30 research outputs found

    The Slice Rank Polynomial Method

    Get PDF
    Suppose you wanted to bound the maximum size of a set in which every k-tuple of elements satisfied a specific condition. How would you go about this? Introduced in 2016 by Terence Tao, the slice rank polynomial method is a recently developed approach to solving problems in extremal combinatorics using linear algebraic tools. We provide the necessary background to understand this method, as well as some applications. Finally, we investigate a generalization of the slice rank, the partition rank introduced by Eric Naslund in 2020, along with various discussions on the intuition behind the slice rank polynomial method and other possible avenues for generalization

    Lifting with Sunflowers

    Get PDF
    Query-to-communication lifting theorems translate lower bounds on query complexity to lower bounds for the corresponding communication model. In this paper, we give a simplified proof of deterministic lifting (in both the tree-like and dag-like settings). Our proof uses elementary counting together with a novel connection to the sunflower lemma. In addition to a simplified proof, our approach opens up a new avenue of attack towards proving lifting theorems with improved gadget size - one of the main challenges in the area. Focusing on one of the most widely used gadgets - the index gadget - existing lifting techniques are known to require at least a quadratic gadget size. Our new approach combined with robust sunflower lemmas allows us to reduce the gadget size to near linear. We conjecture that it can be further improved to polylogarithmic, similar to the known bounds for the corresponding robust sunflower lemmas

    Halmazelmélet; Partíció kalkulus, Végtelen gráfok elmélete = Set Theory; Partition Calculus , Theory of Infinite Graphs

    Get PDF
    Előzetes tervünknek megfelelően a halmazelmélet alábbi területein végeztünk kutatást és értünk el számos eredményt: I. Kombinatorika II. A valósak számsosságinvariánsai és ideálelmélet III. Halmazelméleti topológia Ezek mellett Sági Gábor kiterjedt kutatást végzett a modellelmélet területén , amely eredmények kapcsolódnak a kombinatorikához is. Eredményeinket 38 közleményben publikáltuk, amelyek majdnem mind az adott terület vezető nemzetközi lapjaiban jelentel meg (5 cikket csak benyújtottunk). Számos nemzetközi konferencián is résztvettünk, és hárman közűlünk (Juhász, Sádi, Soukup) plenáris/meghívott előadók voltak számos alkalommal. | Following our research plan, we have mainly done research -- and established a number of significant results -- in several areas of set theory: I. Combinatorics II. Cardinal invariants of the continuum and ideal theory III. Set-theoretic topology In addition to these, G. Sági has done extended research in model theory that had ramifications to combinatorics. We presented our results in 38 publications, almost all of which appeared or will appear in the leading international journals of these fields (5 of these papers have been submitted but not accepted as yet). We also participated at a number of international conferences, three of us (Juhász, Sági, Soukup) as plenary and/or invited speakers at many of these

    Ramsey and Tur\'an numbers of sparse hypergraphs

    Full text link
    Degeneracy plays an important role in understanding Tur\'an- and Ramsey-type properties of graphs. Unfortunately, the usual hypergraphical generalization of degeneracy fails to capture these properties. We define the skeletal degeneracy of a kk-uniform hypergraph as the degeneracy of its 11-skeleton (i.e., the graph formed by replacing every kk-edge by a kk-clique). We prove that skeletal degeneracy controls hypergraph Tur\'an and Ramsey numbers in a similar manner to (graphical) degeneracy. Specifically, we show that kk-uniform hypergraphs with bounded skeletal degeneracy have linear Ramsey number. This is the hypergraph analogue of the Burr-Erd\H{o}s conjecture (proved by Lee). In addition, we give upper and lower bounds of the same shape for the Tur\'an number of a kk-uniform kk-partite hypergraph in terms of its skeletal degeneracy. The proofs of both results use the technique of dependent random choice. In addition, the proof of our Ramsey result uses the `random greedy process' introduced by Lee in his resolution of the Burr-Erd\H{o}s conjecture.Comment: 33 page

    Near-Optimal Induced Universal Graphs for Bounded Degree Graphs

    Get PDF
    A graph UU is an induced universal graph for a family FF of graphs if every graph in FF is a vertex-induced subgraph of UU. For the family of all undirected graphs on nn vertices Alstrup, Kaplan, Thorup, and Zwick [STOC 2015] give an induced universal graph with O ⁣(2n/2)O\!\left(2^{n/2}\right) vertices, matching a lower bound by Moon [Proc. Glasgow Math. Assoc. 1965]. Let k=D/2k= \lceil D/2 \rceil. Improving asymptotically on previous results by Butler [Graphs and Combinatorics 2009] and Esperet, Arnaud and Ochem [IPL 2008], we give an induced universal graph with O ⁣(k2kk!nk)O\!\left(\frac{k2^k}{k!}n^k \right) vertices for the family of graphs with nn vertices of maximum degree DD. For constant DD, Butler gives a lower bound of Ω ⁣(nD/2)\Omega\!\left(n^{D/2}\right). For an odd constant D3D\geq 3, Esperet et al. and Alon and Capalbo [SODA 2008] give a graph with O ⁣(nk1D)O\!\left(n^{k-\frac{1}{D}}\right) vertices. Using their techniques for any (including constant) even values of DD gives asymptotically worse bounds than we present. For large DD, i.e. when D=Ω(log3n)D = \Omega\left(\log^3 n\right), the previous best upper bound was (nD/2)nO(1){n\choose\lceil D/2\rceil} n^{O(1)} due to Adjiashvili and Rotbart [ICALP 2014]. We give upper and lower bounds showing that the size is (n/2D/2)2±O~(D){\lfloor n/2\rfloor\choose\lfloor D/2 \rfloor}2^{\pm\tilde{O}\left(\sqrt{D}\right)}. Hence the optimal size is 2O~(D)2^{\tilde{O}(D)} and our construction is within a factor of 2O~(D)2^{\tilde{O}\left(\sqrt{D}\right)} from this. The previous results were larger by at least a factor of 2Ω(D)2^{\Omega(D)}. As a part of the above, proving a conjecture by Esperet et al., we construct an induced universal graph with 2n12n-1 vertices for the family of graphs with max degree 22. In addition, we give results for acyclic graphs with max degree 22 and cycle graphs. Our results imply the first labeling schemes that for any DD are at most o(n)o(n) bits from optimal

    Turán problems in graphs and hypergraphs

    Get PDF
    Mantel's theorem says that among all triangle-free graphs of a given order the balanced complete bipartite graph is the unique graph of maximum size. In Chapter 2, we prove an analogue of this result for 3-graphs (3-uniform hy¬pergraphs) together with an associated stability result. Let K− 4 , F5 and F6 be 3-graphs with vertex sets {1, 2,3, 4}, {1, 2,3,4, 5} and {1, 2,3,4, 5, 6} re¬spectively and edge sets E(K−4 ) = {123, 124, 134}, E(F5) = {123, 124, 345}, E(F6) = {123, 124,345, 156} and F = {K4, F6}. For n =6 5 the unique F-free 3-graph of order n and maximum size is the balanced complete tri¬partite 3-graph S3(n). This extends an old result of Bollobas that S3(n) is the unique 3-graph of maximum size with no copy of K− 4 or F5. In 1941, Turán generalised Mantel's theorem to cliques of arbitrary size and then asked whether similar results could be obtained for cliques on hyper-graphs. This has become one of the central unsolved problems in the field of extremal combinatorics. In Chapter 3, we prove that the Turán density of K(3) 5 together with six other induced subgraphs is 3/4. This is analogous to a similar result obtained for K(3) 4 by Razborov. In Chapter 4, we consider various generalisations of the Turán density. For example, we prove that, if the density in C of ¯P3 is x and C is K3-free, then |E(C)| /(n ) ≤ 1/4+(1/4)J1 − (8/3)x. This is motivated by the observation 2 that the extremal graph for K3 is ¯P3-free, so that the upper bound is a natural extension of a stability result for K3. The question how many edges can be deleted from a blow-up of H before it is H-free subject to the constraint that the same proportion of edges are deleted from each connected pair of vertex sets has become known as the Turán density problem. In Chapter 5, using entropy compression supplemented with some analytic methods, we derive an upper bound of 1 − 1/('y(Δ(H) − /3)), where Δ(H) is the maximum degree of H, 3 ≤ 'y < 4 and /3 ≤ 1. The new bound asymptotically approaches the existing best upper bound despite being derived in a completely different way. The techniques used in these results, illustrating their breadth and connec¬tions between them, are set out in Chapter 1

    Extremal graph colouring and tiling problems

    Get PDF
    In this thesis, we study a variety of different extremal graph colouring and tiling problems in finite and infinite graphs. Confirming a conjecture of Gyárfás, we show that for all k, r ∈ N there is a constant C > 0 such that the vertices of every r-edge-coloured complete k-uniform hypergraph can be partitioned into a collection of at most C monochromatic tight cycles. We shall say that the family of tight cycles has finite r-colour tiling number. We further prove that, for all natural numbers k, p and r, the family of p-th powers of k-uniform tight cycles has finite r-colour tiling number. The case where k = 2 settles a problem of Elekes, Soukup, Soukup and Szentmiklóssy. We then show that for all natural numbers ∆, r, every family F = {F1, F2, . . .} of graphs with v (Fn) = n and ∆(Fn) ≤ ∆ for every n ∈ N has finite r-colour tiling number. This makes progress on a conjecture of Grinshpun and Sárközy. We study Ramsey problems for infinite graphs and prove that in every 2-edge- colouring of KN, the countably infinite complete graph, there exists a monochromatic infinite path P such that V (P) has upper density at least (12 + √8)/17 ≈ 0.87226 and further show that this is best possible. This settles a problem of Erdős and Galvin. We study similar problems for many other graphs including trees and graphs of bounded degree or degeneracy and prove analogues of many results concerning graphs with linear Ramsey number in finite Ramsey theory. We also study a different sort of tiling problem which combines classical problems from extremal and probabilistic graph theory, the Corrádi–Hajnal theorem and (a special case of) the Johansson–Kahn–Vu theorem. We prove that there is some constant C > 0 such that the following is true for every n ∈ 3N and every p ≥ Cn−2/3 (log n)1/3. If G is a graph on n vertices with minimum degree at least 2n/3, then Gp (the random subgraph of G obtained by keeping every edge independently with probability p) contains a triangle tiling with high probability

    Uniquely Solvable Puzzles and Fast Matrix Multiplication

    Get PDF
    In 2003 Cohn and Umans introduced a new group-theoretic framework for doing fast matrix multiplications, with several conjectures that would imply the matrix multiplication exponent ω\omega is 2. Their methods have been used to match one of the fastest known algorithms by Coppersmith and Winograd, which runs in O(n2.376)O(n^{2.376}) time and implies that ω2.376\omega \leq 2.376. This thesis discusses the framework that Cohn and Umans came up with and presents some new results in constructing combinatorial objects called uniquely solvable puzzles that were introduced in a 2005 follow-up paper, and which play a crucial role in one of the ω=2\omega = 2 conjectures
    corecore