockchain Technology 170
3. Calculating the blockheader hash. Next miners start their attempts to solve the math-ematical problem which comprises finding the correct nonce so that the double hash

value of the blockheader (SHA-2562) is equal to or smaller than the number of zeroes(target) that the network demands [53, 183].
4. Broadcasting the Block. If a miner has found the solution it is propagated along witha candidate block to the remaining nodes in the network.
5. Verification of the Block. Upon receiving a candidate block other nodes will check (a)whether the candidate block includes correct hash references to the previous blockon their chain and thus, the proposed nonce to solve the problem [189]. Further, (b)whether the block contains valid transactions by verifying the root hash [278]. If theblock is found to be valid nodes express their acceptance by appending the block totheir copy of the blockchain, and resend the block to other nodes. Finally, when aconsensus is reached by a majority of nodes in the network (51%) that the block isvalid it will be included in the chain of blocks.

Whenever a fork occursminerswill wait for longest chain to be formedby the addition of newblocks at the cost of high latency. The system is therefore designed under the presumptionof eventual reconciliation of the ledgers, which can be regarded as non deterministic [72].PoW ensures a high degree security as theoretically it has a byzantine fault tolerance of 51%[72, 89, 183]. Some scenarios to attack for PoW attacks have been identified such as a selfish
mining strategy. In this scenario when miners mine a correct block they do not propagateit. Rather, they privately mine blocks and hide them. The private branch of the chain willonly be revealed to other nodes under the right circumstances during which it can result ina higher of frequency of forks that pose a threat to the blockchains security [84, 89, 183].Another attack scenario is the verifiers dilemma [163] wherefore miners do not receive anyreward for validating the correctness of a block proposed by another miner. This is becauseit is assumed that the other miners want to maintain a correct blockchain so that the valueof the Bitcoin does not depreciate. However, this assumption creates a dilemma for minerswhether or not to actually check the validity of the transactions included in the block as theydo not receive any reward for doing so.
Most PoW consensus protocol variants have a low throughput [240]. This problem is furtheramplified because PoW based blockchains also has a relatively high latency (time it takes toconfirm the transactions) due to the fact that the block time interval is set at a fixed. This isbecause between the propagation of two blocks no transactions are being processed.
B.1.3.3 Proof-of-Elapsed Time

PoET is designed to address the inefficiency of PoW and replaces it with a protocol that isbased on trusted hardware. A node that uses trusted hardware however, can be checked forcertain properties such as whether it is running a certain software. This aids in relaxing thetrust model in settings were the Byzantine’s Generals Problem might be present [72].
Sawtooth Lake, a project by Hyperledger, leverages Intel’s Software Guard Extensions (SGX)to establish a validation lottery thatmakes use of their CPUs capability to render a timestampthat is cryptographically singed by the hardware [115]. The PoET consensus protocol used forHyperledger Sawtooth Lake is carried out in the following steps;

1. Requesting wait time. Every potential validator node request a secure waiting timefrom their hardware enclave that distributes these waiting times randomly. Then ev-ery node waits accordingly [177, 278]. The trusted hardware can afterwards producecertificates that indicate how much time has expired since the timer has started [72].

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 185PDF page: 185PDF page: 185PDF page: 185

Appendix B. A 4+1 Architectural View of Blockchain Technology 171
2. Election of Validation Leader After the assigned time has passed all nodes declarethemselves to be validation leaders. Whichever node has the shortest wait time fora particular transaction block is elected the leader [72, 115]. More specifically, thenode includes its PoET timestamp in the block, and if its waiting time is smaller thanthat generated by other nodes then the block is accepted [72]. Because each nodehas an equal chance of being chosen via their trusted hardware, the probability for asingle entity of controlling the validation leadership is proportional to the resourcescontributed to the overall network [44, 177].

The steps that follow are similar to that of PoW; the elected leader creates a block and broad-casts it, thereafter the other miners validate the block. The PoET protocol can be regardedas more environmental friendly. However, the probability of becoming validation leader isproportional to the number of trusted hardware modules, and therefore economic invest-ments still enhances one’s influence on the consensus protocol. Furthermore, the securityof the protocol is dependent on the hardware that could be running on a potential malicioushost. The SGX for instance, is susceptible to rollback attacks [38] wherein a malicious userprovides stale data to the trusted hardware’s enclave and key extraction attacks [49] wherean attacker leverages a vulnerability to extract attestation keys from SGX processors enablinga full break of the SGX [44].
B.1.3.4 Proof-of-Stake

As a response to the limitations of PoW the BCT community has turned towards Proof-of-Stake (PoS). The PoS consensus protocol has been introduced for public settings [183] withthe aim to safeguard against Sybil attacks and malicious behavior by untrusted nodes [72].The PoS protocol offers a more efficient and environmental friendly alternative to PoW ascomputing power is partially substituted by virtual resources (e.g. cryptocurrencies) thatminers must invest to propose blocks [88, 157, 244, 282]. Rather than using computer poweras a scarce resource to generate security, Proof of Stake uses the scarcity of the coin itself.Therefore nodes that participate in a PoS consensus protocol are more commonly referredto as forgers instead of miners [21, 158].
The idea behind the PoSmodel is that themore assets (e.g. cryptocurrency), or stake a nodehas, its incentive to undermine the system diminishes because subverting the system wouldinherently mean that the worth of the nodes’ stake would decrease [177, 278]. Logically, thisimplies that one cannot participate in the consensus protocol without owning a stake [88].A shared commonality of all PoS variants is that nodes that have more stake have a higherchance of generating new blocks [157, 183, 278, 285]. In other words, the more skin a forgerputs in the game the higher its reward will be.
Coin age based PoS is one of the earliest implementations of the PoS consensus protocolused by PeerCoin. Coin agemeans that besides its market value a currency has an age [183,285]. The accumulated time that a node holds his stake (currency) before using them togenerate a block [158]. When used to generate a block the age of a coin is reset to 0. Onlyafter a pre-determined time the coin can be used again as a stake to create a new block. Thecoin age system introduces the problem of coin hoarding which means that nodes do notspend their coins because they incentivized to hold on to them [183]. Rather than punishinginactive nodes, the Proof of Activity (PoA) protocol rewards stakeholders that contribute insustaining the network. For stakeholders to collect a block reward they need to spend activeonline time on the network [30].

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 186PDF page: 186PDF page: 186PDF page: 186

Appendix B. A 4+1 Architectural View of Blockchain Technology 172
Cryptocurrencies like Blackcoin and NXT use randomization to predict the next forger of ablock and do not rely on a mining process to create blocks. For these chain-based PoS vari-
ants an algorithmwill review all users that have a stake andmake a selection of the validatingnodes based on the nodes’ stake ratio compared to the entire system [278]. Although bothvariant of PoS to a degree succeed in decreasing energy waste, lowering latency and increas-ing throughput, Li et al. [158] suggest that both coin age based and the chain based variantof PoS have three security problems:
The first problem that corrodes the security is the nothing at stake problem. This attackcan be carried out because they only need to have a stake, but not to commit a partition ofthe stake for the sake of forging a block. A second problem is a stake grinding attack werean attacker tries to bias the randomness of the election to forge a new block in their favor.This attack can be mounted in two ways; Either the attacker can "grind" through many com-binations of parameters and find favorable parameters that would increase the probabilityof their coins generating a valid block. Or, the attacker can skip an opportunity to create ablock to provide the forger a greater opportunity to forge future blocks in next rounds. Thethird problem is the long range problem, sometimes referred to as a history attack. Someblockchain platforms secure their chains for long range attacks by implementing checkpoints.A checkpoint is a block after which all prior chained blocks are regarded as final and im-mutable and are hard-coded in the system’s software [158, 173]. Snow White based uponthe work of Pass and Shi [204] designed to maintain robustness even if nodes sporadicallyparticipate in the consensus protocol. Ouroboros protocol [130], proposes a novel reward-ing mechanism with the aim of increasing the incentive for nodes to behave honestly and todiminish the possibility of grinding attacks.
Byzantine fault tolerance PoS is a hybrid consensus protocol that combines the use of stakes(PoS) and aspects of the PBFT consensus protocol [274]. For instance, Tendermint adds amulti round voting system which makes the consensus protocol more complex. This PoSvariant allows all staked nodes to participate in the block selection process [278]:

1. Propose. An algorithm embedded in the blockchain platform will randomly select sev-eral nodes with a stake to propose a block in a round-robin fashion.
2. Prevote. All nodes with a stake are asked to cast their vote for the next block. Onlywhen 2/3 of all nodes vote to confirm the block can it continue to the precommit step
3. Precomit. In the Precommit stage nodes engage in another round of voting for whichyet again 2/3 of the nodes need to confirm the block to proceed to the next step.
4. Commit Once all votes have been casted and the block has been accepted it will beappended to the blockchain. A reward will be provided to the proposer of the block.

To overcome the nothing at stake problem the forgers are required to submit a deposit in theform of a stake to validate blocks. If forgers on purpose, or otherwise vote for blocks thatcontain invalid transactions their stake is slashed away anddestroyed [72, 115]. Deposit basedblockchain platforms have the problem that they lock down currency and thus decrease theliquidity of the network’s currency. Furthermore, there could be an incentive to propagateconflicting blocks in order to double spend if the value of these transactions surpass thevalue of the deposit made by the forger [158].
According to literature there is also some general fundamental critique on the design prin-ciples of PoS consensus protocols. Firstly, nodes with a higher stake have more chance ofmining a block [183, 278]. Furthermore, in PoS less energy is wasted and throughput and la-tency benefits are gained as compared to PoW. Yet, in essence PoS did not completely solvethe problem of resource wasting, concentration of hashing power besides low throughput,

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 187PDF page: 187PDF page: 187PDF page: 187

Appendix B. A 4+1 Architectural View of Blockchain Technology 173
and high latency. However, as themining costs are low attacksmight come as a consequencewhich can reduce the security [183].
B.1.3.5 Delegated-Proof-of-Stake

(DPoS) Delegated Proof-of-Stake introduces another variant of PoS [183, 285]. In DPoS stake-holders elect delegates, referred to as witnesses to forge and validate blocks in round-robinfashion [158]. The consensus protocol of BitShares is an example of DPoS that is divided intotwo parts: electing a group of block producers and scheduling production;
1. Vote for Witness. Each stakeholder can select a witness based on their stake. The topnumber of themost selectedwitnesses that have participated in the voting round gainthe authority to forge a block.
2. Thereafter the elected witnesses sequentially forge new blocks. A prerequisite is thatthe witness spends sufficiently enough time online. In the case a witness is unableto forge its assigned block stakeholders will vote for a new witness to substitute thedefaulting witness. Accordingly, the activities for that block will be moved to the next[183].

Compared to PoW and Pos, DPoS is more energy efficient. Further, because the voting aboutthe validity of a block is delegated and fewer nodes are needed to validate the blocks canbe confirmed more quickly. Hence, as compared to PoW and PoS, DPoS has a low latency.Moreover, parameters including block size and block intervals can be adjusted by committee
members of the governance board. When a delegate acts malicious this dishonest delegatecan be voted out by all the other nodes [158, 285].
B.1.3.6 Zero-Knowledge-Proofs

Recently, different Zero-Knowledge-Proofs (ZKP’s) based BCT networks have been proposedto preserve users’ anonymity and confidentiality of transactions [274]. In general, ZKP’s aimto confirm a statement about a transaction such as "This is a valid transaction" without re-vealing anything about the transfer (statement) itself or the parties involved [112, 274, 282].
Zerocoin was the first initiative with the aim of providing transaction unlinkability using ZKP’s[72]. Similar to the Bitcoin Zerocoin uses the PoW consensus protocol to validate transac-tions. A cryptographic mixer is implemented for Zerocoin to conceal the links between azerocoin and the corresponding Bitcoin. Mixing services group multiple transactions in sucha way that a payment contains several input addresses and several output addresses [274].When validating the transaction the miners do not have to verify the transaction with adigital signature, but rather validate whether coins belong to a list of valid coins [183]. Trans-action unlinkability is achieved because the coin exchanged by the zerocoin owner can beany of the listed zerocoins [72, 274]. A series of mixing service can be linked to one anotherto further improve transaction unlinkability. If the mixed transactions are equal in value thisfurther minimizes the traceability between the input and output addresses [274]. There are
centralized mixing services that require a third party to enact the mixing, and distributed
mixing services that do not require a third party to mix the coins. Coinshuffle [219] for in-stance, is a decentralized mixing protocol that is operated without any third party incurringonly small additional overhead. Despite the fact that the cryptographicmixer unlinks the ori-gins of the transactions to prevent transaction graph analysis the transactions’ destinationand amounts are still traceable [183].
Building on the ZKP approach as a foundation, Zcash, extent the privacy guarantees, andimprove the efficiency (throughput and latency) of Zerocoin. Zcash uses a variant of the

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 188PDF page: 188PDF page: 188PDF page: 188

Appendix B. A 4+1 Architectural View of Blockchain Technology 174
PoW called Equihash. Transactions made using Zcash, including the split and merge trans-actions, are fully private [72]. Zcash employs a technique called Zero-Knowledge-Succinct
Non-Interactive Argument of Knowledge (zk-SNARKS) to provide these privacy guarantees[183, 282] that are a specific type of ZKP. The transactions are based on a complex conceptof ZKP that reveal only that unredeemed coins exists the sumofwhich is a certain value otherinformation with regard to the origin and destination address will remain concealed [259].Blockchains that implement zk-SNARK techniques incur large overheads due to the fact thatZKP’s require public parameters that when stored can amount up to hundreds of megabytes[53, 72].
B.1.4 Physical View

The physical view is concerned with the topology of software components and their phys-ical connections. Electronic devices known as nodes constitute to a blockchains’ P2P net-work and are the only physical connection to the non-digital world. P2P networks on whichblockchain platforms are run have different arrangements; First, the network can be catego-rized on the basis of permissions (authorization). Second, networks can be categorized withregard to their accessibility. Permissions to perform operations on the blockchain might dif-fer ranging from allowing anyone to read, write and to partake in the consensus protocol toonly one of these permissions. Control over these permissions can be confined to a distinctgroup of nodes, or all nodes.
B.1.4.1 Permissionless Blockchain Models

As the name suggest Permissionless grant permission to all nodes in the P2P network toread and write transactions. By design permissionless blockchains are highly decentralizedplatforms, and permissions for all nodes are equal. These permissions were pre-definedwhen designing the blockchains architecture [272, 278]. Granting write and read permissionto all nodes that participate in the P2P network allows anyone to contribute data to thedistributed ledger, and obtain an identical copy of the ledger. It assures censorship resistance,preventing that an actor can block a valid transaction frombeing added to the ledger [88, 173,261]. Furthermore, since multiple nodes hold a copy of the ledger and are permitted to readthe transaction data, these systems are highly transparent [285]. Permissionless blockchainsare designed in this fashion to ensure that all participants in the network have a consistent
view of the distributed ledger [112]. The transparency of permissionless blockchains has atrade-off: It inherently means that individual nodes have less privacy with regards to theirtransactions. Currently most permissionless systems offer only pseudo anonymity, whichmeans that the individual users are anonymous but as their transactions are transparenttheir accounts are not [62, 189, 244, 259]. Indeed, the origins of a transaction and theirdestination can be revealed [33, 254], and some research even lay bare behavior of Bitcoinusers, how they spend their Bitcoins and the balance of Bitcoins they keep in their account.
However, permissionless blockchains ensures that transactions once recordedon their ledgersbecome nearly immutable [173]. Immutability means that transactions once recorded on thedistributed ledger can not be erased or changed [88, 243] and only novel transactions canbe appended [278]. A major drawback of permissionless systems is that in the event thatsecurity issues arise, or unauthorized transactions are executed, the response in the form ofan update might be slow due to the hampered decision making [173].

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 189PDF page: 189PDF page: 189PDF page: 189

Appendix B. A 4+1 Architectural View of Blockchain Technology 175
B.1.4.2 Permissioned Blockchain Models

Permissioned blockchain platforms have confined and idiosyncratic permissions for theirnodes [181, 231, 274, 278]. As such permissioned blockchain platforms offer high utility for or-ganizations that require control over important functions. However, privacy of transactionsis at the expense of immutability guarantees because confining the ability of every node towrite transactions creates censorship resistance, whereas limiting the read ability of nodesin the network compromises transparency [173]. Since this model also requires a single en-tity that regulates permissions that could become a potential target of a cyberattack itself[189]. Another advantage of permissionedmodels is that updating the blockchain can be del-egated to a select group of nodes. This reduces the time it will take to implement the update[44, 277]. In the event of any malfunctioning of the system the response time will thereforebe significantly lower as compared to permissionless systems where multiple nodes need tocome to an agreement.
The P2P network can also be described from the perspective of network accessibility. Inthe literature three categories of P2P networks can be distinguished that are coupled to apermission model introduced in the previous paragraph [44, 112, 143, 173, 274, 285].
B.1.4.3 Public Blockchain Networks

A Public blockchain, like the Bitcoin or Ethereum have open network access meaning thatanyone willing is allowed to join the network. Public blockchains have no single owner. Infact they can not be owned by one single entity [193, 278]. Therefore, these networks canbe regarded as decentralized [285]. Since the nodes do not know one another, they cannottrust each other [44, 244, 274]. This assumed trustless setting has important ramificationsfor the design of a public blockchains architecture [173]. For instance, Bitcoin was designedto assume that any node participating in the network needs to be distrusted, but the sys-tem will be secure for as long as the majority of nodes act honestly during the consensusprotocol [78]. The Bitcoin and other public blockchains have to employ a complex and com-putational expensive consensus protocol to incentivize and regulate cooperative behaviorbetween nodes [44, 71, 173]. Permissionless models are the hallmark of public blockchains[231]. The combination of open network access and a permissionless systems permits nodesthat are part of the P2P network to perform all operations available. Consequently, for publicblockchains transparency of transactions on the distributed ledger is paramount, and is assuch embedded in the blockchains architecture [112].
B.1.4.4 Private Blockchain Networks

Private blockchains are blockchains networks that are ownedbyoneorganization. Blockchainnetworks that have one or few owners, and for which the permissions of the blockchain arevetted by a confined group of nodes can be regarded as more centralized [285]. These typeof blockchains have limited network accesswhich allows access only for authenticated nodes[71, 173, 231]. One gatekeeper, or a selection of nodes might have the permission to grant ac-cess to the network [112]. Another option is that only predefined nodes that are white listedcan enter the network [53, 72, 272]. In essence, both options entail that before entering thenetwork nodes are authenticated [71, 231].
Private blockchain platforms require that an administrator, or administrators assign permis-sions to each unique node [278]. The chances of nodes actingmalicious aremitigated as theiridentity is known by the other nodes [173]. This does not imply however, that the nodes inthe private blockchain network can fully trust each other [72]. Because the identities of the

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 190PDF page: 190PDF page: 190PDF page: 190

Appendix B. A 4+1 Architectural View of Blockchain Technology 176
nodes are known, the risks of Sybil attacks are slim. Computational intensive (thus expen-sive) consensus algorithms such as PoW or PoS are therefore less needed for the system tobecome byzantine fault tolerant [53, 71, 189].
B.1.4.5 Consortium Blockchain Networks

Consortium blockchains are similar to private blockchains in the sense that nodes first needto be authenticated before granted access to the network. However, consortium blockchainsallow nodes from different organizations to access the blockchain network [183, 211, 274]. Inaddition, a consortium blockchain is usually owned by more than one entity. As such thedegree of openness and centralization of consortium blockchains lies between a private andpublic blockchain [183]. Within consortium blockchain P2P networks the consensus processis confined to specific participants [209, 274, 285]. The right to read transactions stored onthe blockchain network can be made public within the network, or restricted to a selectedgroup of nodes [173, 274]. Consortium blockchains can therefore be perceived as being par-
tially decentralized. Following similar reasoning as for private blockchain, the need for com-putationally expensive consensus algorithms is less present.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 191PDF page: 191PDF page: 191PDF page: 191

177

Appendix C

Example lease agreement

Lease Agreement

This Lease is made on 19th of July, 2021 between Bob Book, (hereafter called the Landlord)and John Doe, (hereafter called the Tenant).
1. PROPERTY:1.1. Tenant agrees to rent from the Landlord and Landlord agrees to rent to the Tenant Clock-street 12A, City of Chicago, State of Michigan hereafter referred to as the Premises.
2. TERM:2.1. The term of this lease is: of 2 Years starting on 1 January, 2021 and ending on 1 January,2023.2.2. The Landlord is not responsible if the Landlord cannot give the Tenant possession of thePremises at the start of this Lease.2.3. However, rent will only be charged from the date on which possession of the Premisesis made available to the Tenant.2.4. If the Landlord cannot give possession within 30 days after the starting date, the Tenantmay cancel this Lease.
3. RENT:3.1. The rent of the Premises will be $1000.3.2. The Tenant will pay the rent, in advance, on the 1st day of each month.3.3. The first payment of rent and any security deposit is due by 01 January, 2021 prior tomoving in.3.4. The Tenant must pay a late charge of $500 for each payment that is more than 30 dayslate.3.5. This charge is duewith and shall be considered to be a part of themonthly rent paymentfor the month in which the rent was paid late.
4. SECURITY DEPOSIT:4.1. The Tenant will deposit the sum of $2000 with the Landlord as security that the Tenantwill comply with all the terms of this Lease.4.2. This money is being held by the Landlord in a tenant security deposit account at AD-DRESS.4.3. If the Tenant complies with the terms of this Lease, the Landlord will return this depositwithin 30 days after the end of the Lease.4.4. The Landlord may use as much of the security deposit as necessary to pay for damagesresulting from the Tenant’s occupancy or, at Landlord’s sole option and election, to payfor delinquent or unpaid rent and late charges.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 192PDF page: 192PDF page: 192PDF page: 192

Appendix C. Example lease agreement 178
4.5. If the Landlord uses the deposit for such mentioned instances prior to the Lease termi-nation, the Landlord may demand that the Tenant replace the amount of the securitydeposit used by the Landlord.4.6. If the Landlord sells the property, the Landlord may transfer the deposit to the newowners for the Tenant’s benefit.4.7. If the Landlord sells the property and transfers the deposit to the new owners, TheLandlord will notify the Tenant of any sale and transfer of the deposit.4.8. The Landlord will thereupon be released of all liability to return the security deposit.
5. LANDLORD’S AGENT:5.1. The Landlord authorizes the following person(s) to manage the Premises on behalf ofthe Landlord: The Cleaning Company.
6. USE OF THE PREMISES:6.1. The Tenant may use the Premises only as a single-family residence.
7. UTILITIES:7.1. The Landlord will pay for the following utilities: Garbage Removal, Gas, and Oil.7.2. The Tenant will pay for the following utilities: Water, Sewer, and Electricity.
8. EVICTION:8.1. If the Tenant does not pay the rent within 60 days of the date when it is due, the Tenantmay be evicted.8.2. The Landlord may also evict the Tenant if the Tenant does not comply with all of theterms of this Lease, or for any other causes allowed by law.8.3. If evicted, the Tenant must continue to pay the rent during the remainder of the term.8.4. The Tenant must also pay all costs, including reasonable attorney fees, related to theeviction and the collection of any monies owed to the Landlord, along with the cost ofre-entering, re-renting, cleaning and repairing the Premises.8.5. Rent received from any new tenant during the remaining term of this lease will be ap-plied by the Landlord to reduce rent only, which may be owed by the Tenant.
9. PAYMENTS BY LANDLORD:9.1. If the Tenant fails to comply with the terms of this Lease, the Landlord may take anyrequired action and charge the cost, including reasonable attorney fees, to the Tenant.9.2. Failure to pay such costs upon demand is a violation of this Lease.
10. CARE OF THE PREMISES:10.1. The Tenant has examined the Premises, including (where applicable) the living quar-ters, all facilities, furniture and appliances, and is satisfied with its present physicalcondition.10.2. The Tenant agrees to maintain the Premises in as good condition as it is at the start ofthis Lease except for ordinary wear and tear.10.3. The Tenantmust pay for all repairs, replacements, anddamages, whether or not causedby the act or neglect of the Tenant.10.4. The Tenant will remove all of the Tenant’s property at the end of this Lease.10.5. Any property that is left becomes the property of the Landlord and may be thrownout.10.6. All of Tenant’S garbage will be disposed of properly by Tenant in the appropriate re-ceptacles for garbage collection.10.7. Accumulations of garbage in and around the Premises or depositing by Tenant or thoseresiding with Tenant of garbage in areas not designated and designed as garbage re-ceptacles shall constitute a violation of this lease.10.8. Tenant shall generally maintain the Premises in a neat and orderly condition.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 193PDF page: 193PDF page: 193PDF page: 193

Appendix C. Example lease agreement 179
10.9. Damageor destruction by Tenant, Tenant’s employees or Tenant’s visitors of the Premisesshall constitute a violation of this Lease.
11. DESTRUCTION OF Premises:11.1. If the Premises are destroyed through no fault of the Tenant, the Tenant’s employeesor Tenant’s visitors, then the Lease will end, and the Tenant will pay rent up to the dateof destruction.
12. INTERRUPTION OF SERVICES:12.1. The Landlord is not responsible for any inconvenience or interruption of services dueto repairs, improvements or for any reason beyond the Landlord’s control.
13. ALTERATIONS: The Tenantmust get the Landlord’s prior written consent to alter, improve,paint or wallpaper the Premises.13.1. Alterations, additions, and improvements become the Landlord’s property.
14. COMPLIANCE WITH LAWS:14.1. The Tenant must comply with laws, orders, rules, and requirements of governmentalauthorities and insurance companies which have issued or are about to issue policiescovering the Premises and/or its contents.
15. NO WAIVER BY LANDLORD:15.1. The Landlord does not give up or waive any rights by accepting rent or by failing toenforce any terms of this Lease.
16. NO ASSIGNMENT OR SUBLEASE:16.1. The Tenant may not sublease the Premises or assign this Lease without the Landlord’sprior written consent.
17. ENTRY BY LANDLORD:17.1. Upon reasonable notice, the Landlord may enter the Premises to provide services, in-spect, repair, improve or show the Premises.17.2. The Tenant must notify the Landlord if the Tenant is away for 30 days or more.17.3. In case of an emergency or the Tenant’s absence, the Landlord may enter the Premiseswithout the Tenant’s consent.
18. QUIET ENJOYMENT:18.1. The Tenant may live in and use the Premises without interference subject to the termsof this Lease.
19. SUBORDINATION:19.1. This Lease and the Tenant’s rights are subject and subordinate to present and futuremortgages on the property which include the Premises.19.2. The Landlord may execute any papers on the Tenant’s behalf as the Tenant’s attorneyin fact to accomplish this.
20. HAZARDOUS USE:20.1. The Tenant will not keep anything in the Premises which is dangerous, flammable,explosive or which might increase the danger of fire or any other hazard, or whichwould increase Landlord’s fire or hazard insurance.
21. INJURY OR DAMAGE:21.1. The Tenant will be responsible for any injury or damage caused by the act or neglect ofthe Tenant, the Tenant’s employees or Tenant’s visitors.21.2. The Landlord is not responsible for any injury or damage unless due to the negligenceor improper conduct of the Landlord.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 194PDF page: 194PDF page: 194PDF page: 194

Appendix C. Example lease agreement 180
22. RENEWALS AND CHANGES IN LEASE:22.1. Upon expiration of the rental term provided for above, this lease shall automaticallyrenew itself, indefinitely, for successive one-month periods, unless modified by theparties.22.2. The Landlord may modify this lease or offer the Tenant a new lease by forwarding tothe Tenant a copy of the proposed changes or a copy of the new lease.22.3. If changes in this lease or a new lease are offered, the Tenant must notify the Land-lord of the Tenant’s decision to stay within thirty (30) days of the date the proposedchanges or the copy of the new lease is received by the Tenant.22.4. If the Tenant fails to accept the lease changes or the new lease within thirty (30) daysof the date the proposed changes or new lease is offered, the Tenant may be evictedby the Landlord, as provided for in State law.22.5. Nevertheless, if the rent is increased by the lease changes or new lease, the Tenantwill be obligated to pay the new rent, regardless of whether the Tenant has affirma-tively accepted the lease changes or new lease, if the Tenant continues to occupy theproperty on the date the new rent becomes effective.
23. PETS:23.1. No dogs, cats, or other animals are allowed on the Premises without the Landlord’sprior written consent.
24. NOTICES:24.1. All notices provided by this Lease must be written and delivered personally or by cer-tified mail, return receipt requested, to the parties at their addresses listed above, orto such other address as the parties may from time to time designate.24.2. Notices to the Landlord must also be sent to the Landlord’s agent listed above (if any).
25. SIGNS:25.1. The Tenant may not put any sign or projection (such as a T.V. or radio antenna) in orout of the windows or exteriors of the Premises without the Landlord’s prior writtenconsent.
26. HOLDOVER RENT:26.1. Should this Lease be terminated, either through a valid notice of dispossession by theLandlord, or through order of a court, and should Tenant remain on the Premises there-after, then Tenant shall be liable to pay rent at a rate of double the base rent providedfor under this lease, from the date of termination until such time as Tenant vacates thePremises, whether Tenant vacates the Premises voluntarily or through enforcement ofan order for eviction.
27. VALIDITY OF LEASE:27.1. If a clause or provision of this Lease is legally invalid, the rest of this Lease remains ineffect.27.2. If a clause or provision of this lease is ambiguous, and itmay be interpreted in amannereither consistent or inconsistent with existing law, it shall be interpreted in a mannerconsistent with existing law.
28. PARTIES:28.1. The Landlord and each of the Tenant(s) are bound by this Lease.28.2. All parties who lawfully succeed to their rights and responsibilities are also bound.
29. GENDER:29.1. The use of any particular gender (masculine, feminine or neuter) and case (singular orplural) in this Lease is for convenience, only.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 195PDF page: 195PDF page: 195PDF page: 195

Appendix C. Example lease agreement 181
29.2. No inference is to be drawn therefrom.29.3. The correct gender and case is to be freely substituted throughout, as appropriate.
30. TENANT’S ACKNOWLEDGMENT:30.1. The Tenant acknowledges having read all of the terms and conditions of this lease andthe attached rules and regulations.30.2. Tenant acknowledges that no oral representations have been made to him by theLandlord or the Landlord’s agent(s) other than the representations contained in thisLease.30.3. The Tenant acknowledges that he/she is relying only upon the promises and represen-tations contained in this Lease.
31. ENTIRE LEASE:31.1. All promises the Landlord has made are contained in this written Lease.31.2. This Lease can only be changed by an agreement in writing by both the Tenant and theLandlord.
32. SIGNATURES:32.1. The Landlord and the Tenant agree to the terms of this Lease.32.2. If this Lease is made by a corporation, its proper corporate officers sign and its corpo-rate seal is affixed.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 196PDF page: 196PDF page: 196PDF page: 196

182

Appendix D

Instantiation of Motivating Example

1 {2 "contractName ": "ContractExample",3 "contractId ": 1,4 "contractModel ": [5 {6 "party": {7 "partyId ": "Party1",8 "partyName ": "Bob Book",9 "entityType ": "natural"10 }11 },12 {13 "party": {14 "partyId ": "Party2",15 "partyName ": "John Doe",16 "entityType ": "natural"17 }18 },19 {20 "definition ": {21 "definitionId ": "Definition1",22 "definition ": [23 {24 "definiens ": {25 "definiensName ": "the Landlord",26 "definiensId ": "Definiens1"27 }28 },29 {30 "defiendum ": [31 {32 "party": {33 "partyId ": "Party1",34 "partyName ": "Bob Book",35 "entityType ": "natural"36 }37 }38]39 }40]41 }42 },43 {44 "definition ": {45 "definitionId ": "Definition2",46 "definition ": [47 {48 "definiens ": {49 "definiensName ": "the Tenant",50 "definiensId ": "Definiens2"51 }52 },53 {54 "defiendum ": [

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 197PDF page: 197PDF page: 197PDF page: 197

Appendix D. Instantiation of Motivating Example 183
55 {56 "party": {57 "partyId ": "Party2",58 "partyName ": "John Doe",59 "entityType ": "natural"60 }61 }62]63 }64]65 }66 },67 {68 "definition ": {69 "definitionId ": "Definition3",70 "definition ": [71 {72 "definiens ": {73 "definiensName ": "the term of the lease",74 "definiensId ": "Definiens3"75 }76 },77 {78 "defiendum ": [79 {80 "term": {81 "termId ": "Term1",82 "type": "span",83 "timeexpression ": {84 "timeExpressionId ": "TimeExpression1",85 "type": "on"86 },87 "timePoint ": {88 "timeSpan ": {89 "timeSpanId ": "TimeSpan1",90 "start": {91 "date": {92 "day": 1,93 "month": 1,94 "year": 202195 }96 },97 "end": {98 "date": {99 "day": 1,100 "month": 1,101 "year": 2023102 }103 }104 }105 }106 }107 }108]109 }110]111 }112 },113 {114 "definition ": {115 "definitionId ": "Definition4",116 "definition ": [117 {118 "definiens ": {119 "definiensName ": "the rent",120 "definiensId ": "Definiens4"121 }122 },123 {124 "defiendum ": [125 {126 "resource ": {

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 198PDF page: 198PDF page: 198PDF page: 198

Appendix D. Instantiation of Motivating Example 184
127 "resourceId ": "Resource1",128 "resourceName ": "$",129 "quantity ": {130 "quantName ": "the",131 "quantId ": "Quantity1",132 "value": 500133 }134 }135 }136]137 }138]139 }140 },141 {142 "definition ": {143 "definitionId ": "Definition5",144 "definition ": [145 {146 "definiens ": {147 "definiensName ": "the security deposit",148 "definiensId ": "Definiens5"149 }150 },151 {152 "defiendum ": [153 {154 "resource ": {155 "resourceId ": "Resource2",156 "resourceName ": "security deposit",157 "quantity ": {158 "quantName ": "the",159 "quantId ": "Quantity2",160 "value": 2000161 }162 }163 }164]165 }166]167 }168 },169 {170 "definition ": {171 "definitionId ": "Definition6",172 "definition ": [173 {174 "definiens ": {175 "definiensName ": "a late charge",176 "definiensId ": "Definiens6"177 }178 },179 {180 "defiendum ": [181 {182 "resource ": {183 "resourceId ": "Resource3",184 "resourceName ": "$",185 "quantity ": {186 "quantName ": "a",187 "quantId ": "Quantity3",188 "value": 500189 }190 }191 }192]193 }194]195 }196 },197 {198 "clause ": {

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 199PDF page: 199PDF page: 199PDF page: 199

Appendix D. Instantiation of Motivating Example 185
199 "clauseId ": 1,200 "clauseType ": "Normal",201 "TriggeringEvent ": {202 "triggerId ": "Trigger1",203 "Contains ": [204 {205 "event": {206 "eventName ": "start lease",207 "eventId ": "Event1",208 "eventType ": "temporal"209 }210 }211],212 "Conditions ": [213 {214 "condition ": {215 "conditionId ": "Condition1",216 "Contains ": [217 {218 "action ": {219 "actionId ": "Action1",220 "name": "pay the Rent",221 "modal": "OBLIGATION",222 "group": "Pay",223 "repeated ": false ,224 "status ": "unfinished",225 "resource ": {226 "resourceId ": "Resource4",227 "resourceName ": "rent",228 "definedAs ": "Definition4",229 "quantity ": {230 "quantName ": "the",231 "quantId ": "Quantity4",232 "value": 500,233 "definedAs ": "Definition4"234 }235 },236 "promissor ": {237 "promissorName ": "the tenant",238 "promissorId ": "Promissor1",239 "party": "Party1"240 },241 "promissee ": {242 "promisseeName ": "the landlord",243 "promisseeId ": "Promissee1",244 "party": "Party2"245 },246 "term": {247 "termId ": "Term3",248 "type": "span",249 "timeexpression ": {250 "timeExpressionId ": "

TimeExpression2",251 "type": "on"252 },253 "timePoint ": {254 "timeSpan ": {255 "timeSpanId ": "TimeSpan2",256 "start": {257 "date": {258 "day": 1,259 "month": 1,260 "year": 2021261 }262 },263 "end": {264 "date": {265 "day": 1,266 "month": 1,267 "year": 2023268 }269 }

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 200PDF page: 200PDF page: 200PDF page: 200

Appendix D. Instantiation of Motivating Example 186
270 }271 }272 },273 "repeatedEach ": {274 "timeUnitId ": "TimeUnit1",275 "type": "month",276 "quantity ": {277 "quantName ": "1",278 "quantId ": "Quantity5",279 "value": 1280 }281 }282 }283 }284],285 "Remedies ": [286 {287 "remedy ": {288 "remedyId ": "Remedy1",289 "Contains ": [290 {291 "action ": {292 "actionId ": "Action2",293 "name": "pay a late charge",294 "modal": "OBLIGATION",295 "group": "Pay",296 "repeated ": false ,297 "status ": "unfinished",298 "resource ": {299 "resourceId ": "Resource5",300 "resourceName ": "late charge",301 "definedAs ": "Definition6",302 "quantity ": {303 "quantName ": "the",304 "quantId ": "Quantity6",305 "value": 500,306 "definedAs ": "Definition6"307 }308 },309 "promissor ": {310 "promissorName ": "the tenant",311 "promissorId ": "Promissor2",312 "party": "Party1"313 },314 "promissee ": {315 "promisseeName ": "the landlord

",316 "promisseeId ": "Promissee2",317 "party": "Party2"318 },319 "term": {320 "termId ": "Term4",321 "type": "relative",322 "timeexpression ": {323 "timeExpressionId ": "
TimeExpression4",324 "type": "after"325 },326 "timepoint ": {327 "relativeTimePoint ": {328 "relatTimePointId ": "

relatTimePoint1",329 "relatedTo ": "Action1
",330 "timeUnit ": {331 "timeUnitId ": "

timeUnit2",332 "type": "day",333 "quantity ": {334 "quantName ": "
30",

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 201PDF page: 201PDF page: 201PDF page: 201

Appendix D. Instantiation of Motivating Example 187
335 "quantId ": "

Quantity7
",336 "value": 30337 }338 }339 }340 }341 }342 }343 }344]345 }346 },347 {348 "remedy ": {349 "remedyId ": "Remedy2",350 "Contains ": [351 {352 "action ": {353 "actionId ": "Action3",354 "name": "evict tenant",355 "modal": "PERMISSION",356 "group": "terminate",357 "repeated ": false ,358 "status ": "unfinished",359 "resource ": {360 "resourceId ": "Resource6",361 "resourceName ": "evict",362 "quantity ": {363 "quantName ": "the",364 "quantId ": "Quantity8",365 "value": 1366 }367 },368 "promissor ": {369 "promissorName ": "the landlord

",370 "promissorId ": "Promissor3",371 "party": "Party2"372 },373 "promissee ": {374 "promisseeName ": "the tenant",375 "promisseeId ": "Promissee3",376 "party": "Party1"377 },378 "term": {379 "termId ": "Term5",380 "type": "relative",381 "timeexpression ": {382 "timeExpressionId ": "
TimeExpression5",383 "type": "after"384 },385 "timepoint ": {386 "relativeTimePoint ": {387 "relatTimePointId ": "

relatTimePoint2",388 "relatedTo ": "Action1
",389 "timeUnit ": {390 "timeUnitId ": "

timeUnit3",391 "type": "day",392 "quantity ": {393 "quantName ": "
60",394 "quantId ": "
Quantity9
",395 "value": 60396 }

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 202PDF page: 202PDF page: 202PDF page: 202

Appendix D. Instantiation of Motivating Example 188
397 }398 }399 }400 }401 }402 }403]404 }405 }406]407 }408 }409],410 "Promises ": [411 {412 "promise ": {413 "promiseId ": "Promise1",414 "Contains ": [415 {416 "action ": {417 "actionId ": "Action4",418 "name": "pay the security deposit",419 "modal": "OBLIGATION",420 "group": "deposit",421 "repeated ": false ,422 "status ": "unfinished",423 "resource ": {424 "resourceId ": "Resource7",425 "resourceName ": "security deposit",426 "definedAs ": "Definition5",427 "quantity ": {428 "quantName ": "the",429 "quantId ": "Quantity10",430 "value": 2000,431 "definedAs ": "Definition5"432 }433 },434 "promissor ": {435 "promissorName ": "the tenant",436 "promissorId ": "Promissor4",437 "party": "Party1"438 },439 "promissee ": {440 "promisseeName ": "the landlord",441 "promisseeId ": "Promissee4",442 "party": "Party2"443 },444 "term": {445 "termId ": "Term2",446 "type": "absolute",447 "timeexpression ": {448 "timeExpressionId ": "TimeExpression2",449 "type": "before"450 },451 "timePoint ": {452 "absoluteTimePoint ": {453 "absolutePointId ": "TimePoint1",454 "date": {455 "day": 1,456 "month": 1,457 "year": 2021458 }459 }460 }461 }462 }463 }464]465 }466 },467 {468 "promise ": {

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 203PDF page: 203PDF page: 203PDF page: 203

Appendix D. Instantiation of Motivating Example 189
469 "promiseId ": "Promise2",470 "Contains ": [471 {472 "action ": {473 "actionId ": "Action5",474 "name": "pay for gas",475 "modal": "OBLIGATION",476 "group": "Pay",477 "repeated ": false ,478 "status ": "unfinished",479 "resource ": {480 "resourceId ": "Resource8",481 "resourceName ": "gas",482 "quantity ": {483 "quantName ": "the",484 "quantId ": "Quantity?",485 "value": "?"486 }487 },488 "promissor ": {489 "promissorName ": "the tenant",490 "promissorId ": "Promissor5",491 "party": "Party1"492 },493 "promissee ": {494 "promisseeName ": "the landlord",495 "promisseeId ": "Promissee5",496 "party": "Party2"497 },498 "term": {499 "termId ": "Term6",500 "type": "span",501 "timeexpression ": {502 "timeExpressionId ": "TimeExpression6",503 "type": "during"504 },505 "timePoint ": {506 "timeSpan ": {507 "timeSpanId ": "TimeSpan3",508 "start": {509 "date": {510 "day": 1,511 "month": 1,512 "year": 2021513 }514 },515 "end": {516 "date": {517 "day": 1,518 "month": 1,519 "year": 2023520 }521 }522 }523 }524 }525 }526 },527 {528 "action ": {529 "actionId ": "Action6",530 "name": "pay for water",531 "modal": "OBLIGATION",532 "group": "Pay",533 "repeated ": false ,534 "status ": "unfinished",535 "resource ": {536 "resourceId ": "Resource9",537 "resourceName ": "water",538 "definedAs ": "Definition5",539 "quantity ": {540 "quantName ": "the",

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 204PDF page: 204PDF page: 204PDF page: 204

Appendix D. Instantiation of Motivating Example 190
541 "quantId ": "Quantity11",542 "value": 2000543 }544 },545 "promissor ": {546 "promissorName ": "the tenant",547 "promissorId ": "Promissor5",548 "party": "Party1"549 },550 "promissee ": {551 "promisseeName ": "the landlord",552 "promisseeId ": "Promissee5",553 "party": "Party2"554 },555 "term": {556 "termId ": "Term6",557 "type": "span",558 "timeexpression ": {559 "timeExpressionId ": "TimeExpression6",560 "type": "during"561 },562 "timePoint ": {563 "timeSpan ": {564 "timeSpanId ": "TimeSpan4",565 "start": {566 "date": {567 "day": 1,568 "month": 1,569 "year": 2021570 }571 }572 },573 "end": {574 "date": {575 "day": 1,576 "month": 1,577 "year": 2023578 }579 }580 }581 }582 }583 }584]585 }586 }]}}},587 {588 "clause ": {589 "clauseId ": 2,590 "clauseType ": "terminate",591 "TriggeringEvent ": {592 "triggerId ": "Trigger2",593 "Contains ": [594 {595 "event": {596 "eventName ": "end lease",597 "eventId ": "Event2",598 "eventType ": "temporal" // how to do it here ?//599 }600 }601],602 "Conditions ": [603 {604 "condition ": {605 "conditionId ": "Condition2",606 "Contains ": [607 {608 "action ": {609 "actionId ": "Action7",610 "name": "complies with the terms",611 "modal": "OBLIGATION",612 "group": "comply",

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 205PDF page: 205PDF page: 205PDF page: 205

Appendix D. Instantiation of Motivating Example 191
613 "repeated ": false ,614 "status ": "unfinished",615 "resource ": {616 "resourceId ": "Resource9",617 "resourceName ": "the terms", //how to

do this ?//618 "quantity ": {619 "quantName ": "the", //how to do
this ?//620 "quantId ": "Quantity12",621 "value": 500622 }623 },624 "promissor ": {625 "promissorName ": "the tenant",626 "promissorId ": "Promissor6",627 "party": "Party1"628 },629 "promissee ": {630 "promisseeName ": "the landlord",631 "promisseeId ": "Promissee6",632 "party": "Party2"633 }634 }635 }636],637 "promise ": [638 {639 "promise ": {640 "promiseId ": "Promise3",641 "Contains ": [642 {643 "action ": {644 "actionId ": "Action7",645 "name": "return this deposit",646 "modal": "OBLIGATION",647 "group": "Pay",648 "repeated ": false ,649 "status ": "unfinished",650 "resource ": {651 "resourceId ": "Resource10",652 "resourceName ": "deposit",653 "definedAs ": "Definition5",654 "quantity ": {655 "quantName ": "the",656 "quantId ": "Quantity13",657 "value": 2000,658 "definedAs ": "Definition5"659 }660 },661 "term": {662 "termId ": "Term7",663 "type": "relative",664 "timeexpression ": {665 "timeExpressionId ": "

TimeExpression6",666 "type": "after"667 },668 "timepoint ": {669 "relativeTimePoint ": {670 "relatTimePointId ": "
relatTimePoint3",671 "relatedTo ": "Trigger3
",672 "timeUnit ": {673 "timeUnitId ": "

timeUnit4",674 "type": "day",675 "quantity ": {676 "quantName ": "
30",

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 206PDF page: 206PDF page: 206PDF page: 206

Appendix D. Instantiation of Motivating Example 192
677 "quantId ": "

Quantity14
",678 "value": 30679 }680 }681 }682 }683 }684 }685 }686]687 }688 }689]690 }691 }692]}693 }694 }695]696 }

Listing D.1: Complete model of motivating example

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 207PDF page: 207PDF page: 207PDF page: 207

193

Appendix E

Questionnaire and initial concepts Delphi method

E.1 Intro

Thank you for taking the time to participate in this study. For my Ph.D. at Tilburg Universityand the JADS I am conducting research on how smart contracts could bemodelled. Wewouldlove to tap into your expertise about blockchains and in particular smart contracts.
With your help we would also like to better understand the key concepts used for smartcontracts, and establish amodel that captures these concepts using terminology that is usedin practice.
Filling in the questionnaire for this first Delphi round should take about 5 minutes, and yourresponses are completely anonymous. Your responses will be used only for scientific pur-poses and will be deleted once the study is completed.
You can take the survey only once, but you can edit your responses until you have submittedthe questionnaire.
If you have any questions about the survey, please feel free to contact me: b.j.butijn@jads.nl
Your input is really appreciated.
E.2 Instructions

Again, thank you for taking the time to participate in the Delphi study. Please read the in-structions below before proceeding to answer any questions.
Hereafter a list is presented of concepts related to «PLATFORMNAME» smart contracts. Wewould like you to indicate for each concept if the concept is an alias to another concept. In afollowing question you can suggest to add missing concepts. In a next round these conceptswill be presented to other panelists participating in the study.
Question 1: From various sources we have identified concepts related to smart contracts onthe «PLATFORM NAME». Below you can find a list of these concepts with a description:
«LIST OF CONCEPTS»
Are there any concepts in the list that are unfamiliar to you?
1. Yes2. No
Question 2: In the previous question you indicated that one or more concept were unfa-miliar to you. Could you please specify which concept(s) are unfamiliar? You can add an anunfamiliar concept by clicking the "Add Concept" button.

mailto:b.j.butijn@jads.nl

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 208PDF page: 208PDF page: 208PDF page: 208

Appendix E. Questionnaire and initial concepts Delphi method 194

Question 3: In your opinion, are there any concepts in the list that actually describe one andthe same concept (are they an alias of one another)?
1. Yes2. No
Question 4: Could you please indicate which concept is an alias to another concept? Youcan add an alias by clicking the "Add Alias" button.

Question 5: Hereunder you will again find a list of the concepts we identified:
«LIST OF CONCEPTS»
In your opinion, are there any concepts related to «PLATFORMNAME» smart contracts miss-ing?
1. Yes2. No
Question 6: Here is again the complete list of the concepts.
«LIST OF CONCEPTS»
Could you please indicate which additional concepts are missing from the list? Please alsoprovide a description of the concept. You can propose a concept by clicking the plus "AddConcept" button.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 209PDF page: 209PDF page: 209PDF page: 209

195

Appendix F

Enum Types Used in Models

This appendix depicts the enum types used for each respective (meta)model. The containerswith the heading «Enum» are the different enum types and the boldface denotes the nameof the enum. Thewords below the first bar under the name of the Enum type are the optionsfor that enum.

F.1 Enums used for Ethereum smart contract metamodel

Figure F.1: Enum types used for Ethereum smart contract metamodel

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 210PDF page: 210PDF page: 210PDF page: 210

Appendix F. Enum Types Used in Models 196
F.2 Enums used for Hyperledger smart contract metamodel

Figure F.2: Enum types used for Hyperledger Fabric smart contract meta-model

F.3 Enums used for platform independent model

Figure F.3: Enum types used for PIM smart contract metamodel

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 211PDF page: 211PDF page: 211PDF page: 211

197

Appendix G

Transformation Rules for Models

This appendix contains all transformation rules required to transform the platform indepen-dentmodel to one of the platform specificmodels. The appendix also contains all constraintsrequired to check the PIM.

G.1 Transformation Rules From PIM to Ethereum PSM

1 helper def : setInteractionType(fu.interaction : String) :
InteractionType =

2 switch (fu.interaction) {
3 case(None) : {InteractionType.None} break;
4 case(Invokable) : {InteractionType.Invokable} break;
5 case(Transfers) : {InteractionType.Payable} break;
6 }
7
8 helper def : setStructType(structType : String) : String =
9 switch (structType) {
10 case("Enum"):{StructureType.Enum} break;
11 case("Variable"):{StructureType.Variable} break;
12 case("Array"):{StructureType.Array} break;
13 case("KeyValue"):{StructureType.Mapping} break;
14 }
15
16 helper def : setValueType(val : String) : String =
17 switch (val) {
18 case("String"):{DataType.String} break;
19 case("Integer"):{DataType.Integer} break;
20 case("Byte"):{DataType.Byte} break;
21 case(Address):{DataType.Address} break;
22 }
23
24 helper def : setDType(dType : String) : String =
25 switch (dType) {
26 case("String"):{"String"} break;
27 case("Integer"):{"Integer"} break;
28 case("Byte"):{"Byte"} break;
29 case(Address):{"Address"} break;
30 }
31
32 helper context solPSM!SmartContract def : getModifiers() :

Sequence(solPSM!Modifier) =
33 self.Functions->collect(fu | fu.Modifiers)->
34 asSet()->collect(mod | thisModule.createModifier(mod));
35

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 212PDF page: 212PDF page: 212PDF page: 212

Appendix G. Transformation Rules for Models 198

36 helper def : setStructAttr(co : Sequence(scPIM!Concept)) :
Sequence(solPSM!Struct) =

37 co.Contains->collect(str | thisModule.createStruct(str));
38
39 helper def : setStructConstruction(co : sequence(scPIM!Concept)) :

Sequence(solPSM!LocalVariable) =
40 co.Attributes->collect(var | thisModule.createLocalVariable(var));

1 rule Meta2Meta {
2 from
3 me : scPIM!Meta
4 to
5 met : solPSM!Meta(
6 target<-me.target
7 nameSpace<-me.nameSpace
8 smartcontracts<-me.smartcontracts->collect(sc |

thisModule.SC2SC(sc))
9 assets<-me.assets->collect(as | thisModule.Agent2solAgent(as))
10 agents<-me.agents->collect(ag | thisModule.Asset2solAsset(ag))
11)
12 }
13
14 lazy rule Agent2solAgent {
15 from
16 ag : scPIM!Agent
17 to
18 age : solPSM!solAgent(
19 agentName<-ag.agentName
20 agentId<-ag.agentId
21 address<-ag.address
22)
23 }
24
25 lazy rule Asset2solAsset {
26 from
27 as : scPIM!Asset
28 to
29 ass : solPSM!solAsset
30 assetName<-as.assetName
31 assetId<-as.assetId
32 amount<-as.amount
33 symbol<-as.symbol
34 assetType<-as.assetType
35 owners<-as.owners
36 initAmount<-as.initAmount
37)
38 }
39
40 lazy rule SC2SC {
41 from
42 sc : scPIM!SmartContract
43 to
44 ssc : solPSM!SmartContract(
45 SCName<-sc.SmartContractName
46 abstract<-sc.abstract
47 owner<-sc.owner

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 213PDF page: 213PDF page: 213PDF page: 213

Appendix G. Transformation Rules for Models 199

48 Imports<-sc.Imports->collect(el | thisModule.createImport(el))
49 Enums<-sc.Enums->collect(el | thisModule.createEnum(el))
50 StateVariables<-sc.GlobalVariables->collect(el |

thisModule.createStateVariable(el))
51 GlobalVariables<-sc.GlobalParameters->collect(el |

thisModule.createGlobalVariable(el))
52 Structs<-sc.Concepts->collect(el | thisModule.createStruct(el))
53 Events<-sc.Events->collect(el | thisModule.createEvent(el))
54 Modifiers<-sc.getModifiers()
55 Functions<-sc.Functions->collect(el | thisModule.

createFunction(el))
56 Constructor<-thisModule.setConstructor(sc.Constructor)
57)
58 }
59
60 lazy rule createImport {
61 from
62 i : scPIM!Import
63 to
64 im : solPSM!Import(
65 nameSpace<-i.nameSpace
66 Libraries<-i.Import->collect(el | thisModule.createLibrary(el))
67)
68 }
69
70 lazy rule createLibrary {
71 from
72 l : scPIM!Library
73 to
74 lib : solPSM!Library(
75 libName<-l.libName
76 Contains<-l.Functions->

collect(el | thisModule.createFunction(el))
77)
78 }
79
80 lazy rule createEnum {
81 from
82 en : scPIM!Enum
83 to
84 sen : solPSM!Enum(
85 enuName<-en.enuName
86 enuValue<-en.enuValue
87)
88 }
89
90 lazy rule createGlobalVariable {
91 from
92 gp : scPIM!GlobalParameter
93 to
94 sgv : solPSM!solGlobalVariable(
95 globalName<-gp.globalName
96 gType<-thisModule.setGlobalType(gp.gType)
97)
98 }
99
100 lazy rule createStruct {

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 214PDF page: 214PDF page: 214PDF page: 214

Appendix G. Transformation Rules for Models 200

101 from
102 co : scPIM!Concept
103 to
104 str: solPSM!solStruct(
105 structName<-co.conceptName
106 Contains<-thisModule.setStructAttr(co.Contains)
107 Attributes<-thisModule.setStructConstruction(co.Attributes)
108)
109 }
110
111 lazy rule createStateVariable {
112 from
113 va : scPIM!Variable
114 to
115 ssv : solPSM!solStateVariable(
116 stateName<-varName
117 value<-value
118 dType<-thisModule.setDType(va.dType)
119 structType<-thisModule.setStructType(va.structType)
120 valueType<-thisModule.setValueType(va.valueType)
121 visibilityType<-init: "Public"
122)
123 }
124
125 lazy rule setConstructor {
126 from
127 cn : scPIM!Constructor
128 to
129 sco : solPSM!solConstructor(
130 visibility<-init: "Public"
131 Initialize<-cn.Initialize->collect(v | createStateVariable(v))
132 Construct<-cn.Construct->collect(c | createStruct(c))
133)
134 }
135
136 lazy rule createFunction {
137 from
138 fu : scPIM!Function
139 to
140 sfu : solPSM!solFunction(
141 functionName<-fu.funcName
142 return<-fu.return
143 interaction<-fu.interaction->setInterActionType(fu.interaction)
144 argument<-fu.argument
145 argumentType<-fu.argumentType
146 visibility<-init: "Public"
147 modifiers<-fu.preConditions->collect(el |

thisModule.createModifier(el))
148 LocalVariables<-fu.Variables->collect(el |

thisModule.createLocalVariable(el))
149 LocalGlobals<-fu.LocalGlobals->collect(el |

thisModule.createGlobalVariable(el))
150 LocalStructs<-fu.LocalConcepts->collect(el |

thisModule.createStruct(el))
151 Contains<-fu.Contains->

collect(el | thisModule.createConditionalStatement(el))

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 215PDF page: 215PDF page: 215PDF page: 215

Appendix G. Transformation Rules for Models 201

152 Execute<-fu.Execute->
collect(el | thisModule.createStatement(el))

153 Can<-fu.Can->collect(el | thisModule.createTransfer(el))
154 EndedBy<-fu.EndedBy->

collect(el | thisModule.createReturnStatement(el))
155)
156 }
157
158 lazy rule createModifier {
159 from
160 pe : scPIM!PreCondition
161 to
162 mod : solPSM!solModifier(
163 modName<-pe.preconName
164 modArgument<-pe.preconArg
165 ArgType<-pe.preconArgType
166 Conditions<-pe.condition->

thisModule.createConditionalStatement(pe.condition)
167)
168 }
169
170 lazy rule createLocalVariable {
171 from
172 va : scPIM!Variable
173 to
174 sv : solPSM!solLocalVariable(
175 localName<-varName
176 value<-value
177 dType<-thisModule.setDType(va.dType)
178 structType<-thisModule.setStructType(va.structType)
179 valueType<-thisModule.setValueType(va.valueType)
180 visibilityType<-init: "Public"
181)
182 }
183
184 lazy rule createConditionalStatement {
185 from
186 cs : scPIM!ConditionalStatement
187 to
188 scs : solPSM!ConditionalStatement(
189 if<-cs.if
190 argument<-cs.argument
191 relOperator<-cs.relOperator
192 negation<-cs.negation
193 Condition<-cs.Condition->

collect(el | thisModule.createConditionalStatement(el))
194 Execute<-cs.Execute->

collect(el | thisModule.createStatement(el))
195 Can<-cs.Can->

collect(el | thisModule.createTransfer(el))
196 Message<-cs.Message->

collect(el | thisModule.createMessage(el))
197 Catch<-cs.Catch->

collect(el | thisModule.createStatement(el))
198 EndedBy<-cs.EndedBy->

collect(el | thisModule.createReturnStatement(el))
199)

https://cs.if/

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 216PDF page: 216PDF page: 216PDF page: 216

Appendix G. Transformation Rules for Models 202

200 }
201
202 lazy rule createStatement {
203 from
204 st : scPIM!Statement
205 to
206 sst : solPSM!Statement(
207 argument<-st.argument
208 assign<-st.assign
209 operator<-st.operator
210 index<-st.index
211 addAssign<-st.addAssign
212 eveName<-st.eveName
213 eventArgument<-st.eventArgs
214)
215 }
216
217 lazy rule createReturnStatement {
218 from
219 rs : scPIM!ReturnStatement
220 to
221 srs : solPSM!ReturnStatement(
222 value<-rs.value
223)
224 }
225
226 lazy rule createMessage {
227 from
228 me : scPIM!Message
229 to
230 sms : solPSM!Message(
231 value<-me.value
232)
233 }
234
235 lazy rule createTransfer {
236 from
237 tx : scPIM!Transfer
238 to
239 stx : solPSM!Transfer(
240 sender<-tx.sender
241 recipient<-tx.recipient
242 asset<-tx.asset
243 amount<-tx.amount
244)
245 }

G.2 Transformation Rules From PIM to Hyperledger PSM

1 helper def : getResource(pe: scPIM!PreCondition) : String =
2 let rec : String = thisModule.nameSpace+"."+pe.Condition.if;
3
4
5 helper def : getRuleCondition : String =
6 self.resource+self.participant;
7

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 217PDF page: 217PDF page: 217PDF page: 217

Appendix G. Transformation Rules for Models 203

8 helper def : createParameters(ar : Sequence(String), art :
Sequence(String)) : Sequence(hyperPSM!Parameter) =

9 let Parameters : Sequence(hyperPSM!Parameter)=
10 Map(createParameter(ar : Sequence(String), art :

Sequence(String)))->asSequence();
11
12 helper def : createDecorators : Sequence(hyperPSM!Decorator) =
13 let allDecorators : Sequence(hyperPSM!Decorator)=
14 self.EndedBy->collect(de | createDecorator(’Return’,

de.value))->asSequence()
15 ->union(self.Argument->collect(de | createDecorator(’Param’,

de.paraName)));
16
17 helper def : createConditions(c : Sequence(scPIM!ConditionalStatement),

pre : Sequence(scPIM!ConditionalStatement))
18 : Sequence(hyperPSM!ConditionalStatement)=
19 c->collect(el | thisModule.createConditionalStatement(el))

->union(
20 pre->collect(el | thisModule.createConditionalStatement(el));
21
22 helper def : setInteractionType(fu.interaction : String)=
23 switch (fu.interaction){
24 case(None) : {InteractionType.None} break;
25 case(Invokable) : {InteractionType.Invokable} break;
26 case(Transfers) : {InteractionType.Invokable} break;
27 }
28
29 helper def : createAttributes(arg: Sequence(String), typ:

Sequence(String)) : Sequence(hyperPSM!Attribute) =
30 let Attributes : Sequence(hyperPSM!Attribute)=
31 Map(createAttribute(ar : Sequence(String), art :

Sequence(String)))->asSequence();
32
33 helper def : setStructType(structType : String) : StructType =
34 switch (structType){
35 case("Enum"):{"Enum"} break;
36 case("Variable"):{"Variable"} break;
37 case("Array"):{"Array"} break;
38 case("KeyValue"):{"Concept"} break;
39 }
40
41 helper def : setDType(dType : String) : DataType =
42 switch (dType) {
43 case("String"):{DataType.String"} break;
44 case("Integer"):{
45 case(oclIsTypeOf(dType : "int")):{DataType.Integer}break;
46 case(oclIsTypeOf(dType : "double")):{DataType.Double}break;
47 }break;
48 case("Byte"):{DataType."Byte"} break;
49 case(Address):{"DataType.String"} break;
50 }
51
52 helper def: createConceptAttributes(attr : Sequence(scPIM!Variable)) :

Sequence(hyperPSM!Attribute)=
53 let attributes : Sequence(scPIM!Variable) =
54 scPIM!Variable.allInstances()->asSequence() in

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 218PDF page: 218PDF page: 218PDF page: 218

Appendix G. Transformation Rules for Models 204

55 attributes->collect(va | thisModule.createAttribute
(va.varName: String, ty: String));

1 rule Meta2Meta {
2 from
3 me : scPIM!Meta
4 to
5 met : hyperPSM!Meta
6 target<-me.target,
7 nameSpace<-me.nameSpace,
8 acl<-thisModule.createACL(me),
9 queries<-thisModule.createQueries(me),
10 cto<-thisModule.createCTO(me),
11 smartcontracts<-me.smartcontracts->collect(sc |

thisModule.SmartContract2SmartContract(sc))
12)
13 }
14
15 lazy rule createACL{
16 from
17 me : scPIM!Meta
18 using
19 AllPreconditions

:
Seq(scPIM!PreCondition)
=

20 PreCondition.allInstancesFrom(’scPIM’)
->select(pre | pre.cType = ’AccessControl’);

21 to
22 acl : hyperPSM!ACL File
23 Contains<-AllPreconditions->collect(pre | createRule(pre))
24)
25 }
26
27 lazy rule createQueries {
28 from
29 me : scPIM!Meta
30 using
31 sts : Seq(scPIM!Variable) =
32 Variable.allInstancesFrom(’scPIM’)

->select(va | va.variableScope = ’Global’);
33 to
34 acl : hyperPSM!Query File
35 Contains<-sts->collect(va | createQuery(va))
36)
37 }
38
39 lazy rule createCTO {
40 from
41 me : scPIM!Meta
42 using
43 evs : Sequence(scPIM!Event) =
44 Event.allInstancesFrom(’scPIM’);
45 cos : Sequence(scPIM!Concept) =
46 Concept.allInstancesFrom(’scPIM’);
47 ens : AllEnums : Seq(scPIM!Enum) =

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 219PDF page: 219PDF page: 219PDF page: 219

Appendix G. Transformation Rules for Models 205

48 Enum.allInstancesFrom(’scPIM’);
49 pa : AllParticipants : Seq(scPIM!Agent) =
50 Agent.allInstancesFrom(’scPIM’);
51 ass : Seq(scPIM!Asset) =
52 Asset.allInstancesFrom(’scPIM’);
53 txs : Seq(scPIM!GlobalParameters) =
54 Function.allInstancesFrom(’scPIM’)
55 ->select(fu | fu.interaction = ’Invokable’or u.interaction =

’Transfers’);
56 to
57 cto : hyperPSM!CTO File
58 Enums<-ens->collect(el | thisModule.createEnum(el)),
59 Concepts<-cos->collect(el | thisModule.createConcept(el)),
60 Events<-evs->collect(el | thisModule.createEvent(el)),
61 Participants<-pa->collect(pa | thisModule.createParticipant(pa)),
62 Assets<-ass->collect(as | thisModule.createAsset(as)),
63 Transactions<-txs->collect(tx | thisModule.createTransaction(tx))
64)
65 }
66
67 lazy rule SmartContract2SmartContract {
68 from
69 sc : scPIM!SmartContract
70 using
71 imp : sequence(scPIM!Function) =
72 sc.Import->collect(I | I.Imports)->collect(lib |

lib.Functions)->asSequence();
73 afu : sequence(hyperPSM!Function) =
74 imp->collect(fu | thisModule.createFunction(fu))->asSequence();
75 to
76 ssc : hyperPSM!SmartContract(
77 SCName<-sc.SmartContractName,
78 abstract<-sc.abstract,
79 nameSpace<-thisModule.nameSpace,
80 States<-sc.GlobalVariables

->collect(el | thisModule.createState(el)),
81 Functions<-sc.Functions

->collect(el | thisModule.createFunction(el))->union(imp)
82)
83 }
84
85 lazy rule createEnum{
86 from
87 en : scPIM!Enum
88 to
89 hen : hyperPSM!Enum(
90 enuName<-en.enuName,
91 enuValue<-en.enuValue
92)
93 }
94
95 lazy rule createGlobalParameter {
96 from
97 gp : scPIM!GlobalParameter
98 to
99 hgp : hyperPSM!solGlobalVariable(
100 globalName<-gp.globalName,

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 220PDF page: 220PDF page: 220PDF page: 220

Appendix G. Transformation Rules for Models 206

101 gType<-thisModule.setGlobalType(gp.gType)
102)
103 }
104
105 lazy rule createConcept {
106 from
107 c : scPIM!Concept
108 to
109 co : hyperPSM!Concept(
110 conceptName<-c.conceptName
111 conceptID<-thisModule.conceptID
112 Contains<-Contains->collect(el | thisModule.createConcept(el))
113 Attributes<-createConceptAttributes(co.Attributes)
114)
115 }
116
117 lazy rule setInit {
118 from
119 cn : scPIM!Constructor
120 using
121 vrs : Sequence(scPIM!Variable) =
122 Variable.allInstancesFrom(’scPIM’)

->select(var | var.variableScope = Global)->select(var |
var.value->notEmpty());

123 to
124 sco: hyperPSM!Init(
125 Init<-vrs
126)
127 }
128
129 lazy rule createFunction {
130 from
131 fu : scPIM!Function
132 using
133 opn: Sequence(scPIM!ConditionalStatement) =
134 fu.preConditions

->select(pre | pre.cType = ’Temporal’ or
pre.cType = ’Evaluative’ or pre.cType = ’Causal’)

135 ->collect(el | el.Condition);
136 to
137 hfu : hyperPSM!solFunction(
138 funcName<-fu.funcName,
139 return<-fu.return,
140 interaction<-fu.interaction

->setInteractionType(fu.interaction),
141 Argument<-createParameters(fu.argument, fu.argumenType),
142 EndedBy<-fu.EndedBy

->collect(el | thisModule.createReturnStatement(el)),
143 Decorators<-createDecorators(),
144 Rules<-fu.preConditions->select(pre | pre.cType =

’AccessControl’)->collect(el | thisModule.createRule(el)),
145 LocalVariables<-fu.LocalVariables->collect(el |

thisModule.createVariable(el)),
146 LocalGlobals<-fu.LocalGlobals->collect(el |

thisModule.createGlobalParameter(el)),
147 Contains<-thisModule.createConditions(fu.Contains, opn),

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 221PDF page: 221PDF page: 221PDF page: 221

Appendix G. Transformation Rules for Models 207

148 Execute<-fu.Execute
->collect(el | thisModule.createStatement(el)),

149 Can<-fu.Can->collect(el | thisModule.createUpdate(el))
150)
151 }
152
153 lazy rule createRule {
154 from
155 pe : scPIM!PreCondition
156 to
157 ru : hyperPSM!Rule(
158 ruleName<-pe.preconName,
159 description<-description,
160 participant<-pe.Condition.ConditionalStatement.Argument,
161 transaction<-pe.preconName,
162 resource<-getResource(pe)
163 condition<-getRuleCondition(),
164 action<-action,
165 operation<-operation
166)
167 }
168
169 lazy rule createParameter (na: String, ty: String) {
170 to
171 pa : hyperPSM!Parameter(
172 paraName<-na,
173 dType<-thisModule.setDType(va.dType)
174)
175 }
176
177 lazy rule createDecorator (ty: String, va: String) {
178 to
179 pa : hyperPSM!Decorator(
180 decField<-ty,
181 value<-va
182)
183 }
184
185 lazy rule createVariable {
186 from
187 va : scPIM!Variable
188 to
189 sv : hyperPSM!Variable(
190 localName<-va.varName,
191 value<-va.value,
192 dType<-thisModule.setDType(va.dType),
193 structType<-thisModule.setStructType(va.structType),
194 scope<-va.VariableScope
195)
196 }
197
198 lazy rule createState {
199 from
200 va : scPIM!Variable
201 to
202 sv : hyperPSM!Variable(
203 localName<-va.varName,

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 222PDF page: 222PDF page: 222PDF page: 222

Appendix G. Transformation Rules for Models 208

204 value<-va.varName,
205 dType<-thisModule.setDType(va.dType),
206 structType<-thisModule.setStructType(va.structType),
207 scope<-va.VariableScope
208)
209 }
210
211 lazy rule createConditionalStatement {
212 from
213 cs : scPIM!ConditionalStatement
214 to
215 scs : hyperPSM!ConditionalStatement(
216 if<-cs.if,
217 Argument<-cs.argument,
218 relOperator<-cs.relOperator,
219 negation<-cs.negation,
220 Condition<-cs.Condition

->collect(el | thisModule.createConditionalStatement(el)),
221 Execute<-cs.Execute

->collect(el | thisModule.createStatement(el)),
222 Can<-cs.Can->collect(el | thisModule.createTransfer(el)),
223 Message<-cs.Message

->collect(el | thisModule.createMessage(el)),
224 Catch<-cs.Catch

->collect(el | thisModule.createStatement(el)),
225 EndedBy<-cs.EndedBy

->collect(el | thisModule.createReturnStatement(el))
226)
227 }
228
229 lazy rule createStatement {
230 from
231 st : scPIM!Statement
232 to
233 sst :

hyperPSM!Statement(
234 argument<-st.argument,
235 assign<-st.assign,
236 operator<-st.operator,
237 index<-st.index,
238 addAssign<-st.addAssign,
239 eveName<-st.eveName,
240 eventArgument<-st.eventArgs,
241 eventChanel<-thisModule.nameSpace
242)
243 }
244
245 lazy rule createReturnStatement {
246 from
247 rs : scPIM!ReturnStatement
248 to
249 srs : hyperPSM!ReturnStatement(
250 value<-rs.value
251)
252 }
253
254 lazy rule createMessage {

https://cs.if/

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 223PDF page: 223PDF page: 223PDF page: 223

Appendix G. Transformation Rules for Models 209

255 from
256 me : scPIM!Message
257 to
258 sms : hyperPSM!Message(
259 value<-me.value
260)
261 }
262
263 lazy rule createQuery {
264 from
265 gp : scPIM!Variable(
266 to
267 qu : hyperPSM!Query(
268 queryName<-va.varName,
269 description<-"Query to get the value of State: "+va.varName,
270 statement<-thisModule.nameSpace+va.varName
271)
272 }
273
274 lazy rule createUpdate {
275 from
276 tx : scPIM!Transfer
277 to
278 up : hyperPSM!Update(
279 argument<-tx.asset,
280 value<-tx.amount
281)
282 }
283
284 createAttribute (na: String, ty: String) {
285 to
286 at : hyperPSM!Attribute(
287 attrName<-na,
288 attrType<-ty,
289 attrOptional<-init: False,
290 attrDefault<-init: False
291)
292 }
293
294 lazy rule createAsset {
295 from
296 ax : scPIM!Asset
297 using
298 na : Sequence : String =
299 Sequence(’amount’, ’symbol’, ’assetType’, ’owners’, ’initAmount’)

;
300 ty : Sequence : String =
301 Sequence(’Integer’, ’String’, ’AssetType’, ’String’, ’Integer’);
302 to
303 as : hyperPSM!Asset(
304 assetName<-assetName,
305 assetId<-assetId,
306 Attributes<-createAttributes(na, ty)
307)
308 }
309
310 lazy rule createTransaction {

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 224PDF page: 224PDF page: 224PDF page: 224

Appendix G. Transformation Rules for Models 210

311 from
312 fu : scPIM!Function
313 to
314 tx : hyperPSM!Transaction(
315 txName<-fu.funcName,
316 txId<-thisModule.txID
317)
318 do{
319 thisModule.txID <- thisModule.txID + 1;
320 }
321 }
322
323 lazy rule createParticipant {
324 from
325 ag : scPIM!Agent
326 using
327 na : Sequence : String =
328 Sequence(’address’);
329 ty: Sequence : String =
330 Sequence(’String’);
331 to
332 pa : hyperPSM!Participant(
333 partName<-ag.agentName,
334 parId<-ag.agentId,
335 Attributes<-createAttributes(na, ty)
336)
337 }
338
339 lazy rule createEvent {
340 from
341 e : scPIM!Event
342 to
343 ev : hyperPSM!Event(
344 eventName<-e.eventName,
345 argument<-e.argument,
346 argumentType<-e.argumentType
347)
348 }

G.3 Constraints for thePlatform Independent Smart ContractModel

context Meta
inv: Set{’Ethereum’, ’Hyperledger’}->includes(target)
inv: Agents->notEmpty()

context Asset
inv: Asset.allInstancesFrom(’scPIM’)->isUnique(assetName) and

Asset.assetName->size()>0
inv: Asset.allInstancesFrom(’scPIM’)->isUnique(assetId)
inv: amount =>0
inv: Asset.allInstancesFrom(’scPIM’)->isUnique(symbol)
inv: owners->size() >0
inv: Set{’Unique’, ’Non-Unique’}->includes(assetType)

context Agent
inv: Agent.allInstancesFrom(’scPIM’)->isUnique(agentName) and

Agent.agentName->size()>0
inv: Agent.allInstancesFrom(’scPIM’)->isUnique(agentId)

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 225PDF page: 225PDF page: 225PDF page: 225

Appendix G. Transformation Rules for Models 211

inv: address->notEmpty()
context Smart Contract

inv: scPIM!SmartContract.allInstancesFrom(’scPIM’)->isUnique(SCName)
inv: and SCName->size()>0
inv: Set{’true’, ’false’}->includes(abstract)
inv: Owner->notEmpty()
inv: Functions->notEmpty()

context Import
inv: nameSpace->size>0
inv: Imports->notEmpty()

context Library
inv: scPIM!Library.allInstancesFrom(’scPIM’)->isUnique(libName) and

libName->size()>0
inv: Functions->notEmpty()

context GlobalParameter
inv: scPIM!GlobalParameter.allInstancesFrom(’scPIM’)->isUnique(globalName)

and globalName->size()>0
inv: Set{’CurrentTime’, ’SenderTransaction’,

’ValueTransaction’}->includes(gType)
context Event

inv: Event.allInstancesFrom(’scPIM’)->isUnique(eventName) and
eventName->size()>0

inv: argument->size()>0
inv: argumentType->size()>0
inv: argument->size() = argumentType->size()
inv: argumentType->forAll(at | Set{’String’, ’Byte’,

’Integer’,’Address’,’ArrayString’,’ArrayByte’,’ArrayInteger’,
Address’,’ArrayString’,’ArrayByte’,’ArrayInteger’,
ArrayAddress’,’KeyVal:AddressToString’,’KeyVal:StringToInteger’,
KeyVal:StringToBytes’,’KeyVal:StringToString’,’KeyVal:IntegerToString’,
KeyVal:IntegerToInteger’,’KeyVal:IntegerToBytes’,’KeyVal:AddressToString’,
KeyVal:AddressToBytes’,’KeyVal:AddressToInteger’,
’GlobalP:valueTransaction’,
GlobalP:currentTime’, ’GlobalP:senderTransaction’}->includes(at)
->includes(at) xor scPIM!Concept.allInstancesFrom’scPIM’->exists(co |
co.conceptName = at)
xor scPIM!Enum.allInstancesFrom’scPIM’->exists(en | en.enuName = at))

context Enum
inv: scPIM!Enum.allInstancesFrom’scPIM’->isUnique(enuName) and

enuName->size()>0
inv: enuValue->size()>0

context Variable
inv: scPIM!Variable.allInstancesFrom(’scPIM’)->isUnique(varName) and

varName->size()>0
inv: Set{’Enum’, ’Variable’, ’KeyValue’, ’Array’}->includes(structType)
inv: StructureType:: Variable implies self.value->size() = 1 and

Set{’String’, ’Byte’, ’Integer’, ’Address’}->includes(dType)
inv: StructureType:: Array implies Set{’String’, ’Byte’, ’Integer’,

’Address’}->includes(dType)
xor scPIM!Concept.allInstancesFrom’scPIM’->exists(co | co.conceptName
= dType)
xor scPIM!Enum.allInstancesFrom’scPIM’->exists(en | en.enuName =
dType)

inv: StructureType:: Enum implies
scPIM!Enum.allInstancesFrom’scPIM’->exists(en | en.enuName = dType
and if value->notEmpty()->value->size() = 1
en.enuValues->includes(value))

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 226PDF page: 226PDF page: 226PDF page: 226

Appendix G. Transformation Rules for Models 212

inv: StructureType:: KeyValue implies valueType->notEmpty() and
Set{’String’, ’Byte’, ’Integer’, ’Address’}->includes(dType)
and Set{’String’, ’Byte’, ’Integer’, ’Address’}->includes(valueType)
xor scPIM!Enum.allInstancesFrom’scPIM’->exists(en | en.enuName =
valueType)
xor scPIM!Concept.allInstancesFrom’scPIM’->exists(co | co.conceptName
= valueType)

context Concept
inv: scPIM!Concept.allInstancesFrom’scPIM’->isUnique(conceptName) and

conceptName->size()>0
inv: Attributes->notEmpty()

context Constructor
inv: Set{’Private’, ’Public’, ’Internal’}->includes(visibilityType)
inv: Construct->isEmpty() implies Initialize->notEmpty()

Initialize->isEmpty() implies Construct->notEmpty()
context PreCondition

inv: scPIM!PreCondition.allInstancesFrom(’scPIM’)->isUnique(preconName)
and preconName->size()>0

inv: preconArgument ->notEmpty()
inv: preconArgument->size() = preconArgType->size()
inv: preconArgType->forAll(at | Set{’String’, ’Byte’, ’Integer’,

Address’, ’ArrayString’, ’ArrayByte’, ’ArrayInteger’,
ArrayAddress’, ’KeyVal:AddressToString’, ’KeyVal:StringToInteger’,
KeyVal:StringToBytes’, ’KeyVal:StringToString’,
’KeyVal:IntegerToString’,
KeyVal:IntegerToInteger’, ’KeyVal:IntegerToBytes’,
’KeyVal:AddressToString’,
KeyVal:AddressToBytes’, ’KeyVal:AddressToInteger’,
’GlobalP:valueTransaction’,
GlobalP:currentTime’, ’GlobalP:senderTransaction’}->includes(at)
xor scPIM!Concept.allInstancesFrom’scPIM’->exists(co | co.conceptName
= at)
xor scPIM!Enum.allInstancesFrom’scPIM’->exists(en | en.enuName = at))

inv: Set{’AccessControl’, ’Evaluative’, ’Temporal’,
’Casual’}->includes(cType)

inv: PreConditionType:: AccessControl implies preconArgument->size()>1
and argumentType->includes(GlobalP:senderTransaction)
and
PreCondtion.Condition.ConditionalStatement.relOperator->notEmpty()
and Set{’equalTo’, ’notEqualTo’}->includes(relOperator)

inv: operation->notEmpty() and PimModel.target = Ethereum
implies Set{’Update’, ’Read’}->includes(operation)

inv: operation->notEmpty() and PimModel.target = Hyperledger
implies Set{’Read’,’Delete’,’Update’,’Create’}->includes(operation)

inv: PreConditionType:: Evaluative implies preconArgument->size()>1
and Condition.ConditionalStatement.relOperator->notEmpty()

inv: PreConditionType:: Temporal implies
scPIM!GlobalParameter.allInstancesFrom’scPIM’->exists(gp |
gp.globalName = Condition.ConditionalStatement.if)
and gp.gType = ’CurrentTime’ and relOperator->notEmpty()

inv: PreConditionType:: Causal implies
scPIM!Variable.allInstancesFrom’scPIM’->exists(v | v.varName =
condition.ConditionalStatement.if and v.dType = ’Enum’)
and Condition.ConditionalStatement.relOperator->notEmpty()

context Function
inv: scPIM!Function.allInstancesFrom(’scPIM’)->isUnique(funcName) and

funcName->size()>0

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 227PDF page: 227PDF page: 227PDF page: 227

Appendix G. Transformation Rules for Models 213

inv: Set{’None’, ’Invokable’, ’Transfers’}->includes(interaction)
inv: argument->size() = argumentType->size()
inv: argumentType->forAll(at | Set{’String’, ’Byte’, ’Integer’,

Address’,’ArrayString’,’ArrayByte’,’ArrayInteger’,
ArrayAddress’, ’KeyVal:AddressToString’, ’KeyVal:StringToInteger’,
KeyVal:StringToBytes’, ’KeyVal:StringToString’,
’KeyVal:IntegerToString’,
KeyVal:IntegerToInteger’, ’KeyVal:IntegerToBytes’,
’KeyVal:AddressToString’,
KeyVal:AddressToBytes’, ’KeyVal:AddressToInteger’,
’GlobalP:valueTransaction’,
GlobalP:currentTime’, ’GlobalP:senderTransaction’}->includes(at)
xor scPIM!Concept.allInstancesFrom’scPIM’->exists(co | co.conceptName
= at)
xor scPIM!Enum.allInstancesFrom’scPIM’->exists(en | en.enuName = at))

inv: return = true implies self.EndedBy->count(ReturnStatement)>0
inv: Contains->isEmpty() implies Execute->notEmpty()
inv: Execute->isEmpty() implies Contains->notEmpty()
inv: LocalVariables->forAll(va | va.variableScope = VarScope.Local)

context Conditional Statement
inv: scPIM!Variable.allInstancesFrom(’scPIM’)->exists(v | v.varName = if)

xor scPIM!GlobalParameter.allInstancesFrom(’scPIM’)->exists(gp |
gp.globalName = if)
xor scPIM!Agent.allInstancesFrom(’scPIM’)->exists(ag | ag.agentId =
if)

inv: scPIM!Variable.allInstancesFrom(’scPIM’)->exists(v | v.varName =
argument)
xor scPIM!GlobalParameter.allInstancesFrom(’scPIM’)->exists(gp |
gp.globalName = argument)
xor scPIM!Agent.allInstancesFrom(’scPIM’)->exists(ag | ag.agentId =
argument)
Set{’greaterThan’, ’equalTo’, ’smallerThan’,
’notEqualTo’}->includes(relOperator)
Set{’True’, ’False’}->includes(negation)

inv: Catch->notEmpty() implies Message->isEmpty()
inv: Message->notEmpty() implies Catch->isEmpty()

context Statement
inv: argument->size()>0 and argument->size()<3

argument->forAll(arg |
scPIM!Variable.allInstancesFrom’scPIM’->exists(v | v.varName = arg)
xor scPIM!GlobalParameters.allInstancesFrom’scPIM’->exists(gp |
gp.globalName = arg)
xor Function.allInstancesFrom(’scPIM’)->exists(fu | fu.funcName =
arg)
xor Function.allInstancesFrom(’scPIM’)->exists(fu |
fu.argument.includes(arg))

inv: assign->scPIM!Variable.allInstancesFrom’scPIM’->exists(var |
var.varName = assign)
xor scPIM!GlobalParameters.allInstancesFrom’scPIM’->exists(gp |
gp.globalName = assign)
xor Function.allInstancesFrom(’scPIM’)->exists(fu | fu.funcName =
assign)
xor Function.allInstancesFrom(’scPIM’)->exists(fu |
fu.argument.includes(assign))
operator->notEmpty() implies argument->size() = 2
and Set{’Addition’, ’Subtraction’, ’Modulus’, ’Increment’,
’Decrement’, ’Division’, ’Multiplication’}

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 228PDF page: 228PDF page: 228PDF page: 228

Appendix G. Transformation Rules for Models 214

->includes(operator)
inv: addAssign->scPIM!Variable.allInstancesFrom’scPIM’->exists(v |

v.varName = addAssign)
xor scPIM!GlobalParameters.allInstancesFrom’scPIM’->exists(gp |
gp.globalName = addAssign)

inv: eveName->notEmpty() implies
scPIM!Event.allInstancesFrom’scPIM’->exists(ev| ev.eventName =
eveName)
and eveArgs->notEmpty()

context Transfer
inv: scPIM!Agent.allInstancesFrom’scPIM’->exists(ag | ag.agentId = sender)
inv: scPIM!Agent.allInstancesFrom’scPIM’->exists(ag | ag.agentId =

recipient)
inv: scPIM!Asset.allInstancesFrom’scPIM’->exists(as | as.assetId = asset)
inv: sender <>recipient
inv: amount =>0

context Return Statement
inv: value->size()>0
inv: value->forAll(val

|scPIM!StateVariable.allInstancesFrom’scPIM’->exists(svar |
svar.varName = val)
xor val.oclIsTypeOf(String) xor val.oclIsTypeOf(Integer))

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 229PDF page: 229PDF page: 229PDF page: 229

215

Bibliography

[1] A Scalable Architecture for On-Demand, Untrusted Delivery of Entropyr. Nov. 2018.url: https://docs.oraclize.it/#background.[2] Yassine Ait Hsain, Naziha Laaz, and Samir Mbarki. “Ethereum’s Smart Contracts Con-struction andDevelopment usingModel Driven Engineering Technologies: a Review”.In: Procedia Computer Science 184 (2021). The 12th International Conference on Am-bient Systems, Networks and Technologies (ANT) / The 4th International Conferenceon EmergingData and Industry 4.0 (EDI40) / AffiliatedWorkshops, pp. 785–790. issn:1877-0509. doi: https://doi.org/10.1016/j.procs.2021.03.097. url: https:
//www.sciencedirect.com/science/article/pii/S1877050921007389.[3] Firas Al Khalil et al. “Trust in smart contracts is a process, as well”. In: International
Conference on Financial Cryptography and Data Security. Springer. 2017, pp. 510–519.[4] Robert Alexy. A theory of constitutional rights. Oxford University Press, USA, 2010.[5] Maher Alharby and Aad van Moorsel. “A systematic mapping study on current re-search topics in smart contracts”. In: International Journal of Computer Science &
Information Technology 9.5 (2017), pp. 151–164.[6] James F. Allen. “Maintaining knowledge about temporal intervals”. In: Communica-
tions of the ACM 26.11 (1983), pp. 832–843.[7] Elli Androulaki et al. “Hyperledger Fabric: A DistributedOperating System for Permis-sioned Blockchains”. In: Proceedings of the Thirteenth EuroSys Conference. EuroSys’18. Porto, Portugal: ACM, 2018, 30:1–30:15. isbn: 978-1-4503-5584-1. doi: 10.1145/
3190508.3190538. url: http://doi.acm.org/10.1145/3190508.3190538.[8] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. “A Survey of Peer-to-peerContentDistribution Technologies”. In:ACMComput. Surv. 36.4 (Dec. 2004), pp. 335–371. issn: 0360-0300. doi: 10.1145/1041680.1041681. url: http://doi.acm.
org/10.1145/1041680.1041681.[9] Monika di Angelo, Alfred Soare, and Gernot Salzer. “Smart Contracts in View of theCivil Code”. In: Proceedings of the 34th ACM/SIGAPP SymposiumonApplied Comput-
ing. SAC ’19. Limassol, Cyprus: Association for ComputingMachinery, 2019, 392–399.isbn: 9781450359337. doi: 10.1145/3297280.3297321. url: https://doi.org/
10.1145/3297280.3297321.[10] Samuil Angelov and Paul Grefen. “An e-contracting reference architecture”. In: Jour-
nal of Systems and Software 81.11 (2008), pp. 1816–1844.[11] Matthias Armgardt and Giovanni Sartor. “Leibniz, Gottfried Wilhelm von: Legal Phi-losophy”. In: Encyclopedia of the Philosophy of Law and Social Philosophy. Ed. byMortimer Sellers and Stephan Kirste. Dordrecht: Springer Netherlands, 2019, pp. 1–5. isbn: 978-94-007-6730-0. doi: 10.1007/978- 94- 007- 6730- 0_434- 1. url:
https://doi.org/10.1007/978-94-007-6730-0_434-1.[12] Clarence Ashley. “Conditions in Contract”. In: Yale Law Journal 14 (1904), p. 424.[13] IEEE StandardsAssociation et al. Systemsand software engineering-Vocabulary. Tech.rep. ISO/IEC/IEEE 24765: 2010. Iso/Iec/Ieee, 24765, 1-418, 2010.[14] TomasoAste, Paolo Tasca, and TizianaDiMatteo. “Blockchain technologies: The fore-seeable impact on society and industry”. In: Computer 50.9 (2017), pp. 18–28.

https://docs.oraclize.it/#background
https://doi.org/10.1016/j.procs.2021.03.097
https://www.sciencedirect.com/science/article/pii/S1877050921007389
http://doi.acm.org/10.1145/3190508.3190538
http://doi.acm/
https://doi.org/
https://doi.org/10.1007/978-94-007-6730-0_434-1

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 230PDF page: 230PDF page: 230PDF page: 230

Bibliography 216
[15] Colin Atkinson and Thomas Kühne. “Rearchitecting the UML infrastructure”. In: ACM

Transactions onModeling and Computer Simulation (TOMACS) 12.4 (2002), pp. 290–321.[16] Various authors.Whitepaper: Smart Contracts and Distributed Ledger - A Legal Per-
spective. Tech. rep. New York, NY, USA, 2017.[17] Sarah Azouvi,Mustafa Al-Bassam, and SarahMeiklejohn. “Who am I? Secure identityregistration on distributed ledgers”. In:Data PrivacyManagement, Cryptocurrencies
and Blockchain Technology. Cham: Springer, 2017, pp. 373–389.[18] AdamBack et al. “Enabling blockchain innovationswith pegged sidechains”. In: (2014).eprint: https://www.semanticscholar.org/paper/Enabling-Blockchain-
Innovations-with-Pegged-Back-Corall.[19] James Bailey et al. “An Event-Condition-Action Language for XML”. In:Web Dynam-
ics: Adapting to Change in Content, Size, Topology andUse. Berlin, Heidelberg: SpringerBerlin Heidelberg, 2004, pp. 223–248. isbn: 978-3-662-10874-1. doi: 10.1007/978-
3-662-10874-1_10. url: https://doi.org/10.1007/978-3-662-10874-1_10.[20] Peter Bailis et al. “Research for practice: cryptocurrencies, blockchains, and smartcontracts; hardware for deep learning”. In: Communications of the ACM 60.5 (2017),pp. 48–51.[21] Foteini Baldimtsi et al. “Indistinguishable Proofs of Work or Knowledge”. In: Ad-
vances in Cryptology – ASIACRYPT 2016. Ed. by Jung Hee Cheon and Tsuyoshi Takagi.Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 902–933. isbn: 978-3-662-53890-6.[22] Massimo Bartoletti and Livio Pompianu. “An Empirical Analysis of Smart Contracts:Platforms, Applications, and Design Patterns”. In: Financial Cryptography and Data
Security. Ed. byMichael Brenner et al. Cham: Springer International Publishing, 2017,pp. 494–509. isbn: 978-3-319-70278-0.[23] Richard Baskerville. “What design science is not”. In: European Journal of Informa-
tion Systems 17.5 (2008), pp. 441–443. doi: 10 . 1057 / ejis . 2008 . 45. eprint:
https://doi.org/10.1057/ejis.2008.45. url: https://doi.org/10.
1057/ejis.2008.45.[24] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. SEI seriesin software engineering. Addison-Wesley, 2003. isbn: 9780321154958. url: http:
//books.google.fi/books?id=mdiIu8Kk1WMC.[25] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice. Boston,MA, USA: Pearson Education, 2003. isbn: 978-0-321-15495-8.[26] F. Rizal Batubara, Jolien Ubacht, andMarijn Janssen. “Challenges of Blockchain Tech-nology Adoption for e-Government: A Systematic Literature Review”. In: Proceed-
ings of the 19th Annual International Conference on Digital Government Research:
Governance in the Data Age. dg.o ’18. Delft, The Netherlands: ACM, 2018, 76:1–76:9.isbn: 978-1-4503-6526-0. doi: 10.1145/3209281.3209317. url: http://doi.acm.
org/10.1145/3209281.3209317.[27] Mariano Belaunde et al. MDA Guide Version 1.0.1. Tech. rep. Object ManagementGroup, Inc., 2003.[28] Rafael Belchior et al. “A Survey on Blockchain Interoperability: Past, Present, andFuture Trends”. In: ACM Comput. Surv. 54.8 (Sept. 2021). issn: 0360-0300. doi: 10.
1145/3471140. url: https://doi.org/10.1145/3471140.[29] Trevor Bench-Capon and Thomas F. Gordon. “Isomorphism and Argumentation”. In:
Proceedings of the 12th International Conference on Artificial Intelligence and Law.ICAIL ’09. Barcelona, Spain: Association for ComputingMachinery, 2009, 11–20. isbn:9781605585970. doi: 10.1145/1568234.1568237. url: https://doi.org/10.
1145/1568234.1568237.

https://www.semanticscholar.org/paper/Enabling-Blockchain-
https://doi.org/10.1007/978-3-662-10874-1_10
https://doi.org/10.1057/ejis.2008.45
https://doi.org/10.
https://books.google.fi/books?id=mdiIu8Kk1WMC
http://doi.acm/
https://doi.org/10.1145/3471140
https://doi.org/10.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 231PDF page: 231PDF page: 231PDF page: 231

Bibliography 217
[30] Iddo Bentov et al. “proof of activity: Extending bitcoin’s proof of work via proof ofstake”. In: ACM SIGMETRICS Performance Evaluation Review 42.3 (2014), pp. 34–37.[31] Ghassan Beydoun et al. “FAML: a generic metamodel for MAS development”. In:

IEEE Transactions on Software Engineering 35.6 (2009), pp. 841–863.[32] Gavin Bierman, Martín Abadi, and Mads Torgersen. “Understanding TypeScript”. In:
ECOOP 2014 – Object-Oriented Programming. Ed. by Richard Jones. Berlin, Heidel-berg: Springer Berlin Heidelberg, 2014, pp. 257–281. isbn: 978-3-662-44202-9.[33] Alex Biryukov, Dmitry Khovratovich, and IvanPustogarov. “Deanonymisation of Clientsin Bitcoin P2P Network”. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’14. Scottsdale, Arizona, USA: ACM,2014, pp. 15–29. isbn: 978-1-4503-2957-6. doi: 10.1145/2660267.2660379. url:
http://doi.acm.org/10.1145/2660267.2660379.[34] Guido Boella et al. “A critical analysis of legal requirements engineering from theperspective of legal practice”. In: 2014 IEEE 7th International Workshop on Require-
ments Engineering and Law (RELAW). IEEE. 2014, pp. 14–21.[35] JuanBoubeta-Puig, Jesús Rosa-Bilbao, and JanMendling. “CEPchain: A graphicalmodel-driven solution for integrating complex event processing and blockchain”. In: Expert
Systems with Applications 184 (2021), p. 115578. issn: 0957-4174. doi: https://doi.
org/10.1016/j.eswa.2021.115578. url: https://www.sciencedirect.com/
science/article/pii/S0957417421009805.[36] Phillip Boucher. How blockchain technology could change our lives. Tech. rep. Brus-sels, Belgium, 2017.[37] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. “Model-driven software engi-neering in practice”. In: Synthesis lectures on software engineering 3.1 (2017), pp. 1–207.[38] Marcus Brandenburger et al. “Rollback and forking detection for trusted executionenvironments using lightweight collective memory”. In: Proceedings of the 47th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)
2017. Denver: IEEE, 2017, pp. 157–168.[39] Richard Braun et al. “Proposal for Requirements Driven Design Science Research”.In: New Horizons in Design Science: Broadening the Research Agenda. Ed. by BrianDonnellan et al. Cham: Springer International Publishing, 2015, pp. 135–151. isbn:978-3-319-18714-3.[40] Travis Breaux and Annie Antón. “Analyzing regulatory rules for privacy and securityrequirements”. In: IEEE transactions on software engineering 34.1 (2008), pp. 5–20.[41] Frederick P Brooks Jr. “The computer scientist as toolsmith II”. In: Communications
of the ACM 39.3 (1996), pp. 61–68.[42] Richard Gendal Brown et al. Corda: A Distributed Ledger. Tech. rep. New York, NY,USA: R3, 2016.[43] Antonio Bucchiarone et al. “Grand challenges in model-driven engineering: an anal-ysis of the state of the research”. In: Software and Systems Modeling 19.1 (2020),pp. 5–13.[44] Christian Cachin and Marko Vukolić. “Blockchains consensus protocols in the wild”.In: (2017). eprint: arXivpreprintarXiv:1707.01873.[45] W. Cai et al. “Decentralized Applications: The Blockchain-Empowered Software Sys-tem”. In: IEEE Access 6 (2018), pp. 53019–53033.[46] Davide Calvaresi et al. “Multi-agent systems and blockchain: Results from a system-atic literature review”. In: International Conference onPractical Applications of Agents
and Multi-Agent Systems. Cham: Springer, 2018, pp. 110–126.[47] Fran Casino, Thomas K. Dasaklis, and Constantinos Patsakis. “A systematic litera-ture review of blockchain-based applications: Current status, classification and open

http://doi.acm.org/10.1145/2660267.2660379
https://www.sciencedirect.com/

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 232PDF page: 232PDF page: 232PDF page: 232

Bibliography 218
issues”. In: Telematics and Informatics 36 (2019), pp. 55–81. issn: 0736-5853. doi:
https : / / doi . org / 10 . 1016 / j . tele . 2018 . 11 . 006. url: http : / / www .
sciencedirect.com/science/article/pii/S0736585318306324.[48] Rishav Chatterjee and Rajdeep Chatterjee. “An Overview of the Emerging Technol-ogy: Blockchain”. In: Computational Intelligence and Networks (CINE), 2017 3rd In-
ternational Conference on. IEEE. 2017, pp. 126–127.[49] Lin Chen et al. “On Security Analysis of Proof-of-Elapsed-Time (PoET)”. In: Stabiliza-
tion, Safety, and Security of Distributed Systems. Ed. by Paul Spirakis and PhilippasTsigas. Cham: Springer International Publishing, 2017, pp. 282–297. isbn: 978-3-319-69084-1.[50] D. K. W. Chiu, S. C. Cheung, and S. Till. “A three-layer architecture for e-contractenforcement in an e-service environment”. In: 36th Annual Hawaii International
Conference on System Sciences, 2003. Proceedings of the. Vol. 9. 2003, p. 10. doi:
10.1109/HICSS.2003.1174188.[51] Dickson KW Chiu, Shing-Chi Cheung, and Sven Till. “A three-layer architecture fore-contract enforcement in an e-service environment”. In: Proceedings of the 36th
Annual Hawaii International Conference on System Sciences 2003. IEEE, 2003, 10–pp.[52] K.-Y. Chow, A.J. David, and A.M. Ionescu-Graff. “Switching Capacity Relief Model:Theoretical Development”. In: 1983, pp. 1–7. url: http://i-teletraffic.org/
_Resources/Persistent/d1af3fa05b6d58cea28b80af39fd919a290d8b4a/chow831.
pdf.[53] Konstantinos Christidis and Michael Devetsikiotis. “Blockchains and smart contractsfor the internet of things”. In: IEEE Access 4 (2016), pp. 2292–2303.[54] Sung-Chi Chu et al. “Evolution of e-commerce Web sites: A conceptual frameworkand a longitudinal study”. In: Information &Management 44.2 (2007), pp. 154–164.[55] G. Ciatto, S. Mariani, and A. Omicini. “Blockchain for Trustworthy Coordination: AFirst Study with LINDA and Ethereum”. In: 2018 IEEE/WIC/ACM International Con-
ference on Web Intelligence (WI). Dec. 2018, pp. 696–703. doi: 10.1109/WI.2018.
000-9.[56] Christopher D Clack, Vikram A Bakshi, and Lee Braine. “Smart Contract Templates:essential requirements and design options”. In: (2016). eprint: 1612.04496.[57] Christopher D Clack, Vikram A Bakshi, and Lee Braine. “Smart Contract Templates:essential requirements and design options”. In: (2016). eprint: 1612.04496.[58] Christopher D Clack, Vikram A Bakshi, and Lee Braine. “Smart contract templates:foundations, design landscape and research directions”. In: (2016). eprint: 1608.
00771.[59] Michael Coblenz et al. “Smarter Smart Contract Development Tools”. In: 2019 IEEE/ACM
2nd InternationalWorkshopon Emerging Trends in Software Engineering for Blockchain
(WETSEB).WETSEB. IEEE.May 2019, pp. 48–51. doi: 10.1109/WETSEB.2019.00013.[60] Bram Cohen and Krzysztof Pietrzak. “Simple proofs of sequential work”. In: Annual
International Conference on the Theory andApplications of Cryptographic Techniques.Cham: Springer, 2018, pp. 451–467.[61] The Ethereum Community. “Ethereum Homestead Documentation, Release 01”. In:(2017). eprint: http://www.ethdocs.org/en/latest/.[62] Michael Crosby et al. BlockChain Technology Beyond Bitcoin. Tech. rep. Berkeley, CA,USA, 2015.[63] Jason Paul Cruz, Yuichi Kaji, and Naoto Yanai. “RBAC-SC: Role-Based Access ControlUsing Smart Contract”. In: IEEE Access 6 (2018), pp. 12240–12251.[64] Pierluigi Cuccuru. “Beyond bitcoin: an early overview on smart contracts”. In: Inter-
national Journal of Law and Information Technology 25.3 (2017), pp. 179–195.

https://sciencedirect.com/science/article/pii/S0736585318306324
http://i-teletraffic.org/
http://www.ethdocs.org/en/latest/

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 233PDF page: 233PDF page: 233PDF page: 233

Bibliography 219
[65] Aspassia Daskalopulu and Marek Sergot. “A Constraint-Driven System for ContractAssembly”. In: Proceedings of the 5th International Conference on Artificial Intelli-

gence and Law. ICAIL ’95. College Park, Maryland, USA: Association for ComputingMachinery, 1995, 62–70. isbn: 0897917588. doi: 10.1145/222092.222130. url:
https://doi.org/10.1145/222092.222130.[66] Primavera De Filippi and Aaron Wright. Blockchain and the law: The rule of code.Harvard University Press, 2018. isbn: 978-0-674-98591-9.[67] Joost De Kruijff and Hans Weigand. “Understanding the blockchain using enterpriseontology”. In: International Conference on Advanced Information Systems Engineer-
ing. Springer. 2017, pp. 29–43.[68] Christian Decker et al. “Making Bitcoin Exchanges Transparent”. In: European Sym-
posiumon Research in Computer Security. Ed. by Günther Pernul, Peter Y A Ryan, andEdgarWeippl. ESORICS 2015. Cham: Springer International Publishing, 2015, pp. 561–576. isbn: 978-3-319-24177-7.[69] Andre L Delbecq, Andrew H Van de Ven, and David H Gustafson. Group techniques
for program planning: A guide to nominal group and Delphi processes. Green BriarPress, 1975.[70] Thomas Dickerson et al. “Adding concurrency to smart contracts”. In: Proceedings
of the ACM Symposium on Principles of Distributed Computing. New York, NY, USA:ACM, 2017, pp. 303–312.[71] Tien TuanAnhDinh et al. “Blockbench: A framework for analyzing private blockchains”.In: Proceedings of the 2017 ACM International Conference on Management of Data.New York, NY, USA: ACM, 2017, pp. 1085–1100.[72] Tien TuanAnhDinh et al. “Untangling blockchain: A data processing viewof blockchainsystems”. In: IEEE Transactions on Knowledge and Data Engineering 30.7 (2018),pp. 1366–1385.[73] Stefan Driessen et al. Automated Test-Case Generation for Solidity Smart Contracts:
the AGSolT Approach and its Evaluation. 2021. doi: 10.48550/ARXIV.2102.08864.url: https://arxiv.org/abs/2102.08864.[74] Daniel Drummer and Dirk Neumann. “Is code law? Current legal and technical adop-tion issues and remedies for blockchain-enabled smart contracts”. In: Journal of In-
formation Technology 35.4 (2020), pp. 337–360. doi:10.1177/0268396220924669.eprint: https://doi.org/10.1177/0268396220924669. url: https://doi.
org/10.1177/0268396220924669.[75] Vimal Dwivedi et al. “Legally Enforceable Smart-Contract Languages: A SystematicLiterature Review”. In: ACM Computing Surveys (CSUR) 54.5 (2021), pp. 1–34.[76] Jordan Earls,Mark Smith, and Ronald Smith. Smart Contracts: Is the law ready? Tech.rep. London, United Kingdom, 2017.[77] Khaled El Emam and A Günes Koru. “A replicated survey of IT software project fail-ures”. In: IEEE software 25.5 (2008), pp. 84–90.[78] Embracing Disruption, Tapping the Potential of Distributed Ledger to Improve the
Post-Trade Landscape. Tech. rep. New York, NY, USA, 2016.[79] E. Allan Farnsworth. “Legal Remedies for Breach of Contract”. In: Columbia Law Re-
view 70.7 (1970), pp. 1145–1216. issn: 00101958. url: http://www.jstor.org/
stable/1121184.[80] Scott Farrell, Heidi Machin, and Roslyn Hinchliffe. “Lost and found in smart contracttranslation — considerations in transitioning to automation in legal architecture”.In: Proceedings of the congress of the United Nations commission on international
trade law. Vol. 4. UNCITRAL. United Nations, 2017, pp. 95–104.

https://doi.org/10.1145/222092.222130
https://arxiv.org/abs/2102.08864
https://doi.org/10.1177/0268396220924669
http://www.jstor.org/

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 234PDF page: 234PDF page: 234PDF page: 234

Bibliography 220
[81] Luca Foschini et al. “Hyperledger Fabric Blockchain: Chaincode Performance Anal-ysis”. In: ICC 2020 - 2020 IEEE International Conference on Communications (ICC).2020, pp. 1–6. doi: 10.1109/ICC40277.2020.9149080.[82] Christopher K Frantz andMariusz Nowostawski. “From institutions to code: Towardsautomated generation of smart contracts”. In: 2016 IEEE 1st InternationalWorkshops

on Foundations and Applications of Self* Systems (FAS* W). 2016, pp. 210–215. doi:
10.1109/FAS-W.2016.53.[83] Michael Fröwis and Rainer Böhme. “In Code We Trust?” In: Data Privacy Manage-
ment, Cryptocurrencies and Blockchain Technology. Springer, 2017, pp. 357–372.[84] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. “The bitcoin backbone protocol:Analysis and applications”. In: International Conference on the Theory and Applica-
tions of Cryptographic Techniques. Cham: Springer, 2015, pp. 281–310.[85] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. “The bitcoin backbone protocolwith chains of variable difficulty”. In: Annual International Cryptology Conference.Cham: Springer, 2017, pp. 291–323.[86] Vahid Garousi, Michael Felderer, andMika V.Mäntylä. “Guidelines for including greyliterature and conducting multivocal literature reviews in software engineering”. In:
Information and Software Technology 106 (2019), pp. 101 –121. issn: 0950-5849. doi:
https://doi.org/10.1016/j.infsof.2018.09.006. url: http://www.
sciencedirect.com/science/article/pii/S0950584918301939.[87] Dragan Gaševic, Dragan Djuric, and Vladan Devedžic.Model driven architecture and
ontology development. Springer Science & Business Media, 2006.[88] Valentina Gatteschi et al. “To Blockchain or Not to Blockchain: That Is the Question”.In: IT Professional 20.2 (2018), pp. 62–74.[89] ArthurGervais et al. “On the security andperformanceof proof ofwork blockchains”.In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. New York, NY, USA: ACM, 2016, pp. 3–16.[90] Mark Giancaspro. “Is a ‘smart contract’ really a smart idea? Insights from a legalperspective”. In: Computer Law & Security Review 33.6 (2017), pp. 825 –835. issn:0267-3649. doi: https://doi.org/10.1016/j.clsr.2017.05.007. url: http:
//www.sciencedirect.com/science/article/pii/S026736491730167X.[91] Georgios K. Giannikis and Aspassia Daskalopulu. “Normative conflicts in electroniccontracts”. In: Electronic Commerce Research and Applications 10.2 (2011). SpecialIssue on Electronic Auctions: Strategies and Methods, pp. 247–267. issn: 1567-4223.doi: https://doi.org/10.1016/j.elerap.2010.09.005. url: https://www.
sciencedirect.com/science/article/pii/S1567422310000815.[92] J. Gilcrest and A. Carvalho. “Smart Contracts: Legal Considerations”. In: 2018 IEEE
International Conference on Big Data (Big Data). 2018, pp. 3277–3281.[93] Barney G Glaser and Anselm L Strauss. Discovery of Grounded Theory: Strategies for
Qualitative Research. New York, NY, USA: Routledge, 2017.[94] Florian Glaser. “Pervasive decentralisation of digital infrastructures: a framework forblockchain enabled systemanduse case analysis”. In:Proceedings of the 50thHawaii
International Conference on System Sciences. 2017, pp. 1543–1552.[95] Tony Gorschek and Claes Wohlin. “Requirements abstraction model”. In: Require-
ments Engineering 11.1 (2006), pp. 79–101.[96] Guido Governatori et al. “On legal contracts, imperative and declarative smart con-tracts, andblockchain systems”. In:Artificial Intelligence and Law 26.4 (2018), pp. 377–409.[97] GideonGreenspan. “MultiChain Private Blockchain -White Paper”. In: (2015). eprint:
https://www.multichain.com/download/MultiChain-White-Paper.pdf.

https://doi.org/10.1016/j.infsof.2018.09.006
https://sciencedirect.com/science/article/pii/S0950584918301939
https://doi.org/10.1016/j.clsr.2017.05.007
https://www.sciencedirect.com/science/article/pii/S026736491730167X
https://doi.org/10.1016/j.elerap.2010.09.005
https://sciencedirect.com/science/article/pii/S1567422310000815
https://www.multichain.com/download/MultiChain-White-Paper.pdf

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 235PDF page: 235PDF page: 235PDF page: 235

Bibliography 221
[98] Cristine Griffo et al. “From an ontology of service contracts to contract modeling inenterprise architecture”. In: 2017 IEEE 21st International Enterprise Distributed Ob-

ject Computing Conference (EDOC). IEEE. 2017, pp. 40–49.[99] Ian Grigg. “The ricardian contract”. In: Proceedings. First IEEE International Work-
shop on Electronic Contracting, 2004. IEEE. 2004, pp. 25–31.[100] World Bank Group. Smart Contract Technology and Financial Inclusion. Tech. rep.Washington, DC, USA, 2020.[101] Seda Gürses, Carmela Troncoso, and Claudia Diaz. “Engineering Privacy by Design”.In: Computers, Privacy & Data Protection (2011).[102] T. Górski and J. Bednarski. “ApplyingModel-Driven Engineering toDistributed LedgerDeployment”. In: IEEE Access 8 (2020), pp. 118245–118261. doi: 10.1109/ACCESS.
2020.3005519.[103] Brent Hailpern and Peri Tarr. “Model-driven development: The good, the bad, andthe ugly”. In: IBM systems journal 45.3 (2006), pp. 451–461.[104] SlimaneHammoudi, Jérôme Janvier, andDenivaldo Lopes. “Mapping versus transfor-mation in mda: Generating transformation definition from mapping specification”.In: Foundational Ontologies 33 (2005).[105] Brain Harley. Are Smart Contracts Contracts? Tech. rep. London, United Kingdom:Clifford Chance, Aug. 2017.[106] Brain Harley. Are Smart Contracts Contracts? Tech. rep. London, United Kingdom,2017.[107] H. L. A. Hart. “Positivism and the Separation of Law and Morals”. In: Harvard Law
Review 71.4 (1958), pp. 593–629. issn: 0017811X. url: http://www.jstor.org/
stable/1338225.[108] Andrew F. Hayes and Klaus Krippendorff. “Answering the Call for a Standard Reliabil-ity Measure for Coding Data”. In: CommunicationMethods andMeasures 1.1 (2007),pp. 77–89. doi: 10.1080/19312450709336664. eprint: https://doi.org/10.
1080/19312450709336664. url:https://doi.org/10.1080/19312450709336664.[109] Shuangyu He et al. “A Social-Network-Based Cryptocurrency Wallet-ManagementScheme”. In: IEEE Access 6 (2018), pp. 7654–7663.[110] Xiao He et al. “SPESC: A Specification Language for Smart Contracts”. In: 2018 IEEE
42ndAnnual Computer Software andApplications Conference (COMPSAC). IEEE. 2018,pp. 132–137.[111] Brian Henderson-Sellers. “Bridging metamodels and ontologies in software engi-neering”. In: Journal of Systems and Software 84.2 (2011), pp. 301–313.[112] Garick Hileman and Michel Rauchs. Global Blockchain Benchmark Study. Tech. rep.Cambridge, United Kingdom, 2017.[113] Wesley Newcomb Hohfeld. “Some fundamental legal conceptions as applied in judi-cial reasoning”. In: Yale Law Journal 23 (1913), p. 16.[114] Clyde W. Holsapple and K. D. Joshi. “A Collaborative Approach to Ontology Design”.In: Communications of the ACM 45.2 (Feb. 2002), 42–47. issn: 0001-0782. doi: 10.
1145/503124.503147. url: https://doi.org/10.1145/503124.503147.[115] W Hon Kuan, John Palfreyman, and Matthew Tegart. Distributed Ledger Technology
and Cybersecurity: Improving information security in the financial sector. Tech. rep.Heraklion, Greece, 2016.[116] Hsiao-Shan Huang, Tian-Sheuan Chang, and Jhih-Yi Wu. “A Secure File Sharing Sys-tem Based on IPFS and Blockchain”. In: Proceedings of the 2020 2nd International
Electronics Communication Conference. IECC 2020. Singapore, Singapore: Associa-tion for Computing Machinery, 2020, 96–100. isbn: 9781450377706. doi: 10.1145/
3409934.3409948. url: https://doi.org/10.1145/3409934.3409948.

http://www.jstor.org/
https://doi.org/10.
https://doi.org/10.1080/19312450709336664
https://doi.org/10.1145/503124.503147
https://doi.org/10.1145/3409934.3409948

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 236PDF page: 236PDF page: 236PDF page: 236

Bibliography 222
[117] Richard Hull et al. “Towards a Shared Ledger Business Collaboration Language Basedon Data-Aware Processes”. In: Service-Oriented Computing. Ed. by Quan Z. Sheng etal. Cham: Springer International Publishing, 2016, pp. 18–36.[118] John Hutchinson et al. “Empirical Assessment of MDE in Industry”. In: Proceedings

of the 33rd International Conference on Software Engineering. ICSE ’11. Waikiki, HI,USA: Association for Computing Machinery, 2011, 471–480. isbn: 9781450304450.doi: 10.1145/1985793.1985858. url: https://doi.org/10.1145/1985793.
1985858.[119] Hyperledger Fabric Documentation. Hyperledger Fabric. Feb. 2020. url: https://
hyperledger-fabric.readthedocs.io/en/release-2.2/#.[120] Frédéric Jouault and Ivan Kurtev. “TransformingModelswithATL”. In: Satellite Events
at theMoDELS 2005Conference. Ed. by Jean-Michel Bruel. Berlin, Heidelberg: SpringerBerlin Heidelberg, 2006, pp. 128–138. isbn: 978-3-540-31781-4.[121] Aljosha Judmayer et al. “Merged Mining: Curse or Cure?” In: Data Privacy Man-
agement, Cryptocurrencies and Blockchain Technology. Ed. by Joaquin Garcia-Alfaroet al. Cham: Springer International Publishing, 2017, pp. 316–333. isbn: 978-3-319-67816-0.[122] Mantas Jurgelaitis et al. “Smart Contract Code Generation from Platform SpecificModel for Hyperledger Go”. In:World Conference on Information Systems and Tech-
nologies. Springer. 2021, pp. 63–73.[123] L. Kagal and T. Finin and. “A policy language for a pervasive computing environment”.In: Proceedings POLICY 2003. IEEE 4th International Workshop on Policies for Dis-
tributed Systems and Networks. June 2003, pp. 63–74. doi: 10 . 1109 / POLICY .
2003.1206958.[124] Alexey Kalinov. “Scalability of Heterogeneous Parallel Systems”. In: Programming
and Computer Software 32.1 (Jan. 2006), 1–7. doi: 10.1134/S0361768806010014.url: https://doi.org/10.1134/S0361768806010014.[125] Erik Kamsties et al. “Detecting ambiguities in requirements documents using inspec-tions”. In: Proceedings of the first workshop on inspection in software engineering
(WISE’01). 2001, pp. 68–80.[126] Elena Karafiloski and Anastas Mishev. “Blockchain solutions for big data challenges:A literature review”. In: IEEE EUROCON 2017-17th International Conference on Smart
Technologies. IEEE. 2017, pp. 763–768.[127] Kamalakar Karlapalem, Ajay R. Dani, and P. Radha Krishna. “A FrameWork forModel-ing Electronic Contracts”. In: Conceptual Modeling— ER 2001. Ed. by Hideko S.Kunii,Sushil Jajodia, and Arne Sølvberg. Berlin, Heidelberg: Springer Berlin Heidelberg,2001, pp. 193–207. isbn: 978-3-540-45581-3.[128] Rami Khalil and Arthur Gervais. “Revive: Rebalancing off-blockchain payment net-works”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security. New York, NY, USA: ACM, 2017, pp. 439–453.[129] Minhaj Ahmad Khan and Khaled Salah. “IoT security: Review, blockchain solutions,and open challenges”. In: Future Generation Computer Systems 82 (2018), pp. 395–411.[130] Aggelos Kiayias et al. “Ouroboros: A Provably Secure Proof-of-Stake Blockchain Pro-tocol”. In: Advances in Cryptology – CRYPTO 2017. Ed. by Jonathan Katz and HovavShacham. Cham: Springer International Publishing, 2017, pp. 357–388. isbn: 978-3-319-63688-7.[131] Barbara Kitchenham. “Procedures for performing systematic reviews”. In: Keele, UK,
Keele University 33.2004 (2004), pp. 1–26.[132] Nadzeya Kiyavitskaya et al. “Automating the Extraction of Rights and Obligations forRegulatory Compliance”. In: Conceptual Modeling - ER 2008. Ed. by Qing Li et al.

https://doi.org/10.1145/1985793.
https://hyperledger-fabric.readthedocs.io/en/release-2.2/#
https://doi.org/10.1134/S0361768806010014

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 237PDF page: 237PDF page: 237PDF page: 237

Bibliography 223
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 154–168. isbn: 978-3-540-87877-3.[133] Anneke G Kleppe et al.MDA explained: the model driven architecture: practice and
promise. Addison-Wesley Professional, 2003.[134] Kari Korpela, Jukka Hallikas, and Tomi Dahlberg. “Digital supply chain transforma-tion toward blockchain integration”. In: Proceedings of the 50thHawaii international
conference on system sciences. Honolulu: IEEE, 2017, pp. 4182–4191. isbn: 978-0-9981331-0-2. doi: 10.24251/HICSS.2017.506.[135] AhmedKosba et al. “Hawk: Theblockchainmodel of cryptography andprivacy-preservingsmart contracts”. In: 2016 IEEE symposium on security and privacy (SP). IEEE, 2016,pp. 839–858.[136] Robert van Kralingen. “A conceptual frame-based ontology for the law”. In: Proceed-
ings of the first international workshop on legal ontologies. Citeseer. 1997, pp. 6–17.[137] Klaus Krippendorff. Content analysis: An introduction to Its Methodology. 3rd ed.London, United Kingdom: Sage Publications, 2018. isbn: 9781506395661.[138] P RadhaKrishna andKamalakar Karlapalem. “Amethodology for evolving e-contractsusing templates”. In: IEEE Transactions on Services Computing 6.4 (2012), pp. 497–510.[139] P Radha Krishna, Kamalakar Karlapalem, and Dickson KW Chiu. “An EREC frameworkfor e-contract modeling, enactment and monitoring”. In: Data & Knowledge Engi-
neering 51.1 (2004), pp. 31–58.[140] P Radha Krishna, Kamalakar Karlapalem, and Ajay R Dani. “From contracts to e-contracts: Modeling and enactment”. In: Information Technology and Management6.4 (2005), pp. 363–387.[141] Philippe B Kruchten. “The 4+ 1 view model of architecture”. In: IEEE software 12.6(1995), pp. 42–50.[142] Joost de Kruijff and Hans Weigand. “Ontologies for Commitment-Based Smart Con-tracts”. In: Oct. 2017, pp. 383–398. isbn: 978-3-319-69458-0. doi: 10.1007/978-3-
319-69459-7_26.[143] Joost de Kruijff and Hans Weigand. “Understanding the blockchain using enterpriseontology”. In: International Conference on Advanced Information Systems Engineer-
ing. Springer. Cham, 2017, pp. 29–43.[144] Thomas Kühne. “Matters of (meta-) modeling”. In: Software & SystemsModeling 5.4(2006), pp. 369–385.[145] Tsung-Ting Kuo, Hugo Zavaleta Rojas, and Lucila Ohno-Machado. “Comparison ofblockchain platforms: a systematic review and healthcare examples”. In: Journal of
the American Medical Informatics Association 26.5 (2019), pp. 462–478.[146] Jan Ladleif, Christian Friedow, and Mathias Weske. “An architecture for multi-chainbusiness process choreographies”. In: International Conference on Business Infor-
mation Systems. Springer. 2020, pp. 184–196.[147] Jan Ladleif, Ingo Weber, and Mathias Weske. “External data monitoring using ora-cles in blockchain-based process execution”. In: International Conference on Busi-
ness Process Management. Springer. 2020, pp. 67–81.[148] Jan Ladleif, Ingo Weber, and Mathias Weske. “External Data Monitoring Using Or-acles in Blockchain-Based Process Execution”. In: Business Process Management:
Blockchain and Robotic Process Automation Forum. Ed. by Aleksandre Asatiani et al.Cham: Springer International Publishing, 2020, pp. 67–81. isbn: 978-3-030-58779-6.[149] Jan Ladleif and Mathias Weske. “A Legal Interpretation of Choreography Models”.In: Business Process Management Workshops. Ed. by Chiara Di Francescomarino,RemcoDijkman, andUweZdun. Cham: Springer International Publishing, 2019, pp. 651–663. isbn: 978-3-030-37453-2.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 238PDF page: 238PDF page: 238PDF page: 238

Bibliography 224
[150] Jan Ladleif and Mathias Weske. “A Unifying Model of Legal Smart Contracts”. In:

ConceptualModeling. Ed. by AlbertoH. F. Laender et al. Cham: Springer InternationalPublishing, 2019, pp. 323–337. isbn: 978-3-030-33223-5.[151] Jan Ladleif and Mathias Weske. “Time in blockchain-based process execution”. In:
2020 IEEE 24th International Enterprise Distributed Object Computing Conference
(EDOC). IEEE. 2020, pp. 217–226.[152] Jan Ladleif, Mathias Weske, and Ingo Weber. “Modeling and Enforcing Blockchain-Based Choreographies”. In: Business Process Management. Ed. by Thomas Hilde-brandt et al. Cham: Springer International Publishing, 2019, pp. 69–85. isbn: 978-3-030-26619-6.[153] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine generals prob-lem”. In: ACM Transactions on Programming Languages and Systems (TOPLAS) 4.3(1982), pp. 382–401.[154] Jong-Hyouk Lee. “BIDaaS: blockchain based ID as a service”. In: IEEE Access 6 (2018),pp. 2274–2278.[155] Ronald M. Lee. “A logic model for electronic contracting”. In: Decision Support Sys-
tems 4.1 (1988), pp. 27–44. issn: 0167-9236. doi: https://doi.org/10.1016/
0167-9236(88)90096-6. url: http://www.sciencedirect.com/science/
article/pii/0167923688900966.[156] Karen Levy. “Book-Smart, Not Street-Smart: Blockchain-Based Smart Contracts andThe SocialWorkings of Law”. In: Engaging Science, Technology, and Society 3.0 (2017),pp. 1–15. issn: 2413-8053. doi: 10.17351/ests2017.107. url: https://www.
estsjournal.org/index.php/ests/article/view/107.[157] K. Li et al. “Proof of Vote: A High-Performance Consensus Protocol Based on VoteMechanism amp; Consortium Blockchain”. In: 2017 IEEE 19th International Confer-
ence on High Performance Computing and Communications; IEEE 15th International
Conference on Smart City; IEEE 3rd International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). IEEE, Dec. 2017, pp. 466–473. doi: 10.1109/HPCC-
SmartCity-DSS.2017.61.[158] Wenting Li et al. “Securing proof-of-stake blockchain protocols”. In: Data Privacy
Management, Cryptocurrencies and Blockchain Technology. Cham: Springer, 2017,pp. 297–315.[159] Sin Kuang Lo et al. “Reliability analysis for blockchain oracles”. In: Computers & Elec-
trical Engineering 83 (2020), p. 106582. issn: 0045-7906. doi: https://doi.org/
10.1016/j.compeleceng.2020.106582. url: https://www.sciencedirect.
com/science/article/pii/S0045790619316179.[160] Denivaldo Lopes et al. “Mapping specification in MDA: From theory to practice”. In:
Interoperability of enterprise software and applications. Springer, 2006, pp. 253–264.[161] Fabrice Lumineau, Wenqian Wang, and Oliver Schilke. “Blockchain Governance—ANewWayofOrganizing Collaborations?” In:Organization Science 32.2 (2021), pp. 500–521. doi: 10.1287/orsc.2020.1379. eprint: https://doi.org/10.1287/orsc.
2020.1379. url: https://doi.org/10.1287/orsc.2020.1379.[162] Loi Luu et al. “A secure sharding protocol for open blockchains”. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security. NewYork, NY, USA: ACM, 2016, pp. 17–30.[163] Loi Luu et al. “Demystifying Incentives in the Consensus Computer”. In: Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and Communications Security.CCS ’15. Denver, Colorado, USA: ACM, 2015, pp. 706–719. isbn: 978-1-4503-3832-5.doi: 10.1145/2810103.2813659. url: http://doi.acm.org/10.1145/2810103.
2813659.

https://doi.org/10.1016/
http://www.sciencedirect.com/science/
https://estsjournal.org/index.php/ests/article/view/107
https://doi.org/
https://www.sciencedirect/
https://doi.org/10.1287/orsc.
https://doi.org/10.1287/orsc.2020.1379
http://doi.acm.org/10.1145/2810103.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 239PDF page: 239PDF page: 239PDF page: 239

Bibliography 225
[164] Loi Luu et al. “Making Smart Contracts Smarter”. In: Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security. CCS ’16. Vienna, Aus-tria: ACM, 2016, pp. 254–269. isbn: 978-1-4503-4139-4. doi: 10.1145/2976749.
2978309. url: http://doi.acm.org/10.1145/2976749.2978309.[165] Orlenys López-Pintado et al. “Caterpillar: A business process execution engine on theEthereum blockchain”. In: Software: Practice and Experience 49.7 (2019), pp. 1162–1193. doi:https://doi.org/10.1002/spe.2702. eprint:https://onlinelibrary.
wiley.com/doi/pdf/10.1002/spe.2702. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/spe.2702.[166] Daniel Macrinici, Cristian Cartofeanu, and Shang Gao. “Smart contract applicationswithin blockchain technology: A systematic mapping study”. In: Telematics and In-
formatics 35.8 (2018), pp. 2337 –2354. issn: 0736-5853. doi: https://doi.org/10.
1016/j.tele.2018.10.004. url: http://www.sciencedirect.com/science/
article/pii/S0736585318308013.[167] D. Magazzeni, P. McBurney, and W. Nash. “Validation and Verification of Smart Con-tracts: A Research Agenda”. In: Computer 50.9 (2017), pp. 50–57.[168] Haikel Magrahi et al. “NFB: A Protocol for Notarizing Files over the Blockchain”. In:
2018 9th IFIP International Conference on New Technologies, Mobility and Security
(NTMS). IFIP 2018. Paris, France, 2018, pp. 1–4. doi: 10.1109/NTMS.2018.8328740.[169] KamranMammadzada et al. “BlockchainOracles: A Framework for Blockchain-BasedApplications”. In: Business Process Management: Blockchain and Robotic Process
Automation Forum. Ed. by Aleksandre Asatiani et al. Cham: Springer InternationalPublishing, 2020, pp. 19–34. isbn: 978-3-030-58779-6.[170] Bill Marino and Ari Juels. “Setting Standards for Altering and Undoing Smart Con-tracts”. In: Rule Technologies. Research, Tools, and Applications. Ed. by Jose JulioAlferes et al. Cham: Springer International Publishing, 2016, pp. 151–166. isbn: 978-3-319-42019-6.[171] O. Marjanovic and Z. Milosevic. “Towards formal modeling of e-contracts”. In: Pro-
ceedings Fifth IEEE International Enterprise Distributed Object Computing Confer-
ence. 2001, pp. 59–68. doi: 10.1109/EDOC.2001.950423.[172] Will Martino and Steward Popejoy. “The Kadena Public Blockchain, Project SummayWhitepaper”. In: (2017). eprint: http://kadena.io/docs/KadenaPublic.pdf.[173] Ivan Martinovic, Lucas Kello, and Ivo Slugavonic. Blockchains for Governmental Ser-
vices: Design Principles, Applications, and Case Studies. Tech. rep. Oxford, UnitedKingdom, 2017.[174] Aaron KMassey et al. “Evaluating existing security and privacy requirements for legalcompliance”. In: Requirements engineering 15.1 (2010), pp. 119–137.[175] Frano Škopljanac Mačina and Bruno Blaškovič. “Formal Concept Analysis, Overviewand Applications”. In: Procedia Engineering 69 (2014). Ed. by Bernhard Ganter, GerdStumme, and Rudolf Wille. 24th DAAAM International Symposium on IntelligentManufacturing and Automation, 2013, pp. 1258 –1267. issn: 1877-7058. doi: https:
//doi.org/10.1016/j.proeng.2014.03.117. url:http://www.sciencedirect.
com/science/article/pii/S1877705814003634.[176] JanMendling et al. “Blockchains for Business Process Management - Challenges andOpportunities”. In:ACMTrans.Manage. Inf. Syst. 9.1 (Feb. 2018), 4:1–4:16. issn: 2158-656X. doi: 10.1145/3183367. url: http://doi.acm.org/10.1145/3183367.[177] Weizhi Meng et al. “When intrusion detection meets blockchain technology: a re-view”. In: Ieee Access 6 (2018), pp. 10179–10188.[178] Dmitry Meshkov, Alexander Chepurnoy, and Marc Jansen. “Short Paper: RevisitingDifficulty Control for Blockchain Systems”. In: Data PrivacyManagement, Cryptocur-
rencies and Blockchain Technology. Cham: Springer, 2017, pp. 429–436.

http://doi.acm.org/10.1145/2976749.2978309
https://doi.org/10.1002/spe.2702
https://wiley.com/doi/pdf/10.1002/spe.2702
https://wiley.com/doi/abs/10.1002/spe.2702
https://doi.org/10.
http://www.sciencedirect.com/science/
http://kadena.io/docs/KadenaPublic.pdf
https://doi.org/10.1016/j.proeng.2014.03.117
http://www.sciencedirect/
http://doi.acm.org/10.1145/3183367

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 240PDF page: 240PDF page: 240PDF page: 240

Bibliography 226
[179] Eliza Mik. “Smart contracts: terminology, technical limitations and real world com-plexity”. In: Law, Innovation and Technology 9.2 (2017), pp. 269–300. doi: 10.1080/

17579961.2017.1378468. eprint: https://doi.org/10.1080/17579961.
2017.1378468. url: https://doi.org/10.1080/17579961.2017.1378468.[180] Andrew Miller et al. “Sprites: Payment channels that go faster than lightning”. In:
arXiv preprint arXiv:1702.05812 (2017).[181] David Mills et al. Distributed ledger technology in payments, clearing, and settle-
ment. Tech. rep. Washington DC, DC, USA, 2016.[182] Z.Milosevic, S. Sadiq, andM.Orlowska. “Translating business contract into compliantbusiness processes”. In: 2006 10th IEEE International Enterprise Distributed Object
Computing Conference (EDOC’06). 2006, pp. 211–220.[183] DuMingxiao et al. “A review on consensus algorithm of blockchain”. In: IEEE Interna-
tional Conference on Systems, Management and Cybernetics (SMC) 2017. IEEE, 2017,pp. 2567–2572.[184] CarlosMolina-Jimenez, Santosh Shrivastava, andMassimo Strano. “Amodel for check-ing contractual compliance of business interactions”. In: IEEE Transactions on Ser-
vices Computing 5.2 (2011), pp. 276–289.[185] William Mougayar. The business blockchain: promise, practice, and application of
the next Internet technology. John Wiley & Sons, 2016.[186] Sean.Murphy andCharley. Cooper.Can smart contracts be legally binding contracts?Tech. rep. London, United Kingdom: R3cev and Norton Rose Fulbright, June 2016.[187] SeanMurphy and Charley Cooper. Can smart contracts be legally binding contracts?Tech. rep. London, United Kingdom, 2016.[188] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: (2008).[189] HarishNatarajan, Karla Krause Solvej, and LuskinGradsteinHelen.Distributed Ledger
Technology (DLT) and Blockchain. Tech. rep. Washington DC, DC, USA, 2017.[190] Alex Norta et al. Self-aware agent-supported contract management on blockchains
for legal accountability. Tech. rep. Tallinn, Estonia, 2017.[191] Natalya F. Noy and Deborah L. McGuinness. Ontology development 101: A guide to
creating your first ontology. Tech. rep. Stanford University, 2001.[192] Barack Obama. Executive Order – Making Open and Machine Readable the New De-
fault for Government Information. url: https://obamawhitehouse.archives.
gov/the-press-office/2013/05/09/executive-order-making-open-and-
machine-readable-new-default-government-. (accessed: 02.04.2020).[193] Jeroen van Oerle and Patrick Lemmens. Distributed ledger technology for the finan-
cial industry. Tech. rep. Amsterdam, The Netherlands, 2016.[194] Svein Ølnes, Jolien Ubacht, and Marijn Janssen. “Blockchain in government: Bene-fits and implications of distributed ledger technology for information sharing”. In:
Government Information Quarterly 34.11 (2017), pp. 355–364.[195] OMG. Business Process Model and Notation. Tech. rep. Needham, MA, USA: ObjectManagement Group, 2015, p. 105.[196] OMG. Object Constraint Language. Tech. rep. Needham, MA, USA: Object Manage-ment Group, 2010, p. 105.[197] OMG. Unified Modeling Language. Tech. rep. Needham, MA, USA: Object Manage-ment Group, 2015, p. 105.[198] Wanda J. Orlikowski and Jack J. Baroudi. “Studying Information Technology inOrgani-zations: Research Approaches and Assumptions”. In: Information Systems Research2.1 (1991), pp. 1–28. doi: 10.1287/isre.2.1.1. eprint: https://doi.org/10.
1287/isre.2.1.1. url: https://doi.org/10.1287/isre.2.1.1.[199] Reggie O’Shields. “Smart contracts: Legal agreements for the blockchain”. In: NC
Banking Inst. 21 (2017), p. 177.

https://doi.org/10.1080/17579961.
https://doi.org/10.1080/17579961.2017.1378468
https://obamawhitehouse.archives/
https://doi.org/10.
https://doi.org/10.1287/isre.2.1.1

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 241PDF page: 241PDF page: 241PDF page: 241

Bibliography 227
[200] P. N. Otto and A. I. Anton. “Addressing Legal Requirements in Requirements Engi-neering”. In: 15th IEEE International Requirements Engineering Conference (RE 2007).2007, pp. 5–14.[201] M. Tamer Özsu and Patrick Valduriez, eds. Principles of Distributed Database Sys-

tems. 3rd ed. New York: Springer, 2011. isbn: 978-1-4419-8833-1. doi: 10.1007/978-
1-4419-8834-8.[202] Michael Papazoglou. Web services: principles and technology. Pearson Education,2008.[203] Mike P. Papazoglou and Benedikt Kratz. “A Business-AwareWeb Services TransactionModel”. In: Service-Oriented Computing – ICSOC 2006. Ed. by Asit Dan andWinfriedLamersdorf. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 352–364.[204] Rafael Pass and Elaine Shi. “The sleepy model of consensus”. In: International Con-
ference on the Theory andApplication of Cryptology and Information Security. Cham:Springer, 2017, pp. 380–409.[205] M. Pease, R. Shostak, and L. Lamport. “ReachingAgreement in the Presence of Faults”.In: J. ACM 27.2 (Apr. 1980), pp. 228–234. issn: 0004-5411. doi: 10.1145/322186.
322188. url: http://doi.acm.org/10.1145/322186.322188.[206] Ken Peffers et al. “A Design Science Research Methodology for Information SystemsResearch”. In: Journal of Management Information Systems 24.3 (2007), pp. 45–77.doi: 10.2753/MIS0742- 1222240302. eprint: https://doi.org/10.2753/
MIS0742-1222240302. url: https://doi.org/10.2753/MIS0742-1222240302.[207] José Carlos Pereira. “The Genesis of the Revolution in Contract Law: Smart LegalContracts”. In: Proceedings of the 12th International Conference on Theory and Prac-
tice of Electronic Governance. ICEGOV2019. Melbourne, VIC, Australia: Associationfor Computing Machinery, 2019, 374–377. isbn: 9781450366441. doi: 10 . 1145 /
3326365.3326414. url: https://doi.org/10.1145/3326365.3326414.[208] Thierry Perroud and Reto Inversini. Enterprise Architecture Patterns: Practical Solu-
tions for Recurring IT-Architecture Problems. Berlin: Springer, 2013. isbn: 978-3-642-37560-6. doi: 10.1007/978-3-642-37561-3.[209] Gareth W Peters and Efstathios Panayi. “Understanding Modern Banking Ledgersthrough Blockchain Technologies: Future of Transaction Processing and Smart Con-tracts on the Internet of Money”. In: (2015). eprint: 1511.05740.[210] Felipe Pezoa et al. “Foundations of JSON Schema”. In: Proceedings of the 25th Inter-
national Conference onWorld WideWeb. WWW ’16. Montréal, Québec, Canada: In-ternationalWorldWideWeb Conferences Steering Committee, 2016, 263–273. isbn:9781450341431. doi: 10.1145/2872427.2883029. url: https://doi.org/10.
1145/2872427.2883029.[211] Marc Pilkington. Research Handbook on Digital Transformations. Ed. by F OllerosXavier, Majlinda Zhegu, and Edward Elgar. Cheltenham, United Kingdom: EdwardElgar Publishing, 2016, p. 225. isbn: 9781784717759.[212] George Pîrlea and Ilya Sergey. “Mechanising blockchain consensus”. In: Proceedings
of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs.ACM. New York, NY, USA: ACM, 2018, pp. 78–90.[213] Klaus Pohl.Requirements engineering: fundamentals, principles, and techniques. SpringerPublishing Company, Incorporated, 2010.[214] D.S. Pradeepkumar et al. “Evaluating Complexity andDigitizability of Regulations andContracts for a Blockchain Application Design”. In: 2018 IEEE/ACM 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB).Gothenburg, Sweden: IEEE Computer Society, June 2018, pp. 25–29. doi: https:
//doi.org/10.475/123_4.

http://doi.acm.org/10.1145/322186.322188
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1145/3326365.3326414
https://doi.org/10.
https://doi.org/10.475/123_4

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 242PDF page: 242PDF page: 242PDF page: 242

Bibliography 228
[215] Cristian Prisacariu and Gerardo Schneider. “A formal language for electronic con-tracts”. In: International Conference on Formal Methods for Open Object-Based Dis-

tributed Systems. Springer. 2007, pp. 174–189.[216] J Reinecke, G. Dessler, and W. Schoell. Introduction to Business - A Contemporary
View. Boston, USA: Allyn and Bacon, 1989. isbn: 0205118321.[217] Olivier Rikken et al. Smart Contracts as a specific application of blockchain technol-
ogy. Tech. rep. The Hague, The Netherlands, 2017.[218] Horst WJ Rittel and Melvin M Webber. “Dilemmas in a general theory of planning”.In: Policy sciences 4.2 (1973), pp. 155–169.[219] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. “CoinShuffle: Practical decen-tralized coin mixing for Bitcoin”. In: European Symposium on Research in Computer
Security. Springer. 2014, pp. 345–364.[220] James Rumbaugh, Ivar Jacobson, and Grady Booch. The unified modeling language.Tech. rep. Rational Software Corporation, 1999.[221] Ravi S Sandhu. “Role-based access control”. In: Advances in computers. Vol. 46. El-sevier, 1998, pp. 237–286.[222] Ravi S Sandhu and Pierangela Samarati. “Access control: principle and practice”. In:
IEEE communications magazine 32.9 (1994), pp. 40–48.[223] Alexander Savelyev. “Contract law 2.0: ’Smart’ contracts as the beginning of the endof classic contract law”. In: Information & Communications Technology Law 26.2(2017), pp. 116–134. doi: 10 . 1080 / 13600834 . 2017 . 1301036. eprint: https :
//doi.org/10.1080/13600834.2017.1301036. url: https://doi.org/
10.1080/13600834.2017.1301036.[224] Donald J. Schepker et al. “The Many Futures of Contracts: Moving Beyond Struc-ture and Safeguarding to Coordination and Adaptation”. In: Journal of Management40.1 (2014), pp. 193–225. doi: 10.1177/0149206313491289. eprint: https://
doi.org/10.1177/0149206313491289. url: https://doi.org/10.1177/
0149206313491289.[225] Jonas Schiffl et al. “Towards Correct Smart Contracts: A Case Study on Formal Ver-ification of Access Control”. In: Proceedings of the 26th ACM Symposium on Ac-
cess Control Models and Technologies. SACMAT ’21. Virtual Event, Spain: Associa-tion for Computing Machinery, 2021, 125–130. isbn: 9781450383653. doi: 10.1145/
3450569.3463574. url: https://doi.org/10.1145/3450569.3463574.[226] David Schwartz, Noah Youngs, Arthur Britto, et al. The Ripple Protocol Consensus
Algorithm. Tech. rep. San Francisco, CA, USA, 2014.[227] Bran Selic. “A systematic approach to domain-specific language design using UML”.In: 10th IEEE International SymposiumonObject and Component-Oriented Real-Time
Distributed Computing (ISORC’07). IEEE. 2007, pp. 2–9.[228] Shane Sendall and Wojtek Kozaczynski. “Model transformation: The heart and soulof model-driven software development”. In: IEEE software 20.5 (2003), pp. 42–45.[229] Mark D. Sheldon. “Auditing the Blockchain Oracle Problem”. In: Journal of Informa-
tion Systems 35.1 (June 2020), pp. 121–133. issn: 0888-7985. doi: 10.2308/ISYS-
19-049. eprint: https://meridian.allenpress.com/jis/article-pdf/35/
1/121/2815908/i1558-7959-35-1-121.pdf. url: https://doi.org/10.
2308/ISYS-19-049.[230] Andreas Sherborne. Blockchain, Smart Contracts and Lawyers. Tech. rep. London,United Kingdom, 2017.[231] Ric Shreves. A Revolution in Trust: Distributed Ledger Technology in Relief and Devel-
opment. Tech. rep. Portland, OR ,USA, 2017.[232] Herbert A Simon. The sciences of the artificial. MIT press, 2019.

https://doi.org/10.1177/0149206313491289
https://doi.org/10.1177/
https://doi.org/10.1145/3450569.3463574
https://meridian.allenpress.com/jis/article-pdf/35/
https://doi.org/10.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 243PDF page: 243PDF page: 243PDF page: 243

Bibliography 229
[233] Si Alhir Sinan. Understanding the Model Driven Architecture (MDA). url: https :

/ / www . methodsandtools . com / archive / archive . php ? id = 5. accessed:19.07.2021.[234] Munindar P. Singh. “Norms as a Basis for Governing Sociotechnical Systems”. In:
Transactions on Intelligent Systems and Technology 5.1 (Jan. 2014). issn: 2157-6904.doi: 10.1145/2542182.2542203. url: https://doi.org/10.1145/2542182.
2542203.[235] Yashwant Singh and Manu Sood. “Model Driven Architecture: A Perspective”. In:
2009 IEEE International Advance Computing Conference. 2009, pp. 1644–1652. doi:
10.1109/IADCC.2009.4809264.[236] Jeremy M Sklaroff. “Smart contracts and the cost of inflexibility”. In: University of
Pennsylvania Law Review 166 (2017), p. 263.[237] Amin Sleimi et al. “Automated extraction of semantic legal metadata using natu-ral language processing”. In: 2018 IEEE 26th International Requirements Engineering
Conference (RE). IEEE. 2018, pp. 124–135.[238] Smart Contracts Legal Agreements for the Digital Age. Tech. rep. London, UnitedKingdom, 2018.[239] Michael Smith et al. OWL 2Web Ontology Language Conformance (Second Edition):
W3C Recommendation 11 December 2012. Tech. rep. The World Wide Web Consor-tium (W3C), 2012.[240] Yonatan Sompolinsky and Aviv Zohar. “Secure high-rate transaction processing inbitcoin”. In: International Conference on Financial Cryptography and Data Security.Cham: Springer, 2015, pp. 507–527.[241] Victor Amaral de Sousa, Corentin Burnay, andMonique Snoeck. “B-MERODE: AModel-Driven Engineering and Artifact-Centric Approach to Generate Blockchain-Based In-formation Systems”. In:Advanced Information Systems Engineering. Ed. by SchahramDustdar et al. Cham: Springer International Publishing, 2020, pp. 117–133. isbn: 978-3-030-49435-3.[242] Stark.Making Sense of Blockchain Smart Contracts. 2016. url:https://www.coindesk.
com/making-sense-smart-contracts.[243] Josh Stark. Applications of Distributed Ledger Technology to Regulatory and Compli-
ance Processes. Tech. rep. New York, NY, USA, 2017.[244] Melanie Swan.Blockchain: Blueprint for a neweconomy. Sebastopol, CA,USA:O’ReillyMedia, Inc., 2015. isbn: 978-1491920497.[245] Nick Szabo. “Formalizing and securing relationships on public networks”. In: First
Monday 2.9 (1997).[246] BayuAdhi Tama et al. “A critical reviewof blockchain and its current applications”. In:
International Conference on Electrical Engineering and Computer Science (ICECOS)
2017. IEEE, 2017, pp. 109–113.[247] Don Tapscott and Alex Tapscott. Realizing the Potential of Blockchain, A Multi Stake-
holder Approach to the Stewardship of Blockchain and Cryptocurrencies. Tech. rep.Geneva, Switzerland, 2017.[248] Vyper Development Team. Vyper Documentation. https://vyper.readthedocs.
io/en/latest/index.html. Online; accessed 18 June 2020. 2013.[249] Eric Tjong Tjin Tai. “Force majeure and excuses in smart contracts”. In: (2018).[250] An Binh Tran, Qinghua Lu, and Ingo Weber. “Lorikeet: A Model-Driven EngineeringTool for Blockchain-Based Business Process Execution and Asset Management.” In:
CEUR Workshop (2018). 2018, pp. 56–60.[251] Guenter Heinz Treitel. The law of contract. Sweet & maxwell, 2003.

https://doi.org/10.1145/2542182.
https://www.coindesk/
https://vyper.readthedocs/

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 244PDF page: 244PDF page: 244PDF page: 244

Bibliography 230
[252] Florian Tschorsch and Björn Scheuermann. “Bitcoin and beyond: A technical surveyon decentralized digital currencies”. In: IEEE Communications Surveys & Tutorials18.3 (2016), pp. 2084–2123.[253] Anna Vacca et al. “A systematic literature review of blockchain and smart contractdevelopment: Techniques, tools, and open challenges”. In: Journal of Systems and

Software 174 (2021), p. 110891. issn: 0164-1212. doi:https://doi.org/10.1016/j.
jss.2020.110891. url: https://www.sciencedirect.com/science/article/
pii/S0164121220302818.[254] Luuc Van Der Horst, Kim-Kwang Raymond Choo, and Nhien-An Le-Khac. “ProcessMemory Investigation of the Bitcoin Clients Electrum and Bitcoin Core”. In: IEEE Ac-
cess 5 (2017), pp. 22385–22398.[255] Arie Van Deursen and Paul Klint. “Domain-specific language design requires fea-ture descriptions”. In: Journal of computing and information technology 10.1 (2002),pp. 1–17.[256] Joan Verdon. Global E-Commerce Sales To Hit 4.2 Trillion As Online Surge Continues.url: https://www.forbes.com/sites/joanverdon/2021/04/27/global-
ecommerce-sales-to-hit-42-trillion-as-online-surge-continues-
adobe-reports/?sh=194d125050fd.[257] Friedhelm Victor and Bianca Katharina Lüders. “Measuring Ethereum-Based ERC20Token Networks”. In: Financial Cryptography and Data Security. Ed. by Ian Goldbergand Tyler Moore. Cham: Springer International Publishing, 2019, pp. 113–129. isbn:978-3-030-32101-7.[258] K. Vidyasankar, P. Radha Krishna, and Kamalakar Karlapalem. “Study of ExecutionCentric Payment Issues in E-contracts”. In: 2008 IEEE International Conference on
Services Computing. Vol. 2. 2008, pp. 135–142. doi: 10.1109/SCC.2008.40.[259] Aldenio de Vilaca Burgos et al. Distributed ledger technical research in Central Bank
of Brazil. Tech. rep. Brasilia - DF, Brazil, 2017.[260] R Hevner Von Alan et al. “Design science in information systems research”. In: MIS
quarterly 28.1 (2004), pp. 75–105.[261] MarkWalport.Distributed ledger technology: Beyond Blockchain. Tech. rep. London,United Kingdom, 2016.[262] S. Wang et al. “Blockchain-Enabled Smart Contracts: Architecture, Applications, andFuture Trends”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems49.11 (2019), pp. 2266–2277.[263] Yingli Wang, Jeong Hugh Han, and Paul Beynon-Davies. “Understanding blockchaintechnology for future supply chains: A systematic literature review and researchagenda”. In: Supply ChainManagement: An International Journal 24.1 (2019), pp. 62–84.[264] Jos B Warmer and Anneke G Kleppe. The object constraint language: getting your
models ready for MDA. Addison-Wesley Professional, 2003.[265] IngoWeber et al. “UntrustedBusiness ProcessMonitoring and ExecutionUsing Blockchain”.In: Business Process Management. Ed. by Marcello La Rosa, Peter Loos, and OscarPastor. Cham: Springer International Publishing, 2016, pp. 329–347. isbn: 978-3-319-45348-4.[266] Roel J Wieringa. Design science methodology for information systems and software
engineering. Springer, 2014.[267] Rolf TWigand. “Electronic commerce: Definition, theory, and context”. In: The infor-
mation society 13.1 (1997), pp. 1–16.[268] Oliver E. Williamson. “Transaction-Cost Economics: The Governance of ContractualRelations”. In: The Journal of Law and Economics 22.2 (1979), pp. 233–261. doi: 10.

https://doi.org/10.1016/j.
https://www.sciencedirect.com/science/article/
https://www.forbes.com/sites/joanverdon/2021/04/27/global-

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 245PDF page: 245PDF page: 245PDF page: 245

Bibliography 231
1086/466942. eprint: https://doi.org/10.1086/466942. url: https://doi.
org/10.1086/466942.[269] Claes Wohlin et al. Experimentation in software engineering. Springer Science &Business Media, 2012.[270] Aaron Wright et al. Smart Contracts & Legal Enforceability. Tech. rep. New York, NY,United States, 2018.[271] G. H. von Wright. “Deontic Logic”. In:Mind 60.237 (1951), pp. 1–15. issn: 00264423,14602113. url: http://www.jstor.org/stable/2251395.[272] Wüst and Arthur Gervais. “Do you need a Blockchain?” In: (2017). doi: 20180828:
104906. eprint: https://eprint.iacr.org/2017/375.[273] M. Wöhrer and U. Zdun. “Domain Specific Language for Smart Contract Develop-ment”. In: 2020 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC). 2020, pp. 1–9. doi: 10.1109/ICBC48266.2020.9169399.[274] X. Xu et al. “A Taxonomy of Blockchain-Based Systems for Architecture Design”. In:
Proceedings of the 2017 IEEE International Conference on SoftwareArchitecture (ICSA).Gothenburg: IEEE, Apr. 2017, pp. 243–252. doi: 10.1109/ICSA.2017.33.[275] Xiwei Xu, IngoWeber, andMark Staples. “Introduction”. In:Architecture for Blockchain
Applications. Cham: Springer International Publishing, 2019, pp. 3–25. isbn: 978-3-030-03035-3. doi: 10.1007/978-3-030-03035-3_1. url: https://doi.org/10.
1007/978-3-030-03035-3_1.[276] Xiwei Xu et al. “A Pattern Collection for Blockchain-based Applications”. In: Proceed-
ings of the 23rd European Conference on Pattern Languages of Programs. ACM.2018, p. 3.[277] Xiwei Xu et al. “The blockchain as a software connector”. In: 2016 13th Working
IEEE/IFIP Conference on Software Architecture (WICSA). IEEE, 2016, pp. 182–191.[278] Dylan Yaga et al. Blockchain technology overview. Tech. rep. Gaithersburg, MA, USA,2018.[279] Kazuhiro Yamashita et al. “Potential Risks of Hyperledger Fabric Smart Contracts”.In: 2019 IEEE International Workshop on Blockchain Oriented Software Engineering
(IWBOSE). 2019, pp. 1–10. doi: 10.1109/IWBOSE.2019.8666486.[280] Wei Yin et al. “An anti-quantum transaction authentication approach in Blockchain”.In: IEEE Access 6 (2018), pp. 5393–5401.[281] Jesse Yli-Huumo et al. “Where Is Current Research on Blockchain Technology? A Sys-tematic Review”. In: PLOS ONE 11.10 (Oct. 2016), pp. 1–27. doi: 10.1371/journal.
pone.0163477. url: https://doi.org/10.1371/journal.pone.0163477.[282] Fei Richard Yu et al. “Virtualization for Distributed Ledger Technology (vDLT)”. In:
IEEE Access 6 (2018), pp. 25019–25028.[283] Xiao Yu, Yueting Chai, and Yi Liu. “A SecureModel for Electronic Contract Enactment,Monitoring and Management”. In: 2009 Second International Symposium on Elec-
tronic Commerce and Security. Vol. 1. 2009, pp. 296–300. doi: 10.1109/ISECS.
2009.184.[284] Fan Zhang et al. “Town crier: An authenticated data feed for smart contracts”. In:
Proceedings of the 2016 aCM sIGSAC conference on computer and communications
security. ACM. 2016, pp. 270–282.[285] Z. Zheng et al. “AnOverview of Blockchain Technology: Architecture, Consensus, andFuture Trends”. In: IEEE International Congress on Big Data (BigData Congress) 2017.Honolulu: IEEE, June 2017, pp. 557–564. doi: 10.1109/BigDataCongress.2017.
85.[286] Y. Zhu et al. “TA-SPESC: Toward Asset-Driven Smart Contract Language SupportingOwnership Transaction and Rule-Based Generation on Blockchain”. In: IEEE Trans-
actions on Reliability (2021), pp. 1–16. doi: 10.1109/TR.2021.3054617.

https://doi.org/10.1086/466942
http://www.jstor.org/stable/2251395
https://eprint.iacr.org/2017/375
https://doi.org/10.
https://doi.org/10.1371/journal.pone.0163477

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 246PDF page: 246PDF page: 246PDF page: 246

Bibliography 232
[287] Aviv Zohar. “Bitcoin: under the hood”. In: Communications of the ACM 58.9 (2015),pp. 104–113.[288] W. Zou et al. “Smart Contract Development: Challenges and Opportunities”. In: IEEE

Transactions on Software Engineering (2019), pp. 1–1. doi: 10.1109/TSE.2019.
2942301.

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 247PDF page: 247PDF page: 247PDF page: 247

CENTER DISSERTATION SERIES

CentER for Economic Research, Tilburg University, the Netherlands

No. Author Title ISBN Published

638 Pranav Desai Essays in Corporate Finance and
Innovation

978 90
5668 639 0

January 2021

639 Kristy Jansen Essays on Institutional Investors, Asset
Allocation Decisions, and Asset Prices

978 90
5668

640 6

January 2021

640 Riley Badenbroek Interior Point Methods and Simulated
Annealing for Nonsymmetric Conic
Optimization

978 90
5668 641 3

February
2021

641 Stephanie Koornneef It’s about time: Essays on temporal
anchoring devices

978 90
5668 642 0

February
2021

642 Vilma Chila Knowledge Dynamics in Employee
Entrepreneurship: Implications for
parents and offspring

978 90
5668 643 7

March
2021

643 Minke Remmerswaal Essays on Financial Incentives in the
Dutch Healthcare System

978 90
5668 644 4

July
2021

644 Tse-Min Wang Voluntary Contributions to Public Goods:
A multi-disciplinary examination of
prosocial behavior and its antecedents

978 90
5668 645 1

March
2021

645 Manwei Liu Interdependent individuals: how
aggregation, observation, and persuasion
affect economic behavior and judgment

978 90
5668 646 8

March
2021

646 Nick Bombaij Effectiveness of Loyalty Programs 978 90
5668 647 5

April 2021

647 Xiaoyu Wang Essays in Microeconomics Theory 978 90
5668 648 2

April 2021

648 Thijs Brouwer Essays on Behavioral Responses to
Dishonest and Anti-Social Decision-
Making

978 90
5668 649 9

May 2021

649 Yadi Yang Experiments on hold-up problem and
delegation

978 90
5668 650 5

May 2021

650 Tao Han Imperfect information in firm growth
strategy: Three essays on M&A and FDI
activities

978 90
5668 651 2

June 2021

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 248PDF page: 248PDF page: 248PDF page: 248

No. Author Title ISBN Published

651 Johan Bonekamp Studies on labour supply, spending and
saving before and after retirement

978 90
5668 652 9

June 2021

652 Hugo van Buggenum Banks and Financial Markets in
Microfounded Models of Money

978 90
5668 653 6

August 2021

653 Arthur Beddock Asset Pricing with Heterogeneous Agents
and Non-normal Return Distributions

978 90
5668 654 3

September
2021

654 Mirron Adriana
Boomsma

On the transition to a sustainable
economy: Field experimental evidence on
behavioral interventions

978 90
5668 655 0

September
2021

655 Roweno Heijmans On Environmental Externalities and
Global Games

978 90
5668 656 7

August 2021

656 Lenka Fiala Essays in the economics of education 978 90
5668 657 4

September
2021

657 Yuexin Li Pricing Art: Returns, Trust, and Crises 978 90
5668 658 1

September
2021

658 Ernst Roos Robust Approaches for Optimization
Problems with Convex Uncertainty

978 90
5668 659 8

September
2021

659 Joren Koëter Essays on asset pricing, investor
preferences and derivative markets

978 90
5668 660 4

September
2021

660 Ricardo Barahona Investor Behavior and Financial Markets 978 90
5668 661 1

October
2021

660 Stefan ten Eikelder Biologically-based radiation therapy
planning and adjustable robust
optimization

978 90
5668 662 8

October
2021

661 Maciej Husiatyński Three essays on Individual Behavior and
New Technologies

978 90
5668 663 5

October
2021

662 Hasan Apakan Essays on Two-Dimensional Signaling
Games

978 90
5668 664 2

October
2021

663 Ana Moura Essays in Health Economics 978 90
5668 665 9

November
2021

664 Frederik Verplancke Essays on Corporate Finance: Insights on
Aspects of the General Business
Environment

978 90
5668 666 6

October
2021

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 249PDF page: 249PDF page: 249PDF page: 249

No. Author Title ISBN Published

665 Zhaneta Tancheva Essays on Macro-Finance and Market
Anomalies

978 90
5668 667 3

November
2021

666 Claudio Baccianti Essays in Economic Growth and Climate
Policy

978 90
5668 668 0

November
2021

667 Hongwei Zhang Empirical Asset Pricing and Ensemble
Machine Learning

978 90
5668 669 7

November
2021

668 Bart van der Burgt Splitsing in de Wet op de
vennootschapsbelasting 1969 Een
evaluatie van de Nederlandse
winstbelastingregels voor splitsingen ten
aanzien van lichamen

978 90
5668 670 3

December
2021

669 Martin Kapons Essays on Capital Markets Research in
Accounting

978 90
5668 671 0

December
2021

670 Xolani Nghona From one dominant growth mode to
another: Switching between strategic
expansion modes

978 90
5668 672 7

December
2021

671 Yang Ding Antecedents and Implications of Legacy
Divestitures

978 90
5668 673 4

December
2021

672 Joobin Ordoobody The Interplay of Structural and Individual
Characteristics

978 90
5668 674 1

February
2022

673 Lucas Avezum Essays on Bank Regulation and
Supervision

978 90
5668 675 8

March 2022

674 Oliver Wichert Unit-Root Tests in High-Dimensional
Panels

978 90
5668 676 5

April 2022

675 Martijn de Vries Theoretical Asset Pricing under
Behavioral Decision Making

978 90
5668 677 2

June 2022

676 Hanan Ahmed Extreme Value Statistics using Related
Variables

978 90
5668 678 9

June 2022

677 Jan Paulick Financial Market Information
Infrastructures: Essays on Liquidity,
Participant Behavior, and Information
Extraction

978 90
5668 679 6

June 2022

678 Freek van Gils Essays on Social Media and Democracy 978 90
5668 680 2

June 2022

580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn580925-L-bw-Butijn
Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022Processed on: 22-7-2022 PDF page: 250PDF page: 250PDF page: 250PDF page: 250

No. Author Title ISBN Published

679 Suzanne Bies Examining the Effectiveness of Activation
Techniques on Consumer Behavior in
Temporary Loyalty Programs

978 90
5668 681 9

July 2022

680 Qinnan Ruan Management Control Systems and Ethical
Decision Making

978 90
5668 682 6

June 2022

681 Lingbo Shen Essays on Behavioral Finance and
Corporate Finance

978 90
5668 683 3

August 2022

682 Joshua Eckblad Mind the Gales: An Attention-Based View
of Startup Investment Arms

978 90
5668 684 0

August 2022

683 Rafael Greminger Essays on Consumer Search 978 90
5668 685 7

August 2022

684 Suraj Upadhyay Essay on policies to curb rising healthcare
expenditures

978 90
5668 686 4

September
2022

685 Bert-Jan Butijn From Legal Contracts to Smart Contracts
and Back Again: An Automated Approach

978 90
5668 687 1

September
2022

ISBN: 978 905668 687 1
DOI: 10.26116/d6h4-7r79

N
R

. 6
8

5
Fro

m
 Leg

al C
o

n
tracts to

 Sm
art C

o
n

tracts an
d

 B
ack A

g
ain

: A
n

 A
u

to
m

ated
 A

p
p

ro
ach

B
ert-Jan

 B
u

tijn

From Legal Contracts to
Smart Contracts and Back Again:

An Automated Approach

Dissertation SeriesTILBURG SCHOOL OF ECONOMICS
AND MANAGEMENT

B E RT - J A N B U T I J N

	Lege pagina
	Lege pagina

