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1 INTRODUCTION

Distributed ledger technology (DLT) enables the operation of a highly available, append-only data-
base (a distributed ledger) that is maintained by physically distributed storage and computing de-
vices (referred to as nodes) in an untrustworthy environment. DLT promises to increase efficiency
and transparency of collaborations between individuals and/or organizations based on inherent
qualities such as tamper resistance and censorship resistance and democratization of data [1]. As
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a consequence, an ever-increasing number of applications on DLT have been developed in various
domains, such as supply chain management [2], finance [3], or health care [4]. In supply chain
management, product provenance systems employ DLT, for example, as a tamper-resistant data
storage that is replicated across multiple nodes of collaborating entities in the supply chain [5, 6].
Applications use distributed ledgers as a shared infrastructure that facilitates, for instance, reli-
able and tamper-resistant data storage, processing of transactions (e.g., for the transfer of digital
assets), and automation of business processes [7, 8]. Each application on DLT builds upon a partic-
ular DLT design (e.g., Ethereum or IOTA) that is defined as a formal specification of a DLT concept
(e.g., blockchain) with unique characteristics [9].

Despite the promising benefits of DLT, past implementations of applications on DLT reveal crit-
ical dependencies between DLT characteristics that result in trade-offs; that is, the improvement
of one DLT characteristic interferes with another DLT characteristic. For example, a trade-off ex-
ists between achieving availability and consistency in distributed ledgers [10]. High availability
of a distributed ledger can be achieved by increasing the number of replications of the ledger. As
a consequence, the network of nodes in the distributed ledger increases; however, this leads to
reduced consistency due to increased message propagation delays [11]. Given the prevalent trade-
offs between DLT characteristics, there will be no one-size-fits-all DLT design for applications
on DLT. Rather, there will be DLT designs that are specialized to fulfill certain requirements but
perform poorly on other requirements (e.g., low throughput, poor scalability, or high cost) due to
drawbacks resulting from DLT-inherent trade-offs [9, 12]. It is thus challenging to select suitable
DLT designs for an application and to assess potential drawbacks for the respective application
on DLT. Making careful and well-founded decisions in favor for a (suitable) DLT design to de-
velop viable applications on DLT is even more crucial, because technical differences between DLT
designs (e.g., different data structures and consensus mechanisms) impede the migration of data
between distributed ledgers [13]. In this context, viability refers to applications’ ability to operate
over a long period under consideration of potentially changing requirements or improvements
and resulting updates. To understand the trade-offs between DLT characteristics and their impact
on the viability of applications on DLT, a comprehensive analysis of dependencies between DLT
characteristics and resulting trade-offs is required.

While the body of research on DLT was ever increasing in the past decade, related research
on DLT characteristics predominantly focuses on assessing the importance of characteristics for
particular use cases (e.g., cryptocurrencies [14]) and on comparing application requirements with
capabilities of selected distributed ledgers (e.g., [15]). Prior analyses of dependencies between DLT
characteristics only consider a sparse set of DLT characteristics (e.g., integrity or scalability [16,
17]). In addition, research on DLT characteristics and their dependencies is largely scattered across
disciplines and needs to be synthesized to obtain a comprehensive understanding of dependencies
between DLT characteristics and resulting trade-offs that limit the applicability of DLT designs to
certain applications on DLT. We therefore strive to answer the following research question:

How do trade-offs between DLT characteristics impact the viability of applications on DLT?

To answer our research question, we applied a three-step research approach. First, we identified
prevalent DLT characteristics by conducting a comprehensive literature review composed of 191
articles and surveying DLT experts. Second, we analyzed the identified DLT characteristics in
detail to uncover trade-offs in DLT designs, which were then applied to the most fitting DLT
designs. Finally, we consolidated the identified trade-offs into archetypes and derived implications
for applications on DLT.

Our study identified a consolidated list of 40 DLT characteristics that are fundamental for as-
sessing the suitability of DLT designs for applications on DLT, which we grouped into 6 DLT
properties. This manuscript uncovers and explains 24 trade-offs between DLT characteristics and
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discusses the resulting drawbacks for applications. The identified DLT characteristics and prop-
erties range from purely technical (e.g., strength of cryptography in security) to social (e.g., degree
of decentralization in policy), which highlight the complexity of DLT. Finally, we consolidated our
findings into six DLT archetypes that indicate benefits and drawbacks for applications on DLT re-
sulting from choice and configuration of a DLT design optimized toward a certain DLT property.

Our work contributes to the development of viable applications on DLT by discussing benefits
and drawbacks of applications on DLT and presenting six archetypes of DLT designs. This work
forms a bridge between currently separated research streams on DLT and forms a foundation for
research assessing the suitability of DLT designs for applications. Our work allows practitioners
and researchers to better understand which drawbacks for applications on DLT result from what
configurations of DLT characteristics. Overall, we contribute to the scientific knowledge base by
making it possible to set DLT characteristics into relation with applications on DLT and vice versa.

The manuscript is structured as follows: First, we introduce the current state of research on
DLT and outline smart contract vulnerabilities and several attacks on distributed ledgers. This
knowledge is required to understand the origins of trade-offs between DLT characteristics and
drawbacks for applications on DLT. Second, we describe the methods applied. Third, we present
the identified DLT characteristics, the derived trade-offs between DLT characteristics, and the
generated archetypes. Finally, we discuss our principal findings, summarize the implications for
both practice and research, discuss research limitations, and give an outlook for future research.

2 RESEARCH BACKGROUND AND RELATED RESEARCH

2.1 Distributed Ledger Technology

In its essence, DLT serves as a shared, digital infrastructure for applications on DLT (e.g., in fi-
nancial transactions [18]) by enabling the operation of a highly available, append-only distributed
database (referred to as distributed ledger) in an untrustworthy environment [19], where separated
storage and computing devices (referred to as nodes) maintain a local replication of the ledger.
Nodes are maintained and controlled by individuals or organizations (referred to as node con-
trollers1). An untrustworthy environment is characterized by the arbitrary occurrence of Byzan-
tine failures [20, 21], including crashed or (temporarily) unreachable nodes, network delays, and
malicious behavior of nodes.

In DLT, data are transferred and appended to the ledger in the form of transactions and are
stored in a chronologically ordered sequence. Each transaction contains metadata (e.g., transaction
recipient or timestamp) and a digital representation of certain assets (e.g., coins) or program code
of a smart contract (see Section 2.3) [22]. When a node receives a new transaction, the transaction
is validated by a proof of ownership for the digital representation of the asset based on digital
signatures and public key cryptography [22, 23].

DLT covers various DLT concepts, DLT designs, DLT properties, and DLT characteristics [9,
24] (see Figure 1). DLT concepts describe the basic structure and functioning of DLT designs on
a high level of abstraction. For instance, blockchain is a DLT concept describing the use of blocks
that form a linked list. Each block contains multiple transactions that have been added into the
block by nodes. Blockchains mostly follow the concept of replicated state machines, where each
node maintains a local replication of the ledger in a certain state sn with an incrementing counter
n ∈ N0, which expresses the height of a ledger (also called block height in blockchain). Appending

1We prefer the term node controller to node provider, because the node provider could be a cloud service provider (e.g., in

Blockchain as a Service) that only hosts the node, while the node controller could maliciously influence the behavior of the

node.
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Fig. 1. Hierarchical structure of distributed ledger technology (DLT), subordinate DLT concepts, and DLT

designs and their respective DLT properties and DLT characteristics.

new blocks or transactions to the local replication of the ledger represents a transition from a state
sn to the subsequent state sn+1. For example, Alice owns 10 coins in sn and she sends 2 coins to Bob.
The transaction is put in a queue of transactions to be processed and is eventually committed to the
ledger. This commit initiates a transition from sn to sn+1, in which Alice has a new balance of 8 coins
and Bob’s balance is increased by 2 coins. Other DLT concepts do not rely on generating a single
chain of blocks or even do not use blocks at all. For example, the DLT concept BlockDAG links
generated blocks in a directed acyclic graph (DAG), while in a transaction-based DAGs (TDAG)
transactions are linked directly with each other.2

DLT designs specify an abstract description of DLT concepts by adding concrete values and
processes for inherent DLT characteristics such as a maximum block size or a consensus mecha-
nism to achieve a certain fault tolerance. There are important differences between DLT designs.
The differences make DLT designs suitable for some applications and unsuitable for others. For
instance, the DLT design Bitcoin creates a new block every 10 minutes and has a fixed, maximum
block size of 1 MB [23]. In contrast, the DLT design Ethereum publishes new blocks on average
every 17 seconds and block size is individually decided by nodes to increase flexibility of the dis-
tributed ledger. A distributed ledger is an instantiation of the formal specification of a DLT design.

DLT characteristics represent features of DLT designs, which are of technical (e.g., block cre-
ation interval) or administrative (e.g., node controller verification) nature. The technical charac-
teristics constrain future changes of the administrative characteristics (e.g., lack of scalability re-
garding network size of a distributed ledger). DLT properties are groups of DLT characteristics
and shared by each DLT design. For instance, throughput and scalability are both associated with
the DLT property performance. Although all DLT designs cover all DLT properties, DLT designs
must not cover all DLT characteristics. For instance, TDAGs do not use blocks and do not feature
any DLT characteristics related to blocks (e.g., block size, block creation interval).

All nodes of a distributed ledger maintain a local replication of the ledger, which is why all nodes
must be synchronized and agree on a common state of the distributed ledger to reach consistency
(e.g., agreeing that Bob’s balance increased after receiving coins from Alice). For this purpose a
consensus mechanism is employed to manage the negotiation between nodes, which (eventually)
agree on a common state of the distributed ledger [23, 27]. Consensus mechanisms build upon
trust models, which consider threats and uncertainties in the process of consensus finding such as
Byzantine failures. Trust models form a set of assumptions, which must hold to ensure consensus
finding among nodes (e.g., at least 51% of nodes must agree on a certain state). In Bitcoin, the first

2Although blockchain represents a special type of BlockDAG, we decided to separate blockchain from BlockDAGs because

of the different validation processes, data structures, and block storage organization [22, 23, 25, 26]. While in blockchain all

nodes work on the same block and only one block is appended to the blockchain, in BlockDAGs nodes work on different

blocks that are added in parallel.
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Table 1. Selection of Relevant Consensus Mechanisms for This Work

Consensus Mechanism Identifier DLT Concept Finality Exemplary DLT Designs

CBC Casper Casper BlockDAG Probabilistic RChain [25]

Delegated Proof of Stake DPoS Blockchain Total EOS [31]

Delegated Proof of Stake DPoS TDAG Probabilistic Nano [32]

Modified Nakamoto Consensus using
Greedy Heaviest Observed Sub Tree (GHOST)

PoW Blockchain Probabilistic Ethereum [22]

Nakamoto Consensus PoW Blockchain Probabilistic Bitcoin [23]

PHANTOM PHANTOM BlockDAG Probabilistic soteriaDAG [26]

Practical Byzantine Fault Tolerance PBFT Blockchain Total Hyperledger Fabric [29]

Proof of Authority PoA Blockchain Total Ethereum [33]

Proof of Elapsed Time PoET Blockchain Probabilistic Hyperledger Sawtooth [34]

Proof of Reputation PoR Blockchain Total GoChain [35]

Proof of Stake PoS Blockchain Probabilistic Dash [36]

Tendermint Core Tendermint Blockchain Total Tendermint [30]

Tangle Tangle TDAG Probabilistic IOTA [37]

Byzantine fault–tolerant consensus mechanism that can be applied on a large scale and is able
to prevent double spending (see Section 2.2) was presented: the Proof of Work (PoW)-based
Nakamoto consensus [23]. Nevertheless, Nakamoto consensus comes with several drawbacks,
such as poor throughput, exhaustive energy consumption, and vulnerability to attacks on integrity
(see Section 2.2). To overcome drawbacks of the Nakamoto consensus, numerous alternative
consensus mechanisms have been developed and already applied to DLT designs, such as GoChain
[28], Hyperledger Fabric [29], soteriaDAG [26], and Tendermint [30]. In addition, BlockDAGs
and TDAGs often employ alternatives to replicated state machines, where not all nodes need to
maintain an identical replication of the ledger, in their consensus mechanism. Such alternatives
make use of random walks (e.g., in IOTA), clustering (e.g., in seele), or only keep transactions of
a certain user on individual nodes (e.g., in Nano). The consensus mechanisms discussed in this
work are summarized in Table 1.

In large, distributed ledgers (e.g., Bitcoin or Ethereum), where nodes can arbitrarily join and
leave the network, it is not possible to reach consensus among all nodes before new data are com-
mitted to the ledger [38]. Thus, newly appended data are not finalized and only probabilistic finality
is given; a certain probability that the data can be altered or removed remains [39]. The probabil-
ity of finality of a transaction increases with more blocks (or transactions) that are appended to
the distributed ledger after the transaction. Accordingly, the trust model of probabilistically final
DLT designs (e.g., Bitcoin) allows for network partitions. Some nodes may agree on a state sn,1 and
others agree on sn,2 with sn,1 � sn,2. Network partitions that maintain different states are called
forks. There can be an arbitrary number of forks in a distributed ledger and the DLT design needs
to apply a rule to decide on a block (or transaction) being included into the main branch of the
ledger and the ones not being part of it (named stale blocks in blockchains and BlockDAGs or stale
transactions in TDAGs). Fork resolution rules determine a certain state of the ledger to be correct,
thereby, returning the distributed ledger to a consistent state. In contrast to probabilistic finality,
there is total finality (often abbreviated with finality), where all nodes agree on the new state before
data are appended to the ledger [40]. Once appended, data cannot be altered or removed anymore
and forks such as in Bitcoin or Ethereum are not even possible (see Table 1).

Despite the widespread distinction between public and permissioned DLT designs (e.g., [41,
42]) or public, consortium, and private DLT designs (e.g., [43]), we use a more granular
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Table 2. Classification of Exemplary DLT Designs According to the

Used Terminology and the Respective Focus

Public Private

Permissioned GoChain [28]
High performance general purpose

Quorum [44]
Financial asset transfers

Permissionless Ethereum [22]
General purpose

ARK Ecosystem [45]
Flexibility for developers

terminology to make the trade-offs in the following sections unambiguous (in line with [15]). We
distinguish between public and private DLT designs depending on the fact whether a new node
can directly join a network (referred to as public DLT) or whether a permission must be granted
first (referred to as private DLT). The distinction into public-private refers to read permissions and
can be further distinguished into permissionless and permissioned, which refers to write permis-
sions. Nodes do not require any permissions to participate in the distributed ledger (referred to as
permissionless) or must first be granted permission to validate and commit new data (referred to
as permissioned). The used terminology is summarized in Table 2.

In public DLT designs (e.g., Bitcoin), an incentive mechanism is required, because validating
nodes must be motivated to share their computational resources. The incentive mechanism spec-
ifies a reward scheme for nodes that participate in the generation and/or validation of blocks and
transactions, consensus finding, and maintenance of the distributed ledger. The participation of
nodes in a distributed ledger to receive a monetary reward is called mining. Accordingly, validat-
ing nodes are often referred to as miners. For example, validating nodes in the Bitcoin network
receive a certain amount of coins if they are the first to create a valid new block. Such incentive
mechanisms are predominantly applied to distributed ledgers that employ nodes of unknown node
controllers, thus, allow for a high degree of decentralization.

Assuming that all nodes operate under equal conditions, a distributed ledger’s degree of decen-
tralization refers to the number of independent validating node controllers reduced by the num-
ber of controllers that control more than average validating nodes divided by the total number
of node controllers in the DLT network. Consequently, a distributed ledger’s degree of decentral-
ization is determined by two dimensions: the number of independent validating node controllers
(e.g., companies or individuals) and the number of validating nodes (see Figure 2). If the number of
validating nodes increases, and all additional nodes are maintained by the same controller, the de-
gree of decentralization would decrease, because this controller gains unproportional influence on
the distributed ledger’s consensus finding and integrity. On the contrary, the degree of decentral-
ization is increased as independent node controllers add nodes of at most average computational
resources to the distributed ledger.

2.2 Attack Vectors and Vulnerabilities

To understand drawbacks of applications on DLT that result from vulnerabilities, it is important to
introduce potential attack vectors. Although DLT is often considered to be immutable, there have
already been millions of dollars lost due to successful attacks on distributed ledgers that rewrote
the transaction history (e.g., 51% Attack [46]). In this section, we explain the most prominent
attacks on the integrity of a DLT design, which play a role in the identified trade-offs. It should
be noted that the explained attacks predominantly target forkable DLT designs (e.g., Bitcoin or
Ethereum), because there is only little research on the security of DAGs.

Double Spending. Double spending refers to multiple use of a particular asset by the same
user for different purposes without the asset being returned before using it again [23]. In a double
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Fig. 2. The degree of decentralization is determined by the number of independent validating node con-

trollers (e.g., an organization or individuum) and the number of validating nodes in the distributed ledger.

An increase in number of independent controllers who control validating nodes increases the overall degree

of decentralization of a distributed ledger.

spending attack, the attacker suggests to a user that a product was paid on a certain network
partition visible for the user, while transferring the issued coins back to her own wallet on another
network partition. After the network partitions were resolved, the attacker still owns her coins and
the product she actually did not pay for.

Partition-based Attacks. Partition-based attacks can be successfully performed in public-
permissionless DLT designs with probabilistic finality (e.g., Bitcoin and Ethereum). In such DLT
designs, forks can be exploited to perform attacks on the distributed ledger’s integrity. The
most popular attacks are 51% attacks, balance attacks, and eclipse attacks. A 51% attack can be
successful in DLT designs with a consensus mechanism that relies on a majority decision among
nodes (e.g., Nakamoto consensus). If the attackers control the majority of nodes, they can rewrite
the transaction history, because their majority of nodes agrees on their desired (fraudulent)
state of the distributed ledger. In DLT designs such as Bitcoin, where nodes can arbitrarily join
and leave the network, mechanisms are required to prevent attackers from setting up a huge
number of virtual nodes. Such mechanisms usually employ proof of work [47], where nodes
must first do computational work before new data can be committed to the distributed ledger.
A balance attack incorporates the process of transiently disrupting communications between
subgroups of validating nodes with equal computational power, which is determined by, for
example, the nodes’ hashing rate [48]. While the communication is disrupted, transactions can
be submitted to one subgroup while the attacker mines in another subgroup. The attackers’ aim
is to outweigh the blockchain branch they submitted transactions to with the blockchain branch
they work on to raise the probability for successful double spending. As a result, the distributed
ledger may be rewritten at any time the attackers prefers [48]. In an eclipse attack, attackers
target network partitions by delaying message forwarding (e.g., transactions) to nodes of the
attacked network partition [49]. When messages are delayed, targeted nodes are isolated from
the network. Such network partitions faciliate double spending (until the fork resolution rule is
applied). For example, an attacking node would send a transaction (e.g., a payment) to the victim
node. The victim node validates the transaction and is subsequently eclipsed from the network by
the attacker. Then, the attacker issues another transaction to the entire network and spends the
same assets again. Since all partition-based attacks target information asymmetry among nodes,
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partition-based attacks can be successfully performed in combination with routing attacks (i.e.,
Border Gateway Protocol hijack attack [50]). In routing attacks, attackers manipulate nodes or
network operators to intentionally delay network messages [50].

Bribery Attack. During a bribery attack, attackers strive to create a new main branch by in-
centivizing validating nodes to work on a particular fork of the DLT design, which the attackers
dominate [51]. The number of nodes that work on the attackers branch increases and the attackers
branch may eventually catch up with the main branch of the blockchain and, finally, become the
main branch.

Selfish-mining. Selfish-mining attacks describe a phenomenon where a set of nodes works on
their own branch of a blockchain without publishing their blocks to the main branch until their
branch would be chosen as future main branch by the fork resolution rule applied to the distributed
ledger [16, 52]. A selfish-mining attack is carried out by attackers to obtain excessive rewards or
waste the computing power of honest validating nodes [52]. It was found that a successful selfish-
mining attack can be performed in Bitcoin if at least one-third of the validating nodes collude [16].

Long-range Attack. A long-range attack aims to rewrite the transaction history from the gene-
sis block (the first block in a blockchain). A long-range attack is successful when the attackers have
generated a fork that has become the main chain, which is similar to selfish-mining (or short-range
attack) [53]. Predominantly, DLT designs that rely on proof of stake as a consensus mechanism, are
prone to long-range attacks, the exhaustive use of PoW in consensus mechanisms (e.g., for leader
election in Nakamoto consensus) employed in DLT designs requires too much computational ef-
fort to rewrite a transaction history beginning from the genesis block, which is why long-range
attacks are considered impractical for PoW-based DLT designs [53].

Blockchain Anomaly. The blockchain anomaly refers to the fact that a blockchain cannot guar-
antee that a committed transaction is permanently included in a fork of a blockchain. Due to this,
conditional transactions are hard to perform. In conditional transactions, a transaction ti+1 of a
node n1 should be committed after a certain condition is fulfilled (e.g., the commit of a previous
transaction ti issued by n2) [27]. If the transactions have been issued by n1 and n2 to different net-
work partitions, it is likely that ti and ti+1 are included in different forks of the blockchain. The
blockchain may finally decide for the fork not containing ti but ti+1 and only commit ti+1, which
violates the conditional execution of ti and ti+1. The blockchain anomaly can occur in blockchains
whose consensus mechanism does not ensure consensus safety and deterministic agreement be-
tween nodes [27].

Sybil Attack. In a sybil attack, the attacker sets up multiple (virtual) nodes to contribute the
majority of actors in consensus finding to eventually rewrite the transaction history of the dis-
tributed ledger. To decrease the probability of successful sybil attacks, all nodes must perform a
certain PoW, where each node must first finish a computationally hard task that can easily be eval-
uated by other nodes [47]. For example, in Bitcoin, Ethereum, and Nano, the block (or transaction)
issuer must first guess a nonce with a corresponding hash value, which fulfills an easy-to-validate
condition (e.g., starting with a defined minimum number of zeroes). Sybil attacks can isolate (hon-
est) nodes within a distributed ledger’s network by not relaying transactions of these nodes [54,
55]. The selective relaying of transactions can contribute to double spending [56].

2.3 Smart Contracts and Respective Vulnerabilities

Several distributed ledgers offer the possibility to deploy and execute customized business logic
through smart contracts. Smart contracts are software programs. They can be developed in ba-
sic OP_CODE (e.g., in Bitcoin Script language) [57, 58] or in high-level programming languages
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(e.g., Java, Python, or Solidity), allowing for Turing completeness [22, 31, 59]. When Bitcoin was
invented, the development of smart contracts was limited to the use of cryptographic functions
such as hash-locks, time-locks, and multi-signatures. To give more flexibility to developers, the
Ethereum foundation developed the Ethereum Virtual Machine (EVM), which allows for the ex-
ecution of Turing-complete smart contracts that can be developed in high-level programming
languages such as Solidity [22]. An Ethereum smart contract is contained in a transaction, which
is sent to and eventually stored on the Ethereum blockchain. Ethereum smart contracts can receive
and keep assets and issue transactions. Smart contracts can be called via their unique address to
trigger methods [22]. If an Ethereum smart contract is triggered by a transaction, each node of
the distributed ledger separately executes the smart contract. Smart contract computations are
not restricted to the use of data already stored on the ledger (on-chain data), but can also retrieve
data from external data feeds via oracles and outsource computation-heavy processes to off-chain
computing resources (e.g., a cloud service) [60].

Smart contracts are of high interest in the field of DLT, because they considerably increase the
range of applications on DLT. However, smart contracts leverage programming paradigms that
developers are not yet used to (e.g., rollbacks of failed transactions due to out-of-gas conditions).
Since Ethereum introduced Turing-complete smart contracts on public-permissionless DLT designs,
the issue of how to prevent infinite loops became crucial to prevent system failure. As a solution,
a pricing schedule, which requires an economic equivalent (referred to as ‘gas’ in Ethereum) to
be paid for the execution of a particular smart contract, is applied in public-permissionless DLT
designs [22]. As soon as the quantity of gas is no longer sufficient to execute a smart contract,
its execution is cancelled (out-of-gas condition). Out-of-gas conditions always require appropriate
error handling; otherwise, the respective smart contract is locked automatically and cannot be
executed anymore [61, 62]. In the following, we briefly review the smart contract vulnerabilities
relevant for this work.

Overflow/Underflow. Numbers in smart contracts, especially, those being executed in the
EVM, are usually stored in variables of the datatype unsigned integer (uint). If the stored values
exceed the maximum uint value (overflow), the value is set to zero. If the value of a uint variable
becomes smaller than zero (underflow) it is set to its maximum value [61, 63]. Attacks can exploit
over- and underflows for different purposes such as manipulation of payout values. To prevent
overflow/underflow attacks, developers must consider whether the uint value could exceed its
maximum or become less than zero.

Unbounded Loops. The most standard form of a gas-focused vulnerability is that of unbounded
loops. Loops whose behavior is determined by user input could iterate too many times, exceed the
block gas limit, become economically too expensive to perform, or lead to overflow or underflow.
For example, a list could become a cause for an unbounded loop if users can add arbitrary entries
and, thus, increment the number of iterations necessary to go through the list, where each iteration
costs gas. This will commonly lead to a Denial of Service for all transactions that must attempt to
iterate the loop [61].

Reentrancy. Atomicity and sequentiality of transaction execution require that non-recursive
methods cannot be re-entered before their return values are committed to memory. The require-
ments for atomicity and sequentiality are by default not fulfilled in smart contracts and must be
considered by smart contract developers. Recursive calls of smart contract functions (referred to
as reentrancy) can occur when a single smart contract invokes itself or in a chained execution of
smart contracts. Often, such recursive calls neglect the execution model underlying smart con-
tracts (e.g., finite state machines), where each change in the smart contract’s data represents a
transition to a new state of the smart contract. The execution model allows for the execution of
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Table 3. Overview of Prevalent DLT Research Streams

Stream Description Example

Description Generation of structured descriptions and classifications of DLT designs [14, 68]

Analysis Measurement and report of dependencies between particular DLT characteristics [11, 52]

Application Development of prototypes and investigating the application of DLT designs in certain domains [12, 69]

Guidance Development of processes to guide practitioners when looking for a suitable DLT design for applications [68, 70]

functions (e.g., withdraw functions) without changing the smart contracts internal state [63, 64].
In one of the most prominent incidents in the context of smart contracts, the attack on the Decen-
tralized Autonomous Organization (the DAO) [64], reentrancy was exploited, which caused the
hard fork of Ethereum into Ethereum Classic and Ethereum in 2016.

Wallet Griefing. A smart contract can cause unexpected errors when invoking external meth-
ods that may itself throw an out-of-gas exception [65]. In the EVM, transactions are, for exam-
ple, issued to an account using the <recipientAccount>.send(uint) function. Using this function to
transfer tokens can lock the smart contract if error handling is not properly implemented, be-
cause the execution of <recipientAccount>.send(uint) can produce out-of-gas conditions, where
state changes durig the smart contract execution are potentially not completely rolled back [65].
Wallet griefing is also realistic when the smart contract should handle multiple clients without iso-
lation and when a failure in sending transactions using <recipientAccount>.send(uint) occurs [61].

2.4 Prior Research on Trade-offs between DLT Characteristics

Viability and maintainability of applications on DLT heavily depends on the choice of a suitable
DLT design. Maintainability refers to making an application easy to update and adaptable to chang-
ing requirements. Since DLT combines insights from several disciplines of computer science (e.g.,
distributed systems and cryptography) and economics (e.g., game theory), DLT designs are com-
plex and implications for applications on the respective DLT design are not trivial to derive. Extant
research on DLT can be distinguished into four research streams: description, analysis, application,
and guidance (see Table 3).

The description research stream focuses on structured descriptions and classifications of DLT;
for example, taxonomies of DLT characteristics. Characteristics of and differences between DLT
designs are collected and consolidated into structured overviews (e.g., [14, 66–68]). However, de-
pendencies between identified DLT characteristics are seldom investigated and the causes for
the ever-increasing number of DLT designs remain unclear. Hence, the practical or technical use
of identified DLT characteristics for a comprehensive understanding of functionalities and con-
straints of DLT designs is limited to the provision of a common understanding of selected DLT
designs, while implications for application development remain unclear.

In the second research stream, analysis, dependencies between selected DLT characteristics are
measured and individual dependencies between DLT characteristics are reported. For example,
high performance of a DLT design mostly comes at the cost of its level of security [11, 52]. Ex-
tant research explains this trade-off in blockchains by the fact that various attacks result from an
increased stale block rate, which is influenced by, among other things, the (mis-)configuration of
block size and block creation interval in public-permissionless DLT designs [11, 52]. However, the
application perspective is not considered in prior analysis research, because most of the research
articles do not explain practical implications that result from the observed effects produced by con-
figurations of DLT characteristics. Additionally, only few DLT characteristics have been included
in these analyses (e.g., block size, throughput, or scalability). A holistic view on dependencies be-
tween DLT characteristics and resulting drawbacks is not presented in this research stream.
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The third research stream focuses on the application of DLT in certain domains; for example,
supply chain management, health IT, or the Internet of Things. Due to the novelty of DLT, the
potential for and usefulness of applications on DLT in different domains is still under investigation.
Several prototypes of applications on DLT have been developed, which reveal drawbacks of chosen
DLT designs for the respective application. For example, the Ethereum blockchain is considered
to have a low throughput [12, 69] and is costly [71] when used in the Internet of Things [69].
The Bitcoin blockchain cannot provide confidentiality and has an even lower throughput than
Ethereum [72]. IOTA, which is predominantly designed for the use in the Internet of Things, is
considered to be slow when handling a massive amount of data [73]. Hyperledger Fabric [29]
and Ripple [74] come with high throughput but limited scalability in the number of validating
nodes [75]. The practical drawbacks caused by DLT designs are often mentioned in the application
research stream, but the causes of the respective drawbacks are not further investigated.

The fourth research stream, guidance, focuses on the development of processes to guide practi-
tioners when looking for a suitable DLT design for applications. However, the presented processes
are highly abstract and generic, they focus on questions related to whether a distributed ledger
is useful at all. Some articles consider select DLT designs and compare them but hardly address
causes for the viability of investigated DLT designs for applications (e.g., [17, 76, 77]). Other ar-
ticles address the degree of decentralization (e.g., [68, 70]). The technical fundamentals of DLT
that are crucial for the viability of a DLT design for an application are only sparsely discussed in
the guidance research steam. Therefore, existing measures to evaluate suitability of an underly-
ing DLT design for an application cannot be effectively used and the assessment of drawbacks of
applications on a particular distributed ledger remains unclear.

These four research streams provide valuable contributions in general and, in particular, for
identifying trade-offs. Although some trade-offs have been identified in prior research, these re-
search streams are disjunct, which is why it is hard to obtain a holistic overview of the implica-
tions of a DLT design for an application on DLT. More comprehensive analyses of trade-offs in
DLT in extant research are limited to the context of electronic health records and consider only
blockchains [9, 78]. The findings in extant research on dependencies between DLT characteristics
should be synthesized to identify trade-offs and support the development of viable applications on
DLT for various use cases. This is the objective of our work.

3 METHOD

We applied a three-step research approach to answer our research question: How do trade-offs be-
tween DLT characteristics impact the viability of applications on DLT? First, we identified prevalent
DLT characteristics by conducting a descriptive literature review [79–81] and surveying DLT ex-
perts. Second, we analyzed the identified DLT characteristics in detail to uncover trade-offs in DLT
designs. Finally, we consolidated the identified trade-offs into archetypes and derived implications
for and drawbacks of applications on DLT.

3.1 Identification of DLT Characteristics

Our descriptive literature review [82] was guided by extant recommendations for literature re-
views [83–85]. To identify publications addressing DLT characteristics, we searched scientific
databases that cover the top computer science conferences and journals: ACM Digital Library,
EBSCOhost, IEEE Xplore, ProQuest, and ScienceDirect. To cover a broad set of publications, we
searched each database with the following string in title, abstract, and keywords: (blockchain* OR
(“distributed ledger*”)). We limited our search to peer-reviewed articles to ensure a high quality
of articles. Our search in June 2018 identified 1,144 articles. To identify and filter articles, we first
checked the relevance of each article by analyzing title, abstract, and keywords. If any indication
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for relevance appeared, the article was marked for further analysis. We excluded articles that were
duplicates (62), grey literature (i.e., editorials, work-in-progress, dissertations) or books (18), not
applicable to our study (56), or not available in English (31). This first relevancy assessment resulted
in a sample of 977 potentially relevant articles. Afterwards, a fine-grained relevance validation
was made by accessing and reading the article abstracts, resulting in a final sample of 191 relevant
articles. In this second relevance assessment, we excluded non-research articles (76) and articles
that did not relate to viability of DLT designs for applications on DLT (710).

After the literature search was completed, we carefully read and analyzed the 191 articles to
identify DLT characteristics. For each extracted DLT characteristic, we recorded a name, a de-
scription, and the original source [86]. In total, 277 DLT characteristics were extracted. A list of
master variables was created to aggregate the identified DLT characteristics. A master variable is
an aggregation of similar DLT characteristics consisting of a master variable name and a master
variable description [86]. If an identified DLT characteristic fits into an existing master variable,
we assigned it accordingly; otherwise, a new master variable was created. For example, we aggre-
gated the DLT characteristics immutability and tamper-resistance to the master variable integrity.
Since different people often put the same labels on different things and vice versa, we considered
semantic ambiguities (e.g., different terms for the same characteristic) during our data analysis
[87]. To improve readability of this article, we use the term DLT characteristic for the identified
master variables in the remainder of this manuscript, because master variables represent aggrega-
tions of similar DLT characteristics. To ensure that we identified a reliable set of master variables,
we aimed to reach theoretical saturation [88, 89] with respect to the emerging DLT characteristics.
Since no new master variable emerged in the last 27 articles identified in our literature review, we
are confident to have reached theoretical saturation.

DLT characteristics are further grouped into DLT properties (e.g., performance or security) un-
der consideration of their influence on the DLT design. For instance, DLT characteristics were
grouped into the DLT property security if they were related to common security topics such as
confidentiality, integrity, and availability.

To consolidate and critically evaluate the derived DLT characteristics and DLT properties and
their respective definitions, we set up an online survey to obtain feedback. We sent 68 requests
for feedback via email to DLT experts who had at least three years of experience in dealing with
DLT in a business or private context. Thirty-five DLT experts participated in the survey, and we
received 113 comments on the generated DLT properties and DLT characteristics. We revised the
DLT characteristics and DLT properties and their definitions according to the obtained feedback.
For example, the DLT characteristic cost was split into resource consumption and transaction fee.

3.2 Uncovering Trade-offs between DLT Characteristics

We extracted dependencies between DLT characteristics described in the examined research arti-
cles. For research articles discussing relevant trade-offs, we coded trade-offs between DLT charac-
teristics (e.g., [9, 11, 78]). In addition, we analyzed the identified dependencies between DLT char-
acteristics (e.g., more replications of the stored data increase availability) and abstracted trade-offs
(e.g., more replications increase the latency until consistency among all nodes is reached).

We evaluated the derived trade-offs on seven DLT designs including Bitcoin, Ethereum, and Hy-
perledger Fabric representing the blockchain concept; RChain and soteriaDAG representing the
BlockDAG concept; and IOTA and Nano representing the TDAG concept. In particular, we dis-
cussed the occurrence of the identified trade-offs in intensive group discussions by two authors
and two PhD students having profound knowledge and experience in the domain of DLT. Prior
to the group discussions, the four participants individually rated each trade-off for the selected
ledgers based on their knowledge and experience. In addition, each participant studied available
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Table 4. Identified DLT Properties

DLT Property Description

Flexibility The degrees of freedom in deploying applications on and customizing a distributed ledger

Opaqueness The degree to which the use and operation of a distributed ledger cannot be tracked

Performance The accomplishment of a given task on a distributed ledger under efficient use of computing
resources and time

Policy The ability to guide and verify the correct operation of a distributed ledger

Practicality The extent to which users of a distributed ledger can achieve their goals with respect to social
and socio-technical constraints of everyday practice

Security The likelihood that functioning of the distributed ledger and stored data will not be compromised

documentation and white papers for the selected DLT designs. Individual rating results were con-
solidated and then actively discussed by participants until all conflicts were resolved and consensus
(total finality!) was reached.

3.3 Configuration of DLT Archetypes

To make the derived trade-offs between DLT characteristics more tangible and evaluate their im-
pact on applications on DLT, we jointly configured DLT archetypes for each DLT property. These
archetypes describe how to configure DLT characteristics to achieve a certain DLT property (e.g.,
flexibility) while considering underlying trade-offs. To identify the archetypes, we reviewed identi-
fied DLT characteristics for each DLT property and selected trade-offs corresponding to DLT char-
acteristics first. We then decided what DLT characteristic is preferred over another to achieve the
DLT property with respect to each trade-off. For example, an adequate block size outweighs trans-
action fees (see trade-off G.1) to achieve the DLT property flexibility. Finally, for each archetype and
its corresponding DLT property, we highlight drawbacks for applications on DLT that are caused
by the underlying DLT design. We assumed that all characteristics that are more positively associ-
ated with the DLT property assigned to the archetype should have a high value and accounted for
the respective trade-offs. For the performance archetype, we assumed, for example, high scalability
and throughput and analyzed the effects of this configuration on DLT characteristics of other DLT
properties (e.g., availability within security).

4 TRADE-OFFS BETWEEN DLT CHARACTERISTICS

4.1 DLT Characteristics and Trade-offs between DLT Characteristics

The literature review revealed 40 DLT characteristics that are relevant for the assessment of a DLT
design’s viability for an application on DLT. The 40 DLT characteristics are briefly presented and
defined in Table 5. The grouping of the 40 DLT characteristics resulted in a final set of 6 DLT
properties, which are presented in Table 4. In the following, we will discuss derived trade-offs
between DLT characteristics. Table 6 lists identified trade-offs.

A Flexibility vs. Performance

A.1 Turing-complete Smart Contracts vs. Resource Consumption
The use of external services (e.g., external data feeds) in smart contracts via oracles enables more

flexibility in defining the conditions that must be fulfilled before the smart contract issues transac-
tions. If an external service is requested from a smart contract, the oracle that manages the commu-
nication between the smart contract and the external service as well as the external service itself
receives requests from every node, because every node needs to execute the smart contract. An
oracle and the corresponding external service can become a performance bottleneck, because their
bandwidth may not be sufficient to handle the amount of (almost) simultaneous requests by nodes.
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Table 5. Identified DLT Characteristics

DLT Property DLT Characteristic Description

F
le

x
ib

il
it

y

Interoperability
The ability to interact between distributed ledgers and with other external
data services

Maintainability
The degree of effectiveness and efficiency with which a distributed ledger
can be kept operational

Turing-complete
Smart Contracts

The support of Turing-complete smart contracts within a DLT design

Token Support
The possible uses of tokens within a distributed ledger (e.g., security
token, stable coin, or utility token)

Transaction Payload The size of the payload in a transaction

O
p

aq
u

en
es

s

Traceability
The extent to which transaction payloads (e.g., assets) can be traced
chronologically in a DLT design

Transaction Content
Visibility

The ability to view the content of a transaction in a DLT design

User Unidentifiability
The difficulty of mapping senders and recipients in transactions to
identities

Node Controller
Verification

The extent to which the identity of validating node controllers is verified
prior to joining a distributed ledger

P
o

li
cy

Auditability
The degree to which an independent third party (e.g., state institution,
certification authority) can assess the functionality of a distributed ledger

Compliance
The alignment of a distributed ledger and its operation with policy
requirements (e.g., regulations or industry standards)

Degree of
Decentralization

A distributed ledger’s degree of decentralization refers to the number of
independent validating node controllers reduced by the number of
controllers that control more than average validating nodes divided by the
total number of node controllers in the DLT network.

Incentive Mechanism
A structure in place to motivate node behavior that ensures viable
long-term operation of a distributed ledger (e.g., by contributing
computational resources)

Liability
The existence of a natural or legal person that can be subjected to
litigation with respect to the distributed ledger

P
er

fo
rm

an
ce

Block Creation
Interval

The time between the creation of consecutive blocks (only in DLT designs
using blocks)

Block Size Limit
The value of a fixed maximum storage size of a block (only in DLT designs
using blocks)

Confirmation
Latency

The time span between the inclusion of a transaction in a ledger and the
point in time where enough subsequent transactions have been included
in the ledger so that the likelihood of future manipulations of the initial
transaction becomes negligible

Resource
Consumption

The computational efforts required to operate a distributed ledger (e.g., for
transaction validation, block creation, or storing the distributed ledger)

Propagation Delay
The time between the submission of a transaction (or block) and its
propagation to all nodes

Scalability
The capability of a distributed ledger to efficiently handle decreasing or
increasing amounts of required resources (e.g., of transactions per second
or number of validating nodes)

Stale Block Rate
The number of blocks that have been generated in a period of time but not
appended to the main chain of the distributed ledger (only in forkable DLT
designs using blocks)

Throughput
The maximum number of transactions that can be appended to a
distributed ledger in a given time interval

Transaction
Validation Latency

The time required for validating a transaction by validating nodes

(Continued)
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Table 5. Continued

DLT Property DLT Characteristic Description

P
ra

ct
ic

al
it

y

Transaction Fee
The price transaction initiators can or must pay for the processing of
transactions

Ease of Node Setup
The ease of configuring and adding a new (or previously crashed) node
to the distributed ledger

Ease of Use The simplicity of accessing and working with a distributed ledger

Support for
Constrained Devices

The extent to which devices with limited computing capacities (e.g.,
sensor beacons) can participate in a distributed ledger

Se
cu

ri
ty

Atomicity
The state where transactions are either completely executed or not
executed

Authenticity
The degree to which the correctness of data that is stored on a
distributed ledger can be verified

Availability
The probability that a distributed ledger is operating correctly at any
point in time

Censorship Resistance
The probability that a transaction in a distributed ledger will be
intentionally aborted by a third party or processed with malicious
modifications

Confidentiality The degree to which unauthorized access to data is prevented

Consistency
The absence of contradictions across the states of the ledger maintained
by all nodes participating in the distributed ledger

Durability
The property that data committed to the distributed ledger will not be
lost

Fault Tolerance
The constant maximum proportion of failed, malicious, or
unpredictable nodes a distributed ledger can compensate while
operating correctly

Integrity
The degree to which transactions in the distributed ledger are protected
against unauthorized (or unintended) modification or deletion

Isolation
The property that transactions do not impact each other during their
execution

Non-Repudiation The difficulty of denying participation in transactions

Reliability
The ability of a system or component to perform its required functions
under stated conditions for a specified time

Strength of
Cryptography

The difficulty of breaking the cryptographic algorithms used in the
DLT design

A.2 Turing-complete Smart Contracts vs. Transaction Fee
In Bitcoin, no Turing-complete smart contracts can be developed and time complexity for pro-

cessing a transaction (e.g., for multi-signature transactions) equals k ∗ N at maximum. Where (a
transaction payload incorporates N bytes and a constant factor k). Due to the limited flexibility
in Bitcoin smart contracts, there is no need to apply a mechanism to interrupt potential infinite
loops (e.g., like gas in Ethereum). In Bitcoin, transaction fees are employed to incentivize validat-
ing nodes to prefer the validation of a transaction with higher transaction fees over transactions
where the sender is only willing to pay a smaller transaction fee.

Turing completeness (e.g., in Ethereum) adds more flexibility to smart contracts but also in-
creases complexity and vulnerabilities. Turing completeness allows for the use of loops in smart
contract code, which may even result in infinite loops and, eventually, distributed denial-of-service
(DDoS) attacks. The (automated) detection of infinite loops is not possible due to the halting
problem [90]. To cope with potential infinite loops in permissioned DLT designs, timeouts are
often applied (e.g., in Hyperledger Fabric). Such timeouts, however, limit flexibility in smart con-
tract development, because an upper boundary of time is defined to kill the execution of a smart

ACM Computing Surveys, Vol. 53, No. 2, Article 42. Publication date: May 2020.



42:16 N. Kannengießer et al.

contract. To overcome this limitation, a pricing schedule is applied in various DLT designs (e.g.,
gas in Ethereum; see Section 2.3) to incentivize validating nodes to execute smart contracts. Users
must pay a certain charge for smart contract execution proportional to the smart contract’s compu-
tational operations. In such distributed ledgers, transaction fees are thus both an incentive mech-
anism for nodes to process smart contracts and a security mechanism to prevent potential vulner-
abilities stemming from Turing-completeness in smart contracts.

A.3 Turing-complete Smart Contracts vs. Transaction Validation Speed
Support for more expressive programming languages (i.e., C++, Java, or Solidity) enables the

development of smart contracts that offer a broad range of functionality. The more functionality
is added to a smart contract, the higher becomes its complexity. Ultimately, this impedes perfor-
mance because of the increased execution time for complex smart contracts. Consequently, the
time required for transaction processing and validation increases [91].

B Flexibility vs. Security

B.1 Maintainability vs. Availability
To secure DLT designs, the software client of individual nodes must be maintainable and remain

compatible with the majority of nodes in the network. Updates of the client protocol of a DLT de-
sign must be performed on each node. This is why maintainability of DLT designs decreases with
an increasing number of independent nodes due to additional efforts when negotiating and ap-
plying software client updates. For example, in Bitcoin and LiteCoin, it has taken weeks to agree
on updates such as the adoption of Segregated Witness (SegWit) and SegWit2x [92]. However, an
increasing number of nodes increases the ledger’s redundancy due to increasing replications. The
dependency between maintenance-related cost (e.g., time and money) and the degree of decentral-
ization of the distributed ledger is also derogatorily refered to as blockchain bloat or DLT bloat [93].

B.2 Maintainability vs. Integrity
To allow for efficient maintenance of a distributed ledger, the coordination of update procedures

should be facilitated by a low number of (independently controlled) nodes (see trade-off B.1). How-
ever, a decrease in the number of independently maintained nodes (hence, a decrease in the DLT
design’s degree of decentralization) impedes the integrity of DLT designs due to reduced absolute
fault tolerance regarding the number of tolerable, malicious nodes.

However, a high level of a distributed ledger’s integrity also impacts maintainability of appli-
cations on DLT [94]. For achieving a high integrity of distributed ledgers, smart contracts are
tamper-resistant: Smart contracts must always be redeployed and initialized with the state of the
obsolete version whenever the smart contract should be updated. In addition, the new address of
the updated smart contract must be adapted in any module of the corresponding applications and
the chained smart contracts that reference the deprecated smart contract. Hence, tamper-resistance
and resulting integrity of a distributed ledger increases efforts for maintenance. However, by relax-
ing integrity, thus, tamper-resistance of smart contracts, the idea of an inevitable and automated
enforcement of agreements becomes vulnerable to malicious behavior.

B.3 Turing-complete Smart Contracts vs. Confidentiality
Use of smart contracts threatens confidentiality in three ways. First, it is publicly visible which

account’s transactions triggered a smart contract [95]. Second, the compiled smart contract code
is also visible to the public and smart contracts can be decompiled to human readable source code.
Thus, the current state of the smart contract and even values of variables that are declared private
in the smart contract can be inferred due to the open smart contract code and transactions [95].
Hence, the common ways of using smart contracts do not support confidentiality. Nevertheless,
there are new approaches for private smart contracts. For example, as proposed in the HAWK
framework [95], smart contracts can be divided into a private and a public part. The private part
determines the payout distribution among involved parties; the input data (e.g., a number of coins)
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is kept private and is protected using zero-knowledge proofs [95]. As a result, no participant knows
the input data other participants sent to the smart contract.3 Third, oracles and external services
might have insight into data that are exchanged via smart contracts. Such oracles or services are
often centralized instances that forward certain data, for example, in Provable (formerly known
as Oraclize) [97] or TownCrier [85] this is the case. The use of external services in DLT requires
at least one trusted party that stores the requested data. Thus, the oracle provider and also the
provider of the external data feed can have insights into data flows that are made by users who trig-
ger a smart contract. Although requests may be (partially) executed in a protected Software Guard
Extensions (SGX) enclave4 (e.g., Town Crier [85]), there is at least the risk of a leaked key that can
be used to decrypt the respective data and there is a risk of failures in the centralized architecture.

C Opaqueness vs. Performance

C.1 User Unidentifiability vs. Resource Consumption
To achieve unidentifiability among users of a distributed ledger, additional computational re-

sources are required such as computational power, storage space, and runtime [98]. For example,
additional data structures can be used to increase unidentifiability but require additional storage
size [72, 98, 99] or zero-knowledge proofs, which, for example, require various message exchanges
between two parties to validate instead of one [100]. Thus, unidentifiability comes with the cost
of high resource consumption.

C.2 User Unidentifiability vs. Throughput
The less a network is controlled by a central authority and the more nodes participate in the

network (i.e., given a high degree of decentralization), the more vague is the identity of nodes.
Therefore, public-permissionless distributed ledgers promise higher user unidentifiability than per-
missioned ones due to typically a higher number of nodes and a higher degree of decentralization.
In contrast, a smaller, permissioned distributed ledger with verified and identifiable nodes allows
for higher throughput, because faster consensus mechanisms can be used (e.g., PBFT). Neverthe-
less, unidentifiability can be improved by applying additional processes like mixing and the use of
new keypairs for each transaction [101]. Yet, these processes create overhead due to preprocessing
of each transaction, which results in extended transaction validation speed and hence decreases
throughput.

D Opaqueness vs. Practicality

D.1 Node Controller Verification vs. Ease of Node Setup
Verification of node controllers and their node permissions (e.g., permissions to read data or

to validate and commit new transactions) is required in permissioned DLT designs [68]. After
permissions are granted to a node, the node can participate in (mostly, voting-based) consen-
sus mechanisms (e.g., PBFT, PoA, or PoET; see Table 1). A public key infrastructure (PKI) with a
trusted certification authority is often used to verify the nodes’ identities and issue certificates to
nodes [102]. However, a PKI produces additional efforts to obtain a certificate for the public-private
key pair and leads to the dependency on a trusted certificate authority. Consequently, it becomes
more complex to set up a node and participate in a permissioned distributed ledger compared to
public-permissionless DLT designs (e.g., Bitcoin or Ethereum), which only require to install an open-
source software client (e.g., geth or parity for Ethereum).

3The public portion of a HAWK smart contract is composed of three parts: publicly executed code, privately executed code,

HAWK manager code. While the publicly executed code is executed on each node of the distributed ledger, the privately

executed portion of the smart contract code is only executed by users who sent transactions to the smart contract. The

HAWK manager is a trusted party who runs the HAWK manager code in an Intel SGX enclave [96]. Thus, the HAWK

manager must be trusted to not disclose private data of a smart contract, which is sent for the execution of the smart

contract.
4Intel SGX is a set of central processing unit instruction codes that allows user-level code to allocate private regions of

memory (referred to as enclaves). These enclaves are protected from processes running at higher privilege levels [96].
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E Performance vs. Performance

E.1 Block Creation Interval vs. Stale Block Rate
Forkable and block-based DLT designs (e.g., Bitcoin or Ethereum) enable smaller block creation

intervals. With smaller block creation intervals, transactions can be faster appended to the dis-
tributed ledger; however, other nodes may not be aware of newly created blocks fast enough and
keep working on already deprecated blocks. Ideally, each node would stop working on their blocks
as soon as a new block is announced to save computational resources. However, nodes might re-
ceive newly created blocks too late, due to propagation latency, and keep working on a stale block.
Consequently, smaller block creation intervals increase stale block rate [103] and cause computa-
tional inefficiency.

F Performance vs. Policy

F.1 Block Creation Interval vs. Degree of Decentralization
In DLT designs where mining is performed, a long block creation interval decreases the fre-

quency of reward payouts and decreases the likelihood of rewards for individual miners. High
variance in payments for miners makes it more likely that mining nodes will join mining pools5 to
increase the probability of receiving rewards [104, 105]. However, the formation of mining pools
decreases the degree of decentralization of a distributed ledger due to collusion of miners in a
mining pool [105].

F.2 Confirmation Latency vs. Degree of Decentralization
In public-permissionless DLT designs, participation of a high number of independent nodes (i.e.,

a high degree of decentralization) in consensus finding is required to protect the distributed ledger
from malicious behavior and other Byzantine failures (see Figure 2). In turn, the number of nodes
participating in the consensus mechanism negatively impacts the confirmation latency, because
agreement (e.g., all nodes choose the same block) and termination (e.g., all nodes eventually choose a
block) in consensus finding cannot be reached at the same time in asynchronous systems [68, 106].
As a solution, consistency and synchronicity must be relaxed in public-permissionless DLT designs
to achieve liveness in distributed ledgers with a high degree of decentralization.

F.3 Throughput vs. Degree of Decentralization
One major technological drawback inherent to current public-permissionless blockchains (e.g.,

Bitcoin or Ethereum) is a low throughput [107]. Such DLT designs are run by Thousands of nodes.
These nodes are operated by potentially malicious node controllers, which is why various DLT de-
signs apply consensus mechanisms (e.g., Nakamoto consensus) that reach consistency across mul-
tiple nodes with a comparably high (Byzantine) fault tolerance. However, most consensus mech-
anisms that allow for highly decentralized distributed ledgers only provide probabilistic finality
to increase throughput by decreasing message complexity (see Table 1) [108]. In contrast, consen-
sus mechanisms with total finality (e.g., PBFT [40] or PoA [109]) can only include a comparatively
small set of validating nodes due to their extensive communication overhead [106, 108, 110]. Hence,
consensus mechanisms providing fast finality are commonly applied in permissioned DLT designs.
Nevertheless, some consensus mechanisms for public DLT designs decrease the degree of decen-
tralization to achieve an increase in throughput; for example, GoChain’s PoR, which builds upon
PoA and allows only selected organizations to run a validating node [35]. Meanwhile, there are
consensus mechanisms that apply special derivates of PBFT to public-permissionless DLT designs
(e.g., Tendermint [30] or EOS [31]), where a set of nodes is randomly chosen to reach consensus.
However, this still centralizes decision making to a subset of nodes, decreasing the ledger’s degree
of decentralization. Thus, increased throughput comes at the cost of the degree of decentralization.

5A mining pool is a coalition of miners who share mining rewards if one of these nodes receives the mining reward. Thus,

the probability to receive some coins increases for each node.

ACM Computing Surveys, Vol. 53, No. 2, Article 42. Publication date: May 2020.



Trade-offs between Distributed Ledger Technology Characteristics 42:19

G Performance vs. Practicality

G.1 Block Size vs. Transaction Fee
Bitcoin has no mandatory transaction fees but allows for optional transaction fees (see trade-

off A.2). However, miners could create huge blocks to receive transaction fees from as many trans-
actions as possible, which eventually inhibits the distributed ledger from operating correctly. Gen-
eration of such huge blocks is prevented by introducing a maximum block size limit (e.g., in Bitcoin
1 MB per block or in Bitcoin Cash 2 MB per block). Nevertheless, such fixed block size limits reduce
flexibility in distributed ledgers, because only limited data can be included in blocks. In contrast,
Ethereum has no fixed maximum block size in favor of more flexibility (especially, when using
smart contracts). However, Ethereum needed to solve the issue of potentially huge blocks, which
is why transaction fees must be paid by any user of the Ethereum network.

H Performance vs. Security

H.1 Confirmation Latency vs. Fault Tolerance
Fault-tolerant consensus mechanisms come with an inherent trade-off between responsiveness

and robustness [111]. Although enabling better responsiveness, allowing for forks in DLT reduces
robustness of a distributed ledger. To minimize the number of forks and to strengthen security, the
targeted block creation interval must be set to a value that is large enough to minimize the stale
block rate and small enough to confirm sufficient transactions within a certain period. If the block
creation interval is set too short, the number of tolerable, malicious nodes decreases due to too
many forks, because new blocks are created before all nodes received the last valid block committed
to the ledger; however, new blocks are faster confirmed for some nodes. However, if the block cre-
ation interval is set too long, confirmation latency increases, because it takes more time to append
a sufficient number of blocks so that it can be assumed that a transaction is committed to the ledger.

To cope with crashed nodes, weak synchronicity [111, 112] is often applied, where the system
designer makes timing assumptions on network delays to guarantee that the system will respond
within a defined timeframe. A node is assumed as failed if it did not respond within this timeframe
(e.g., in PBFT and consensus mechanisms that adapt PBFT) [112]. In DLT designs such as Bitcoin
and Ethereum [23], where the number of nodes is unknown, the timing assumption is expressed by
the targeted average block creation interval [38], which prevents nodes from working too long on
already stale blocks. Due to the assumption of weak synchronicity in the consensus mechanism,
the targeted block creation interval strongly depends on the assumed block propagation time [113].
Timing assumptions (or block creation intervals) must be well balanced. If the timing assumption
is too short, too many nodes would be considered as failed, which weakens robustness (e.g., fault
tolerance) of the underlying security model. If the timing assumption is too long, responsiveness
decreases [111].

H.2 Throughput vs. Consistency
For the DLT concept blockchain, it was found that an increased block size can increase through-

put, because more transactions can be included in a block [11]. An increased size of data packets
(i.e., blocks or transactions) comes with a longer propagation delay [11, 68, 114], which results
in a longer state of inconsistency between nodes in a distributed ledger [71, 115]. For Bitcoin
and Ethereum, it was found that the percentage of created blocks that are successfully commit-
ted to the blockchain’s main chain becomes low as the block size (and consequently the block
propagation delay) increases [11]. Consequently, the stale block rate increases and nodes have
inconsistent views on the ledger until the forks are resolved. Such inconsistent states facilitate
successful attacks (see Section 2.2). Forkable DLT designs based on PoW can only improve through-
put by degrading consistency, thereby, and increasing vulnerability [116].

In BlockDAGs and TDAGs, throughput and scalability are usually much higher than in
blockchains, because the number of transactions per second is not bouned by the block size, the
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block creation interval (due to relaxed consistency), or the requirement of being eventually added
to the main chain. Instead, BlockDAGs and TDAGs (e.g., IOTA, RChain, or soteriaDAG) require
blocks or transactions to be linked to previous blocks or transactions so that individual nodes
do not have to store an identical version of the ledger. Scalability in terms of increasing or de-
creasing throughput is theoretically infinite. However, such systems are much more complex than
blockchains, because they often aim to be fully asynchronous and the process of converging to-
ward a consistent state among all nodes is mostly non-deterministic (e.g., in IOTA).

H.3 Throughput vs. Fault Tolerance
In blockchains, the requirement for high throughput is predominantly met by applying con-

sensus mechanisms with finality where a small set of nodes participates in the transaction and
block validation process (e.g., PBFT [40]). In such consensus mechanisms, the number of nodes n
determines the message complexity for the synchronization of the node states, which often equals
O (n2). Due to the exponential increase in message complexity in contrast to probabilistic consen-
sus mechanisms, finality comes at the cost of the degree of decentralization of the DLT design and
its fault tolerance. In the case of public-permissionless DLT designs for the use of cryptocurrencies,
fault tolerance is, for instance, predominantly prioritized above all other DLT properties character-
istics such as performance and flexibility. For example, the Bitcoin blockchain achieves an average
throughput of only seven transactions per second and a block takes an average of 10 min to be
appended to the ledger [23]. However, Bitcoin is Byzantine fault tolerant up to 50% of fraudulent
validating nodes [23]. In contrast, PBFT achieves a moderate throughput of 3K transactions per

second but tolerates only: less than one third (f ≤ |N |−1
3 ) of fraudulent nodes in a set of validating

nodes in the distributed ledger (N) [40].
H.4 Throughput vs. Integrity
Increased block size can increase throughput, because more transactions can be included in a

block [11]. Bandwidth [99] and the current size of a block strongly influence the block propaga-
tion delay. Thus, the increased throughput comes with longer block propagation delays, because
more transactions are included in a block. However, longer block propagation delays increase the
probability of forks [68], which threaten integrity and facilitate successful partition-based attacks
on the distributed ledger [117] (e.g., selfish-mining [103, 118], long-range attacks [53], bribery at-
tacks [51]; see Section 2.2). To preserve integrity, the block creation interval must be adjusted in
concert with the block size because a longer block creation interval mitigates the occurrence of
forks and resulting attacks in blockchains [53]. Nevertheless, long block creation intervals also
decrease the number of blocks issued, ultimately decreasing throughput. An increase of the block
size to include more transactions per block will increase the message propagation delay and, thus,
the number of forks in the distributed ledger.

Furthermore, highly varying loads on the distributed ledger caused by variations in transaction
frequency result in block size variations and variations in the block propagation delay [119]. Vari-
ations in the block propagation delay increase the probability of successful selfish-mining attacks,
thereby threatening integrity [16, 52].

I Policy vs. Flexibility

I.1 Degree of Decentralization vs. Maintainability
Distributed ledgers and applications on DLT require efficient maintenance to allow adap-

tion to changing requirements and to increase security of the distributed ledger [120]. Public-
permissionless DLT designs enable a high degree of decentralization, thereby, supporting unidenti-
fiability, because nodes do not need to be verified before joining the distributed ledger. Anybody is
allowed to create new accounts. However, updates of software clients (e.g., geth) for a DLT design
resulting from protocol changes must be accepted by the majority of nodes in the whole network to
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keep compatibility among the nodes after a hard fork and to prevent successful malicious behavior
of nodes (see Section 2.1) [121]. The usually large number of nodes in public-permissionless dis-
tributed ledgers inhibits the introduction of mechanisms enforcing that nodes are kept up to date,
which decreases maintainability of a DLT design [68]. Thus, public-permissioned DLT designs come
with the costs of lower maintainability. In contrast, private-permissioned DLT designs are better
maintainable, because each node is verified and node controllers can be contacted directly.

J Policy vs. Security

J.1 Degree of Decentralization vs. Integrity
As the network size increases in public-permissionless DLT designs, it becomes unlikely that par-

ticipating node controllers have the same (malicious) intentions or even know each other. Hence,
the degree of decentralization increases (see Figure 2) and the presence of a group of nodes with
shared interests that takes control of the distributed ledger becomes unlikely (e.g., by gaining a
majority of, for example, 51% of the overall hashing power). This strengthens the integrity of the
respective DLT design.

In contrast, private DLT designs typically incorporate a small number of identifiable (trusted)
nodes operated by verified node controllers, thus, decreasing the degree of decentralization and
threatening integrity. Each node of such a private DLT design has an increased influence in the dis-
tributed ledger, which increases vulnerability, for example, with respect to the blockchain anomaly
(see Section 2.2) [27]. Thin nodes, which only store parts of the distributed ledger, must assume
that validating nodes verify all blocks and follow an effective incentive mechanism when creating
blocks. Otherwise, thin nodes risk to accept invalid transactions [122]. End-users who only retrieve
data from the distributed ledger and do not verify the distributed ledger’s integrity on their own
(e.g., using simple payment verification) cannot be sure that the distributed ledger’s transaction
history has not been tampered with [123].

In permissioned DLT designs, where only a subset of nodes is permitted to validate transactions
and issue new blocks, the degree of decentralization of a distributed ledger decreases. However,
permissioned DLT designs (and small private-permissionless distributed ledgers) can make use of
consensus mechanisms that preserve total finality (e.g., PBFT). After total finality has been reached
among the validating nodes, committed transactions cannot be retroactively changed. Hence, the
trade-off between degree of decentralization and integrity predominantly refers to DLT designs
that make use of probabilistic finality.

K Policy vs. Practicality

K.1 Degree of Decentralization vs. Transaction Fee
The degree of decentralization comes at the cost of higher transaction fees due to the applied

consensus mechanism. In DLT designs that employ consensus mechanisms with probabilistic fi-
nality and rely on leader election based on PoW (e.g., Nakamoto consensus), the degree of de-
centralization is important to ensure integrity of the stored data. To achieve a high degree of de-
centralization, permissionless DLT designs are characterized by extreme openness for new nodes.
Arbitrary nodes can join the distributed ledger to participate in consensus finding and to validate
transactions—without requiring permissions. As computations on blockchains are performed on
each node, the total computational effort for the distributed ledger increases with an increasing
number of nodes while the average transaction rate is constant. To compensate computational ef-
forts, such DLT designs apply an economic incentive mechanism that rewards nodes for their share
of resources [68]. The economic rewards require a pricing structure that usually expects transac-
tion issuers to pay transaction fees for the transaction processing and respective computational
efforts.

In contrast, various voting-based consensus mechanisms (e.g., PBFT or EOS’s PoS) do not re-
quire transaction fees but allow only for a low degree of decentralization, since they are unsuitable
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Fig. 3. Identified trade-offs between DLT properties.

for a large number of validating nodes compared to, for example, Nakamoto consensus. The low
degree of decentralization results from the fact that the applied consensus mechanisms require
each node to agree on a certain state to reach total finality before a new transaction is committed
to the distributed ledger. In addition, such finality-preserving consensus mechanisms are usually
monetarily less costly than PoW-based consensus mechanisms due to lower consumption of com-
putational resources [106].

L Security vs. Practicality

L.1 Strength of Cryptography vs. Support for Constrained Devices
The strength of cryptography of a DLT design is dependent on the degree of security reached by

algorithms for the generation of public-private key pairs (e.g., to secure authentication), for content
encryption (e.g., to protect confidentiality), and for hash value calculation (hashing). For public key
encryption, it is important that the key pairs are unique and cannot be guessed. The algorithm’s
time complexity is important for encrypting/signing and decrypting/verifying data. In addition
to time complexity of public key encryption, the applied hash algorithm yields a likelihood for
collisions [124]. Low collision likelihood is desirable, which is why more secure hashing and key
generation approaches are required (e.g., more bits for the hash). However, an increased strength of
cryptography requires more computational resources, such as random access memory and storage
memory [125]. Thus, constrained devices such as microcontrollers can hardly handle resource-
intensive cryptography [125, 126].

M Security vs. Security

M.1 Confidentiality vs. Integrity
To improve confidentiality, DLT designs are often implemented in a private network, where only

select nodes can join (i.e., private DLT designs); for example, a private Ethereum or Hyperledger
Fabric blockchain. However, a small number of known nodes makes it easier to have detailed
information on the network topology. Access to a detailed network topology facilitates initiation
of targeted delays in the communication between nodes, because the data flow is known [48].
Thus, the probability for successful partition-based attacks [48] increases in private, forkable DLT
designs such as a private Ethereum blockchain, which increases the likelihood for violations of a
distributed ledger’s immutability. Increased vulnerability for immutability violations reduces the
integrity of a distributed ledger.

M.2 Consistency vs. Availability
Distributed systems theory reveals a trade-off between consistency and availability—the CAP

Theorem [114, 127]. This trade-off also persists in the field of DLT and is caused by latency in
block propagation, for example, due to big block sizes or network failures. The larger the number
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Table 6. Overview of Identified Trade-offs between DLT Characteristics for the

Generated Archetypes and Exemplary DLT Designs

of nodes that must receive new transactions, the longer the distributed ledger is in an inconsistent
state. The larger the number of nodes of a distributed ledger, the more time it takes until each node
has received the new block. However, many replications of the data stored on the distributed ledger
increases availability. Thus, there is a trade-off between high availability and fast consistency.

4.2 DLT Design Archetypes for Applications on DLT

We introduce six archetypes of DLT designs to illustrate and to consolidate the previously pre-
sented trade-offs. Figure 3 illustrates the identified trade-offs on the DLT-property layer. The
archetypes indicate benefits and drawbacks for applications on DLT that result from the choice
and configuration of a DLT design that is optimized toward a certain DLT property. Table 6 gives
an overview of the identified trade-offs between DLT characteristics for the archetypes and exem-
plary DLT designs.

Flexibility Archetype. The flexibility archetype is designed to achieve high degrees of free-
dom in deploying applications on and customizing a DLT design. The flexibility archetype is

ACM Computing Surveys, Vol. 53, No. 2, Article 42. Publication date: May 2020.



42:24 N. Kannengießer et al.

predominantly characterized by the following five DLT characteristics: support for Turing-
complete smart contracts, high interoperability with various external systems, a high degree of main-
tainability, a high degree of decentralization, and high throughput. Turing-complete smart contracts
allow for the development of complex applications on DLT. Furthermore, such expressive smart
contracts are often required to enable interoperability between distributed ledgers, for example,
by using simple payment verification [66]. In addition, the flexibility archetype must be efficiently
maintained to allow for fast bug fixes or updates. In turn, efficient maintainability also requires
an efficient change management, thus, governance mechanisms. Governance mechanisms pose a
challenge in DLT designs with a high degree of decentralization (see trade-off I.1). However, dis-
tributed ledgers of the flexibility archetype should be capable of a high degree of decentralization
to allow nodes to arbitrarily join and leave the distributed ledger; yet, the flexibility archetype
should still achieve high throughput to be applicable in a variety of use cases, which may require
high performance (e.g., sensor-based real-time monitoring of a production process).

The use of Turing-complete smart contracts in a distributed ledger with a high degree of decen-
tralization comes at the cost of resource consumption (see trade-off A.1) and a slower transaction
validation speed (see trade-off A.3). No fixed block size (or transaction size) should be introduced
to allow for the deployment of smart contracts at any size. Accordingly, the flexibility archetype
is likely to make use of transaction fees. The introduction of transaction fees also supports a high
degree of decentralization, because node controllers will receive rewards for their share of com-
puting resources. The high degree of decentralization should be supported by a seamless ease
of node setup. Ledgers of the flexibility archetype neglect integrity in favor of availability (see
trade-off B.1) and maintainability (see trade-off B.2), which suggests that public-permissioned DLT
designs could be employed to support efficient maintainability while ensuring a high availability.
In the flexibility archetype, low resource consumption is preferred over user unidentifiability (see
trade-off C.1) to allow for the use of devices with constrained computational resources.

The focus on low resource consumption, while supporting Turing-complete smart contracts,
suggests a need for thin nodes. Smart contracts should only be executed by full nodes but not
by thin nodes. Furthermore, ledgers of the flexibility archetype are likely to apply sharding to
achieve parallel execution of smart contracts and to achieve high throughput and a high degree
of decentralization. A DLT design that aligns with the flexibility archetype has already been
proposed for the Serenity update in the Ethereum protocol [128], which will divide the network
into three distinct shards: transaction processing shard (Main Chain), consensus shard (Beacon
Chain), and smart contract execution shard (Sharding Chain) [128]. Furthermore, DLT designs
that strongly relax their consistency assumptions while still supporting Turing-complete smart
contracts (e.g., RChain) align well with the flexibility archetype [25]. Applications deployed on
ledgers of the flexibility archetype may become expensive to use if most of the logic is performed
by smart contracts. In the development of applications on ledgers of the flexibility archetype,
a balance must be maintained between the use of smart contracts and traditional programs to
express and enforce program logic. A balance between use of smart contracts and traditional
programs is also important for maintainability of the respective application. For example,
functionalities that are updated frequently should not be stored on the distributed ledger or in a
smart contract, because when the smart contract needs to be updated, it is reset and starts from
zero. If a smart contract is used, data stored in it (for example, a list of user accounts) should be
kept in another smart contract that is only used for data storage and retrieval. By doing so, smart
contract functionality can be maintained while still keeping its current state.

Opaqueness Archetype. The opaqueness archetype is specialized to prevent use and operation
of a DLT design to be tracked. This archetype is concerned with the achievement of a high degree
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of user unidentifiability, high confidentiality, a high degree of decentralization, and the absence of
node controller verification. Confidentiality and user unidentifiability are the main requirements
to be fulfilled by the opaqueness archetype. A high degree of decentralization is desired to sup-
port user unidentifiability. Node controller verification contradicts with the opaqueness archetype.
Therefore, more seamless ease of node setup is preferred (see trade-off D.1).

Although ledgers of the opaqueness archetype are geared towards ease of node setup instead of
node controller verification, a high ease of node setup and ease of use, in general, may not be achieved
in ledgers of the opaqueness archetype, because the use of additional anonymization mechanisms
is often recommended (e.g., use of the TOR network in Zcash). Such additional anonymization
mechanisms may not be easy to comprehend or apply for users and can pose a risk for user
anonymity. To achieve user unidentifiability, additional processing of transactions is necessary
(e.g., mixing or zero-knowledge proofs). These processes are time-consuming and require addi-
tional computational power, which slows down performance and can hardly be performed on
constrained devices (e.g., microcontrollers or sensors). A high degree of decentralization increases
unidentifiability, but increases confirmation latency, thus, impeding consistency. From a policy
point of view, auditability is impaired, because transactions are not traceable and issuers and re-
cipients of a transaction are not easily identifiable. The opaqueness archetype is likely to not of-
fer Turing-complete smart contracts, because smart contracts pose a threat to confidentiality and
make it easier to identify transaction senders and receivers and to monitor their interactions (see
trade-off B.3) [129]. Applications with a strong requirement for opaqueness should handle most
of their advanced business logic off-chain, because the opaqueness archetype will probably pro-
vide poor performance and flexibility. Due to the immutability of stored data, there is a threat of
revealing encrypted content as technology evolves.

The opaqueness archetype aligns well with public-permissionless ledgers where multiple cryp-
tographic techniques are applied (e.g., zero-knowledge proofs) to make it as hard as possible to
assign transactions to their senders and receivers or to reveal transaction contents. Popular rep-
resentatives for the opaqueness archetype are Dash [36], Monero [130], and Zcash [58]. In Dash,
additional fees must be paid if a transaction should be issued privately. Dash still allows to view
the transaction recipient. In Monero, ring signatures are applied to obfuscate the identity of in-
volved parties [131]. However, Monero has been criticized for vulnerabilities that make transac-
tions eventually traceable [132]. Although Zcash does not obfuscate IP addresses of clients, it is
currently considered the most confidentiality-preserving DLT design (especially, when using it
over the TOR network).

Performance Archetype. The performance archetype is focused accomplishing a given task
on a distributed ledger under most efficient use of computing resources and time constraints.
The performance archetype is characterized by high throughput, low confirmation latency, low
resource consumption, and a high maintainability. High throughput and confirmation latency can
be achieved by keeping the number of validating nodes small (e.g., by using a private DLT design).
A small number of validating nodes supports maintainability (see trade-off I.1) and can accelerate
consistency among all nodes [114, 127]. When deciding for a high degree of decentralization,
consistency assumptions would need to be relaxed to achieve high throughput and scalability
(e.g., in IOTA or RChain) [114, 127].

DLT designs that align well with the performance archetype are not likely to support user
unidentifiability or Turing-complete smart contracts to decrease the transaction processing time.
Due to the short-targeted confirmation latency, the performance archetype will have lower fault
tolerance. To accomplish fast confirmation latency with total finality, the performance archetype
can be instantiated as a private(-permissioned) DLT design. Such private DLT designs come at the
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cost of low availability [114, 127], user identifiability (see trade-off C.2), a low degree of censorship
resistance, low fault tolerance (see trade-off H.3), and low integrity (see trade-off J.1). In private
instantiations of the performance archetype, node controller verification is required, which de-
creases the ease of node setup (see trade-off D.1). If ledgers of the performance archetype should
also scale to a huge number of validating nodes a public-permissionless DLT design can be designed
based on the blockDAG or the TDAG DLT concept, where consistency assumptions are relaxed
compared to blockchains that require a certain average block creation interval for synchroniza-
tion. Such DLT concepts predominantly levereage probabilistic consensus mechanisms that often
have higher fault tolerance, but less integrity.

Multiple DLT designs targeting high performance that follow a private(-permissioned) approach
in blockchains (e.g., Hyperledger Fabric) or rely on BlockDAGs (e.g., RChain) or TDAGs (e.g.,
IOTA), have been developed. To increase performance (especially, scalability of blockchains),
sharding is applied; that is, multiple distributed ledgers exist in parallel and are connected with
each other (e.g., in Zilliqa [133] or Wanchain [134]) [135, 136]. Sharding requires interoperability
between the DLT designs, which brings more complexity to the distributed ledger but also better
maintainability of the particular distributed ledger. Applications requiring high-performance DLT
designs have a limited degree of decentralization or increased complexity due to sharding. How-
ever, new consensus mechanisms are under development (e.g., ɛ-differential agreement) that scale
proportional to the number of nodes in the network (e.g., seele [137]).

Policy Archetype. The policy archetype aims to offer a variety of abilities to govern and verify
the correct operation of a DLT design. Thus, ledgers of the policy archetype are likely to make use
of node controller verification to better govern, maintain, and audit the appropriate setup of their
nodes. For efficient governance, various mechanisms are provided to users of ledgers of the policy
archetype (e.g., standard smart contracts for voting). High maintainability of distributed ledgers in
the policy archetype allows for the introduction of updates, which makes the ledgers more flexible
and capable to apply changes to the protocol to achieve compliance with targeted regulations or
standards. To check compliance, auditability is important in the policy archetype. To audit data in
the distributed ledgers, fast consistency, high integrity, and non-repudiation are of particular im-
portance in the policy archetype, just as well as, transaction content visibility and traceability. Fast
consistency among nodes contributes to less contradictions between the statements represented
in the data stored on the nodes, which facilitates the auditing process. In addition, integrity—in
particular, tamper-resistance—of once-stored data helps to trace the history of logs (e.g., transfer of
assets between users), which increases the reliability of audits. Finally, non-repudiation is impor-
tant to be able to reliably map such logs to users in audits or governance.

The specialization of ledgers regarding the policy archetype predominantly comes at the
cost of opaqueness-related DLT characteristics (i.e., traceability, transaction content visibility, or
user unidentifiability) and, additionally, confidentiality (due to transaction content visibility) and
throughput (see trade-off H.2). New regulations and standards are often introduced, and distributed
ledgers must adapt to them to achieve compliance. Due to the high targeted level of integrity, the
ex post adaptation of a distributed ledger to reach compliance becomes challenging. For exam-
ple, it is not possible to become compliant with the requirements imposed by the General Data
Protection of the European Union (GDPR) [138] when personal data are stored on a distributed
ledger because GDPR demands for a possibility to completely delete personally-identifiable user
data. To increase flexibility to adapt applications on DLT to future regulations or standards, devel-
opers must carefully determine which data should be stored on-chain or off-chain [138, 139]. For
now, it remains unclear how to provide flexibility to become compliant with future regulations or
standards and achieve a high level of integrity at the same time (e.g., [138]). Therefore, sensitive
data should be predominantly stored off-chain. Nevertheless, off-chain data stores are controlled
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by at least one trusted third party, which lowers the degree of decentralization of applications
on DLT. In addition, external data need to be kept confidential and available for the distributed
ledger. Thus, reliable interoperability of DLT designs with oracles becomes important for the pol-
icy archetype [60]. Furthermore, the oracles themselves must also be compliant with the same laws
and regulations.

Due to its strong requirement for transaction content visibility and traceability, instantiations
of the policy archetype are likely to be found as a private DLT design. All users are identifiable
and no unknown user is allowed to view the data stored on the distributed ledger, which increases
confidentiality. Furthermore, private DLT designs allow for better maintainability (see trade-off I.1)
and faster consistency (see trade-off M.2) compared to public-permissionless DLT designs.

Practicality Archetype. Ledgers of the practicality archetype are designed to allow their users
to achieve their goals with respect to social expectations on technology in everyday practice [152].
Thus, DLT designs that align well with the practicality archetype offer high throughput and a low
confirmation latency to achieve low response time (under consideration of transaction finalization),
high support for constrained devices, and low transaction fees. In addition, the practicality archetype
also provides Turing-complete smart contracts to allow for interoperability with other distributed
ledgers [66] or non-DLT systems [60].

Despite the advantages of the practicality archetype, there are several drawbacks. Various
public-permissionless DLT designs incentivize nodes to share resources with monetary mecha-
nisms to reach a high degree of decentralization (see trade-off K.1). A high degree of decentralization
and openness for new users of the distributed ledger is also targeted in ledgers of the practicality
archetype. To make applications on DLT easily usable by a large number of users that interact
with the distributed ledger via a broad variety of devices including constrained devices, such as
sensors, a full replication of the ledger on each device should be avoided and ledgers of the prac-
ticality archetype should allow for the use of thin nodes. The requirements for high scalability,
high throughput, and fast confirmation latency indicate that ledgers of the practicality archetype
likely have poor fault tolerance (see trade-off H.3) and that the consistency assumptions need to be
relaxed (see trade-off H.2). Furthermore, the pragmatism comes at the cost of confidentiality (see
trade-off M.1) and user unidentifiability (see trade-offs C.1 and C.2).

Ledgers of the practicality archetype ensure that users do not need to have sound knowledge of
DLT before using it, while allowing them to easily interact with the distributed ledger. Therefore,
users of ledgers of the practicality archetype will usually not host their own node but will be
offered other gateways to interact with the ledger. The ledgers are operated by a consortium as
(private- or public-)permissioned distributed ledgers. Since a private key cannot be recovered in a
decentralized infrastructure, users can no longer access their assets if they lose their private key.
Therefore, the management of a public-private key pair should be made easy and secure for users,
which is why the provision of secure tools for the organization of users’ public and private keys is
crucial. Exemplary DLT designs that aligns with the practicality archetype are Hyperledger Fabric
and EOS (see Table 1).

Security Archetype. The security archetype aims to ensure a high likelihood that the function-
ing of the distributed ledger and stored data will not be compromised. To achieve this goal, DLT
designs are optimized toward high availability, high fault tolerance, high integrity, and high confi-
dentiality, which may even include user unidentifiability to inhibit the mapping of data to identities.
To achieve strong integrity and fault tolerance, the degree of decentralization should be high.

High availability can be achieved by adding numerous, physically distributed nodes to the dis-
tributed ledger, each maintaining a replication of the ledger. While large network size is compa-
rably easy to achieve, achieving a high degree of decentralization is more challenging. However,

ACM Computing Surveys, Vol. 53, No. 2, Article 42. Publication date: May 2020.



42:28 N. Kannengießer et al.

the degree of decentralization is a focal requirement in the security archetype (e.g., trade-offs B.1
or J.1). The degree of decentralization does not merely result from the DLT protocol. Instead, it
predominantly depends on socio-technical phenomena, such as (ad-hoc) consortia of validating
node controllers (e.g., mining pools; see Figure 2). Avoiding such consortia poses a particular chal-
lenge in the instantiation of the security archetype. Due to its high requirements for confidential-
ity, the security archetype is likely to require additional techniques that make the identification of
users difficult (see opaqueness archetype). Such mechanisms come at the cost of increased resource
consumption and less support for constrained devices (see trade-off C.1). The use of anonymization
techniques (e.g., zero-knowledge proofs) may cause serious security issues, because it is hard to
audit the distributed ledger due to decreased traceability (e.g., by applying mixing) and decreased
transaction content visibility (e.g., by encryption).

Due to trade-offs inherent to the security archetype (e.g., trade-offs M.1 and M.2), DLT designs
that correspond to the security archetype are likely to either achieve security through decentraliza-
tion or security through permission. The first aims to solicit a huge number of independent node con-
trollers, which increases absolute fault tolerance (tolerable number of malicious nodes). The most
prominent DLT design that follows the approach of security through decentralization is the Bitcoin
blockchain [23]. The Bitcoin blockchain is highly available due to its high number of nodes; and
it hardly exposes potential for flawed smart contracts. Nevertheless, Bitcoin does not fulfill all the
security-related DLT characteristics (e.g., confidentiality). To increase confidentiality, Zcash ap-
plied zero-knowledge-succinct-non-interactive-arguments-of-knowledge (zk-SNARKs) to obfus-
cate transaction senders (and receivers) and to impede transaction traceability. However, the added
complexity of zk-SNARK has already caused a counterfeiting vulnerability for Zcash coins [140],
which indicates that such techniques also allow for new vulnerabilities. Security through permission
aims at limiting access to the distributed ledger to known users, which increases maintainability
of the distributed ledger at the cost of its degree of decentralization (see trade-off I.1).

5 DISCUSSION

5.1 Principal Findings

Our research reveals 24 trade-offs (see Table 6) based on 40 identified DLT characteristics (see
Table 5), which we grouped into 6 DLT properties (see Table 4). The diversity of the identified
DLT characteristics from purely technical (e.g., strength of cryptography in security) to social (e.g.,
degree of decentralization in policy) highlights the complexity of DLT. Among the abstracted trade-
offs, the DLT properties performance and security each exhibit the most trade-offs (11) (see Figure 3
and Table 6). Purely performance- or security-oriented DLT designs appear to be challenging and
may even be impossible to be developed due to trade-offs between DLT characteristics within the
respective DLT property (see performance and security archetype).

The consolidation of DLT deigns based on the identified trade-offs between DLT characteristics
into archetypes of DLT designs elucidates that it is not possible to develop a one-size-fits-all DLT
design that fulfills all requirements of each application. Thus, application designers will have to
wisely choose a DLT design when aiming to develop viable applications on DLT. Nevertheless, the
derived archetypes partially support each other (e.g., opaqueness and security), while others con-
tradict (e.g., performance vs. security). This phenomenon can also be seen as an indicator of compat-
ibility between DLT designs. The preference of one DLT characteristic over another in a trade-off is
critical. For example, the security archetype can benefit from certain features of DLT designs lever-
aging the opaqueness archetype; these DLT designs could even benefit from each other if they were
combined. To jointly use DLT designs that have made contradicting decisions in the trade-offs, in-
teroperability between DLT designs is required, because otherwise they could not synchronize.
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Several identified trade-offs are inherent to distributed systems; for example, those related to
the CAP theorem [10, 114] (see trade-off M.2) or the FLP impossibility [141] (see trade-off H.1).
However, the implications of these trade-offs on DLT designs differ from commonly used dis-
tributed databases, where mostly a known number of nodes is employed, and consensus mecha-
nisms are predominantly crash fault-tolerant but not Byzantine fault–tolerant (e.g., Paxos [142] or
Raft [143]). In DLT, implications of such design decisions do not only impede consistency of the
distributed ledger but may have serious (financial) consequences that result from inconsistencies
(e.g., form forks) and successful attacks that make use of inconsistencies to weaken a distributed
ledger’s integrity (e.g., double spending).

Extant literature shows a trend preferring private DLT designs over public DLT designs for in-
dustrial applications. The shift from the incipient idea of pure decentralization through a high
degree of openness (e.g., Bitcoin and Ethereum) to more centralization seems largely motivated
by anticipated improvements in performance due to the employment of faster consensus mecha-
nisms and enhanced confidentiality due to restricted access to the ledger. There is much criticism
on this shift, specifically, because it contradicts with DLT’s original philosophy. Similarly, this
shift aligns with our observation that most trade-offs between DLT characteristics are related to
the DLT characteristics security or performance. Private DLT designs come with various advan-
tages compared to public DLT designs with respect to practicality but tend to reach a low degree
of decentralization compared to public DLT designs, they basically ignore the foundation of DLT
[23]. Furthermore, private DLT designs are dependent on interoperability with other DLT designs
or external services to prevent being caught on a blockchain silo or a “blockchain island” [144–
147]. Furthermore, there are various DLT designs of the DLT concepts BlockDAG and TDAG that
incorporate rather loose structures based on DAGs (e.g., IOTA, Nano, or RChain). These DLT de-
signs relax consistency assumptions in favor of high throughput and consensus algorithms that
consume less resources compared to established blockchains based on Bitcoin or Ethereum. Nev-
ertheless, support of Turing-complete smart contracts is not yet widespread in extant DLT designs,
which limits flexibility of several DAGs.

DLT designs such as Nano and RChain advance the use of DAGs in DLT by relaxing the concept
of replicated state machines in favor of less storage consumption. In Nano, only personal transac-
tions are, for example, stored on the terminal device. In RChain, DLT is strongly connected with
peer-to-peer file sharing, which is also targeted in other projects such as Ethereum’s Swarm. The
integration of such external data allows for the extensive use of (unreliable) data sources and may
announce the birth of a new generation of peer-to-peer-governed information infrasturucures,
where DLT might take an important position by allowing for asset exchanges and tamper-resistant
proofs.

5.2 Main Lessons to Be Learned

Our work provides diverse contributions to research and practice. Regarding the latter, practi-
tioners can obtain deep insights into viability of DLT designs for applications on DLT and their
possible impacts on organizations. Our work supports the decision making for selecting a DLT
design and its later configuration to use for applications on DLT, under consideration of applica-
tion requirements and DLT characteristics. The overview of DLT characteristics and DLT prop-
erties supports practitioners in defining requirements for DLT designs that must be considered
in the requirements engineering process to ensure viability of applications on DLT. The derived
trade-offs between DLT characteristics and the generated archetypes are useful to be aware of po-
tential benefits and drawbacks for applications on DLT, which can be assessed before starting to
develop the application (see Table 6). Such assessments eventually facilitate avoidance of unsuit-
able DLT designs and consequent waste of resources. To understand causes of such drawbacks for
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applications on DLT, the described trade-offs between DLT characteristics provide explanations
for the dependencies between DLT characteristics (see Section 4.1). Careful DLT design selec-
tion and application development becomes crucial to ensure that DLT’s unique advantages can be
achieved, ultimately pushing DLT from a hype to a critical information infrastructure [148] for
future businesses and societies.

Our synthesis of the four prevalent research streams on DLT (description, analysis, application,
and guidance) bridges the dsiparate research on DLT, thereby, contributing to a more holistic view
of DLT. The description research stream contributes to this work by outlining (currentlly perceived)
application domains for DLT. Our classification of DLT characteristics can be used to generate a
common understanding of important terms in the field of DLT and their technical dependencies
across research fields, such as, economics or computer science. Our findings support the devel-
opment of comprehensive models and simulations of DLT designs [149, 150]. The results of such
analyses (e.g., formalization of dependencies between DLT characteristics) will elucidate assess-
ments of the influence of the identified trade-offs between DLT characteristics on applications on
DLT. Research on the application of DLT is supported as this work forms a foundation for deci-
sion making for a suitable DLT design for a certain application. Within the application research
stream, for example, research on business process innovation with DLT can draw on the trade-offs
and archetypes to discuss possible negative effects of using certain DLT designs or DLT in general.
Furthermore, we contribute to research on software engineering and requirements engineering in
distributed systems since a holistic view on non-functional requirements can be obtained from
the presented DLT characteristics and their dependencies. Finally, we support the DLT research
stream guidance by introducing the archetypes of DLT design. The archetypes of DLT design form
a fundament for a preselection of DLT designs for applications and can support the selection of an
appropriate DLT design (e.g., [70]) to make the selection of a DLT design more efficient.

5.3 Limitations

Nevertheless, our study comes with limitations. DLT characteristics and DLT properties were
identified in a literature review in the field of DLT. Analyzed DLT concepts are limited to already
published scientific articles and mainly focused on blockchain. We limit our overview of DLT
characteristics to those of particular interest in extant research on DLT for the development of
applications. The DLT characteristics and related trade-offs are also corroborated by multiple
whitepapers of DLT designs such as Bitcoin [31], Ethereum [35], or soteriaDAG [26] (see
Table 6). Most of the analyzed research articles in the application research stream developed
applications on Bitcoin, Ethereum, or Hyperledger Fabric. This makes our work—the trade-offs, in
particular—only partially generalizable to other DLT designs. We tried to overcome this limitation
by including feedback from several DLT experts in a survey and illustrate the generalizability
of the identified trade-offs between DLT characteristics by applying them to DLT designs of all
three DLT concepts known so far. There are preliminary approaches for the analysis and for-
malization of DLT concepts for the development of frameworks for the simulation of DAGs (e.g.,
[150]). However, we could not identify trade-offs between DLT characteristics that are specific
for BlockDAGs and TDAGs based on the reviewed literature. While we analyzed dependencies
between DLT characteristics, we predominantly focused on potential negative effects and resulting
trade-offs. We acknowledge that dependencies might also lead to synergistic and positive effects.

5.4 Future Research

We identified multiple influential conditions that impact the strength of certain dependencies
or even the presence of trade-offs between DLT characteristics such as the applied consensus
mechanism or the use of additional services, such as mixing (e.g., with respect to the trade-off
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unidentifiability vs. throughput (see trade-off C.1). Thus, researchers of the analysis research stream
should conduct measurements to quantify the identified trade-offs between DLT characteristics.
The analysis should include DLT concepts beyond blockchain to reveal dependencies between
DLT characteristics for different DLT concepts. Such analyses would support quantification of the
dependencies between DLT characteristics, which would be very useful to quantify the influence
of the trade-offs on the affected DLT characteristics. Quantified trade-offs would support the
development of decision support systems for the selection of DLT designs for applications in
the guidance research stream. Based on a quantified model of the trade-offs, monitoring-systems
for distributed ledgers can be developed, which can use the trade-offs to predict the behavior of
a distributed ledger. Researchers of applications on DLT can further investigate how to design
decision-support and monitoring applications for DLT.

As the identified archetypes inhibit simultaneous optimization of all DLT characteristics at the
same time due to DLT-inherent trade-offs, interoperability between DLT designs (cross-ledger
technology) turns out an important avenue for future research in the field of DLT to overcome
prevalent issues in DLT (e.g., scalability, throughput, or lack of smart contracts [66, 151]). Research
on cross-ledger technology is still in its infancy and is, for example, concerned with the transfer of
assets from one distributed ledger to another [144]. Cross-ledger technology can increase flexibility
of DLT designs and might help to mitigate the inherent trade-offs through multi-chain networks,
which leverage the benefits of one DLT design while avoiding the drawbacks of others through
clever cross-chain technology.

5.5 Conclusion

There cannot be a one-size-fits-all DLT design due to dependencies and consequent trade-offs
between DLT characteristics. Since it is at least difficult if not complex to consider all the trade-
offs and their particular impact at once, this manuscript introduces archetypes of DLT designs
and illuminates 24 prevalent trade-offs in DLT designs. The archetypes of DLT design support
practitioners in understanding causes of benefits and drawbacks for particular applications on
DLT. The trade-offs and their consolidation into archetypes make the challenges inherent in the
configuration of a DLT design more transparent for developers and are useful to prevent wrong
decisions before choosing a DLT design. Beyond blockchain, our survey article suggests that the
true potential of DLT might lie in decentralization of applications that are not as restrictive as
Bitcoin transactions while still empowering the individual (e.g., as intended in the Solid project;
see https://solid.mit.edu/). Public-permissioned DLT designs appear paricularly prominsing for the
future decentraliized internet. We wrote this survey article in the hope that it will be helpful to
successfully navigate this future transformation.
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