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Abstract

Mantel's theorem says that among all triangle-free graphs of a given order

the balanced complete bipartite graph is the unique graph of maximum size.

In Chapter 2, we prove an analogue of this result for 3-graphs (3-uniform hy-

pergraphs) together with an associated stability result. Let K−4 , F5 and F6

be 3-graphs with vertex sets {1, 2, 3, 4}, {1, 2, 3, 4, 5} and {1, 2, 3, 4, 5, 6} re-
spectively and edge sets E(K−4 ) = {123, 124, 134}, E(F5) = {123, 124, 345},
E(F6) = {123, 124, 345, 156} and F = {K4, F6}. For n 6= 5 the unique

F-free 3-graph of order n and maximum size is the balanced complete tri-

partite 3-graph S3(n). This extends an old result of Bollobas that S3(n) is

the unique 3-graph of maximum size with no copy of K−4 or F5.

In 1941, Turán generalised Mantel's theorem to cliques of arbitrary size and

then asked whether similar results could be obtained for cliques on hyper-

graphs. This has become one of the central unsolved problems in the �eld

of extremal combinatorics. In Chapter 3, we prove that the Turán density

of K
(3)
5 together with six other induced subgraphs is 3/4. This is analogous

to a similar result obtained for K
(3)
4 by Razborov.

In Chapter 4, we consider various generalisations of the Turán density. For

example, we prove that, if the density in G of P̄3 is x and G is K3-free, then

|E(G)| /
(
n
2

)
≤ 1/4+(1/4)

√
1− (8/3)x. This is motivated by the observation

that the extremal graph forK3 is P̄3-free, so that the upper bound is a natural

extension of a stability result for K3.

The question how many edges can be deleted from a blow-up of H before it is

H-free subject to the constraint that the same proportion of edges are deleted

from each connected pair of vertex sets has become known as the Turán

density problem. In Chapter 5, using entropy compression supplemented with

some analytic methods, we derive an upper bound of 1− 1/(γ(∆(H)− β)),

where ∆(H) is the maximum degree of H, 3 ≤ γ < 4 and β ≤ 1. The

new bound asymptotically approaches the existing best upper bound despite

being derived in a completely di�erent way.

The techniques used in these results, illustrating their breadth and connec-

tions between them, are set out in Chapter 1.

4



Contents

Page

Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1. Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2. Background and De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3. Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1. Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2. Link Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.3. Cauchy-Schwarz Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.4. Flag Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.5. Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.6. Ramsey Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.7. Analytic Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.8. The Probabilistic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.9. Entropy Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2. A Hypergraph Stability Theorem1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2. Turán Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1. Structure of Link Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2. Lemmas for Turán Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3. Turán Density and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1. Lemmas for Turán Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.2. Stability Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.3. Stability For F6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3. On Turán's (3,5)-Problem with Forbidden Con�gurations . . . . . . . . . . 71

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2. Background and De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3. Construction Using Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4. Construction of O∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5. Counting Edges in G∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6. Proof of Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

1This chapter has been published in slightly amended form as [28]

5



3.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4. A Generalised Turán Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1. Proofs using Flag Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.2. Proof using Analytic Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5. A new upper bound for the density Turán problem . . . . . . . . . . . . . . . . 104

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2. Entropy Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3. Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.1. Step 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.2. Step 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.3. Step 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.4. Step 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.5. Step 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.6. Step 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4. Example Run-Through of the Algorithm . . . . . . . . . . . . . . . . . . . . . . 108

5.5. Analysis of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.6. Computing Rt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7. Further Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7.1. Step 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.8. Analysis of Amended Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.9. Values of the upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.10. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Contents

6



Dependency Graph

7



Chapter 1

Techniques

1.1. Introduction

Extremal graph theory seeks to determine the extremal values of certain

invariants in graphs (or related entities such as hypergraphs) that have a

particular property. The most commonly studied invariant is the number of

edges in a graph, although we will also consider similar invariants such as the

number of copies of a given small sub-graph. The most commonly studied

property is the absence of a particular graph as a sub-graph or induced

sub-graph. In general, the property is a local feature of the graph whereas

the invariant depends on the graph as a whole. Therefore, extremal graph

theory often involves reasoning from local properties to infer features that

apply globally.

In this thesis, we show how a variety of di�erent techniques may be employed

to answer questions in a particular branch of extremal graph theory: Turán

problems. Using a wide variety of methods enables progress in areas that

are di�cult to tackle directly. The methods employed in this thesis include:

• combinatorial arguments, including induction, link graphs and use

of Cauchy-Schwartz Theorem;

• stability methods;

• �ag algebra;
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• Ramsey theory;

• analytic arguments;

• the probabilistic method; and

• entropy compression.

In this introductory chapter, we �rst set out some standard background and

de�nitions and then give further details of the variety of techniques to be

used. The dependency graph on the preceding page shows the principal

connections between the various sections of this chapter and the remainder

of the thesis.

The methods set out here are not of merely abstract interest. They may be

applied to produce results such as those set out in the following chapters.

So, in Chapter 2, we use Induction, Link Graphs and Stability to prove

the Turán density and an associated stability result for a much studied hy-

pergraph. Speci�cally, Mantel's theorem says that among all triangle-free

graphs of a given order the balanced complete bipartite graph is the unique

graph of maximum size. In Chapter 2, we prove an analogue of this result for

3-graphs (3-uniform hypergraphs) together with an associated stability re-

sult. LetK−4 , F5 and F6 be 3-graphs with vertex sets {1, 2, 3, 4}, {1, 2, 3, 4, 5}
and {1, 2, 3, 4, 5, 6} respectively and edge sets E(K−4 ) = {123, 124, 134},
E(F5) = {123, 124, 345}, E(F6) = {123, 124, 345, 156} and F = {K4, F6}.
For n 6= 5 the unique F-free 3-graph of order n and maximum size is the

balanced complete tripartite 3-graph S3(n). This extends an old result of

Bollobas that S3(n) is the unique 3-graph of maximum size with no copy of

K−4 or F5.

In Chapter 3, we use elements of Ramsey Theory and Flag Algebra to sup-

plement Induction with an analytic presentation to prove the Turán density

for a family of hypergraphs including K
(3)
5 . So, in 1941, Turán generalised

Mantel's theorem to cliques of arbitrary size and then asked whether similar

results could be obtained for cliques on hypergraphs. This has become one

of the central unsolved problems in the �eld of extremal combinatorics. In

Chapter 3, we prove that the Turán density of K
(3)
5 together with six other

induced subgraphs is 3/4. This is analogous to a similar result obtained for

K
(3)
4 by Razborov.
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In Chapter 4, we use Flag Algebra and analytic techniques to consider

various generalisations of the Turán density. For example, we prove that,

if the density in G of P̄3 is x and G is K3-free, then |E(G)| /
(
n
2

)
≤

1/4 + (1/4)
√

1− (8/3)x. This is motivated by the observation that the

extremal graph for K3 is P̄3-free, so that the upper bound is a natural ex-

tension of a stability result for K3.

The question how many edges can be deleted from a blow-up of H before

it is H-free subject to the constraint that the same proportion of edges

are deleted from each connected pair of vertex sets has become known as

the Turán density problem. In Chapter 5, using Entropy Compression and

Analytic Combinatorics, we derive an upper bound of 1− 1/(γ(∆(H)− β)),

where ∆(H) is the maximum degree of H, 3 ≤ γ < 4 and β ≤ 1. The

new bound asymptotically approaches the existing best upper bound despite

being derived in a completely di�erent way.

1.2. Background and De�nitions

A uniform r-graph H is a set of r-tuples, E(H) (known as edges if r = 2

or hyperedges otherwise), de�ned on a base set, V (H) (known as vertices).

A 2-graph is simply a graph, although we also use graph as an abbreviation

for all r-graphs, not just 2-graphs. The number of vertices in a graph is the

order of the graph. The number of edges in a graph is the size of the graph.

Let [n] = {1, 2 . . . n}.

Given an r-graph H and W ⊆ V (H), we use the lower case w to denote

the proportion of vertices of H in W ; that is, |W | = w |V (H)|. For subsets
of vertices A,B ⊆ V (H), H[A] refers to the subgraph of H restricted to

the vertices of A and H[A,B] refers to the subgraph of H on the vertices

of A ∪ B consisting of all edges with vertices in both A and B; that is,

E(H[A,B]) = {e ∈ E(H) : x, y ∈ e&x ∈ A& y ∈ B}. The subset of

vertices that are neighbours of u in H is referred to as ΓH(u), where the

subscript may be dropped if no ambiguity would result. The degree of a

vertex v ∈ H is d(v) = |ΓH(v)|.

The �eld of extremal combinatorics starts with Mantel's Theorem.

Theorem 1.1 (Mantel's Theorem). A graph of order n that contains no

triangles contains at most
⌊
n2/4

⌋
edges.
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In terms of the scheme set out above, the invariant in Mantel's Theorem is

the number of edges in the graph and the graph property is the absence of

any triangles. Another way to approach this is to de�ne T as the class of

all graphs that do not contain a triangle. Then Mantel's Theorem states

that any graph T ∈ T of order n has at most n2/4 edges. We will illustrate

the techniques used in this thesis by giving a number of di�erent proofs of

Mantel's Theorem.

Given a family of hypergraphs F , a hypergraph is F-free if it does not contain
a (not necessarily induced) subgraph that is isomorphic to any member of

F . For any integer n ≥ r, the Turán number of F is

ex(n,F) = max {|E(H)| : H is an F-free, r-graph, |V (H)| = n}

and the related asymptotic Turán density is the following limit (an averaging

argument due to Katona, Nemetz and Simonovits [17] shows that it always

exists)

π (F) = lim
n→∞

ex (n,F)(
n
r

) .

The problem of determining the Turán density is essentially solved for all

2-graphs by the Erdös-Stone-Simonovits Theorem:

Theorem 1.2 (Erdös and Stone [9], Erdös and Simonovits [8]). Let F be a

family of 2-graphs. If t = min {χ(F ) : F ∈ F} ≥ 2, then

π (F) =
t− 2

t− 1
.

It follows that the set of all Turán densities for 2-graphs is {0, 1/2, 2/3, 3/4 . . .}.

There are two directions in which Turán-type problems can be extended. The

�rst is from graphs to hypergraphs. There is no analogous result for r ≥ 3

and most progress has been made through determining the Turán densities

of individual graphs or families of graphs. The second still considers graphs,

but replaces edge densities with densities of other subgraphs and replaces the

property of absence of a particular subgraph with more complex properties.

11



1.3. Techniques

1.3.1. Induction

This is the fundamental technique of combinatorics, as a generalisation of

the process of counting.

The power of this technique comes from the fact that the inductive step

focuses on only a small part of the graph but enables conclusions to be made

about the graph as a whole. Its limitation is that, in the inductive step, no

assumptions can be made about the structure of the remainder of the graph.

That is, it is necessary to assume both that the remainder of the graph is

maximal with respect to the invariant and that it is structured in a way

independent from maximising that invariant.

We illustrate induction by our �rst proof of Mantel's theorem:

First Proof of Mantel's theorem. A graph consisting of two ver-

tices has at most one edge. Assume that the theorem is true for any graph

of order k. We aim to show that the theorem is then true for a graph G of

order k + 2. The result will then follow by mathematical induction. Take

any pair of vertices, x and y, in G, connected by an edge. Then (noting that

there can be only one edge between x and y and any other vertex in G):

|E(G)| = |E(G\{x, y})|+ |E(G[xy,G\{x, y}])|+ 1

≤ k2

4
+ k + 1

=
(k + 2)2

4

�

Induction is used throughout Chapter 2 � for simple examples very similar

to the proof above, see Proposition 2.26 and Proposition 2.27.

Induction generally requires a base case, but an asymptotic version can be

used even in the absence of a base case, where the relevant functions are pos-

itive and increasing, as is generally the case for combinatorial applications.

Take a positive increasing function f(x). If there is another function g(x)

and x0 such that for all x ≥ x0,
df
dx ≤

dg
dx , then g(x) is eventually an upper

12



bound for f(x), in the sense that f(x)
g(x) ≤ 1 + o(1). We refer to this as

progressive induction and it is the basis of the stability argument in Chapter

2 � see, speci�cally, Lemma 2.16 � and also forms part of the basic argument

justifying entropy compression in Chapter 5.

In a proof by induction, the inductive step allows a speci�c conclusion about

any strict subgraph - namely, that it satis�es the inductive hypothesis. This

applies to every subgraph, so that there is a free choice of the additional

element to be used to complete the induction. However, it limits the infor-

mation that can be used about the rest of the graph - only that it satis�es the

inductive hypothesis, without any further knowledge of its structure, even

though it must in fact have a certain structure in order to achieve the max-

imum implied by the inductive hypothesis. So, for instance, the maximal

graph for Mantel's theorem is the complete bipartite graph, but we cannot

use this information in the proof by induction above.

One method to overcome this limitation is to incorporate additional infor-

mation into the inductive hypothesis. For instance, if the extremal example

is essentially unique then the hypothesis may state not only the relevant

maximum but also the structure of the extremal example. This structure is

then available to be used to complete the induction. This method can be

seen in the proof of the Turán number for F6 in the �rst part of Chapter 2.

Where further information about both parts of the graph is required to

complete the argument, the technique of induction can be extended. The

graph is still split into two sections and the aim is still to count the edges

in both sections and between the two sections. But additional structure

is available in both sections that may be more useful than the inductive

hypothesis. We illustrate this with another proof of Mantel's theorem.

Second Proof of Mantel's theorem. Given any graph G of order

n consider any vertex x of maximal degree in G and split G into A = Γ(x)

and B = G\A. Then (noting that G[A] is the empty graph):

E(G) =
1

2

∑
z∈G

d(z)

=
1

2

(∑
z∈A

d(z) +
∑
z∈B

d(z)

)
13



≤ 1

2

(∑
z∈A
|B|+

∑
z∈B
|A|

)
= |A| (n− |A|)

which is maximised when |A| = n/2, giving the statement of the theorem. �

This is the strategy used to count the edges in both the exact and stablity

parts of the proof in Chapter 2.

Note that, in the last step of this proof, it was necessary to maximise the

function a(n − a) subject to a ≤ n and where a and n are both integers.

Although this is of course trivial, it is worth drawing attention to the rea-

soning in more detail as it is demonstrates a widely-used approach. So, let

a = kn where k ∈ R. The aim is to maximise kn(n − kn) = n2k(1 − k).

Di�erentiating with respect to k reveals a maximum at k = 1/2. By trans-

lating the problem into the realm of real variables, it is possible to apply

analytical techniques. Of course, here, this is all done implicitly, but, in

more complex cases, this is often accomplished by expressing the problem

in terms of weighted graphs with real vertex and/or edge weightings. The

results can usually be converted back into statements about large discrete

graphs, although care is needed when irrational weights are used. An ana-

lytic approach is used in Subsection 4.3.2.

1.3.2. Link Graphs

A variant of induction that applies speci�cally to hypergraphs uses link

graphs. For any 3-graph H containing an edge xyz, we de�ne a number

of link graphs. The link graph Lx is de�ned as follows:

V (Lx) = V (H)− {x}

E(Lx) = {ab : abx ∈ E(H)}

The link graph Lxyz is the multigraph that is the subgraph of the union

Lx ∪ Ly ∪ Lz on V (H) − {x, y, z}. The label of an edge ab ∈ E(Lxyz) is

l(ab) = {q ∈ {x, y, z} : abq ∈ E(G)}. The weight of an edge ab ∈ Lxyz is

|l(ab)| and the weight of Lxyz is w(Lxyz) =
∑

ab∈Lxyz |l(ab)|.

For instance, here is the 3-graph {xyz, xab, ycd, zcd} and the associated link

graph Lxyz:

14



a b 

c d 

x 

y 

z 

 

  

x 

y z 

a b 

c d 

The link graph construction can be used for 3-graph proofs. The standard

method is by a double induction. First, there is an induction on a single ver-

tex or a single edge of the hypergraph. The inductive step is accomplished

by considering the link graph of the relevant vertex or edge. This trans-

forms a statement about hypergraphs into a statement about graphs. This

statement may then in turn be solved by an induction on the link graph.

This technique is used extensively in Chapter 2 - see, for example, Subsection

2.2.1.

1.3.3. Cauchy-Schwarz Inequality

The second proof of Mantel's theorem used the convexity of x2. This can be

extended to proofs that count edges or vertex-degrees in di�erent ways and

then use the Cauchy-Schwarz Inequality to derive a helpful inequality. We

generally use the following simple form of the Inequality:

Proposition (Cauchy-Schwarz Inequality). For any positive sequence an:

n∑
i=1

a2
n ≥ 1

n

(
n∑
i=1

ai

)2

Use of the Cauchy-Schwarz Inequality is demonstrated by another proof of

Mantel's theorem.
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Third Proof of Mantel's theorem. First note that∑
xy∈E(G)

d(x) + d(y) ≤ |E(G)|n

because x and y are not both incident with any other vertex. Then note

that ∑
xy∈E(G)

d(x) + d(y) =
∑

x∈V (G)

d(x)2

because the sum d(x) is computed for each vertex d(x) times.

As 1
2

∑
x∈V (G) d(x) = E(G), the Cauchy-Schwarz Inequality gives

∑
x∈V (G)

d(x)2 ≥

(∑
x∈V (G) d(x)

)2

n

=
4 |E(G)|2

n
.

Putting these together gives

4 |E(G)|2

n
≤ |E(G)|n

|E(G)| ≤ n2

4
.

�

Cauchy-Schwarz is used extensively throughout the thesis whenever a convex

function is to be maximised. For a speci�c example, see the end of Subsection

2.3.1.

1.3.4. Flag Algebras

The �ag algebra method developed by Razborov allows Cauchy-Schwarz In-

equality arguments to be vastly extended. Firstly, it enables a systematic

treatment that permits problems to be expressed in the form of optimisation

problems involving semi-de�nite matrices that may be solved computation-

ally. Secondly, it allows algebraic reasoning about extremal problems at a

high level of generality. We set out here a simpli�ed annotated usage that

demonstrates how it is applied in practice and then su�cient de�nitions to

16



motivate the use of �ag algebras in Chapter 4 (and for one speci�c use in

Chapter 3). For a fuller description, see [24].

We build up to a de�nition of Mantel's Theorem using a slight simpli�cation

of the original algebra. Assume that we are given a large arbitrary graph

G of order n and let G∗ be a copy of G where one vertex is labelled 1. We

make the following de�nitions:

= the probability that a pair of vertices in G

chosen uniformly at random comprise an edge

= the average degree of a vertex in G

(expressed as a proportion)

=
1

n

∑
v∈G

d(v)

n− 1

and

1
= the probability that vertex 1 in G∗ and another vertex

chosen uniformly at random comprise an edge.

We will use the partially labelled graph to derive statements about the un-

labelled graph, so we need some way of relating the two. This is given

by the downward or averaging operator which, broadly speaking, expresses

the probability of �nding the relevant labelled subgraph starting with the

unlabelled graph and labelling it uniformly at random:
u

v
1

}

~ = the probability that a vertex chosen uniformly

at random in G and labelled 1 together with another

vertex chosen uniformly at random comprise an edge

= the average degree of a vertex in G

(expressed as a proportion)

=
1

n

∑
v∈G

d(v)

n− 1
.
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This immediately gives the equality

=

u

v
1

}

~

1( )2

=

u

v
1

}

~
2

1

Next, it follows from the existing de�nitions thatu

v
1

}

~

1

2

=

(
1

n

∑
v∈G

d(v)

n− 1

)2

1

n2

(∑
v∈G

d(v)

n− 1

)2

and
u

v


1

2}

~

1

= the probability that, taking a vertex chosen

uniformly at random and labelled G,

the following event occurs twice: another vertex

chosen uniformly at random comprises an edge

with vertex 1

=
1

n

∑
v∈G

(
d(v)

n− 1

)2

.

An application of Cauchy's theorem then gives
u

v
1

}

~
2

1

≤

u

v


1

2}

~

1

.

Also, compare these two events in the labelled graph G∗:

1

2

= the probability that the following event occurs twice:

a vertex chosen uniformly at random

comprises an edge with vertex 1

18



1
= the probability that two vertices

chosen uniformly at random are both

adjacent to vertex 1 (but not each other) .

In a triangle-free graph, these events are equivalent except for sampling with

and without replacement, so that they di�er only by O(1). The �ag algebra

allows these two two be treated as asymptotically equivalent, so that the

following formal statement is permitted:
u

v


1

2}

~

1

=

u

v
1

}

~

1

.

Finally, we apply the averaging de�nition to this graph:
u

v
1

}

~

1

= the probability that a vertex chosen uniformly

at random in G and labelled 1 together with

two other vertices chosen uniformly at random form

a graph consisting of two edges connected to vertex 1

= the probability that three vertices chosen uniformly

at random in G form a graph consisting of two edges

and that a vertex from that triple chosen uniformly

at random is connected to both edges

=
1

3

Putting all these elements together, a proof of Mantel's theorem using the

�ag algebra is as follows.

Fourth Proof of Mantel's theorem . We work in the class of

graphs missing K3 as a subgraph:( )2

=

u

v
1

}

~
2

1

19



≤

u

v


1

2}

~

1

=

u

v
1

}

~

1

=
1

3

Also,

=
1

3
+

2

3

and so

≥ 2

( )2

which implies that the density is less than half. �

A �ag algebra is de�ned in the context of a particular class of objects, gen-

erally a class of graphs T where each graph T ∈ T does not contain a copy

of any of a set of forbidden graphs F as a graph (or alternatively an induced

suubgraph). This corresponds to our example above where the objects are

the class of triangle-free graphs. Within a particular �ag algebra, a type is a

graph σ ∈ T of order s with vertices labelled 1 . . . s. A σ-�ag is a pair (F, θ)

where F ∈ T and θ is a function θ : [s]→ V (F ) such that σ is isomorphic

to the labelled subgraph of F induced by Im(θ). So a �ag is a partially

labelled graph; an unlabelled graph may be seen as a σ-�ag where σ is the

empty type; a type may be seen as a �ag with no unlabelled vertices. So,

in our example, we dealt with the type consisting of a single labelled vertex

and the �ags were the graphs on three vertices containing a single labelled

vertex.

To consider another example, let σ be a labelled edge. Then the σ-�ags on

three vertices are the following four graphs:
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2 

1  

2 

1  

2 

1  

2 

1  

Let Fσm be the set of σ-�ags on m vertices and let Fσ = ∪mFσm. De�ne the
following probabilities:

• For F ∈ Fσm, G ∈ Fσn , p(F,G) is the probability that an m − s-

set V ∈ G\θ(σ) chosen uniformly at random together with θ(σ)

induces a subgraph that is isomorphic to F via an isomorphism

that preserves the embedding of σ. Note that p(F,G) = 0 if m > n.

• For F1 ∈ Fσm, F2 ∈ Fσn , G ∈ Fσp , p(F1, F2, G) is the probability that

two m−s-sets V1, V2 ∈ G\θ(σ) chosen uniformly at random subject

to V1∩V2 = � (that is, V1 is anm−s set chosen uniformly at random

from G\θ(σ) and then V2 is anm−s set chosen uniformly at random

from G\(θ(σ) ∪ V1)) together with θ(σ) induce subgraphs that are

isomorphic to F1, F2 respectively via isomorphisms that preserve

the embedding of σ. Note that p(F1, F2, G) = 0 if m+ n− s > p.

A key result is that asymptotically p(F1, G)p(F2, G) approaches p(F1, F2, G).

Formally:

Theorem 1.3 (Razborov). For F1, F2, G ∈ Fσ, p(F1, G)p(F2, G) =

p(F1, F2, G)+o(1), where the o(1) term tends to 0 as |V (G)| tends to in�nity
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Another key tool is the chain rule. For m < n < p, given F ∈ Fσm, G ∈ Fσp :

p(F,G) =
∑
H∈Fσn

p(F,H), p(H,G).

Let RFσ be the set of formal linear combinations of elements of Fσ, let Kσ

be the linear subspace generated by

H −
∑

G ∈Fσm

p(H,G)G

and let Aσ = RFσ/Kσ. The zero element of Aσ is Kσ. The product of

elements in Aσ is de�ned as follows. For F ∈ Fσm, G ∈ Fσn , choose an

arbitrary p ≥ m+ n− s, then

F.G =
∑
H∈Fσp

p(F,G,H)H

This is then extended to all of Aσ by linearity. The product is well-de�ned

with unit 1σ - in particular, it does not depend on the choice of p (see [24]

for details). This construction can be extended to the asymptotic case using

Theorem 1.3. Intuitively, elements of the �ag algebra represent the densities

of the corresponding subgraphs in large arbitrary graphs of the relevant

class. In our triangle-free example, we adopted the formalism by appealing

to a large arbitrary graph G and treating the subgraphs as densities within

that graph. The �ag algebra allows these calculations to be treated as exact

without having to consider the lower order terms separately.

The �nal construction used in the triangle-free example was the averaging

operator. This may be formally de�ned as follows. For F ∈ Aσ, let G ∈ A�

be the graph obtained by unlabelling the vertices of σ in F . Let pσF be

the probability that a random injective mapping from [s] to V (G) is an

embedding of σ in G that yields a σ-�ag isomorphic to F . Then

JF Kσ = pσFG

Various forms of the Cauchy-Schwarz inequality may be developed in relation

to the averaging operator. For instance, for every linear combination Aσ ∈
Aσ:

r
(Aσ)2

z

σ
≥ 0
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This formalism may be developed further using the semi-de�nite method:

constructing optimisation problems involving positive semi-de�nite matrices

that are amenable to solving by computational means. Here, we use it as

a convenient abstraction mechanism to allow reasoning that could in theory

be expressed without it but would be vastly more complex in its absence.

1.3.5. Stability

Where an extremal solution has been found, a stability result seeks to show

that any graph that is close to the extremal limit is somehow close in struc-

ture to the extremal graph - that is, the graph that constitutes a lower or

upper bound to the extremal solution. A stability result is often harder to

prove than the corresponding exact result and there are few examples in the

�eld of extremal hypergraphs. In part, this is because it often presupposes

that there is a single extremal graph whereas, in many cases, there is a family

of non-isomorphic extremal graphs.

A stability result will typically be of the following form. Let T be a class

of graphs with some desired property. Assume that, for all n, there exists

Tn ∈ Tn which is the unique extremal graph of order n - that is, the graph

of maximal density of order n in T - and that Tn is of density kn2. Then a

typical stability result would assert that, for all ε there exists a δ such that

for any graph G ∈ T with density (1 − ε)kn2 there exists a set of vertices

W ∈ V (G) with |W | ≥ (1− δ) |V (G)| such that G[W ] is isomorphic to T|W |
or has some other similar structural property to T|W |. Variants may exclude

a set of 'bad' edges rather than a set of bad vertices.

Proof of a stability result also typically employs the exact result. In partic-

ular, assume that G has density (1 − ε)kn2. Then, because the density of

G has the upper bound kn2, there exists a large subgraph of G with some

desirable property - such as a minimum degree - and the remainder of the

graph may be placed into the 'bad' category. This process is repeated until

the required exact structure is obtained.

There exist few stability results for hypergraphs. A stability result for F6 is

set out in Section 2.3. The functions obtained by generalisation of the Turán

function set out in Chapter 4 also embody much of the same information as

may be obtained by a stability result.
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1.3.6. Ramsey Theory

Ramsey Theory is concerned with the appearance of ordered substructures

given a structure of su�cient size. It may be used in extremal combinatorics

to obtain subgraphs with guarantees as to structure - local reasoning about

these structures must then be translated into global reasoning about the

graph as a whole to obtain an extremal result We will only use Ramsey

Theory in one place: a version of Ramsey's Theorem is used in Lemma 3.10

below. The necessary statements are as follows:

Proposition 1.4 (Razborov [26]). For any l > 0 there exists N > 0

such that the following holds. Let a hypergraph B be such that V (B) =

B1∪̇ . . . ∪̇Bl, where |Bi| = N . Then there exist Ai ⊆ Bi with |Ai| = 2 such

that for any E ∈ [A1 ∪ . . .∪Al]3, whether or not E ∈ E(B) depends only on

the tuple of cardinalities 〈|E ∩A1| , . . . , |E ∩Al|〉.

Proposition 1.5 (Razborov [26]). For all l, n, ε > 0 there exists N0 > 0

such that if |Bi| = N (1 ≤ i ≤ l) with N ≥ N0 and S ⊆ B1 × · · · × Bl has
|S| ≥ εN l, then there exist Ai ⊆ Bi (Ai = n) such that A1 × · · · ×Al ⊆ S.

1.3.7. Analytic Combinatorics

Analytic combinatorics is a technique for counting mathematical objects. It

is not immediately applicable to extremal questions but is used in Chapter

5 to count certain classes of trees that form part of the proof. As it is

peripheral to the main ideas of this thesis and a large area of study in itself,

we undertake here only a brief excursion to set out the main ideas that lead

to the particular results that are used in Chapter 5. For a comprehensive

treatment, see [13].

The central idea of analytic combinatorics is to use generating functions as

formal structures to encode information about the enumeration of a certain

class of objects and then to employ analytic methods on those functions in

order to obtain insight into their asymptotic behaviour.

The ordinary generating function of a sequence {an}n≥0 is the formal power

series

φa(x) =
∑
n≥0

anx
n.
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Consider, for instance, the sequence tn enumerating the number of planar

trees of order n. A planar tree consists of a node attached to a sequence of

one or more subtrees. This is represented by a generating function as

φt(x) = x(1 + φt(x) + (φt(x))2 + . . .)

=
x

1− φt(x)
.

The notation [xn]φa(x) = an is used to extract the coe�cient of xn from

φa. So, for instance, [x10]φt(x) means the number of planar trees of order

10. For recursive de�nitions of generating functions the coe�cients may be

extracted using Lagrange Inversion:

Theorem 1.6 (Lagrange Inversion). Let y(z) be a generating function such

that y(z) = zφ(y(z)) for an analytic function φ(w) with φ(0) 6= 0. Then

[zn]y(z) =
1

n
[wn−1]φ(w)n.

The de�nition can be extended to properties of objects by introducing further

variables. The ordinary generating function of a sequence {an,k}n≥0,k≥0 is

the formal power series

φa(x, u) =
∑

n≥0,m≥0

an,mx
num.

Consider, for instance, the sequence tn,m enumerating the number of planar

trees of order n with m nodes of out-degree 1. This is represented by a

generating function as

φt(x, u) = x(1 + uφt(x, u) + (φt(x, u))2 + . . .)

=
x

1− φt(x)
+ (u− 1)φt(x, u).

Constructions of combinatorial objects correspond to manipulations of the

power series in a systematic way - for further details, see the exploration in

[13].

The behaviour of a generating function in the complex plane gives infor-

mation about its coe�cients. In particular, the rate of exponential growth

of the coe�cients is determined by the location of the singularities of the

function. The generating functions of combinatorial interest are analytic at
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0 and the asymptotic behaviour is determined by the singularity of smallest

modulus. The basic property is given by the Transfer Lemma:

Lemma 1.7 (Flajolet, Odlyzko, [12]). Let

φ(x) =
∑
n≥0

anx
n

be analytic in a region

∆(x0, η, δ) = {x : |x| < x0 + η, |arg(x/x0 − 1)| > δ}

in which x0 and η are positive real numbers and 0 < δ < π/2. If there exists

a real number α such that

φ(x) = O((1− x/x0)−α)

then

an = O(x−n0 nα−1).

The proof uses Cauchy's formula with a carefully chosen path of integration

around the origin. The Transfer Lemma can be used to characterise the

asymptotic behaviour of many combinatorial objects. It can also be extended

to multivariate generating functions to derive a combinatorial central limit

theorem.

Theorem 1.8 (Combinatorial Central Limit Theorem, (Drmota, [7])). Sup-

pose that Xn is a sequence of random variables such that

EuXn =
[xn]y(x, u)

[xn]y(x, 1)

where y(x, u) is a power series, that is the (analytic) solution of the functional

equation y = F (x, y, u), where F (x, y, u) is an analytic function in x, y, u

around 0 such that F (0, y, u) = 0, that F (x, 0, u) 6= 0, and that all coe�cients

of F (x, y, 1) are real and non-negative. Then the unique solution of the

functional equation y = F (x, y, u) with y(0, u) = 0 is analytic around 0. If

the region of convergence of F (x, y, u) is large enough such that there exist

non-negative solutions x = x0 and y = y0 of the system of equations

y = F (x, y, 1)

1 = Fy(x, y, 1)
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and setting

µ =
Fu
x0Fx

σ2 = µ+ µ2 +
1

x0F 3
xFyy

(
F 2
x

(
FyyFuu − F 2

yu

)
−

2FxFu (FyyFxu − FyxFyu) + F 2
u

(
FyyFxx − F 2

yx

))
where all partial derivatives are evaluated at the point (x0, y0, 1), then

E(Xn) = µn+O(1)

Var(Xn) = σ2n+O(1)

and if σ2 > 0 then

Xn − E(Xn)√
Var(Xn)

d−→ N(0, 1)

The theorem is proved using the Transfer Lemma and the Quasi Power The-

orem by H.K. Hwang (as set out in [7]), which provides a general setting to

prove central limit theorems for sequences of random variables. It is readily

extended to the multivariate case:

Remark 1.9. If we have several variables u = (u1, . . . uk) and a sequence of

random vectors Xn with

EuXn =
[xn]y(x,u)

[xn]y(x,1)

where y(x,u) is a power series, which is the solution of the functional equa-

tion y = F (x, y,u) then

E(Xn) = µn+O(1)

Cov(Xn) = Σn+O(1)

where µ = (µ1, . . . , µk) and Σ = (σij)1≤i,j≤k can be calculated as follows

µi =
Fui
x0Fx

σij = µiµj + µiδij +
1

x0F 3
xFyy

(
F 2
x

(
FyyFuiuj − FyuiFyuj

)
−FxFui

(
FyyFxuj − FyxFyuj

)
− FxFuj (FyyFxui − FyxFyui)
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+Fuiuj
(
FyyFxx − F 2

yx

))
and there is a central limit theorem of the form

1√
n

(Xn − E(Xn))
d−→ N(0,Σ).

1.3.8. The Probabilistic Method

The probabilistic method is the name given to the use of techniques from

probability theory to prove the existence of combinatorial structures. The

probability distributions are often over �nite structures and so could be re-

cast as counting questions, but the ability to use concepts such as linearity of

expectation and concentration inequalities allows greater expressive power.

The method includes a wide range of tools and a full reference is [1] - we men-

tion it brie�y here as it is used in conjunction with analytic combinatorics

as part of the argument to Chapter 5.

A typical example of the method is provided by our �nal proof of Mantel's

theorem.

Fifth proof of Mantel's theorem. Given a graph of order n, de-

�ne a probability distribution over the vertices of G, such that the random

variable X takes the value ij with probability pipj . Start with a uniform

distribution such that pi = 1/n for all i. The probability that X samples an

edge of G is

P[X ∈ E(G)] =
∑

i,j : ij∈E(G)

pipj

which, with the uniform distribution, is equal to 2
n2 |E(G)|. We then modify

the distribution to maximise this probability. In particular, take any two

non-adjacent vertices i, j with pi, pj > 0. Let

si =
∑
k∈Γ(i)

pk

sj =
∑
k∈Γ(i)

pk.

If si > sj then set pi to pi + pj and set pj to 0. Otherwise, set pi to 0 and

pj to pi + pj . This operation reduces the number of non-adjacent vertices
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allocated a positive probability and does not decrease the probability that

X samples an edge. Repeating this operation leads to a situation where the

probability is concentrated on a set of adjacent vertices. As G is triangle-

free, it follows that there are precisely two vertices, i and j, with positive

probability and that P[X ∈ E(G)] = pipj + pjpi ≤ 1/2 as pi + pj = 1. As

these operations have not decreased the probability, it follows that

2

n2
|E(G)| ≤ 1

2

|E(G)| ≤ n2

4
.

�

1.3.9. Entropy Compression

The previous proof was essentially algorithmic. It set out an algorithm that

was guaranteed to terminate as each iteration increased a particular quantity

(the number of non-adjacent vertices) that was bounded. A more involved

technique that has become known as entropy compression employs a simi-

lar idea. It works with probabilistic algorithms that, at each stage, make

a change to a combinatorial object G within a class G to produce another

object G′ that is also within G and locally satis�es some set property (al-

though, overall, the property may not be better satis�ed by the new graph).

For instance, if the criterion is to construct a certain path within the graph,

the algorithm might add a new edge xy but simultaneously remove a num-

ber of other edges. Accordingly, the algorithm will only terminate if no

improvement is possible with respect to the set property � that is, it has

been satis�ed throughout the whole graph.

The object, then, is to show that the algorithm always terminates and so

the relevant property has been satis�ed. This is accomplished as follows.

The algorithm makes a random choice at each stage, so requires a random

number as input � it can be seen as e�ectively `consuming' a string of random

numbers that gets longer as the algorithm continues. At each stage, the

algorithm also creates a `log', a separate history of the algorithm, recording

the action it took. The string of random numbers can be reconstituted from

the object G′ and from the log. The key is that the algorithm is designed to

take advantage of the particular structure of the problem so that the log can

be stored e�ciently. If the information content of the log grows at a slower
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rate than that of the random input, then the algorithm must eventually

terminate, or otherwise it would compress the information content of the

random string, which gives a contradiction.

The �nal stage to this argument is similar to progressive induction, as set

out above, in that the relevant statement is not true initially - because the

information content of G′ is some large but essentially �xed number - but it

must become true eventually because the rate of growth is lower than the

rate of growth of the quantity it is being measured against.

Entropy compression is used to prove the main result in Chapter 5.

1.4. Conclusion

Many problems in extremal combinatorics can be expressed using elemen-

tary concepts. However, solving these problems can require a wide variety

of techniques taken from di�erent branches of mathematics. In this intro-

ductory chapter, we have set out the principal ones used in the remainder of

this thesis. The list is not comprehensive � there are various important areas

mentioned only in passing, such as Ramsey Theory in Chapter 3 � but we

have attempted to give an overview of the variety of mathematical subjects

incorporated into the study of combinatorics.
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Chapter 2

A Hypergraph Stability

Theorem1

2.1. Introduction

A r-uniform hypergraph, or r-graph, is a pair H = (V (H), E(H)) where

E(H) ⊆ V (H)(r). The elements of V (H) are referred to as vertices and the

elements of E(H) are referred to as edges. A 2-graph is a simple graph. For

any vertex subset X, we use the lower case x to denote the proportion of

vertices in X; that is, |X| = x |V (H)|.

Given a family of hypergraphs F , a hypergraph is F-free if it does not contain
a (not necessarily induced) subgraph that is isomorphic to any member of

F . For any integer n ≥ r, the Turán number of F is

ex(n,F) = max {|E(H)| : H is an F-free, r-graph, |V (H)| = n}

and the related asymptotic Turán density is the following limit (an averaging

argument due to Katona, Nemetz and Simonovits [17] shows that it always

exists)

π (F) = lim
n→∞

ex (n,F)(
n
r

) .

1This chapter has been published in slightly amended form as [28]
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The problem of determining the Turán density is essentially solved for all

2-graphs by the Erdös-Stone-Simonovits Theorem:

Theorem 2.1 (Erdös and Stone [9], Erdös and Simonovits [8]). Let F be a

family of 2-graphs. If t = min {χ(F ) : F ∈ F} ≥ 2, then

π (F) =
t− 2

t− 1
.

It follows that the set of all Turán densities for 2-graphs is

{0, 1/2, 2/3, 3/4 . . .}.

There is no analogous result for r ≥ 3 and most progress has been made

through determining the Turán densities of individual graphs or families

of graphs. A central problem, originally posed by Turán, is to determine

π
(
K

(3)
4

)
, where K

(3)
4 = {123, 124, 134, 234}, the complete 3-graph on 4

vertices. This is a natural extension of determining the Turán density of

the triangle for 2-graphs, a question answered by Mantel's Theorem. Turán

conjectured that the density is 5/9 but this question remains unanswered

despite a great deal of work, with the current best upper bound of 0.561666

given by Razborov [25].

A related problem due to Katona is given by extending the triangle to

the family of cancellative hypergraphs. A cancellative hypergraph H has

the property that, for any edges a, b ∈ H, there is no edge c ∈ H such

that a4b ⊆ c (where 4 is the symmetric di�erence). For 2-graphs, this

amounts to forbidding all triangles. For a 3-graph, it is equivalent to for-

bidding the two non-isomorphic con�gurations K−4 = {123, 124, 134} and

F5 = {123, 124, 345}.

Let S(n) be the complete balanced tripartite 3-graph on n vertices, that is,

the 3-graph on n vertices divided into 3 sets of size as equal as possible and

with edges consisting of all triples with one vertex from each set. Let s(n)

be the number of edges in S(n).

Theorem 2.2 (Bollobás [4]). For n ≥ 3, S(n) is the unique cancellative

3-graph of order n and maximum size.

This result was re�ned by Frankl and Füredi [14] and Keevash and Mubayi

[19], who proved that S(n) was the extremal con�guration for the single

forbidden graph F5 for n ≥ 33; that is, ex (n, F5) = s(n) for n ≥ 33.
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The blow up of a k-graph H is the graph H(t) obtained by replacing each

vertex a ∈ V (H) with a set of t vertices Va ∈ V (H(t)) such that for any k

vertices {p1, . . . , pk} ∈
(V (H)

k

)
and all sets of k vertices {q1, . . . qk} ∈

(V (H(t))
k

)
with qi in Vpi , q1 . . . qk is an edge in H(t) i� p1 . . . pk is an edge in H. The

following result is an invaluable tool in determining the Turán density of a

graph that can be shown to be contained in the blow ups of other graphs:

Theorem 2.3 (Brown and Simonovits [5],[2]). If F is an r-graph that is

contained in a blow up of every member of a family of r-graphs G, then

π (F ) = π (F ∪ G).

Baber and Talbot considered the 3-graph F6 = {123, 124, 345, 156}, which is

not contained in any blow up of F5 (so that Theorem 2.3 does not guarantee

that π(F6) ≤ 2/9 and so, by analogy with the case for 2-graphs, it might

be expected that the Turán density was not 2/9). Using Razborov's �ag

algebra framework[24], they gave a computational proof that in fact π (F6) =

2/9. In this paper, we give two proofs of π (F6) = 2/9 that do not rely on

computational analysis, together with an associated stability result.

Note �rst that F6 is contained in a blow up of K−4 . Indeed, taking K−4 (2)

as the blow up of {abc, abd, acd}, then {a1b1c1, a1b1d1, c1d1a2, b1a2c2} is a

copy of F6. Theorem 2.3 implies that π (F6) = π(F), where F =
{
K−4 , F6

}
.

Accordingly, we work throughout with the family F .

Our main result in this chapter is the following theorem which determines the

exact Turán number for F . Let C(3)
5 be the tight cycle graph on 5 vertices;

that is, C
(3)
5 = {123, 234, 345, 451, 512}.

Theorem 2.4. If n ≥ 3 then the unique F-free 3-graph with ex(n,F) edges

and n vertices is S3(n) unless n = 5 in which case it is C
(3)
5 .

As noted above, F6 is contained in K−4 (2), so that this Turán density result

follows.

Theorem 2.5. π (F6) = 2
9 .

In the second part of this chapter we provide associated stability results as

well as an alternative proof of the Turán density.
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2.2. Turán Number

Theorem 2.4. If n ≥ 3 then the unique F-free 3-graph with ex(n,F) edges

and n vertices is S3(n) unless n = 5 in which case it is C
(3)
5 .

Proof. We use induction on n. Note that the result holds trivially for

n = 3, 4. For n = 5 it is straightforward to check that the only F-free 3-

graphs with 4 edges are S3(5), {123, 124, 125, 345} and {123, 234, 345, 451}.
Of these the �rst two are edge maximal while the third can be extended by a

single edge to give C
(3)
5 . Thus we may suppose that n ≥ 6 and the theorem

is true for n− 3.

Let G be F-free with n ≥ 6 vertices and ex(n,F) edges. Since S3(n) is

F-free we have e(G) ≥ s3(n).

The inductive step proceeds as follows: select a special edge abc ∈ E(G)

(precisely how we choose this edge will be explained in Lemma 2.6 below).

For 0 ≤ i ≤ 3 let fi be the number of edges in G meeting abc in exactly i

vertices. Thus by our inductive hypothesis we have

(2.2.1) e(G) = f0 + f1 + f2 + f3

≤ ex(n− 3,F) + f1 + f2 + 1.

Note that unless n−3 = 5 our inductive hypothesis says that ex(n−3,F) =

s3(n− 3) with equality i� G−{a, b, c} = S3(n− 3). For the moment we will

assume that n 6= 8 and so we have the following bound

(2.2.2) e(G) ≤ s3(n− 3) + f1 + f2 + 1,

with equality i� G− {a, b, c} = S3(n− 3).

Let V − = V (G)−{a, b, c}. For each pair xy ∈ {ab, ac, bc} de�ne Γxy = {z ∈
V − : xyz ∈ E(G)} and let Γabc = Γab ∪ Γac ∪ Γbc be the link-neighbourhood

of abc. Note that since G is K−4 -free and abc is an edge this is a disjoint

union, so

f2 = |Γab|+|Γac|+|Γbc|= |Γabc|.

For x ∈ {a, b, c} de�ne L(x) to be the link-graph of x, so V (L(x)) = V − and

E(L(x)) = {yz ⊂ V − : xyz ∈ E(G)}. The link-graph of the edge abc is the
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edge labelled graph Labc with vertex set V − and edge set L(a)∪L(b)∪L(c).

The label of an edge yz ∈ E(Labc) is l(yz) = {x ∈ {a, b, c} : xyz ∈ E(G)}.
The weight of an edge yz ∈ Labc is |l(yz)| and the weight of Labc is w(Labc) =∑

yz∈Labc |l(yz)|. Note that f1 = w(Labc).

The following lemma provides our choice of edge abc.

Lemma 2.6. If G is F-free with n ≥ 6 vertices and ex(n,F) edges then there

is an edge abc ∈ E(G) such that

w(Labc) + |Γabc|≤ t3(n− 3) + n− 3,

with equality i� Labc = T3(n− 3) and Γabc = V −.

Let abc ∈ E(G) be a �xed edge given by Lemma 2.6.

By assumption e(G) ≥ s3(n) so Lemma 2.11(i) and Lemma 2.6 together

with the bound on e(G) given by (2.2.2) imply that e(G) = s3(n) and hence

G−{a, b, c} = S3(n− 3), Labc = T3(n− 3) and Γabc = V −. To complete the

proof we need to show that G = S3(n). First note that since Labc = T3(n−3)

and Γabc = V −, Lemma 2.8(i) and Lemma 2.7(F6-3) imply that no vertex

in Γab is in an edge with label c and similarly for Γac,Γbc. Hence Labc is

the complete tripartite graph with vertex classes Γab, Γac and Γbc and the

edges between any two parts are labelled with the common label of the parts

(e.g. all edges from Γab to Γac receive label a).

Finally we need to show that G − {a, b, c} = S3(n − 3) has the same tri-

partition as Labc. This is straightforward: any edge xyz ∈ E(G − {a, b, c})
not respecting the tripartition of Labc meets one of the parts at least twice.

But if x, y, z ∈ Γab then |Γac|≥ 2 so let u ∈ Γac. Setting a = 1, b = 2, x =

3, y = 4, z = 5, u = 6 gives a copy of F6. If x, y ∈ Γab and z ∈ Γac then

a = 1, x = 3, y = 4, z = 2 gives a copy of K−4 .

Hence G = S3(n) and the proof is complete in the case n 6= 8.

For n = 8 we note that if G− {a, b, c} is F5 -free then Theorem 2.2 implies

that the result follows as above, so we may assume that G−{a, b, c} contains
a copy of F5. In this case it is su�cient to show that e(G) ≤ 17 < 18 = s3(8).

If V (G − {a, b, c}) = {s, t, u, v, w} then we may suppose that

stu, stv, uvw, abc ∈ G. Since G is K−4 -free it does not contain suv or tuv.
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Moreover it contains at most 3 edges from {u, v, w}(2)×{a, b, c} and at most

5 edges from {s, t, u, v, w} × {a, b, c}(2). Since G is F6-free it contains no

edges from {s, t} × {w} × {a, b, c} .

The only potential edges we have yet to consider are those in

{st, su, tu, sv, tv} × {w, a, b, c}. Since G is K−4 -free it contains at most 2

edges from std, sud, tud, svd, tvd for any d ∈ {w, a, b, c}. Moreover, since G

is F6-free, if it contains 2 such edges for a �xed d then it can contain at most

3 such edges in total for the other choices of d. Hence at most 5 such edges

are present.

Thus in total e(G) ≤ 4 + 3 + 5 + 5 = 17 as required. �

2.2.1. Structure of Link Graphs

Our analysis of link graphs relies fundamentally on the following basic facts.

Lemma 2.7. For any 3-graph H containing an edge abc (and at least 3 other

vertices), let L and L∗ be respectively the link graph and weighted link graph

of abc in H. If H is F-free then the following con�gurations cannot appear

as subgraphs of L∗. Moreover any con�guration that can be obtained from

one described below by applying a permutation to the labels {a, b, c} must also

be absent.

• (F6-1) The triangle xy, xz, yz with l(xy) = l(xz) = a and l(yz) = b.

• (F6-2) The pair of edges xy, xz with l(xy) = ab and l(xz) = c.

• (F6-3) A vertex x ∈ Γab and edges xy, yz with labels l(xy) = c and

l(yz) = a.

• (F6-4) A vertex x ∈ Γab and edges xy, yz, zw with labels l(xy) =

l(zw) = a and l(yz) = b.

• (F6-5) Vertices x ∈ Γac, y ∈ Γbc, z ∈ Γab and the edge xy with label

l(xy) = b.

• (K−4 -1) The triangle xy, xz, yz with l(xy) = l(xz) = l(yz) = a.

• (K−4 -2) The vertex x ∈ Γab and edge xy with label l(xy) = ab.

• (K−4 -3) The vertices x, y ∈ Γab and edge xy with label l(xy) = a.
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In each case we describe a labelling of the vertices of the given con�guration

to show that if it is present then G is not F-free.

• (F6-1) a = 1, b = 5, c = 6, x = 2, y = 3, z = 4.

• (F6-2) a = 3, b = 4, c = 5, x = 1, y = 2, z = 6.

• (F6-3) a = 1, b = 2, c = 3, x = 4, y = 5, z = 6.

• (F6-4) a = 1, b = 3, x = 2, y = 4, z = 5, w = 6.

• (F6-5) a = 5, b = 1, c = 3, x = 4, y = 2, z = 6.

• (K−4 -1) a = 1, x = 2, y = 3, z = 4.

• (K−4 -2) a = 3, b = 4, x = 1, y = 2.

• (K−4 -3) a = 1, b = 2, x = 3, y = 4. �

Lemma 2.8. For any 3-graph H containing an edge abc (and at least 3 other

vertices), let Labc be the link graph of abc in H. If H is F-free then:

(1) The only K4s in Labc are rainbow (that is, each vertex is incident

with all 3 colours).

(2) Labc is K5-free.

(3) If xy ∈ E(Labc) has l(xy) = abc then x, y meet no other edges in

Labc and x, y 6∈ Γabc.

(4) If V 4
abc = {x ∈ V − : there is a K4 containing x} then Γabc(V

4
abc) =

Ø.

(5) There are no edges in Labc between Γabc and V
4
abc.

(6) If x ∈ V 4
abc then |l(xy)| ≤ 1 for all y ∈ V −.

(7) If x ∈ Γac, y ∈ Γbc and l(xy) = ab, then Γbc = Ø. Moreover, if

xz ∈ E(Labc) with z 6= y then z /∈ Γabc and l(xz) = a, while if

yz ∈ E(Labc) with z 6= x then z /∈ Γabc and l(yz) = b.

(8) If xy, xz ∈ E(Labc), l(xy) = ab and z ∈ Γabc then |l(xz)| ≤ 1.

Proof. We will make repeated use of Lemma 2.7.
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(1) This follows immediately from (F6-1) and (K−4 -1): if uvwx is a copy

of K4 then we may suppose l(uv) = a, l(uw) = b, l(vw) = c, thus

l(ux) = c, continuing we see that uvwx must be rainbow.

(2) This follows immediately from (1): if xyzuv is a copy of K5 then by

(F6-1) we may suppose that l(xy), l(xz), l(xu), l(xv) are all distinct

single colours but this is impossible since there are only 3 labels in

total.

(3) This follows immediately from (F6-2) and (K−4 -2).

(4) If x is in a K4 then by (1) it lies in edges with labels a, b, c, and

(F6-3) implies that x 6∈ Γabc.

(5) If x ∈ Γabc, say x ∈ Γab, and y ∈ V 4
abc with xy ∈ E(Labc) then

(F6-3) implies that l(xy) 6= c, while (F6-4) implies that l(xy) 6= a, b

(since there are t, u, v, w such that l(yt) = b, l(tu) = a and l(yv) =

a, l(vw) = b).

(6) This follows immediately from the fact that all v ∈ V 4
abc meet edges

with labels a, b, c and (F6-2).

(7) (F6-5) implies that Γbc = ∅. If xz ∈ E(Labc) then (F6-3) implies

that l(xz) = a. Now (K4-3) implies that z 6∈ Γac while (F6-3)

implies that z 6∈ Γbc. Hence z 6∈ Γabc. Similarly if yz ∈ E(Labc)

then l(yz) = b and z 6∈ Γabc.

(8) If x or y belong to Γabc then this follows directly from (F6-3) so

suppose that x, y 6∈ Γabc, l(xy) = ab and |l(xz)|= 2. Now (F6-2)

implies that l(xz) = ab so (K4-2) implies that z ∈ Γac ∪ Γbc. But

then (F6-3) is violated. Hence |l(xz)|≤ 1.

�

Lemma 2.8(5) allows us to partition the vertices of Labc as V − = Γabc ∪
V 4
abc ∪ Rabc, where V 4

abc = {x ∈ V : there is a K4 containing x} and Rabc =

V − Γabc ∪ V 4
abc
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2.2.2. Lemmas for Turán Number

Lemma 2.6. If G is F-free with n ≥ 6 vertices and ex(n,F) edges then there

is an edge abc ∈ E(G) such that

w(Labc) + |Γabc|≤ t3(n− 3) + n− 3,

with equality i� Labc = T3(n− 3) and Γabc = V −.

Proof. Let G be F-free with n ≥ 6 vertices and ex(n,F) edges. By

Lemma 2.33 we can choose an edge abc ∈ E(G) such that |Γabc|≥ n−bn/3c−
3. Let V − = Γabc∪Rabc∪V 4

abc be the partition of V − given by Lemma 2.8(5).

If s = |V −|, j = |Γabc|, k = |Rabc| and l = |V 4
abc| then n− 3 = s = j + k + l

and j ≥ s− bs/3c − 1 ≥ j + k − b(j + k)/3c − 1. We can apply Lemma 2.9

to H = Labc[Γabc ∪Rabc], to deduce that

w(Labc[Γabc ∪Rabc]) + |Γabc|≤ t3(j + k) + j + k,

with equality i� Rabc = ∅ and Labc[Γabc] = T3(j + k). Now if Labc is K4-free

then V 4
abc = ∅ and the proof is complete, so suppose there is a K4 in Labc.

In this case 4 ≤ |V 4
abc|≤ n− 3− |Γabc|≤ bn/3c, so n ≥ 12.

We now need to consider the edges in Labc meeting V 4
abc. By Lemma 2.8(2)

we know that Labc is K5-free, while Lemma 2.8(6) says that V 4
abc meets no

edges of weight 2 or 3, so by Turán's theorem w(Labc[V
4
abc]) ≤ t4(l).

Lemma 2.8(5) implies that there are no edges from Γabc to V
4
abc so the total

weight of edges between Γabc ∪Rabc and V 4
abc is at most kl. Thus

w(Labc) + |Γabc|≤ t3(j + k) + j + k + t4(l) + kl.

Finally Lemma 2.10 with s = n− 3 implies that

w(Labc) + |Γabc|≤ t3(n− 3) + n− 3,

with equality i� Rabc = V 4
abc = ∅ and Labc = T3(n− 3) as required. �

Lemma 2.9. Let H be a subgraph of Labc with s ≥ 3 vertices satisfying

V (H) ∩ V 4
abc = ∅. If HΓ = V (H) ∩ Γabc and |HΓ|≥ s− bs/3c − 1 then

w(H) + |HΓ|≤ t3(s) + s,
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with equality i� HΓ = V (H) and H = T3(s).

Proof. We prove this by induction on s ≥ 3. The result holds for

s = 3, 4 (see the end of this proof for the tedious details) so suppose that

s ≥ 5 and the result holds for s− 2.

Let H be a subgraph of Labc with s ≥ 5 vertices satisfying V (H)∩ V 4
abc = ∅.

Let HΓ = V (H) ∩ Γabc and suppose that |HΓ|≥ s− bs/3c − 1.

Note that if H contains no edges of weight 2 or 3 then the result follows

directly from Turán's theorem, so we may suppose there are edges of weight

2 or 3. With this assumption it is su�cient to show that

w(H) + |HΓ|≤ t3(s) + s− 1.

By Lemma 2.11 (iii) this is equivalent to showing that the following inequality

holds:

(2.2.3) w(H) + |HΓ|≤ t3(s− 2) + 2s− 2 + bs/3c

Case (i): There exists an edge of weight 3, l(xy) = abc.

Lemma 2.8 (3) implies that x, y 6∈ HΓ and x, y meet no other edges in H, so

we can apply the inductive hypothesis to H ′ = H − {x, y} to obtain

w(H) + |HΓ|≤ w(H ′) + |H ′Γ|+3 ≤ t3(s− 2) + s− 2 + 3.

Hence (2.2.3) holds as required. So we may suppose that H contains no

edges of weight 3.

Case (ii): The only edges of weight 2 are contained in HΓ

Let xy ∈ E(H) have weight 2, say l(xy) = ab. Now Lemma 2.7 (K−4 -2)

implies that x, y 6∈ Γab, while Lemma 2.7 (K−4 -3) implies that x, y cannot

both belong to Γac or Γbc so we may suppose that x ∈ Γac and y ∈ Γbc.

Lemma 2.8 (8) implies that x, y have no more neighbours in HΓ. If HΓ =

V (H) then we can apply the inductive hypothesis to H ′ = H − {x, y} to
obtain

w(H) + |HΓ|≤ t3(s− 2) + s− 2 + 2 + 2,

in which case (2.2.3) holds, so suppose V (H) 6= HΓ.

40



Let z ∈ V (H)−HΓ be a neighbour of x in H if one exists otherwise let z be

any vertex in V (H)−HΓ. By our assumption that all edges of weight 2 are

contained in HΓ, z meets no edges of weight 2. Moreover, by Lemma 2.8 (7),

all edges containing x (except xy) have label b, so x is not in any triangles in

H. Hence x and z have no common neighbours in H and so the total weight

of edges meeting {x, z} is at most 2+1+s−3 (if xz is an edge) and at most

2 + s− 2 otherwise. Applying our inductive hypothesis to H ′ = H − {x, z}
we have

w(H) + |HΓ|≤ t3(s− 2) + s− 2 + 1 + s,

and (2.2.3) holds.

Case (iii): There is an edge of weight 2 meeting V (H)−HΓ.

So suppose that xy ∈ E(H), l(xy) = ab and y 6∈ HΓ. Lemma 2.8 (8) implies

that for any z ∈ HΓ we have |l(xz)|, |l(yz)|≤ 1. Let γxy = |{x, y} ∩HΓ|≤ 1.

Thus, since xy is not in any triangles, the total weight of edges meeting

{x, y} is at most

2 + s− 2 + |V (H)−HΓ|−(2− γxy).

Applying the inductive hypothesis to H ′ = H − {x, y} we have

w(H) + |HΓ|≤ t3(s− 2) + s− 2 + s+ s− |HΓ|−2 + 2γxy,

with equality holding only if |H ′Γ|= s− 2. Now |HΓ|≥ s− bs/3c − 1 implies

that

(2.2.4) w(H) + |HΓ|≤ t3(s− 2) + 2s− 3 + bs/3c+ 2γxy,

with equality only if |H ′Γ|= s − 2 and |HΓ|= s − bs/3c − 1. If γxy = 0

then (2.2.3) holds as required, so suppose γxy = 1. In this case (2.2.3)

holds, unless (2.2.4) holds with equality. But if (2.2.4) is an equality then

|HΓ|= |H ′Γ|+1 = s − 1, while |HΓ|= s − bs/3c − 1, which is impossible for

s ≥ 3.

We �nally need to verify the cases s = 3, 4. It is again su�cient to prove

that if H contains edges of weight 2 or 3 then w(H) + |HΓ|≤ t3(s) + s− 1,

thus we need to show that w(H) + |HΓ| is at most 5 if s = 3 and at most 8

if s = 4.
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We note that argument in Case (i) above implies that if H contains an edge

of weight 3 then |HΓ|≤ s − 2 and w(H) ≤ 3 + 3
(
s−2

2

)
, so if s = 3 then

w(H) + |HΓ|≤ 4 and if s = 4 then w(H) + |HΓ|≤ 8 so the result holds. So

we may suppose there are no edges of weight 3.

Now let xy be an edge of weight 2. Using the fact that xy is not in any

triangles and Lemma 2.8 (7) and (8) we �nd that for s = 3 we have w(H) +

|HΓ|≤ 2 + 3− |HΓ|, while for s = 4 we have w(H) + |HΓ|≤ 2 + 6− |HΓ|, so
the result holds. �

Lemma 2.10. If j, k, l ≥ 0 are integers satisfying j + k + l = s ≥ 5 and

j ≥ s− bs/3c − 1 then

(2.2.5 ) t3(j + k) + t4(l) + j + k + kl ≤ t3(s) + s,

with equality i� l = 0.

Proof. If l = 0 then the result clearly holds, so suppose that l ≥ 1,

j + k + l = s ≥ 5 and j ≥ s− bs/3c − 1. Let f(j, k, l) be the LHS of (2.2.5)

we need to check that ∆(j, k, l) = f(j, k + 1, l − 1) − f(j, k, l) > 0. Using

Lemma 2.11 (4) we have

∆(j, k, l) = j − d(j + k + 1)/3e+ dl/4e+ 1

= j + dl/4e − b(j + k)/3c.

So it is su�cient to check that j + l/4 > (j + k)/3. This follows easily from

j ≥ s− bs/3c − 1, k ≤ bs/3c+ 1, l ≥ 1 and s ≥ 5. �

The following identities are easy to verify.

Lemma 2.11. If n ≥ k ≥ 3 then

(1) s3(n) = s3(n− 3) + t3(n− 3) + n− 2.

(2) t3(n) = t3(n− 3) + 2n− 3.

(3) t3(n) = t3(n− 2) + n− 1 + bn/3c.

(4) tk(n) = tk(n− 1) + n− dn/ke.
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2.3. Turán Density and Stability

We now move on to the stability version of the Turán density and also provide

an alternative proof of the Turán density using similar methods to those used

in the stability result. The stability version is as follows:

Theorem 2.12. For any ε > 0 there exists δ > 0 and n0 such that the

following holds: if H is an F-free 3-graph of order n ≥ n0 with at least

(1− δ) s(n) edges, then there is a partition of the vertex set of H as V (H) =

U1 ∪ U2 ∪ U3 so that all but at most εn3 edges of H have one point in each

Ui.

The second proof of Theorem 2.5 given below uses the techniques similar to

those needed for the stability result. It is essentially an induction argument

based on the degrees of each vertex in the 3-graph. The induction itself

provides a lower bound for the degree of each vertex. Using this lower bound

we derive an upper bound on the degree of each vertex by examining the link

(multi-)graph of a vertex. We show that the link graph of an edge in an F-
free 3-graph with vertices satisfying this lower bound does not contain a copy

of K4 and has no more edges than a simple graph: this bounds the number

of edges in this link graph.

The necessary properties will follow from these lemmas:

Lemma 2.13. Let H be a F-free 3-graph of order n+7 such that each vertex

in H has degree at least (1− 10γ)
(
n2/9

)
, where γ ≤ 10−4. Let E = {abc}

be any edge in H. Then the link graph of E does not contain a copy of K4.

Lemma 2.14. Let H be a F-free 3-graph of order n+3 such that each vertex

in H has degree at least (n+ 3)2/9. Let E = {abc} be any edge in H. If the

link graph of E is K4-free, then it has a maximum of n2/3 edges.

The stability version starts with a similar argument, except that the link

graph may include a small number of vertices incident with edges of weight

2. This requires a di�erent version of Lemma 2.14:

Lemma 2.15. Let H be an F-free 3-graph of order n+3 such that every ver-

tex in H has degree (1− 10γ)
(
(n+ 3)2/9

)
, where γ < 1/619520, that con-

tains an edge abc with total double neighbourhoods at least (1− δ) (2n/3)−
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[
7
3 + 2

3δ
]
. Then the link graph of abc has at most 31γn vertices incident with

an edge of weight 2.

To prove the Turán density of F we use the following lemma.

Lemma 2.16. There is a constant N such that, if H is an F-free 3-graph of

order n, H has no more than F (n) edges, where:

F (n) =
n∑
x=1

f(x)

and

f(x) =

1
2x

2 x ≤ N
1
9x

2 x > N

Proof. For n ≤ N , F (n) is the number of edges in the complete 3-graph,

so the statement is trivially true. For n > N , we proceed by induction. First,

take the case where there is a vertex q in H that is incident with fewer than
1
9n

2 edges. Then, by induction, the 3-graph H − {q} has no more than

F (n − 1) edges and so e(H) ≤ F (n − 1) + 1
9n

2 = F (n − 1) + f(n) = F (n).

Next, take the case where every vertex in H is incident with at least 1
9n

2

edges. Take any edge {abc} in H. Lemma 2.13 implies that the link graph of

{abc} is K4-free (take γ = 0 in the statement of the Lemma). It follows that

the preconditions of Lemma 2.14 are satis�ed so that {abc} is incident with
at most 1

3(n− 3)2 +n+ 1 edges. Then, by induction, the 3-graph H −{abc}
has no more than F (n−3) edges and so e(H) ≤ F (n−3)+ 1

3(n−3)2+n+1 ≤
F (n− 3) + f(n− 2) + f(n− 1) + f(n) = F (n). �

The main theorem then follows immediately:

Theorem 2.5. π (F6) = 2
9 .

Proof. The graph S(n) demonstrates that π (F6) ≥ 2/9. Let N and

F (n) be as de�ned in Lemma 2.16 and de�ne K = F (N)−N3/27. Then, for

all n ≥ N , F (n) = n3/27 + K. Accordingly, by the de�nition of the Turán
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density

π (F) = lim
n→∞

ex (n,F)(
n
3

)
≤ lim

n→∞

n3

27 +K(
n
3

)
=

2

9

�

2.3.1. Lemmas for Turán Density

We are now able to prove Lemma 2.14 regarding edges of weight 2 in the

link graph used in the proof of the exact Turán density. Hereafter, we make

liberal use of the convention set out in Section 1.2 that lower case is used to

denote the proportion of vertices in the upper class vertex set (so that there

are qn vertices in Q ⊂ V (H)).

Proof of Lemma 2.14. Let Labc be the link graph of E. Note that at

least 2/3 of the vertices of Labc are incident with each colour (so that each

particular type of edge of weight 2 is only incident with at most 1/3 of the

vertices of Labc). For instance, by Lemma 2.7(K−4 -1), Lx, the link graph of

Labc restricted to colour x, is triangle-free, so that if Lx has at least n2/9

edges it has at least 2n/3 vertices.

Let Cx be the set of vertices incident with colour x and Dx = L − Cx. We

construct a series of disjoint vertex sets that together comprise V (L). First,

let Mxy be a set of vertices consisting of a maximal matching of edges of

weight 2 and colours x and y; that is, choose an edge coloured xy contained

in L −Mxy and add the endpoints of that edge to Mxy, then repeat until

there is no edge coloured xy contained in L−Mxy. Then letMabc be a set of

vertices incident with a maximal matching of edges of weight 3 constructed

in the same way. Finally, let R = L−
⋃
Mxy −Mabc. The Mxy are disjoint,

e(Mabc) ≤ (3/2)mabcn, there are no edges between Mabc and any other set

and, by Turán's Theorem, e(R) ≤ (1/3) (rn)2. The following lemmas provide

all the remaining densities in and between sets.
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Proposition 2.17. The maximum number of edges in Mxy is 1
4 (mxyn) 2 +

αxyn
2, where there are αxyn

2 edges of weight 2 in Mxy, so that αxy ≤ 1
4m

2
xy

.

Proof. Ignoring the mulitiplicity of edges in Mxy gives a simple graph

that is triangle-free, as Mxy is incident only with edges of colour x and y

and there are no monochromatic or two-colour triangles. If there are no

edges of weight 2 in Mxy then the maximum number of edges is 1
4 (mxyn)2.

Accordingly, any edges above this number must consist of edges of weight 2.

Given a total of 1
4 (mxyn)2 + αxyn

2 edges, it follows immediately that there

must be at least αxyn
2 edges of weight 2 and that αxy ≤ 1

4m
2
xy. �

Corollary 2.18. The maximum number of edges in Mxy is 1
2 (mxyn)2.

Proposition 2.19. Let xy be an edge of weight 2 with {x, y} ⊂ Dp. Then:

(1) there is at most one edge between xy and any vertex in Cp;

(2) there are at most two edges between xy and any vertex in Dp;

(3) the maximum number of edges between xy and any set of vertices

Q ⊂ Dp is qn+ αqn, where αqn is the number of edges of weight 2

between xy and Q.

Proof. Assume, without loss of generality, that the colour of xy is ab

and let the third vertex be z. Then x and y are only incident with edges

of colour a and b. If z is incident with c it cannot be incident with an edge

coloured ab and so there can only be edges of weight 1 between x or y and

z. As xyz is triangle-free, this gives a maximum of 2 edges where z is not

incident with c and 1 edge where z is incident with c. Given a total of qn+αqn

edges and a maximum of qn edges of weight 1, it follows immediately that

there must be at least αqn edges of weight 2. �

We form the partition of L consisting of Mab,Mbc,Mac,Mabc and R. Note

that these sets are pairwise disjoint and that the maximum size of each Mxy

is n/3. Let P = {ab, ac, bc}. For x ∈ {a, b, c}, let Dx be the set of vertices

disjoint from colour x. Let |Cx| =
(

2
3 + δx

)
n and so |Dx| =

(
1
3 − δx

)
n, where

δx is a non-negative number. Note that Mxy ⊆ Dz. We derive expressions

for the upper bound of the total number of edges in L and ultimately show

that this upper bound is no more than the lower bound of n2/3. We form
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the upper bound for the number of edges in L by calculating an upper bound

for the number of edges within each subset in L and for the number of edges

between each pair of subsets in L.

For R, the maximum density is 1/3 as it is K4-free and contains only edges

of weight 1. For each Mxy, Proposition 2.17 states that e(Mxy) ≤ 1
2m

2
xyn

2.

We then calculate the maximum number of edges between each Mxy and

the other subsets of L. First, take the subset of Cz excluding vertices

incident with a matching, which is of size
(

2
3 + δz −

∑
T∈P,T 6=xymT

)
n.

By Proposition 2.19 each matched pair in Mxy sends at most one

edge of weight 1 to each vertex in this subset, giving a maximum of
1
2mxy

(
2
3 + δz −

∑
T∈P,T 6=xymT

)
n2 edges. By similar reasoning, consider-

ing the subset of Dz excluding Mxy, which is of size
(

1
3 − δz −mxy

)
, each

matched pair in Mxy sends at most one edge of weight at most 2 to each

vertex in this subset, giving a maximum of mxy

(
1
3 − δz −mxy

)
n2 edges.

Finally, each matched pair in Mxy sends at most one edge to each vertex in

Mxz, for a total of 1
2mxymxzn

2 edges: note that, as we sum over every Mxy,

an additional factor 1/2 is inserted to avoid double-counting.

The total number of edges in L is at most:

e(L) ≤ n2

1

3
(1−mab −mac −mbc)

2 +
1

2

(
m2
ab +m2

ac +m2
bc

)

+
∑
S∈P

mS

1

2

2

3
+ δabc−S −

∑
T∈P,T 6=S

mT

+

(
1

3
− δabc−S −mS

)

+
1

4

∑
T∈P,T 6=S

mT



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and, using the same partition of L, we can express n2/3 as:

1

3
n2 = n2

1

3
(1−mab −mac −mbc)

2 +
1

3

(
m2
ab +m2

ac +m2
bc

)

+
∑
S∈P

mS

2

3

2

3
+ δabc−S −

∑
T∈P,T 6=S

mT

+
2

3

(
1

3
− δabc−S −mS

)

+
1

3

∑
T∈P,T 6=S

mT


 .

Taking the di�erence between the two gives

e(L)− 1

3
n2 ≤ n2

1

6

(
m2
ab +m2

ac +m2
bc

)

+
∑
S∈P

mS

−1

6

2

3
+ δabc−S −

∑
T∈P,T 6=S

mT


+

1

3

(
1

3
− δabc−S −mS

)
− 1

12

∑
T∈P,T 6=S

mT




= n2

[∑
S∈P

1

6
m2
S +mS

{
− 1

9
− 1

6
δabc−S +

1

6

∑
T∈P,T 6=S

mT +

1

9
− 1

3
δabc−S −

1

3
mS −

1

12

∑
T∈P,T 6=S

mT

}]

= n2

∑
S∈P

1

6
m2
S +mS

−1

2
δabc−S +

1

12

∑
T∈P,T 6=S

mT −
1

3
mS




= n2

∑
S∈P

mS

−1

6
mS −

1

2
δabc−S +

1

12

∑
T∈P,T 6=S

mT




≤ 1

6
n2

∑
S∈P

mS

1

2

∑
S∈P,T 6=S

mT −mS




=
1

6
n2

[
1

2
(mab +mbc +mac)

2 − 3

2

(
m2
ab +m2

bc +m2
ac

)]
48



which for mxy ∈ [0, 1/3] reaches its maximum when all mxy are equal, by

Cauchy-Schwarz, and this maximum is 0. This shows that the upper bound

for the number of edges in L is n2/3. �

2.3.2. Stability Lemmas

Now we prove the remaining lemmas concerning the structure of link graphs.

These lemmas are presented in their stability versions. The version of Lemma

2.13 used to prove the exact Turán density follows immediately from the

stability result presented here. The version of Lemma 2.15 used to prove the

exact Turán density is proved separately above as Lemma 2.14.

Lemma 2.13. Let H be a F-free 3-graph of order n+7 such that each vertex

in H has degree at least (1− 10γ)
(
n2/9

)
, where γ ≤ 10−4. Let E = {abc}

be any edge in H. Then the link graph of E does not contain a copy of K4.

Proof. Assume that the link graph of E does contain a copy of K4

with vertices p, q, r and s and edges {apq, ars, bpr, bqs, cps, cqr}. Let L

be the link graph of {a, b, c, p, q, r, s} = Q; that is, V (L) = V (G) − Q and

E(L) = {xy : ∃z ∈ V (G)−Q and xyz ∈ E(G)}. By the given assumptions,

L contains at least (1− 10γ) 72
9
n2

2 −
(

7
2

)
n −

(
7
3

)
= (1− 10γ) 7n2

9 − 21n − 35

edges and is a multigraph containing edges of multiplicity up to 7.

We note the following facts about the subgraph Q:

(1) Every vertex is incident with exactly three edges.

(2) Every pair of vertices is included in exactly one edge.

(3) No two edges are entirely disjoint.

We note the following facts about L:

(4) L contains no monochromatic or two-colour triangles (because every

pair of colours is part of an edge).

(5) To every pair of colours, there corresponds a third colour, such that

a pair of vertices connected by edges with that pair of colours is not

incident with the third colour � again, this follows from every pair

of colours being part of an edge.
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(6) There are exactly three pairs of colours corresponding to each

colour, which satisfy the conditions of 2 above: this follows from

each vertex being incident with three di�erent edges within Q.

Next, we are able to characterise edges of weight 3:

Proposition 2.20. Let αβ be an edge in L containing colours xyz. If xyz is

an edge in H then α and β are incident only with edges of weight 1 (excluding

the edge αβ). If xyz is not an edge then α and β are incident only with

colours xyz and exactly one other, that together form the complement to an

edge in X.

Proof. For xyz ∈ E(H), each pair from xyz excludes the third of those

colours, so α and β are not incident with any of xyz, other than in the edge

αβ. But each pair outside xyz excludes one of these colours, or else there

would be two disjoint edges in X, so α and β are not incident with any edges

of weight 2 outside xyz. For xyz /∈ E(H), each pair from xyz excludes a

di�erent colour, or else there would be two edges that overlap in two colours,

and none of these colours are x, y or z, as xyz is not an edge, so this leaves

only one available colour outside xyz. This fourth colour together with xyz

cannot contain an edge, or else one of xyz would be excluded, so it must

consist of the complement to an edge. �

These properties enable us to classify certain small structures that appear

in L:

Proposition 2.21. L does not contain any triangles of total weight 7 or

greater and the only triangles of weight 6 contain 3 edges of weight 2 and are

disjoint from a particular colour.

Proof. In any triangle, all edges are di�erent colours, or else there

would be a two-colour triangle. Accordingly, there can be no triangle of

weight more than 7. Also, any edge of weight two is not incident with at

least one other colour, so at least one colour must be excluded from any

triangle with edges of multiple weight, which contradicts any triangle of

weight 7. Next, considering triangles of weight 6, there are two possibilities:

2-2-2 and 3-2-1. But any edge of weight 3 is either an edge, in which case it

is incident only with edges of weight 1, or it is not an edge, in which case it

is not incident with edges of weight 2 consisting wholly of colours di�erent
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from those in the edge; in both cases this follows from Lemma 2.20. This

leaves triangles of the form 2-2-2, where each pair excludes the same colour.

There are seven possibilities, one corresponding to each colour (for instance,

ab − ps − qr for c), and that colour is not incident with any vertex of the

triangle. �

Corollary 2.22. The sets of vertices incident with a particular triangle of

weight 6 are disjoint.

Definition 2.23. An edge is degenerate if it contains colours that form an

edge in Q (that is, it is of weight greater than 4 or if it is of weight 4 but

is not one of the following colours: abps, abqr, acpr, acqs, bcpq or bcrs);

and non-degenerate is de�ned correspondingly, so a non-degenerate edge of

weight 4 contains colours that are the complement of an edge in X.

Proposition 2.24. A vertex incident with a non-degenerate edge of weight 4

is not incident with any colours other than those forming part of that edge and

a vertex incident with a degenerate edge is incident only with edges of weight

1 (excluding the degenerate edge), so that there are at most n/2 degenerate

edges in L.

Proof. A degenerate edge contains colours that constitute an edge in

Q, so by Lemma 2.20 is incident only with edges of weight 1. Also by Lemma

2.20 any 4 colours that do not contain an edge form the complement to an

edge and are incident exactly with those colours.

To calculate the total density of degenerate edges in L, take a maximal

matching of degenerate edges in L. As degenerate edges are only incident

with edges of weight 1, no two degenerate edges are incident, and so this

matching includes all degenerate edges. Accordingly, there are a maximum

of n/2 degenerate edges. �

Corollary 2.25. The sets of vertices incident with a particular type of

non-degenerate edge of weight 4 are disjoint.

Let dn be the number of degenerate edges in L of maximum size 7n/2. We

temporarily remove these edges from L. We now set out certain densities

that apply to di�erent sets of vertices within L.

Proposition 2.26. The maximum density of any set K of vertices of order

k in L is k2.
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Proof. If k = 2, the maximum number of edges is 22 = 4. We proceed

by induction. Let m(x) be the maximum number of edges in K, where K

is of order x. Take an edge in K of maximum multiplicity. There are a

maximum of four edges between the pair of vertices forming this edge and

any other vertex (one edge of weight four or two edges of weight two). So,

given that m(k − 2) ≤ (k − 2)2,

m(k) ≤ 4(k − 2) + 4 + (k − 2)2

= k2.

�

Proposition 2.27. The maximum density of any set K of vertices of order

k in L that does not contain an edge of weight 4 or more or a triangle of

weight 6 is (3/4)k2

Proof. If k = 2, the maximum number of edges is 3 = (3/4)22. We

proceed by induction. Let m(x) be the maximum number of edges in K,

where K is of order x. Take an edge in K of maximum multiplicity. There

are a maximum of three edges between the pair of vertices forming this edge

and any other vertex (one edge of weight three or two edges of weight one

and two). So, given that m(k − 2) ≤ 3
4(k − 2)2,

m(k) ≤ 3(k − 2) + 3 +
3

4
(k − 2)2

=
3

4
k2.

�

Proposition 2.28. The maximum number of edges between any 2-2-2 tri-

angle and any other vertex is 6; the maximum number of edges between any

2-2-2 triangle and any other vertex incident with the colour not part of that

triangle is 3.

Proof. Let xyz be a triangle with edges coloured ab - ps - qr (the other

cases are similar) and consider the edges between xyz and another vertex

w. We have already seen that a degenerate edge cannot be incident with an

edge of weight 2. We have also seen that there are no 3-2-1 triangles, so if

there is an edge of weight 3 (or a non-degenerate edge of weight 4) between

w and xyz, there are no other edges between w and xyz. Therefore, the

maximum that can be achieved is three edges of weight 2.

52



Consider now the case where w is incident with an edge coloured c. Any

edge of weight 4 between w and xyz must include c, as w is incident with

c, but this is impossible as xyz is not incident with c. Similarly, any edge

of weight 3 between w and xyz cannot include any of the pairs ab, ps or qr,

so it must consist of one colour from each edge: say, for instance apr, but

this then excludes q, s and b, so that it cannot be incident with the triangle.

Finally, consider an edge of weight 2. It cannot contain any of the pairs

forming edges of xyz, as these are not incident with c. Assume, for instance,

there is an edge of weight 2 between w and x, where x is incident with edges

coloured ab and ps. There are then two cases. The edge xw could take one

colour from each of these pairs. But then there would be no edge between

w and either of y and z, or else there would be a two-colour triangle, giving

a total of two edges between xyz and w. Or the edge xw could consist of

one colour from the edge yz and one colour from the edges incident with x:

say qs. But each of these pairs excludes one of the colours incident with x,

and so is not allowed. The maximum is achieved if we allow edges of weight

1 between xyz and w. �

Proposition 2.29. Let xy be a non-degenerate edge of weight 4. The max-

imum number of edges between xy and any other vertex is 4. The maximum

number of edges between xy and any vertex incident with at least one colour

not in that edge is 2.

Proof. Let xy be a non-degenerate edge of weight 4 coloured abps (the

other cases are similar) and let z be any other vertex. As xyz only contains

these four colours and as xy contains all four colours, xyz is triangle free,

so the greatest number of edges between xy and z is achieved by an edge of

weight 4 from x or y to z.

Now take the case where z is incident with a colour other than abps. Note

that by Lemma 2.20 any triple of these colours excludes all other colours.

Therefore, the maximum multiplicity of an edge between xy and z is 2.

As xyz is triangle free, the greatest number of edges between xy and z is

achieved by an edge of weight 2 from x or y to z. �

Proposition 2.30. Each colour is incident with at least (2/3) (1− 5γ) of

the vertices of L.
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Proof. Let Cx be de�ned as the set of vertices incident with colour x

in L. Note that the subgraph of colour x is triangle-free. So, by Mantel's

Theorem,

(cxn)2

4
≥ (1− 10γ)

n2

9

cx ≥ (1− 10γ)
1
2

2

3

≥ (1− 5γ)
2

3
.

�

Definition 2.31. LetMx be a subset of the vertices of L de�ned as follows:

Mx is the union of a maximal matching of edges of weight 4 that are not

incident with colour x and a maximal matching of 2-2-2 triangles that are

not incident with colour x.

We form the partition of L consisting of Ma,Mb . . .Ms and R: all the re-

maining vertices. More precisely, choose a maximal matching of edges of

weight 4 and 2-2-2 triangles that are not incident with colour a. Then, from

the remaining vertices, choose a maximal matching of edges of weight 4 and

2-2-2 triangles that are not incident with colour b, and so on. So, for instance,

a matching of edges pqrs would be inside Ma.

For x ∈ Q, let Dx be the set of vertices disjoint from colour x. Let |Cx| =

(2/3− δx)n and so |Dx| = (1/3 + δx)n, where δx is less than (2/3)5γ =

(10/3)γ, as guaranteed by Proposition 2.30 (note that δx is also permitted

to be negative). Let |Dx ∩My| = dx,y and |Cx ∩My| = cx,y. We derive an

upper bound for the total number of edges in L and show that this upper

bound is always less than our lower bound of (7/9) (1− 10γ).

We form the upper bound of the number of edges in L by calculating an

upper bound for the number of edges in each subset of L and between each

pair of subsets in L. The maximum density of R is 3
4 , by Proposition 2.27,

and the maximum density of each Mx is 1, by Proposition 2.26, so this

gives terms of 3
4

[(
1−

∑
x∈Qmx

)
n
]2

and (mxn)2 for each x ∈ Q for all the

densities of subsets of L. We then calculate the density of edges between

each Mx and the rest of L.

For each Mx, consider �rst the set of vertices incident with colour x, other

than those forming part of any My. We label this subset temporarily C
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and note that it contains
(

(2/3)− δx −
∑

y 6=x∈Q cx,y

)
n vertices. Let the

subset of Mx consisting of matched pairs of edges of weight 4 be labelled

Mx,P and the subset consisting of matched triangles of total weight 6 be

labelled Mx,T . By Propositions 2.28 and 2.29, each matched pair in Mx,P

sends at most one edge of weight 2 to any vertex in C, giving a maximum of

2(mx,Pn/2)cn = mx,P cn
2 edges between those two subsets and each matched

triangle inMx sends at most three edges of weight 1 to any vertex in C giving

a maximum of 3(mx,Tn/3)cn = mx,T cn
2. The overall maximum is therefore

mxcn
2.

For each Mx, consider next the set of vertices not incident with colour x,

other than those forming Mx or any part of My. We label this subset tem-

porarily D and note that it contains
(

(1/3) + δx −mx −
∑

y 6=x∈Q dx,y

)
n

vertices. By similar reasoning to above, the maximum number of vertices

between Mx and D is 4(mx,Pn/2)dn+ 6(mx,Tn/3)dn = 2mxdn
2.

Next, we consider the maximum number of edges between Mx and each

My. Using similar reasoning to above, we can �x a maximum of mxcx,yn
2

edges between Mx and the subset of each My that is incident with x and a

maximum of 2mxdx,yn
2 edges between Mx and the subset of each My that

is not incident with x. Note that, as we are summing over all Mx below, we

introduce a factor 1/2 to avoid double counting.

Finally, we add the dn degenerate edges.

Accordingly, the total number of edges in L is at most:

e(L) ≤ n2

3

4

1−
∑
x∈Q

mx

2

+
∑
x∈Q

m2
x +mx

2

3
− δx −

∑
y 6=x∈Q

cx,y



+ 2mx

1

3
+ δx−mx−

∑
y 6=x∈Q

dx,y

+
1

2

∑
y 6=x∈Q

{mxcx,y + 2mxdx,y}


+
d

n

 .
55



We can express the lower bound for the number of edges in L using the same

partition of vertex sets:

e(L) ≥ 7

9
(1− 10γ)n2 − 21n− 35 =

3

4
n2 +

[
1

36
− 70

9
γ

]
n2 − 21n− 35

= n2

3

4

1−
∑
x∈Q

mx

2

+
∑
x∈Q

3

4
m2
x +

3

2
mx

2

3
− δx −

∑
y 6=x∈Q

cx,y


+

3

2
mx

1

3
+ δ −mx −

∑
y 6=x∈Q

dx,y

+
1

2

∑
y 6=x∈Q

{
3

2
mxcx,y +

3

2
mxdx,y

}
+

[
1

36
− 70

9
γ

]
− 21

n
− 35

n2

 .
Combining these inequalities gives:

0 ≤ n2

∑
x∈Q

1

4
m2
x −

1

2
mx

2

3
− δx −

∑
y 6=x∈Q

cx,y


+

1

2
mx

1

3
+δx−mx−

∑
y 6=x∈Q

dx,y

+
1

2

∑
y 6=x∈Q

{
−1

2
mxcx,y+

1

2
mxdx,y

}
−
[

1

36
− 70

9
γ

]
+
d+ 21

n
+

35

n2



= n2

∑
x∈Q

1

4
m2
x −

1

3
mx +

1

2
mxδx +

1

2
mx

∑
y 6=x∈Q

cx,y +
1

6
mx +

1

2
mxδx

− 1

2
m2
x −

1

2
mx

∑
y 6=x∈Q

dx,y −
1

4
mx

∑
y 6=x∈Q

cx,y +
1

4
mx

∑
y 6=x∈Q

dx,y


−
[

1

36
− 70

9
γ

]
+
d+ 21

n
+

35

n2


56



= n2

∑
x∈Q

−1

4
m2
x −

1

6
mx +mxδx +

1

4
mx

∑
y 6=x∈Q

cx,y −
1

4
mx

∑
y 6=x∈Q

dx,y


−
[

1

36
− 70

9
γ

]
+
d+ 21

n
+

35

n2



≤ n2

∑
x∈Q

{
−1

4
m2
x −

1

6
mx +

1

4
mx

(
2

3
− 10

3
γ

)
+mx

10

3
γ

}
−
[

1

36
− 70

9
γ

]
+

49

2n
+

35

n2


≤ n2

∑
x∈Q

{
−1

4
m2
x −

1

6
mx +

1

4
mx (1−mx) +mx

10

3
γ

}
−
[

1

36
− 70

9
γ

]
+

49

2n
+

35

n2


= n2

∑
x∈Q

{
−1

2
m2
x +

1

12
mx +mx

10

3
γ

}
−
[

1

36
− 70

9
γ

]
+

49

2n
+

35

n2


< n2

[
7

1

288
− 1

36
+

100

9
γ +

49

2n
+

35

n2

]
< 0,

where we have used the fact that, for each x,
∑

y∈Q cx,y ≤ (2/3− δx) ≤
(1−mx), γ < 10−4 and taken n su�ciently large.

This contradiction establishes the lemma. �

Next we establish some preliminary stability results for link neighbourhoods

that will be used in the next stability lemma.

Proposition 2.32. Let H be an F-free 3-graph of order n with at least

(1− δ) 2
9

(
n
3

)
edges. Then there is at least one edge with link neighbourhood

of size at least (1− δ)2
3(n− 3)−

[
7
3 + 2

3δ
]
.

Proof. Note that, by Lemma 2.7(K−4 -3), given any edge abc, no vertex

appears with multiplicity more than one in Γabc.

We employ the following equality:

∑
abc ∈E(G)

(|Γab|+ |Γac|+ |Γbc|) =
∑

xy∈(V (H)
2 )

|Γxy| (|Γxy| − 1).
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The left hand side measures the total size of all double neighbourhoods of

all edges in H. The right hand side, for each pair of vertices that is part of

an edge, provides the contribution of Γxy − 1 to the double neighbourhood

of that edge from each of the other edges of which it is a part.

We then have

∑
{abc} ∈E(G)

(|Γab|+ |Γac|+ |Γbc|) ≤
∑

abc∈E(G)

max (|Γab|+ |Γac|+ |Γbc|)

= |E(G)|max (|Γab|+ |Γac|+ |Γbc|)

and

∑
xy∈(V (H)

2 )

|Γxy| (|Γxy| − 1) ≥ 1(
V (H)

2

)
 ∑
xy∈(V (H)

2 )

|Γxy|


2

−
∑

xy∈(V (H)
2 )

|Γxy|

=
1(|V (H)|
2

)9 |E(G)|2 − 3 |E(G)| ,

where the total number of neighbourhoods of every pair counts each edge

three times. Putting these together gives

max (|Γab|+ |Γac|+ |Γbc|) ≥
2

n(n− 1)
× 9× n(n− 1)(n− 2)

6
× 2

9
(1− δ)− 3

=
2

3
(n− 2)(1− δ)− 3

= (1− δ)2

3
(n− 3)−

[
7

3
+

2

3
δ

]
.

�

Corollary 2.33. If G is a K−4 -free 3-graph of order n with s(n) edges, then

there is an edge abc ∈ E(G) with |Γabc| ≥ n− bn/3c − 3.

Note that, if abc is an edge, then |Γabc| = |Γab|+ |Γac|+ |Γbc|+ 3.

Proposition 2.34. Let H be an F-free 3-graph of order n+ 3 that contains

an edge abc with total link neighbourhoods at least (1− δ) 2n/3−7/3−2δ/3.

Then the link graph Labc contains fewer than (1 + 2δ)2 n2/36 + ζn edges of

weight 2, where ζ is an arbitrary constant.
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Proof. Let P = {ab, ac, bc}, let D = ∪p∈PΓp and let R = L − D, so

that by assumption we have |D| > (1− δ) 2n/3 −
[

7
3 + 2

3δ
]
. Note that, by

Lemma 2.7(K−4 -3), the Γxy are pairwise disjoint.

Without loss of generality, take any vertex x in Γab and assume that x is

incident with an edge of weight 2 in L: xy. Note that y /∈ Γab and that xy

is not coloured ab: in either case we have a copy of K−4 . So assume, again

without loss of generality, that xy is coloured ac.

Neither x nor y is incident with b, or else {xya, xyc, abc, xbq} for example,

would be a copy of F6. Also, y is not incident with a (apart from the edge xy),

or else {abc, abx, cxy, ayq} for example, would be a copy of F6. Therefore, y

is not incident with any edge of weight 2 other than xy. Similarly, if y ∈ Γbc

(note that it is not possible for y to be contained in Γac), then x is not

incident with any edge of weight 2 other than xy.

Accordingly, there are two cases: if xy is contained entirely in the double

neighbourhoods of abc, then neither x nor y is incident with any other edge

of weight 2; if y is not contained in any double neighbourhoods, that is,

y ∈ R, then y is not incident with any other edge of weight 2.

Let RD be the set of vertices in R incident with an edge of weight 2, where

the other vertex of this edge is contained in D, and let e be the number of

edges of weight 2 in L. De�ne δr by dn = (1− δr) 2n/3 − [7/3 + 2δ/3], so

that δr ≤ δ. We calculate an upper bound on the number of edges of weight

2 as follows: there are a maximum of d/2 such edges contained in D (take

a matching of these edges); there are a maximum of rdn such edges incident

with RD; there are a maximum of (r − rd)2 n2/4 such edges in the remainder

of R (because the graph of edges of weight 2 is triangle-free). So we have

en2 ≤ dn

2
+ rdn+

(r − rd)2 n2

4

= (1− δr)
n

3
−
[

7

6
+
δ

3

]
+ rdn+

(
1 + 2δr + 7+2δ

n − 3rd
)2 n2

9

4

=
n

3

[
1− δr −

7/2 + δ

n
+ 3rd +

n

12

(
1 + 2δr +

7 + 2δ

n
− 3rd

)2
]

≤ n2

36
[1 + 2δ]2 + ζn.
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Hence

e ≤ (1 + 2δ)2

36
+
ζ

n
,

where we have assumed that n is su�ciently large and used the upper bound

for δr, with ζ an arbitrary constant so that ζn is a term of order n. �

These results enable us to prove the stability version of Lemma 2.14.

Lemma 2.15. Let H be an F-free 3-graph of order n+3 such that every ver-

tex in H has degree (1− 10γ)
(
(n+ 3)2/9

)
, where γ < 1/619520, that con-

tains an edge abc with total double neighbourhoods at least (1− δ) (2n/3)−[
7
3 + 2

3δ
]
. Then the link graph of abc has at most 31γn vertices incident with

an edge of weight 2.

Proof. By Lemma 2.34, there are at most (1 + 2δ)2 n2/36 + ζn edges

of weight 2 in Labc. As the preconditions of Lemma 2.13 are satis�ed, L does

not contain a copy of K4. Also, by Proposition 2.30, each colour is incident

with at least (2/3) (1− 5γ) of the vertices in Labc. Finally, any edge of weight

2 is not incident with any other colour; therefore, any edge of weight 3 is not

incident with any other edge.

Let Mxy be the set of vertices consisting of a maximal matching of edges of

weight 2 and colours x and y, let Mabc be the set of vertices incident with

an edge of weight 3 and let R = Labc−
⋃
Mxy −Mabc. From the facts above

about Labc, we have that the Mxy are disjoint, that e(Mabc) ≤ (3/2)mabcn,

that there are no edges between Mabc and any other set and that e(R) ≤
(1/3)(rn)2. De�ne δr by e(R) = (1/3) (1− δr) (rn)2.

We form the partition of Labc consisting ofMab,Mbc,Mac,Mabc and R. Note

that each of these sets is disjoint. For x ∈ {a, b, c}, let Dx be the set of

vertices disjoint from colour x and let Cx be the set of vertices incident with

colour x. Let |Cx| = (2/3− δx)n and so |Dx| = (1/3 + δx)n, where δx is

less than (10/3)γ, as guaranteed by Proposition 2.30. Note that Mxy ⊆ Dz.

We derive expressions for the upper bound of the total number of edges in

L and ultimately show that this upper bound is less than the lower bound

of (1/3) (1− 10γ)n2 unless the number of vertices incident with edges of

weight 2 is less than 16γn. We form the upper bound for the number of

edges in Labc by calculating an upper bound for the number of edges within
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each subset in Labc and for the number of edges between each pair of subsets

in Labc.

These upper bounds are calculated using Propositions 2.17 and 2.19, as in

Lemma 2.14.

Let P ′ = {ab, ac, bc, abc}, P = {ab, ac, bc} and α =
∑

S∈P (αS + αabc−S).

The total number of edges in Labc is at most:

e(Labc)≤ n2

1

3
(1−δr)

(
1−

∑
S∈P ′

mS

)2

+
3mabc

2n
+
∑
S∈P

1

4
m2
S +αS +αabc−S

+mS

1

2

2

3
−δabc−S−

∑
T∈P ′,T 6=S

mT

+
1

2

(
1

3
+δabc−S−mS

)
+

1

4

∑
T∈P ′,T 6=S

mT




≤ n2

1

3
(1− δr)

(
1−

∑
S∈P ′

mS

)2

+ α

+
∑
S∈P

1

4
mS +

1

3
− 1

2

∑
T∈P,T 6=S

mT +
1

6
− 1

2
mS +

1

4

∑
T∈P,T 6=S

mT



= n2

1

3
(1− δr)

(
1−

∑
S∈P ′

mS

)2

+ α+
∑
S∈P

(
1

2
− 1

4

∑
T∈P

mT

)
= n2

1

3
(1− δr)

(
1−

∑
S∈P ′

mS

)2

+ α+
1

2

∑
S∈P

mS −
1

4

(∑
S∈P

mS

)2


where, for the second inequality, we assume that n is su�ciently large that

we may take mabc = 0.
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We express the lower bound for the number of edges in Labc using the same

partition:

e(Labc) ≥
1

3
(1− 10γ)n2

= n2

1

3

(
1−

∑
S∈P

mS

)2

+
1

3

∑
S∈P

m2
S

+
∑
S∈P

mS

2

3

2

3
− δabc−S −

∑
T∈P,T 6=S

mT


+

2

3

(
1

3
+ δabc−S −mS

)
+

1

3

∑
T∈P,T 6=S

mT

− 10

3
γ



= n2

1

3

(
1−

∑
S∈P

mS

)2

+
∑
S∈P

mS

1

3
mS +

4

9
− 2

3

∑
T∈P,T 6=S

mT +
2

9
− 2

3
mS +

1

3

∑
T∈P,T 6=S

mT


− 10

3
γ



= n2

1

3

(
1−

∑
S∈P

mS

)2

+
∑
S∈P

mS

{
2

3
− 1

3

∑
T∈P

mT

}
− 10

3
γ


= n2

1

3

(
1−

∑
S∈P

mS

)2

+
2

3

∑
S∈P

mS −
1

3

(∑
S∈P

mS

)2

− 10

3
γ

 .
First we show that

∑
S∈P mS < 1/4. Combining the two inequalities gives

0 ≤ n2

−δr
3

(
1−

∑
S∈P

mS

)2

+ α− 1

6

∑
S∈P

mS +
1

12

(∑
S∈P

mS

)2

+
10

3
γ

 .
Taking δr/3 = 0, (10/3)γ = (10/3)(1/480) = 1/144 (weaker than our actual

bound on γ) and α = (1 + 2δ)2 /36 + ζ/n, we maximise (
∑
ms)

2−
∑
m2
s by
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taking ms = q for all S, so that (
∑
ms)

2 = 9q2 and
∑
ms = 3q. Then the

upper bound becomes:

n2

[
(1 + 2δ)2

36
+
ζ

n
+

1

144
+

1

12

(
9q2 − 6q

)]

from which it follows that

3q2 − 2q +

[
(1 + 2δ)2

9
+

1

36
+

4ζ

n

]
≥ 0.

For q ∈ [0, 1/3] and n su�ciently large this gives 3q =
∑

S∈P mS < 1/4,

so that we have an approximate bound on the maximum number of vertices

incident with an edge of weight 2.

Next we use the bound on
∑

S∈P mS to deduce an upper bound on δr. We

use the following version of the upper bound for the number of edges in Labc :

e(Labc) ≤ n2

1

3
(1− δr)

(
1−

∑
S∈P ′

mS

)2

+
1

2

∑
S∈P

m2
S +

3mabc

2n

+
∑
S∈P

mS

1

2

2

3
− δabc−S −

∑
T∈P,T 6=S

mT


+

(
1

3
+ δabc−S −mS

)
+

1

4

∑
T∈P,T 6=S

mT




≤ n2

1

3
(1− δr)

(
1−

∑
S∈P

mS

)2

+
1

2

∑
S∈P

m2
S

+
∑
S∈P

mS

1

2

2

3
− δabc−S −

∑
T∈P,T 6=S

mT

+

(
1

3
+ δabc−S −mS

)

+
1

4

∑
T∈P,T 6=S

mT




63



= n2

1

3
(1− δr)

(
1−

∑
S∈P

mS

)2

+
∑
S∈P

mS

1

2
mS +

1

3
− 1

2
δabc−S

− 1

2

∑
T∈P,T 6=S

mT +
1

3
+ δabc−S −mS +

1

4

∑
T∈P,T 6=S

mT




= n2

1

3
(1− δr)

(
1−

∑
S∈P

mS

)2

+
∑
S∈P

mS

−1

2
mS +

2

3
− 1

4

∑
T∈P,T 6=S

mT +
1

2
δabc−S




= n2

1

3
(1− δr)

(
1−

∑
S∈P

mS

)2

+
∑
S∈P

mS

{
2

3
− 1

4
mS −

1

4

∑
T∈P

mT +
1

2
δabc−S

}
= n2

[
1

3
(1− δr)

(
1−

∑
S∈P

mS

)2

+
2

3

∑
S∈P

mS −
1

4

∑
S∈P

m2
S −

1

4

(∑
S∈P

mS

)2

+

1

2

∑
S∈P

mSδabc−S

]

where, in the second inequality, we assume that n is su�ciently large, so that

mabc = 0. Combining this with the inequality for the lower bound gives:

0 ≤ n2

−δr
3

(
1−

∑
S∈P

mS

)2

+
1

12

(∑
S∈P

mS

)2

− 1

4

∑
S∈P

m2
S

+
1

2

∑
S∈P

mSδabc−S +
10

3
γ

 .
We have

∑
S∈P mS ∈ [0, 1/4], so 1−

∑
S∈P mS ≥ 3/4, and an application of

the Cauchy-Schwarz Inequality gives[
(mab +mbc +mac)

2 − 3
(
m2
ab −m2

bc −m2
ac

)]
≤ 0.

Putting these together gives

0 ≤ n2

[
10

3
γ +

1

2

1

4

10

3
γ − δr

3

9

16

]
= n2

[
15

4
γ − 3

16
δr

]
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which is negative if δr > 20γ. This contradiction proves the lemma when

δr > 20γ.

Finally we consider the case where δr ≤ 20γ.

Assume that there are
√
δrrn vertices of degree less than

(
1− 2

√
δr
)

2rn/3.

Deleting them gives a graph on
(
1−
√
δr
)
rn vertices with at least(

1− δr − 2
√
δr
(
1− 2

√
δr
))

(rn)2/3 edges. But(
1−

√
δr

)2 r2

3
=

(
1 + δr − 2

√
δr

) r2

3

<
(

1− 2
√
δr + 4δr − δr

) r2

3

which violates Turán's theorem, as this subgraph isK4-free. Therefore, there

are a maximum of
√
δrrn vertices in R of degree less than

(
1− 2

√
δr
)

2rn
3 .

We label this set of vertices R− and the remainder of R is labelled R+.

We consider now the number of edges between any set Mxy and the set R.

If there is an edge between x and any vertex in R+, then there is no edge

between x and any of the
(
1− 2

√
δr
)

2rn/3 neighbours of this vertex. That

is, x is connected to a maximum of
(
1 + 4

√
δr
)
rn/3 vertices in R+. Similar

reasoning applies to y, so that the total number of edges between xy and

R is 2
(
1 + 4

√
δr
)
rn/3 +

√
δrrn =

(
1 + (11/2)

√
δr
)

2rn/3. Therefore, there

are at least
(
1− 11

√
δr
)
rn/3 vertices in R+ that are not connected to xy.

We may assume, when evaluating the upper bound, that these vertices are

in the set of vertices that may only be connected to xy by edges of weight 1.

This gives the following version of the upper bound (where we assume, as

above, that n is su�ciently large so mabc = 0):

e(Labc) ≤ n2

1

3
(1− δr)

(
1−

∑
S∈P

mS

)2

+
∑
S∈P

mS

1

2
mS

+
1

2

2

3
− δabc−S−

∑
T∈P,T 6=S

mT −
(

1−11
√
δr

) (1−∑S∈P mS

)
3


+

(
1

3
+ δabc−S −mS

)
+

1

4

∑
T∈P,T 6=S

mT



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= n2

1

3
(1− δr)

(
1−

∑
S∈P

mS

)2

+
∑
S∈P

mS

{
−1

4
mS +

2

3
+

1

2
δabc−S

− 1

4

∑
T∈P

mT −
1

2

(
1− 11

√
δr

) (1−∑S∈P mS

)
3

}

= n2

1

3
(1− δr)

(
1−

∑
S∈P

mS

)2

− 1

4

∑
S∈P

m2
S +

2

3

∑
S∈P

mS +
1

2

∑
S∈P

mSδabc−S

− 1

4

(∑
S∈P

mS

)2

− 1

2

(∑
S∈P

mS

)(
1− 11

√
δr

) (1−∑S∈P mS

)
3

 .
Therefore, using the same lower bound as above:

0 ≤ n2

 1

12

(∑
S∈P

mS

)2

− 3

(∑
S∈P

m2
S

)+
1

2

∑
S∈P

mSδabc−S +
10

3
γ

− 1

2

(∑
S∈P

mS

)(
1− 11

√
δr

) (1−∑S∈P mS

)
3

− δr
3

(
1−

∑
S∈P

mS

)2


< n2

[
10

3
γ +

1

2

1

4

10

3
γ −

(∑
S∈P

mS

)(
1− 11

√
δr

) 1

8
− 3δr

16

]
,

taking
(
1−

∑
S∈P mS

)
> 3/4 and again using Cauchy-Schwarz to show(∑

S∈P mS

)2 − 3
(∑

S∈P m
2
S

)
≤ 0.

It follows that ∑
S∈P

mS ≤
(

30γ − 3

2
δr

)(
1

1− 11
√
δr

)
< 31γ,

because δr < (1/30976) = 20γ. �
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2.3.3. Stability For F6

The approach of this section is substantially the same as the proof of Theo-

rem 1.5, the stability result for F5, in [19]. The principal di�erence is in the

requirement for the stability lemmas of the previous section and in certain

other details of the argument that we highlight below.

The following proposition is a slight variant of a case of the Simonovits

stability theorem (see Proposition 5.1 in [19]).

Theorem 2.35. For any ε′ > 0 there exists δ′ > 0 and n0 such that the

following holds: if G is a K4-free graph on n > n0 vertices with at least

(1− δ′) t3(n) edges, then one can delete ε′n vertices from G so that the re-

maining graph is tripartite.

The following theorem is the stability version of the Turán density result for

F6 (recall that F = {F6,K
−
4 }).

Theorem 2.12. For any ε > 0 there exists δ > 0 and n0 such that the

following holds: if H is an F-free 3-graph of order n ≥ n0 with at least

(1− δ) s(n) edges, then there is a partition of the vertex set of H as V (H) =

U1 ∪ U2 ∪ U3 so that all but at most εn3 edges of H have one point in each

Ui.

Proof. We use constants that satisfy the following hierarchy: δ � γ �
δ′ � ε′ � ε. In particular:

• Let ε′ < 10−8ε2.

• Let δ′ < ε′ and be the result of applying Theorem 2.35 with ε′.

• Let γ = εδ′.

• Let δ < 12γ2.

De�ne U0 ⊂ V (H). We add a small number of (bad) vertices to U0 and show

that all but a small number of hyperedges in H − U0 respect the partition.

Assume, to derive a contradiction, that there are γn vertices of degree at

most (1− 5γ)n2/9. Deleting them gives a 3-graph H ′ with (1− γ)n vertices
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and at least (1− δ − 3γ(1− 5γ))n2/27 edges. It follows that

e(H ′) ≥ (1− δ − 3γ(1− 5γ))
n3

27

=
(
1− δ − 3γ + 15γ2

) n3

27

>
(
1− 3γ + 3γ2

) n3

27

=
[(1− γ)n]3

27
+
γ3n3

27
.

But this is contrary to Theorem 2.5, for n su�ciently large. It follows that

there are fewer than γn vertices of degree at most (1− 5γ)n2/9 and we add

these to the set U0.

Consider the 3-graphH−U0. Every vertex in this 3-graph has degree at least

(1− 5γ) (n2/9)− (γn2/2) ≥ (1− 10γ) (n2/9). As H has at least (1− δ) s(n)

edges, by Proposition 2.32, there is at least one hyperedge abc in this graph

with total link neighbourhoods greater than (1− δ) (2/3)n. The precondi-

tions of Lemma 2.15 are satis�ed so that the link graph of abc is K4-free and

has a maximum of 31γn vertices incident with an edge of weight 2. We add

these to the set U0.

Let J be the link graph of abc in H. This graph is K4-free and has no edges

of weight 2, that is, it is a simple graph.

Suppose that J has 10−1δ′n vertices with degree at most
(
1− 10−3ε

)
2n/3.

Then the graph J ′ = J − {x : d(x) ≤
(
1− 10−3ε

)
2n/3} has

(
1− 10−1δ′

)
n

vertices and at least
(
1− δ − 2× 10−1δ′

(
1− 10−3ε

))
n2/3 edges, but[(

1− 10−1δ′
)
n
]2

3
=
[
1− 2× 10−1δ′ + 10−2δ′2

] n2

3

and

(
1− δ − 2× 10−1δ′

(
1− 10−3ε

)) n2

3
=
(
1− 2× 10−1δ′ + 2× 10−4γ − δ

) n2

3

which gives a contradiction, because 2× 10−4γ − δ > 10−2δ′2, which means

that J ′, which is K4-free, violates Turán's theorem.

Therefore, we can remove the at most 10−1δ′n vertices from H and J ′ and

add them to U0. Let L be the resulting link graph of abc in H − U0. It has,
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trivially, at least (1− δ′)n2/3 edges. This enables us to apply Proposition

2.35. So there are ε′n vertices which may be removed from H such that the

remaining link graph L is tripartite. We add these vertices to U0. L now has

at least (1− δ′ − 3ε′)n2/3 edges, which is greater than
(
1− 10−7ε2

)
n2/3 by

the choice of δ′ and ε′. It may be partitioned into three vertex sets V1, V2

and V3, each of which contains no edges.

Note that ||Vi| − n/3| < 10−3εn for each i. Assume otherwise, so that V1,

say, violates this and L would have at most

|V1| (n− |V1|) +
(n− |V1|)2

4
=
n2

3
− (3 |V1| − n)2

12

<
n2

3
− 3

4
10−6ε2n2

<
(
1− 10−7ε2

) n2

3

edges, which gives a contradiction. It also follows that each vertex in Vi has

degree at least
(
1− 10−3

)
2n/3 −

(
1/3 + 10−3ε

)
n > n/3 − 10−2εn in both

Vj , j 6= i.

Let v1v2v3 be a triangle in L with vi in Vi. For every vertex x in L, if x ∈ Vi
and it is not adjacent to both vj , j 6= i, then add it to U0. There are at most

6.10−2εn such vertices. As all triangles are multicoloured, we may assume

that vivj has colour k for {i, j, k} = {1, 2, 3}. Then each vertex of Vk is

joined to the vertices vi, vj by one edge of colour i and one of colour j. Let

V 1
k consist of those vertices v in Vk for which vvi has colour i and vvj has

colour j and V 2
k = Vk − V 1

k .

All edges from v1 to V 1
2 ∪ V 1

3 have colour 1. Therefore there are no edges

between V 1
2 and V 1

3 , and the same holds betwen V 1
i and V 1

j for any two

distinct i, j ∈ {1, 2, 3}. If both V 1
i and V 1

j have size at least 10−2εn, then L

has at most n2/3−
(
10−2εn

)2
<
(
1− 10−7ε2

)
n2/3 edges, which is impossible.

It follows that there is at most one l for which
∣∣V 1
l

∣∣ ≥ 10−2εn. Without loss

of generality we assume that l = 1. Thus both V 1
2 and V 1

3 have size at most

10−2εn, and we add their vertices to U0.

Now take any edge pqr of H in V − V0. Consider �rst the case where all

3 vertices are in one of the sets. Take {p, q, r} ⊂ V 1
1 . Then x2v2p, x2v2q

and pqr are all edges of H. Take a vertex s in V 2
2 which is incident with
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r. The edge rs must be of colour 2 as rv3 is colour 3 and v3s is colour 1.

But then the edge x2rs completes a copy of F6. The other cases are similar.

Therefore, pqr is not contained in any one of the sets.

Next take the case where 2 vertices are in one of the sets. Take {p, q} ⊂ V 1
1

and r ∈ V 2
2 . But then the edges x3v3p, x3v3q, pqr and x3rv1 form a copy of

F6. The other cases are similar. Therefore, pqr does not have exactly two

vertices in any one set.

Finally, consider the case where p ∈ V 1
1 , q ∈ V 2

1 and r ∈ V 2
2 . If qr is an edge

it must be of colour 3 as qv3 is colour 2 and v3r is colour 1. But then qrp,

qrx3, px3v3 and qv3x2 form a copy of F6. Therefore, qr is not an edge of

L. Since L has at least
(
1− 10−7ε2

)
n2/3 edges respecting the partition of

(V1, V2, V3) out of at most n2/3 possible edges, there are at most 10−7ε2n2/3

choices for qr, so at most 10−7ε2n3/3 such hyperedges pqr.

Similarly, there are at most 10−7ε2n3/3 hyperedges pqr with p ∈ V 1
1 , q ∈ V 2

1

and r ∈ V 2
3 . All other edges have one point in each of V 1

1 ∪ V 2
1 , V

2
2 and

V 2
3 . De�ne a tripartition V = U1 ∪ U2 ∪ U3 so that V 1

1 ∪ V 2
1 ⊆ U1, V

2
2 ⊆ U2

and V 2
3 ⊆ U3 and the bad vertices U0 are distributed arbitrarily. Since

u0 < (1/2)εn and there are fewer than (1/2)εn3 exceptional edges all but at

most εn3 edges of H have one point in each Ui, so the theorem is proved. �

2.4. Conclusion

We have shown that π(F) = π(F6) = 2/9 and that the extremal graph is

S(n). This is the �rst proof of π (F6) = 2/9 that does not rely on compu-

tational methods. We have also proved an associated stability result. As

π(F5) = 2/9, both F5 and F6 have the same Turán density.

Contrary to the situation with 2-graphs, it does not follow from the fact that

F6 is not contained in a blow up of F5 that π (F6) is greater than π (F5) -

in fact, both have Turán density 2/9. It appears that there is no simple

criterion for determining the distribution of Turán densities for 3-graphs in

the same way as the chromatic number does for 2-graphs. More insight could

be obtained by determining whether there are any other larger 3-graphs with

similar properties.
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Chapter 3

On Turán's (3,5)-Problem with

Forbidden Con�gurations

3.1. Introduction

Mantel's Theorem states that a graph of order n that contains no triangles

has at most
⌊
n2/4

⌋
edges. In 1941, Turán generalised this result to cliques

of arbitrary size and then asked whether similar results could be obtained

for cliques on hypergraphs. This has become one of the central unsolved

problems in the �eld of extremal combinatorics. Erdös o�ered a cash prize

for determining the Turán density of K
(m)
k for any pair k,m with k > m ≥ 3.

The prize remains unclaimed.

In 2012, in a series of papers (see principally [25] and [26]), Razborov consid-

ered the simplest unresolved case: the complete 3-graph on 4 vertices, K
(3)
4 ,

for which Turán had conjectured the correct density was 5/9. The best result

for the general case was given by a �ag algebra calculation which suggested

an upper bound of approximately 0.561. However, Razborov made further

progress by considering Turán densities for families of graphs comprising the

complete graph and certain other induced graphs. In [25], he showed that

the Turán density of {K(3)
4 , E

(3)
4 } (where E

(3)
4 is a 3-edge on 4 vertices and

is forbidden only as an induced subgraph) is 5/9. And, in [26], he showed

that the (induced) Turán density of {K(3)
4 , H1, H2, H3} is 5/9, where the Hi
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are the following 3-graphs on 5 vertices:

H1 = {135, 145, 235, 245}

H2 = {125, 345}

H3 = {345}.

Notably, these subgraphs are missing from all known extremal con�gurations.

In this paper, we address the next complete 3-graph,K
(3)
5 . Turán conjectured

a density of 3/4 for K
(3)
5 and a number of extremal con�gurations are known.

The best upper bound computed using �ag algebra is approximately 0.769533

(see [11]).

We prove for K
(3)
5 a counterpart to Razborov's result for K

(3)
4 : that the

Turán density of K
(3)
5 together with six other induced subgraphs is 3/4. All

of these subgraphs are missing from the known extremal con�gurations up

to and including four equivalence classes (one is found in con�gurations with

six or more equivalence classes; one is found in an extremal con�guration

of nine equivalence classes). All have a density lower than the conjectured

extremal density. This can also be seen as an improvement on [11], where

the (induced) Turán density forK
(3)
5 and another family of graphs was shown

to be 3/4, but the additional graphs were missing only from the extremal

examples on two equivalence classes and also had densities higher than 3/4.

In setting out the extremal con�gurations, we also add a slight generalisa-

tion to those previously described. Overall, this result reduces the problem

of �nding the Turán density of K
(3)
5 to consideration of hypergraphs that

contain at least one of these other subgraphs with positive density.

3.2. Background and De�nitions

Given a family of hypergraphs F , a hypergraph is F-free if it does not contain
a (not necessarily induced) subgraph that is isomorphic to any member of

F . For any integer n ≥ r, the Turán number of F is

ex(n,F) = max {|E(H)| : H is an F-free, r-graph, |V (H)| = n}

and the related asymptotic Turán density is the following limit (an averaging

argument due to Katona, Nemetz and Simonovits [17] shows that it always
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exists)

π (F) = lim
n→∞

ex (n,F)(
n
r

)
The problem of determining the Turán density is essentially solved for all

2-graphs by the Erdös-Stone-Simonovits Theorem:

Theorem 3.1 (Erdös and Stone [9], Erdös and Simonovits [8]). Let F be a

family of 2-graphs. If t = min {χ(F ) : F ∈ F} ≥ 2, then

π (F) =
t− 2

t− 1

We will require a version of Ramsey's Theorem for the regularisation used

in Lemma 3.10 below. The multi-partite version of Ramsey's theorem is as

follows.

Proposition 3.2 ([15], Theorem 5.1.4). For any l > 0, n > 0 and

r1, . . . , rl > 0 there exists N > 0 such that if |Bi| = N (1 ≤ i ≤ l) and

[B1]r1 × · · · × [Bl]
rl is coloured in two colours then there exist Ai ⊆ Bi

(|Ai| = n) such that [A1]r1 × · · · × [Al]
rl is monochromatic.

Proposition 3.2 can be iterated to obtain the following (setting n = 2).

Proposition 3.3 (Razborov [26]). For any l > 0 there exists N > 0 such

that the following holds. Let a 3-graph B be such that V (B) = B1∪̇ . . . ∪̇Bl,
where |Bi| = N . Then there exist Ai ⊆ Bi with |Ai| = 2 such that for any

E ∈ [A1 ∪ . . . ∪Al]3, whether or not E ∈ E(B) depends only on the tuple of

cardinalities 〈|E ∩A1| , . . . , |E ∩Al|〉.

Proposition 3.3 follows from Proposition 3.2 by considering every partition

of 3 = r1 + · · ·+ rl (ri ≥ 0). The 3-graph B corresponds to a two colouring

of [B]3 which induces a colouring of [B1]r1 × · · · × [Bl]
rl . Then Proposition

3.2 is applied (in an arbitrary order) to each of these partitions recursively.

Taking r1 = . . . = rl = 1 gives a density version of Proposition 3.2, as

follows.

Proposition 3.4 (Razborov [26]). For all l, n, ε > 0 there exists N0 > 0

such that if |Bi| = N (1 ≤ i ≤ l) with N ≥ N0 and S ⊆ B1 × · · · × Bl has
|S| ≥ εN l, then there exist Ai ⊆ Bi (Ai = n) such that A1 × · · · ×Al ⊆ S.
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We will work from now on exclusively with 3-graphs and oriented 2-graphs,

referred to as graphs and oriented graphs respectively. For clarity, we sup-

press the superscript notation for named 3-graphs where no ambiguity would

result (so we may refer to K5 not K
(3)
5 ).

From the �ag algebra formalism, we will require only the following de�nitions

(see, for example, [24] for more details):

• let A and B be 3-graphs, then p(A,B) is the probability that a set

of |V (A)| vertices in B chosen uniformly at random induce a copy

of A; and

• ρ is the graph on 3 vertices consisting of an edge.

Accordingly, p(ρ,A) is the edge density of A.

We have the following conjecture about the Turán density of K5:

Conjecture 3.5 (Turán [30]). π(K
(3)
5 ) = 3/4.

There are a number of non-isomorphic graphs that demonstrate the lower

bound of 3/4. These are all constructed from equivalence classes of vertices

- that is, the adjacency of any three vertices is de�ned according to their

membership of these equivalence classes. The constructions contain an even

number of equivalence classes (apart from one that has nine equivalence

classes but where one equivalence class contains a single vertex). These

constructions are set out in [29] and [18]. For extremal con�gurations on

two and four equivalence classes, both Sidorenko's and Keevash and Mubayi's

constructions can be simply described as follows:

Example 3.6. Let V1, V2 be a balanced partition of a set V of n vertices.

Let G be the 3-graph on V where the edges consist of all triples with two

points in Vi and one point in Vj for i 6= j.

Example 3.7. Let V1, V2,W1,W2 be a balanced partition of a set V of n

vertices. Let G be the 3-graph on V where the edges consist of all triples as

follows:

(1) Two points in Xi and one point in Xj for i 6= j and X = V or

X = W ;

(2) Two points in the �rst and one point in the second of each of these

pairs: (V1,W1), (V2,W2), (W1, V2), (W2, V1);
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(3) One point in each of three di�erent vertex sets.

In fact, both Example 3.6 and Example 3.7 can be comprehended by a single

con�guration which extends Example 3.7:

Example 3.8. Let k ∈ [0, n/2] and let V1, V2,W1,W2 be a partition of a set

V of n vertices with k vertices in each of V1 and V2 and n
2 − k vertices in

each of W1 and W2. Let G be the 3-graph on V where the edges are as set

out in Example 3.7.

The best upper bound obtained on π(K5) by a �ag algebra computation is

approximately 0.769533 (see [11]). Also, using the same �ag algebra soft-

ware, Falgas-Ravry and Vaughan [11] proved an upper bound of 3/4 for the

family {K5, 5 : 8} where 5 : 8 is the set of all 3-graphs on 5 vertices with 8

edges and are forbidden as induced subgraphs. These additional graphs are

missing from Example 3.6, the conjectured extremal graph for K5 on two

equivalence classes, but not Example 3.7, the conjectured extremal graph

for K5 on four equivalence classes, or the conjectured extremal graphs on

more than four equivalence classes. We will consider additional graphs that

are missing from both Example 3.6 and Example 3.7. Most importantly, the

5 : 8 graphs have density 4/5, higher than the conjectured extremal density

of 3/4. We will consider additional graphs that all have density less than 3/4.

In both these respects, our main theorem may be seen as an improvement

of the result in [11].

De�ne the following hypergraphs:

F2,2,1 = {135, 145, 235, 245},

F+
2,2,1 = {135, 145, 235, 245, 125},

FK4+ = {123, 124, 134, 234, 125, 345},

Fe:4 = 4 : {123} (the single edge on 4 vertices),

T2,2,2 = {123, 124, 345, 346, 156, 256, 135, 136, 145, 146, 235, 236, 245, 246},

Textra = {123, 124, 134, 234, 356, 456, 135, 136, 145, 146, 235, 236, 245, 246}.

Let F = {K5, F2,2,1, F
+
2,2,1, FK4+, Fe:4, T2,2,2, Textra} and describe a hyper-

graph as F-free if it does not contain K5 as a subgraph or any of the other

graphs in F as induced subgraphs: note that this is di�erent to the usual
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de�nition (where all the graphs are forbidden as subgraphs, whether induced

or not).

De�ne the following classes of hypergraphs:

Hn = {H : H is a 3-graph of order n}

Gn = {H : H ∈ Hn, is F-free and p(ρ,H) ≤ 3

4
}

Ḡn = {H : H ∈ Hn, is F-free and p(ρ,H) >
3

4
}

and

G =
⋃
n

Gn

Ḡ =
⋃
n

Ḡn

Our aim is to show that all F-free hypergraphs are in G (in other words,

that Ḡ is empty). That is:

Theorem 3.9. π(F) = 3/4.

3.3. Construction Using Regularisation

We �rst use the regularisation technique introduced by [26] to show that,

if the theorem is false, there exists a counterexample with some additional

helpful structure.

Speci�cally, Lemma 3.10 states that if there exists a counterexample then

there also exists a blow-up of that counterexample with 2 vertices in each

vertex set and a useful additional property. This property is that given any

two vertex sets, a = {a1, a2.} and b = {b1, b2}, a1a2b1 is an edge if and only

if a1a2b2 is an edge.

Lemma 3.10. Let {Hm} be a sequence of 3-graphs of increasing order that are
F-free with lim infm→∞ p(ρ,Hm) > 3/4. Then there exists an F-free graph

G∗ ∈ Ḡl and a graph H ∈ H2l such that H ⊆ X for some X ∈ {Hm},V (H) =

{ai, bi : 1 ≤ i ≤ l} and for ci ∈ {ai, bi}:

∀i 6= j 6= k ∈ [l] cicjck ∈ E(H) i� ijk ∈ E(G∗)

∀i 6= j ∈ [l] aibiaj ∈ E(H) i� aibibj ∈ E(H1).
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Proof. Given an increasing sequence {Hm} of 3-graphs that are F-free
with lim infm→∞ p(ρ,Hm) > 3

4 , �x a subsequence such that with a suitable

renumbering of m:

p(ρ,Hm) ≥ 3

4
+ ε

for a �xed ε > 0 and all m.

By the de�nition of Gn, for any integer l, it is true that for every 3-graph

G ∈ G with l vertices:

p(ρ,G) ≤ 3

4
.

Now �x m such that |V (Hm)| ≥ l and de�ne

R =
∑
G∈Gl

p(G,Hm).

Next we recall the chain rule from �ag algebra

p(ρ,Hm) =
∑
G∈Hl

p(ρ,G)p(G,Hm)

so that

3

4
+ ε ≤

∑
G∈Gl

p(ρ,G)p(G,Hm) +
∑

G∈Hl\Gl

p(ρ,G)p(G,Hm)

≤ 3

4
R+ (1−R) = 1− R

4

and therefore

R ≤ 1− 4ε < 1.

Accordingly, there is a positive constant δ ≥ 4ε/
(
l
3

)
which does not depend

on m, such that there is a graph G∗ ∈ Hl\G and p(G∗, Hm) ≥ δ (for any

m ≥ l). Now we allow m to vary. Because there are only a �nite number

of graphs in Hl we may, by restricting to a subsequence again, assume that

this graph G∗ is the same for all m. Accordingly, we have shown that if

lim infm→∞ p(ρ,Hm) > 3
4 , there exists a particular F-free graph G∗ ∈ Ḡ

that exists in a subsequence of Hm with positive density at least δ that does

not depend on m.

We are now in a position where it is possible to apply the 'regularisation

machinery' employed by Razborov. The following argument is taken directly
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from [26]. In outline, given a positive density of G∗ , we construct a blow-

up of G∗ using Proposition 3.4 with vertex sets su�ciently large that we

can then apply Proposition 3.4 to �nd a subgraph of the blow-up with the

additional property set out above.

In detail, �rstly, apply Proposition 3.3 with l = |V (G∗)| and let N1 be the

resulting bound. Next, apply Proposition 3.4 with l = |V (G∗)|, n = N1 and

ε =
1

2
l−lδ

and let N0 be the resulting bound. Now �x m such that |V (Hm)| > lN0.

Without loss of generality, we may assume that |V (Hm)| is divisible by l and
let N = 1

l |V (Hm)|. Note that N ≥ N0.

Let V (G∗) = [l]. Consider a random balanced partition V (Hm) =

B1∪̇ . . . ˙∪Bl into N -sets. By a standard averaging argument, the expec-

tation of the density of induced embeddings α : G∗ → Hm such that

α(i) ∈ Bi for all i ∈ [l] is at least ε. Fix an arbitrary balanced partition

V (Hm) = C1∪̇ . . . ˙∪Cl with this property and let S ⊆ [C1]× . . .× [Cl] consist

of those tuples (v1, . . . , vl) for which the mapping β : [l]→ V (Hm) given by

β(i) = vi does de�ne an induced embedding of G∗.

Applying Proposition 3.4 givesDi ⊆ Ci with |Di| = N1 andD1×. . .×Dl ⊆ S.
And applying Proposition 3.3 (with Bi = Di) results in a graph H ⊆ Hm,

where |V (H)| = 2l, V (H) = {ai, bi : 1 ≤ i ≤ l} and the result of the

regularisation is that, where ci ∈ {ai, bi}:

∀i 6= j 6= k ∈ [l] cicjck ∈ E(H) i� ijk ∈ E(G∗)

∀i 6= j ∈ [l] aibiaj ∈ E(H) i� aibibj ∈ E(H1).

�

We regard G∗ as interchangeable with the 3-graph de�ned on the equivalence

sets 〈i〉 = {ai, bi} in H so that a vertex in G∗ may be referred to as i or 〈i〉.
Our aim is to determine the maximum density of the edges inside H that

constitute G∗ by taking advantage of the particular structure of all the edges

in H. If we show that the maximum density of G∗ is not greater than 3/4,

this contradiction can then be used to establish the main theorem.
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Next we de�ne an oriented graph O on the equivalence classes 〈i〉 (or, more

simply, on the vertices i) by specifying that

ij ∈ E(O) i� aibiaj , aibibj ∈ E(H).

If {12} ∈ O, {21} /∈ O, we refer to this as a single edge and if {12, 21} ∈ O
we refer to this as a double edge.

3.4. Construction of O∗

We next use the additional structure of H to count the maximum number

of edges in G∗. First, we construct an equivalence relation on vertices of O

by the property of being non-connected.

Lemma 3.11. The property of non-adjacency de�nes an equivalence relation

on the vertices of O.

Proof. Assume there are vertices a, b, c ∈ O such that ab, ba, ac, ca 6∈
E(O) but (without loss of generality) bc ∈ E(O). Then abc ∈ E(G∗) or else

a1b1b2c1 would be a copy of Fe:4. But then a1a2b1b2c1 is a copy of F+
2,2,1. �

De�ne the vertices of a new oriented graph O∗ as the equivalence classes of

non-adjacent vertices in O. We determine the structure of O∗ as follows.

Proposition 3.12. For α, β ∈ V (O∗) and x ∈ α, p ∈ β, if xp, px ∈ E(O)

then ∀y ∈ α, q ∈ βyq, qy ∈ E(O). That is, if one pair of vertices is connected

by a double edge, all vertices in those equivalence classes are connected by a

double edge.

Proof. Take x, y ∈ α and p, q ∈ β and xp, px ∈ E(O). First, pqx ∈
E(H), or else p1p2x1q1 would be a copy of Fe:4 and, by similar reasoning,

pxy ∈ E(H). Then qx ∈ E(O) or else p1p2q1q2x1 would be a copy of

F+
2,2,1 and then xq ∈ E(O) or else p1p2q1q2x1x2 would be a copy of Textra.

By similar reasoning, py, yp ∈ E(O). Next we consider edges between q

and y: pqy ∈ E(H) or else p1p2q1y1 would be a copy of Fe:4 and then

qy ∈ E(O) or else p1p2q1q2y1 would be a copy of F+
2,2,1. By similar reasoning,

yq ∈ E(O). �
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Proposition 3.13. For α, β ∈ V (O∗) and x ∈ α, p ∈ β, if xp ∈ E(O), px 6∈
E(O) then ∀y ∈ α, q ∈ β yq ∈ E(O), qy 6∈ E(O). That is, if one pair of

vertices is connected by a single edge, all vertices in those equivalence classes

are connected by a single edge of the same orientation.

Proof. Take x, y ∈ α and p, q ∈ β and xp ∈ E(O), px 6∈ E(O). First,

xyp ∈ E(G∗) or else x1x2y1p1 would be a copy of Fe:4 and yp ∈ E(O) or

else x1x2y1y2p1 would be a copy of F+
2,2,1. Next, qx 6∈ E(O): otherwise, if

xpq ∈ E(G∗), then p1p2q1q2x1 would be a copy of F+
2,2,1 and, if xpq 6∈ E(G∗),

then q1q2p1x1 would be a copy of Fe:4. It follows that xpq 6∈ E(G∗), or else

p1p2q1q2x1 would be a copy of F2,2,1. And so xq ∈ E(O), or else x1x2p1q1

would be a copy of Fe:4.

We have shown that xq ∈ E(O) and qx 6∈ E(O). So the same reasoning used

for xpy can be applied to xqy and accordingly xyq ∈ E(G∗) and yq ∈ E(O).

To show that py, qy 6∈ E(O) � that is, that these are both single edges and

not double edges � we rely on Lemma 3.12, which shows that there are no

double edges between α and β. �

Lemma 3.14. For any two equivalence classes α and β in V (O∗), all edges

between vertices in α and vertices in β are of the same type, ie, double edges

or single edges of the same orientation.

Proof. This follows directly from Lemma 3.11 and Propositions 3.12

and 3.13. �

We de�ne the edges of O∗ as the same as those between any two representa-

tives of the relevant equivalence classes in O and, in accordance with Lemma

3.14, this is well-de�ned. We are now able entirely to characterise the graphs

that may constitute O∗.

Lemma 3.15. For any three vertex classes αβ, γ ∈ V (O∗), only the following

arrangements of edges are possible (up to permutation of the vertex classes):

• TS : αβ, αγ, βγ ∈ E(O∗)

• T+−: αβ, βα, αγ, γβ ∈ E(O∗)

• T−− : αβ, βα, γα, γβ ∈ E(O∗)

and, in each of these cases, for all a ∈ α, b ∈ β, c ∈ γ, abc ∈ E(H).
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Proof. Take any triangle αβγ with representatives a ∈ α, b ∈ β, c ∈ γ.
We proceed by analysing the following cases:

Case 1. The triangle αβγ contains three double edges.

If abc ∈ E(G∗) then a1a2b1b2c1 is a copy of K3
5 . If abc 6∈ E(H)

then a1a2b1b2c1 is a copy of K4+. So there are no triangles of this

type.

Case 2. The triangle αβγ contains two double edges.

Assume that the missing edge is γβ. If abc ∈ E(G∗) then

a1a2b1b2c1 is a copy of K3
5 . If abc 6∈ E(G∗) then a1a2b1b2c1 is

a copy of K4+. So there are no triangles of this type.

Case 3. The triangle αβγ contains one double edge.

Case i. αβ, βα, αγ, αβ ∈ E(O∗). Then the reasoning is identi-

cal to the two previous cases and so there are no trian-

gles of this type.

Case ii. αβ, βα, αγ, γβ ∈ E(O∗). If abc 6∈ E(G∗) then c1c2a1b1

is a copy of Fe:4. So abc ∈ E(G∗) and this is T+− as

set out above.

Case iii. αβ, βα, γα, γβ ∈ E(O∗). If abc 6∈ E(G∗) then a1a2b1c1

is a copy of Fe:4. So abc ∈ E(G∗) and this is T−− as

set out above.

Case 4. The triangle αβγ contains no double edge.

Case i. αβ, βγ, γα ∈ E(O∗). If abc 6∈ E(G∗) then a1a2b1c1 is

a copy of Fe:4. If abc ∈ E(G∗) then a1a2b1b2c1c2 is a

copy of T2,2,2. So there are no triangles of this type.

Case ii. αβ, βγ, αγ ∈ E(O∗). If abc 6∈ E(G∗) then b1b2a1c1 is a

copy of Fe:4. So abc ∈ E(G∗) and this is TS as set out

above.

�

Lemma 3.15 enables us to give an exhaustive characterisation of the graphs

that constitute O∗.
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Lemma 3.16. O∗ is one of the following graphs:

• OE: the graph on two vertices, consisting of a single edge or a double

edge

• a graph on three vertices, consisting of TS, T++ or T+−.

• O4: a graph on four vertices consisting of two double edges and four

single edges, in the arrangement: αβ, βα, γδ, δγ, αγ, βδ, γβ, δα.

Proof. There cannot be more than four vertex classes, otherwise any

selection of one vertex from each class would be a copy of K5. For three

vertex classes, the conclusion follows directly from Lemma 3.15.

For four vertex classes, as there are no triangles consisting of two or three

double edges, there cannot be three or more double edges. No vertex can

have out-degree three, otherwise there would be a copy of K5. Using only

T++ and T+− and forbidding vertices of out-degree three, it is not possible

to construct a four vertex graph with zero or one double edges. This leaves

two double edges, and the only achievable arrangement is O4. �

3.5. Counting Edges in G∗

Having enumerated all the graphs that constitute O∗, it is necessary to count

the maximum number of edges in the corresponding hypergraphs G∗. For

any vertex set ω ∈ V (O∗), where |V (G∗)| = n, de�ne |ω| such that there

are |ω|n vertices in that vertex set. The appropriate formula is given by the

following result.

Lemma 3.17. For any graph O∗, the number of edges in the corresponding

graph G∗ is given by

|E(G∗)| =
∑

αβ∈E(O∗)

(
|α|n

2

)
|β|n+

∑
αβγ∈(V (O∗)

3 )

|α| |β| |γ|n3.

Proof. Any three vertices p, q, r in a single vertex class do not form an

edge, otherwise p1p2q1q2r1 would be a copy of F2,2,1. Given p, q ∈ α and

r ∈ β, if αβ ∈ E(O∗) then pqr ∈ E(G∗), otherwise p1p2q1r1 would be a copy

of Fe:4. But if αβ 6∈ E(O∗), then pqr 6∈ E(G∗), otherwise p1p2q1q2r1 would

be a copy of F2,2,1. This constitutes the �rst sum. The second sum follows
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from the fact, set out in Lemma 3.15 that every three vertices from di�erent

vertex classes correspond to an edge. �

Putting these elements together, we can count the maximum number of edges

in G∗.

Theorem 3.18. There are no more than 1
8n

3 +O(n2) edges in G∗.

Proof. We proceed by analysing all the possible graphs as set out in

Lemma 3.16 using the formula in Lemma 3.17. For clarity, terms of order

O(n2) and lower are suppressed in the formulae below.

Case 1. OE

Let α, β ∈ OE . Edges of G∗ are clearly maximised if there is a

double edge. So the number of edges in G∗ is

|E(G∗)| =

(
α2β

2
+
αβ2

2

)
n3

=
αβn3

2
(α+ β)

=
αβn3

2

≤ 1

8
.

Case 2. TS

Let αβ, αγ, βγ ∈ E(G∗). Then the number of edges in G∗ is

|E(G∗)| =

(
α2β

2
+
α2(1− α− β)

2
+
β2(1− α− β)

+ αβ(1− α− β)

)
n3

=
n3

2

(
α2β + α2 − α3 − α2β + β2 − αβ2 − β3 + 2αβ − 2α2β − 2αβ2

)
=

n3

2

(
−2α2β + α2 − α3 + β2 − 3αβ2 − β3 + 2αβ

)
=

n3

2

(
(α+ β)2 − (α+ β)3 + α2β

)
.

This is maximised when α = 12/23, β = 6/23 and γ = 5/23

giving a density of 54/529 < 1/8. So this arrangement does not

achieve the highest possible density.
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Case 3. T+−

Let αβ, βα, αγ, γβ ∈ E(G∗). Then the number of edges in G∗ is

|E(G∗)| =

(
α2β

2
+
αβ2

2
+
α2(1− α− β)

2
+
β(1− α− β)2

+ αβ(1− α− β)

)
n3

=
n3

2

(
αβ(α+ β) + (1− α− β)(α2 + β(1− α− β) + 2αβ)

)
=

n3

2

(
αβ(α+ β) + (1− α− β)(α2 + β − β2 + αβ)

)
=

n3

2

(
αβ + (1− α− β)(α2 + β − β2)

)
.

This is maximised when α = β = 1/2: that is, it degenerates to

Case 1.

Case 4. T−−

Let αβ, βα, γα, γβ ∈ E(G∗). Then the number of edges in G∗ is

|E(G∗)| =

(
α2β

2
+
αβ2

2
+
α(1− α− β)2

2
+
β(1− α− β)2

2
+ αβ(1− α− β)

)
n3

=
n3

2

(
αβ(α+ β) + (1− α− β)2(α+ β) + 2αβ(1− α− β)

)
n3

2

(
αβ(2− α− β) + (1− α− β)2(α+ β)

)
.

Again, this is maximised when α = β = 1/2, which is identical to

Case 1.

Case 5. O4

Let αβ, βα, γδ, δγ, αγ, βδ, γβ, δα ∈ E(G∗). Then the number of

edges in G∗ is

|E(G∗)| =

(
α2β

2
+
αβ2

2
+
γ2δ

2
+
γδ2

2
+
α2γ

2
+
β2δ

2
+

γ2β

2
+
δ2α

2
+ αβγ + αβδ + αγδ + βγδ

)
n3

=
n3

2

(
α2(β + γ) + β2(α+ δ) + γ2(β + δ) +
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δ2(α+ γ) + αβγδ

(
1

α
+

1

β
+

1

γ
+

1

δ

))
.

This is maximised by a family of graphs that includes Case 1 as

a special case. Let 0 ≤ k ≤ 1
2 . Then α = β = k, γ = δ = 1

2 − k
gives a graph with a density of 1

8 :

k k

1
2 − k

1
2 − k

Examination of the possible cases shows that there is a single family of

maximal graphs of the form O4, including the degenerate case OE , with

density 1
8 . �

3.6. Proof of Main Theorem

Putting all the pieces together gives a proof of the main theorem.

Theorem 3.9. π(F) = 3/4.

Proof. Assume, in order to establish a contradiction, that Theorem

3.9 is false. Then there exists a sequence {Hm} satisfying the preconditions

of Lemma 3.10. Applying Lemma 3.10 gives the graphs G∗ and H, as set

out in the statement of Lemma 3.10. Then, noting that n3/8 + O(n2) =

(3/4)
(
n
3

)
+ O(n2), Theorem 3.18 shows that G∗ has density at most 3/4,

contrary to the stipulation that it is not in G. This contradiction establishes

Theorem 3.9. �
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3.7. Conclusion

Our construction shows that the family of F-free graphs with density greater

than 3/4 is empty; that is, π(F) = 3/4 (note that only induced versions of

graphs apart fromK5 are forbidden). The extremal graphs correspond to the

known extremal graphs for K5 on any number of vertices but up to only four

equivalence classes. Graphs with higher numbers of equivalence classes are

known but are forbidden by K4+ (and there is one extremal con�guration on

eight equivalence classes forbidden by Textra). It is possible that the result

could be strengthened by removing some of these graphs from F . Ultimately,

Theorem 3.9 could lead to a proof of the Turán density for K5 by considering

only those graphs that contain a member of F as an induced subgraph with

positive density.
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Chapter 4

A Generalised Turán Function

4.1. Introduction

The balanced complete bipartite graph Kn,n has the most edges of all K3-

free graphs. What can we say about the density of a K3-free graph that is

`locally' di�erent from Kn,n? The only graph on 3 vertices that does not

appear as a subgraph of Kn,n is P̄3, the graph with a single edge and an

isolated vertex. So a logical �rst step is to consider K3-free graphs that

contain a certain positive density of P̄3. This may be expanded to consider

the maximum density of a K3-free graph as a function of the density of P̄3

in that graph. In this chapter, we derive the function, parameterised by the

density of P̄3, that gives an exact bound for the maximum density of aK3-free

graph. We also derive linear functions that give upper bounds for Kn-free

graphs parameterised by families of graphs that are natural generalisations

of P̄3. These reults are analogous to stability results and, in general, even

more informative: where the parameterised graphs are absent in the extremal

graph, they reveal elements of the structure of those graphs that are close

to the extremal graph in density.

The relationship between the possible densities of graphs on 3 vertices was

considered in [16]. Speci�cally, they looked at the case of K3-free graphs

and considered the possible densities of P̄3, P3 and K̄3 in such graphs � that

is, the minimum and maximum densities in K3-free graphs of each of these

subgraphs as a function of the density of the others.
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A converse problem �xes the density of the graph and determines the min-

imum density of a subgraph such as K3 - that is, it seeks to determine the

minimum density of K3, for instance, as a function of the edge density. This

problem was introduced by Erdös in [30] and has been studied extensively

for K3 and larger cliques � see [23, 22, 27, 21].

We conduct this study by exploring certain generalisations of the Turán

function using a combination of �ag algebra and analytical techniques. First

we de�ne d(F ; J) as the density of F as an induced subgraph of J ; that is:

d(F ; J) =
#induced copies of F in J(|V (J)|

|V (F )|
) .

The Turán function ex(n,F) returns as a value the maximum number of

edges of a graph of order n that does not contain any F ⊂ F as a subgraph.

We consider various natural generalisations of the Turán function. The two

parameters implicitly used in the de�nition of the Turán function are the

subgraph which is being maximised � in the classical Turán function this

subgraph is an edge � and the densities of subgraphs contained in the family

F � in the classical Turán function these densities are all set to zero. The

generalised Turán function expressly introduces these parameters:

exgen(n,F ,G = {Gi},K = {ki}, H) = max
J

(#induced copies of H in J :

|V (J)| = n and J is F-free and

∀i ∈ [1, |G|] d(Gi; J) ≥ ki)

where F is the family of forbidden graphs, as before, G is another family of

graphs and K is a set of real values, both indexed by i, such that each graph

Gi is present with density at least ki, and H is the subgraph whose density is

being maximised. An alternative version parameterises the Turán function

on the aggregate of the densities of the family G, instead of a separate density
for each member of that family:

exgen*(n,F ,G, k,H) ≡ max
J

(#induced copies of H in J :

|V (J)| = n and J is F-free and(∑
G∈G

d(G; J)

)
≥ k.
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The Turán density is de�ned in terms of the Turán function as follows

π(F) = lim
n→∞

ex(n,F)(
n
2

) .

The generalised Turán density can similarly be de�ned in terms of the Turán

function:

πgen(F ,G,K,H) = lim
n→∞

exgen(n,F ,G,K,H)(
n

|V (H)|
)

and in aggregate form:

πgen∗(F ,G, k,H) = lim
n→∞

exgen*(n,F ,G, k,H)(
n

|V (H)|
) .

4.2. Results

As set out above, the �rst graph to consider is the complete graph on n

vertices, Kn. The extremal graph for Kn is the balanced complete n − 1-

partite graph. Starting with K3, P̄3 is the only graph on three vertices that

is absent from the complete bipartite graph, so it is natural to determine

πgen(K3, P̄3, k,K2).

Theorem 4.1. πgen
(
K3, P̄3, k,K2

)
=

1+
√

1−8k/3

4

We provide two di�erent proofs of this theorem, one using �ag algebra and

one using analytical techniques.

For Kn with n > 3, there are a larger number of graphs that are absent from

the n− 1-partite complete graphs. We consider one family of graphs which

we label K−jn . De�ne K−jn = Kn−1 ∪ {x}, where d(x) = n− 1− j. That is,
K−jn is a graph of order n consisting of a Kn−1 and a single vertex, with j

edges missing between the vertex and the Kn−1. For j > 1, K−jn is not found

as a subgraph of the complete n − 1- partite graph. The �rst few members

of this family are as follows

K−3
4 =

K−2
4 =
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K−1
4 =

K−4
5 =

The same technique used in the proof of Theorem 4.1, gives a related upper

bound for the density of triangles:

Theorem 4.2. πgen∗(K4, {K−2
4 ,K−3

4 }, k,K3) ≤ (1/6)(1 +
√

1− 3k).

With a di�erent application of �ag algebra, we prove a linear upper bound

on the conditional Turan density of Kn with respect to the graphs Kj
n−1, for

j > 1.

Theorem 4.3. πgen∗(Kt, {K−jt : 1 < j < t}, k,K2) ≤ t−2
t−1 −

(t−1)t−2

t!(t−2) k.

Finally, we are able to improve this result for the particular case of K4:

Theorem 4.4. πgen(K4, (K
−3
4 ,K−2

4 ), (x, y),K2) ≤ (2/3)− (3/8)x− (1/4) y.

4.3. Proofs

4.3.1. Proofs using Flag Algebras

An introduction to �ag algebra and the particular constructions used in these

proofs is set out in Chapter 1 in Section 1.3.4. In particular, we employ the

algebra as 'syntactic sugar' to allow the expression of Cauchy-Schwarz type

inequalities that would be infeasible otherwise.

First we provide the �ag algebra proof for the conditional Turan density of

K3.

First proof of Theorem 4.1. Working in the algebra of graphs

missing K3:

( )2

=

u

v
1

}

~
2

1
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≤

u

v


1

2}

~

1

=

u

v
1

}

~

1

=
1

3

and

=
1

3
+

2

3

≥ 1

3
+ 2

( )2

which implies that

≤ 1

4
+

1

4

√√√√1− 8

3
.

It follows from Lemma 4.6 that the balanced blow up of the bipartite graph,

K2(p), where every edge exists with probability p, achieves this edge density,

and so π(K3, P̄3, k,K2) = 1/4 + 1/4
√

1− (8/3)k. �

Next we use a similar argument to prove Theorem 4.2.

Proof of Theorem 4.2. Working in the algebra of graphs missingK4:( )2

=

u

v
1 2

}

~
2

1

2

≤

u

v
(
1 2

)2
}

~

1

2
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=

u

v
1 2

}

~

1

2

=
1

6

and

=
1

4
+

1

4
+

1

2

≥ 1

4
+

1

4
+ 3

( )2

which implies that

≤ 1

6

1 +

√√√√1− 3

(
+

) .

�

We introduce some additional nomenclature for Theorems 3 and 4. The

type of order t isomorphic to the complete graph is labelled σt and the �ag

consisting of σt and v unlabelled vertices isomorphic toKt+v is labelledK
σt
t+v.

The method used to prove Theorems 4.3 and 4.4 is illustrated �rst for the

speci�c case of Theorem 4.4. The central idea is taken from a proof of Turan's

Theorem due to Reiher.

Proof of Theorem 4.4. First, we show that, working in the �ag al-

gebra of graphs missing K4, K3 + 1
4

(
K−2

4 +K−3
4

)
≤ 1

3K2:

1

3
K2 −K3 = 3

s
1

9
Kσ2

2 −
1

3
Kσ2

3

{

σ2

= 3

t(
1

3
−Kσ2

3

)2

+
1

3
Kσ2

3 − (Kσ2
3 )2

|

σ2

≥ 3

s
1

3
Kσ2

3 − (Kσ2
3 )2

{

σ2

= 3

[
1

3
K3 −

1

6
K−1

4

]
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= 3

[
1

3

(
1

4
K−2

4 +
1

4
K−3

4 +
1

2
K−1

4

)
− 1

6
K−1

4

]
=

1

4

(
K−2

4 +K−3
4

)
.

This inequality for K3 can then be substituted into the following:

2

3
−K2 =

3

2

s
4

9
− 2

3
Kσ1

2

{

σ1

=
3

2

t(
2

3
−Kσ1

2

)2

+
2

3
Kσ1

2 − (Kσ1
2 )2

|

σ1

≥ 3

2

s
2

3
Kσ1

2 − (Kσ1
2 )2

{

σ1

=
3

2

[
2

3
K2 −K3 −

1

3
K−1

3

]
≥ 3

2

[
1

2

(
K3 +

1

4

(
K−2

4 +K−3
4

))
+(4.3.1)

1

2

(
K3 +

2

3
K−1

3 +
1

3
K−2

3

)
−K3 −

1

3
K−1

3

]
=

3

2

[
1

8

(
K−2

4 +K−3
4

)
+

1

6
K−2

3

]
≥ 3

2

[
1

8

(
K−2

4 +K−3
4

)
+

1

6

(
1

4
K−2

4 +
3

4
K−3

4

)]
(4.3.2)

=
3

8
K−3

4 +
1

4
K−2

4 .

At 4.3.1,K2 is replaced by the substitution involvingK3 and is also expanded

in terms of sub-graphs of order 3. At 4.3.2, K−2
3 is replaced by its expansion

in terms of K−2
4 and K−3

4 . �

Finally, this technique is expanded to the general case.

Lemma 4.5. Working in the algebra of graphs missing Kt, for all i ∈ [2, t−1] :

t− i
t− 1

Ki−1 ≥ Ki + Ei

t−1∑
j=2

K−jt

where

Ei =
(t− 1)t−i−1 (i− 1)

t(t− 2) [(t− i)! ]
.
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Proof. We proceed downwards from i = t− 1:

1

t− 1
Kt−2 −Kt−1 = (t− 1)

t(
1

t− 1

)2

K
σt−2

t−2 −
1

t− 1
K
σt−2

t−1

|

σt−2

= (t− 1)

t(
1

t− 1
−Kσt−2

t−1

)2

+
1

t− 1
K
σt−2

t−1 −
(
K
σt−2

t−1

)2|
σt−2

≥ (t− 1)

s
1

t− 1
K
σt−2

t−1 −
(
K
σt−2

t−1

)2{
σt−2

= (t− 1)

[
1

t− 1
Kt−1 −

2

t(t− 1)
K−1
t

]

= (t− 1)

 1

t− 1

2

t
K−1
t +

1

t

t−1∑
j=2

K−jt

− 2

t(t− 1)
K−1
t


=

1

t

t−1∑
j=2

K−jt

= Et−1

t−1∑
j=2

K−jt .

Next is i = t− 2:

2

t− 1
Kt−3 −Kt−2 =

(
t− 1

2

)t(
2

t− 1

)2

K
σt−3

t−3 −
2

t− 1
K
σt−3

t−2

|

σt−3

≥
(
t− 1

2

)s
2

t− 1
K
σt−3

t−2 −
(
K
σt−3

t−2

)2{
σt−3

=

(
t− 1

2

)[
2

t− 1
Kt−2 −Kt−1 −

2

(t− 1)(t− 2)
K−1
t−1

]
=

(
t− 1

2

)[
t− 3

t− 2

1

t− 1
Kt−2 +

1

t− 2
Kt−2 −Kt−1 −

2

(t− 1)(t− 2)
K−1
t−1

]

≥
(
t− 1

2

)[
t− 3

t− 2

Kt−1 +
1

t

t−1∑
j=2

K−jt

+

1

t− 2

(
Kt−1 +

2

t− 1
K−1
t−1

)
−Kt−1 −

2

(t− 1)(t− 2)
K−1
t−1

]
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=
(t− 1)(t− 3)

2(t− 2)t

t−1∑
j=2

K−jt

= Et−2

t−1∑
j=2

K−jt .

And we are then able to prove the general case by falling induction on i:

t− i
t− 1

Ki−1 −Ki =

(
t− 1

t− i

)t(
t− i
t− 1

)2

K
σi−1

i−1 −
t− i
t− 1

K
σi−1

i

|

σi−1

≥
(
t− 1

t− i

)s
t− i
t− 1

K
σi−1

i −
(
K
σi−1

i

)2{
σi−1

=

(
t− 1

t− i

)[
t− i
t− 1

Ki −Ki+1 −
2

i(i+ 1)
K−1
i+1

]
=

(
t− 1

t− i

)[
t− (i+ 1)

t− 1

i− 1

i
Ki +

1

i
Ki −Ki+1 −

2

i(i+ 1)
K−1
i+1

]

≥
(
t− 1

t− i

)[
i− 1

i

Ki+1 + Ei+1

t−1∑
j=2

K−jt

+
1

i

(
Ki+1 +

2

i+ 1
K−1
i+1

)

−Ki+1 −
2

i(i+ 1)
K−1
i+1

]
=

t− 1

t− i
i− 1

i
Ei+1

t−1∑
j=2

K−jt

= Ei

t−1∑
j=2

K−jt .

�

Lemma 4.5 leads quickly to a proof of Theorem 4.3.

Proof of Theorem 4.3. We wish to determine an upper bound for

πgen∗(Kt, {K−jt : j ∈ [2, t − 1]}, k,K2). Working in the algebra of graphs

missing Kt, we apply Lemma 4.5 with i = 2:

t− 2

t− 1
−K2 ≥ E2

t−1∑
j=2

K−jt
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=
(t− 1)t−3

t(t− 2) [(t− 2)! ]

t−1∑
j=2

K−jt

=
(t− 1)t−2

t! (t− 2)

t−1∑
j=2

K−jt .

From this it follows that

πgen∗(Kt, {K−jt : j ∈ [2, t− 1]}, k,K2) ≤ t− 2

t− 1
− (t− 1)t−2

t! (t− 2)
k.

�

4.3.2. Proof using Analytic Techniques

Finally, we use a completely di�erent analytical approach to provide an al-

ternative proof of Theorem 4.1.

We prove the theorem for the family of weighted graphsW, with both vertex

and edge weights, which include graphs as a special case and derive Theorem

4.1 as a corollary. De�ne a weighted graph G ∈ W as a triple (n,x,A)

subject to the following conditions:

• |x| = n and A = aij is a square matrix of order n;

• ∀i ∈ [n] 0 < xi ≤ 1;

•
∑

i∈[n] xi = 1;

• ∀i ∈ [n] aii = 0;

• ∀i, j ∈ [n] aij = aji; and

• ∀i, j ∈ [n] 0 ≤ aij ≤ 1.

We interpret xi as the proportion of vertices of the graph in vertex set i and

aij as the density of edges between vertex sets i and j. Each vertex set i

consists of independent vertices. The family W clearly includes all graphs

as a (dense) subset: for any graph G = (V (G), E(G)), take n = |V (G)|,
xi = 1/n for all i ∈ n and either aij = 1 if ij ∈ E(G) or aij = 0 if ij 6∈ E(G).
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Let pij = 1− aij . For any weighted graph G, de�ne:

d(G) = 2
∑

i,j∈(V (G)
2 )

xiaijxj

dP̄3
=

∑
i,j∈(V (G)

2 )

xixjaij

3 (xi + xj)
(
2pij − 2p2

ij

)
+ 2

∑
k∈V (G),k 6=i,j

xkpikpjk


so that d(G) is the density of the underlying graph H and dP̄3

(G) is the

density of P̄3 in the underlying graph H.

De�ne K2(p) as the weighted graph consisting of two vertices of weight 1/2

and one edge of weight p, so that the underlying graph is the blow up of K2

where edges exist with probability p.

Lemma 4.6. d(K2(p)) =
1+
√

1−8dP̄3
(K2(p))/3

4 .

Proof. We have

d = d(K2(p)) =
1

2
p

e = dP̄3(K2(p)) =
3

2
p(1− p)

= 3d(1− 2d)

0 = −6d2 + 3d− e

so that by the quadratic formula

d =
1+
√

1−8e/3

4 .

�

From now on, we work with the family of weighted graphs W∗ that

model graphs that are K3-free; in other words, for any weighted graph

G = (n,x,A) ∈ W∗, ∀i, j, k ∈ [n] aij > 0 & ajk > 0 =⇒ aik = 0.

A weighted graph G ∈ W∗ is maximal if d(G) = d1 and dP̄3(G) = d2 and

there is no other graph F ∈ W∗ such that d(F ) ≥ d1 and dP̄3
(F ) > d2

or d(F ) > d1 and dP̄3
(F ) ≥ d2. A weighted graph is minimal if there

is no other graph F ∈ W∗ with d(F ) = d(G) and dP̄3
(F ) = dP̄3

(G) and

|V (F )| < |V (G)|.
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Let Z be the family of weighted graphs that are both maximal and minimal.

We show the following:

Lemma 4.7. For all Z ∈ Z, there is no i, j ∈ V (Z) such that aij = 0.

Proof. Assume that aij = 0. As Z is minimal there is at least one

vertex k such that aik 6= ajk (otherwise, we could replace Z with a smaller

graph Z∗ with V (Z∗) = V (Z)− {j} and x∗j = xi + xj and a
∗
jq = ajq for all

vertices q).

Consider the following transformation that leaves d(Z) unchanged. Replace

pik with pik + ∆ and replace pjk with pjk − ∆ xi
xj
. Call this new weighted

graph Z ′. Note that

d(Z ′)− d(Z) = xi (aik −∆)xk + xj

(
ajk + ∆

xi
xj

)
xk − xiaikxk − xjajkxk

= 0.

Next we de�ne

Dijk(∆) = de3(Z ′)− de3(Z)

and calculate

Dijk(∆) = 6xixk (xi + xk)
[
(pik + ∆)− (pik + ∆)2 −

(
pik − p2

ik

)]
+6xjxk (xj + xk)

[(
pjk −

xi
xj

∆

)
−
(
pjk −

xi
xj

∆

)2

−
(
pjk − p2

jk

)]

+6xixjxk

[
(pik + ∆) +

(
pjk −

xi
xj

∆

)
− 2 (pik + ∆)

(
pjk −

xi
xj

∆

)
− (pik + pjk − 2pikpjk)

]
+6xixk

∑
q∈V (G),q 6=i,j,k

xq

[
(pik + ∆) (piq + pkq − 2piqpkq)

+ (1− pik −∆) piqpkq − pik (piq + pkq − 2piqpkq)− (1− pik) piqpkq
]

+6xjxk
∑

q∈V (G),q 6=i,j,k

xq

[(
pjk −

xi
xj

∆

)
(pjq + pkq − 2pjqpkq)

+

(
1− pjk +

xi
xj

∆

)
pjqpkq − pjk (pjq + pkq − 2pjqpkq)− (1− pjk) pjqpkq

]
= 6xixk∆

[
xi + xk − 2pikxi − 2pikxk − xi∆− xk∆− xj − xk + 2pjkxj
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+2pjkxk − xi∆− xk
xi
xj

∆ + xj − xi − 2xjpjk + 2xipik + 2xi∆

+
∑

q∈V (G),q 6=i,j,k

xq (piq + pkq − 3piqpkq)

+
∑

q∈V (G),q 6=i,j,k

xq (−pjq − pkq + 3pjqpkq)
]

= 6xixk∆
[
2xk (pjk − pik)− xk

xi + xj
xj

∆

+
∑

q∈V (G),q 6=i,j,k

xq (1− 3pkq) (piq − pjq)
]
.

Assume, without loss of generality, that pjk > pik. Then it is possible to

take ∆ such that

0 < ∆ <
2xj (pjk − pik)

xi + xj
.

If Dijk(∆) is positive, then Z is not maximal. Therefore, Dijk(∆) is negative

and so the sum
∑

q∈V (G),q 6=i,j,k xq (1− 3pkq) (piq − pjq) must be negative. Let
q be a vertex that gives a negative contribution to this sum. If pkq <

1
3 then

pjq > piq. But then piq and pik are both less than 1, so that ikq contains a

copy of K3. Therefore, pkq >
1
3 and piq > pjq.

We de�ne two sets of vertices in Z: J = {a : pja > pia} and I = {b : pib >

pjb}. Note that both I and J are non-empty: k ∈ J and q ∈ I. Note also

that for all a1, a2 ∈ J , pa1a2 = 1 (or otherwise ia1a2 contains a copy of K3)

and that for all b1, b2 ∈ I, pb1b2 = 1 (or otherwise jb1b2 contains a copy of

K3). We next determine pab for all a ∈ J and b ∈ I.

Let βk be the weighted average of the factors (1−3pkb) (b ∈ I) for any vertex
k ∈ J and αk the weighted average of the factors (1− 3pka) (a ∈ J) for any
vertex k ∈ I, so

βk =

∑
b∈I (1− 3pkb)xb (pib − pjb)∑

b∈I xb (pib − pjb)

αk =

∑
a∈J (1− 3pka)xa (pia − pja)∑

a∈I xa (pia − pja)

and 1 ≥ βk, αk ≥ −2.
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Then, for any vertex k ∈ J∑
a∈J

2xa (pja − pia) + βk
∑
b∈I

xb (pib − pjb) ≤ 0

or else Z would not be maximal. Both of the summands are positive. And

similarly for q ∈ I:∑
b∈I

2xb (pjb − pib) + αk
∑
a∈J

xb (pia − pja) ≥ 0

and both of the summands are negative. Accordingly∑
a∈J

2xa (pja − pia) + βk
∑
b∈I

xb (pib − pjb) ≤
∑
b∈I

2xb (pjb − pib) + αk
∑
a∈J

xa (pia − pja)

(2 + αk)
∑
a∈J

xa (pja − pia) ≤ − (2 + βk)
∑
b∈I

xb (pib − pjb)

and, as both summands are positive, it follows that αk = βk = −2 (so that

pab = 1 for all a ∈ J , b ∈ I) and also∑
a∈J

xa (pja − pia) = −
∑
b∈I

xb (pjb − pib)

or ∑
a∈J∪I

xa (pja − pia) = 0.

It follows that, for any k ∈ I ∪ J ,

Dijk(∆) = −6xix
2
k∆

2xi + xj
xj

.

We now consider a similar transformation applied to k ∈ J and q ∈ I

simultaneously. Z ′ is identical to Z except that pik is replaced with pik + ∆1

and pjk with pjk−∆1
xi
xj

and Z ′′ is identical to Z ′ except that piq is replaced

with piq + ∆2 and pjq with pjq − ∆2
xi
xj
. Note that, as per above, the edge

densities of Z, Z ′ and Z ′′ are equal. We calculate the change in density of

e3 in the transformation from Z to Z ′′ as follows:

de3(Z ′′)− de3(Z) = de3(Z ′′)− de3(Z ′) + de3(Z ′)− de3(Z)

= D′ijq(∆2) +Dijk(∆1)

where

D′ijq = de3(Z ′′)− de3(Z ′)
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and is calculated as follows

D′ijq(∆2) = 6xixq (xi + xq)
[
piq + ∆2 − (piq + ∆2)2 −

(
piq − p2

iq

) ]
+6xjxq (xj + xq)

[
pjq −∆2

xi
xj
−
(
pjq −∆2

xi
xj

)2

−
(
pjq − p2

jq

) ]
+6xixjxq

[
(piq + ∆2) +

(
pjq −

xi
xj

∆2

)
− 2 (piq + ∆2)

(
pjq −

xi
xj

∆2

)
− (piq + pjq − 2piqpjq)

]
+6xixqxk

[
(piq + ∆2 + pik + ∆1 − 2 (piq + ∆2) (pik + ∆1))

− (piq + pik + ∆1 − 2piq (pik + ∆1))
]

+6xjxqxk

[(
pjq −∆2

xi
xj

+ pjk −∆1
xi
xj
− 2

(
pjq −∆2

xi
xj

)(
pjk −∆1

xi
xj

))
−
(
pjq + pjk −∆1

xi
xj
− 2pjq

(
pjk −∆1

xi
xj

))]
+6xixq∆2

∑
m∈I∪J\{k,q}

2xm (pjm − pim)

= 6xixq∆2

[
xi + xq − 2xipiq − 2xqpiq − xi∆2 − xq∆2 − xj − xq

+2xjpjq + 2xqpjq − xi∆2 −
xqxi
xj

∆2 + xj − xi − 2xjpjq + 2xipiq + 2xi∆2

+xk − 2xkpik − 2xk∆1 − xk + 2xkpjk − 2
xkxi
xj

∆1

+
∑

m∈I∪J\{k,q}

2xm (pjm − pim)
]

= 6xixq∆2

[
2xq (pjq − piq) + 2xk (pjk − pik) +

∑
m∈I∪J\{k,q}

2xm (pjm − pim)

−xq
xi + xj
xj

∆2 − 2xk
xi + xj
xj

∆1

]
= −6xixq

xi + xj
xj

[
xq∆

2
2 + 2xk∆1∆2

]
.

Combining this with Dijq gives

de3(Z ′′)− de3(Z) = D′ijq(∆2) +Dijk(∆1)

= −6xi
xi + xj
xj

[
x2
q∆

2
2 + 2xkxq∆1∆2 + x2

k∆
2
1

]
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= −6xi
xi + xj
xj

[xk∆1 + xq∆2]2

which is zero if we set ∆2 = −xk
xq

∆1.

Set

∆1 = min

(
xj (pjk − pik)

xi + xj
,
xqxj (piq − pjq)
xk (xi + xj)

)
and note that ∆1 > 0. Applying this transformation gives Z ′′ ∈ Z and either

pjk = pik or piq = pjq (or both). This process can then be repeated until

there are fewer than two vertices k where pik 6= pjk. But, if there is one such

vertex, the graph is not maximal (and therefore Z is not minimal). If there

are zero such vertices, i and j are clones and the graph is not minimal (and

therefore Z is not minimal). This contradiction establishes the lemma. �

The proof of Theorem 4.1 follows quickly from these lemmas.

Second proof of Theorem 4.1. Let H1 be a graph with a �xed den-

sity of P̄3 and maximal edge density. Consider the weighted graph G1 ∈ W∗

with V (H1) vertices of weight 1/V (H1) and with edge densities of 1 on

the same edge-set as H1. G1 is clearly a model of H1. If G1 is not mini-

mal, there is a graph G2 ∈ W∗ that is minimal with d(G2) = d(G1) and

dP̄3
(G1) = de3(G2) and which is also a model of H1 (otherwise we set

G2 = G1) . Apply Lemma 4.7 to G2. It follows that the underlying graph

of G2 has no zero edge weights.

The only non-trivial weighted graph G2 ∈ W∗ with no zero edge weights has

two vertices and a single edge. Let G2 = {1, 2} with x1 = k, x2 = 1− k and

a12 = q. Then we have

d(H1) = d(G2) = k(1− k)q

dP̄3(H1) = dP̄3
(G2) = 6k(1− k)q(1− q)

and, for any given P̄3 density, the edge density is maximised by taking k =

1/2. Accordingly, the extremal weighted graph H1 is K2(p) and the result

follows from Lemma 4.6. �
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4.4. Discussion

We conjecture that the extremal graph for πgen∗(Kt, {K−jt : 2 ≤ j ≤
t− 1}, k,K2) is Kt−1(p), the blow up of Kt−1 where edges are present with

probability p. The linear inequalities generated using the �ag algbra proofs

are consistent with this, but the correct function is clearly not linear. Fur-

thermore, the inequality is built up from a number of intermediate graphs

- these are not all included in the single linear result, apart from in the

equation for K4 which is dealt with separately. If they were, it might be

improved. Overall, the second approach - using analysis of weighted graphs

- appears to be more promising as a route to the general result. As yet, we

have only been able to apply it to K3.

The functions πgen and πgen∗ embody information about the Turán den-

sity, extremal graphs, stability and the characteristics of a family of graphs.

Where the result is a linear approximation, this is equivalent to a stability

result: essentially, the approximation is close to the exact value for small val-

ues of the forbidden subgraph densities. Where the result includes non-linear

terms, this is equivalent to a description of the entire family of graphs sat-

isfying these criteria and correspondingly more informative than a stability

result.
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Chapter 5

A new upper bound for the

density Turán problem

5.1. Introduction

Let H be a simple, connected graph. De�ne ∆(H) as the maximum degree

of H. A blow-up of H, denoted as H(N), is a graph that contains a set

of N independent vertices corresponding to each vertex in H where vertices

in di�erent vertex sets are connected if the corresponding vertices in H are

connected; that is, for all vertices v, w ∈ V (H) there correspond sets of

independent vertices Av, Aw ∈ V (H(N)) such that |V (Av)| = |V (Aw)| = N

and ∀a ∈ Av, b ∈ Aw vw ∈ E(H)↔ ab ∈ E(H(N)).

In this chapter, we will be considering subgraphs of H(N). Accordingly,

de�ne the density between two sets of vertices Ai and Aj as

d(Ai, Aj) ≡
|E(Ai, Aj)|
|Ai| |Aj |

where E(Ai, Aj) is the set of edges between Ai and Aj . Then for vertex sets

Av, Aw in H(N), vw ∈ E(H)→ d(Av, Aw) = 1.

A graph is F-free if it does not contain a subgraph isomorphic to any mem-

ber of F . Turán-type problems study properties of graphs that are F-free
for certain �xed classes of graphs F . The blow-up H(N) is the paradigm ex-

ample of a graph that is not H-free. The question naturally arises how many
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edges can be deleted from H(N) before it is H-free. Adding the constraint

that the same proportion of edges are deleted from each connected pair of

vertex sets gives what has become known as the Turán density problem (see,

for example, [6]).

Speci�cally, we de�ne the family of graphs Hα(N), where G ∈ Hα(N) if:

• for each vertex v ∈ V (H), G contains an independent set of N

vertices Av;

• for all vertices a ∈ Av and b ∈ Aw, vw 6∈ E(H)⇒ ab 6∈ E(G);

• d(Av, Aw) ≥ α for all vw ∈ E(H).

A transversal of G ∈ Hα(N) is a mapping ϕ : V (H) 7 −→ V (G) such that

ϕ(v) ∈ Av and ∀v, w ∈ V (H) vw ∈ E(H) → ϕ(v)ϕ(w) ∈ E(G). In other

words, ϕ(V (H)) is isomorphic to H and so there is a transversal if H is an

induced subgraph of G.

The Turán transversal number is the minimum value of α such that a

transversal exists for all G ∈ Hα(N):

exd(H,N) = min(α : there is a transversal of G ∈ Hα(N))

and the Turán transversal density is de�ned accordingly:

πd(H) = lim sup
N

(exd(H,N).

Note that, by virtue of Lemma 2.1 of [20], the Turán transversal number

is a non-increasing function of N and so the Turán transversal density is

well-de�ned.

Various bounds have been established for speci�c graphs, such as trees (see

[6]) and certain unicyclic graphs (see [3]). The best upper bound for the

general case, obtained in [6], is 1 − 1/(4(∆(H) − 1)). Using the entropy

compression technique supplemented with some analytic methods, we derive

a di�erent upper bound of 1−1/(γ(∆(H)−β)), where 3 ≤ γ < 4 and β ≤ 1.

The new bound asymptotically approaches the existing best upper bound,

but is derived in a completely di�erent way.
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5.2. Entropy Compression

The �rst main result is as follows:

Theorem 5.1. Given a graph H with maximum degree ∆, let α = x be the

solution to
∑∆

i=0(i−1)xi = 0 where 0 < α ≤ 1 and let γ =
∑∆

i=0 α
i/α. Then

πd(H) ≤ 1− 1/γ∆.

This result can be re�ned using analytic techniques to produce the following:

Theorem 5.2. Given a graph H with maximum degree ∆, πd(H) ≤ η where

η is de�ned as follows:

• Set φ∆(x) = 1 +
∑∆

i=1 x
i.

• Set α as the solution to xφ′∆(x)− φ∆(x) = 0 with 0 < α ≤ 1.

• Set

γ =
φ∆(α)

α
,

and de�ne the vectors

µi =

(
αi

φ∆(α)

)
ci =

(
log

(
∆!

(∆− i)!

))
and the (covariance) matrix

Σij = µiδij − µiµj −
αi+j−2(i− 1)(j − 1)

φ(α)φ′′(α)

where, in each case, i, j run from 0 to ∆.

• Set

β = ∆− eciµi+ciΣijc
T
j

and

η = 1− 1

γ(∆− β)
.

The structure of the proof is as follows. An algorithm is given that builds

up a mapping that, if the algorithm terminates, constitutes a transeversal.
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The algorithm consumes a vector of random entries and keeps a record of its

actions, from which the original vector can be reconstructed. We show that

each record corresponds to a unique vector and that the number of possible

records is eventually less than the number of possible vectors, so that there

must be one vector for which the algorithm terminates. Another way of look-

ing at this is that the record constitutes a compression of the original vector

and that, if the algorithm does not terminate, eventually the compression

has less entropy than the original random vector, which is impossible, hence

the characterisation of this technique as entropy compression.

5.3. Algorithm

Consider the following algorithm, which takes as input a graph G ∈ Hη(N)

and a large vector of random entries Zt = (zi)i≤t, where each zi is a random

variable with integer values selected uniformly from [1, N ]:

5.3.1. Step 1

Give a �xed ordering to the vertex classes Av (or, equivalently, the vertices

V (H)) and also give, for each vertex set Ai, separate �xed orderings to the

individual vertices in that vertex set, labelling the vertices A1
i . . . A

N
i . Set

1 → c and k as the vertex in H with the lowest index and create an empty

vector Rt = (ri)i≤t and the empty mapping ϕ0.

5.3.2. Step 2

Set ϕc = ϕc−1 ∪ (k → Azck ); that is, the homomorphism ϕc is ϕc−1 together

with the mapping from k to the vertex in Ak with index zc.

5.3.3. Step 3

Determine whether there are any missing edges in ϕc; that is whether there

exists any vertex v ∈ Dom(ϕc) such that vk ∈ E(H) and ϕc(v)Azck 6∈ E(G).

If there is no missing edge, set rc = 0, set k as the vertex in H with the

lowest index such that k 6∈ Dom(ϕc) and proceed to Step 6. Otherwise,

proceed to step 4.
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5.3.4. Step 4

Set as rc the ordered pair (p, q) formed as follows. Pick any vertex a =

ϕc(v) ∈ Av that was identi�ed as part of a missing edge in Step 3. Index

the neighbours of k in H from 1 to ∆ using the order derived from the �xed

ordering of the vertices of H. Then p is the derived index of v in H. Next we

index all the missing edges between Av and Ak using the �xed order of each

of the vertices in Av and Ak � say, by ordering the missing edges using the

lexicographic ordering on Av, Ak. Then q is the index of the missing edge

between a and Azck . Note that there are exactly (1 − η)N2 missing edges

between any two vertex classes.

5.3.5. Step 5

Delete from ϕc both the mappings from v and k.

5.3.6. Step 6

If the homomorphism ϕc is complete � that is, if Dom(ϕc) = V (H) � then

set ϕ = ϕc and terminate. Otherwise, increment c by 1 (k is unchanged)

and go back to Step 2.

5.4. Example Run-Through of the Algorithm

We illustrate operation of the algorithm with a simple example. Let H =

1 2

3
.

After the �rst iteration of the algorithm, G is

1 2

3

x

with ϕ1(1) = x.
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After the second iteration of the algorithm, G is

1 2

3

x y

with ϕ2(1) = x and ϕ2(2) = y.

In the third iteration, vertex z is added to give the graph

1 2

3

x y

z

As 13 ∈ E(H) but xz = (ϕ3(1), ϕ3(3)) 6∈ E(G), x and z are deleted from

ϕ3. The neighbours of 3 in H are 1 and 2, so the derived index of vertex 1

is 1. Using an ordering of edges between A1 and A3 gives an index for xz,

say q. Then r3 = (1, q). After the third iteration of the algorithm, G is

1 2

3

y

and in the fourth iteration of the algorithm a vertex will be added from

vertex set 3. Also, R3 = (0, 0, (1, q)).

5.5. Analysis of the Algorithm

If the algorithm terminates, then ϕ is a transversal of H. The algorithm

only terminates when the domain of ϕ is all of V (H) and, by construction,

there are no required edges missing.
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We now show that Rt (the record made at all stages up to and including t)

and ϕt (ϕ after stage t) uniquely determine Zt.

Lemma 5.3. For all i, the domain of ϕi and the vertex class to be considered

at stage i+ 1 is uniquely determined by Ri.

Proof. We proceed by induction. After stage 1, r1 = 0, the domain of

ϕ1 consists of the lowest indexed vertex in V (H) and the next vertex to be

considered is the second lowest indexed vertex in V (H). Now assume that,

given Ri−1, we have determined the domain of ϕi−1 and the vertex to be

considered at stage i, say v. There are two cases. If ri = 0, Dom(ϕi) =

Dom(ϕi−1) ∪ v and the next vertex to be considered is the lowest indexed

vertex not in Dom(ϕi). If ri = (p, q), we determine the pth neighbour of v in

H using the indexing derived from the underlying numbering of the vertices

in H and denote this neighbour as w. Then Dom(ϕi) = Dom(ϕi−1) \w and

the next vertex to be considered is v, ie, the same vertex as at stage i. �

Lemma 5.4. The mapping from Zt to (Rt, ϕt) is injective.

Proof. The aim is to show that the record Rt and the mapping ϕt

uniquely determine Zt. We proceed by induction. After stage 1, Dom(ϕ1) =

v is a single vertex and z1 is the index of ϕ1(v) in vertex set Av.

Assume that t ≥ 2 and that Zt−1 may be determined from Rt−1 and ϕt−1.

Given rt and ϕt (but not ϕt−1), to complete the induction it is necessary

to �nd zt and ϕt−1. By Lemma 1, from Rt−1, we know Dom(ϕt−1) and

the vertex v to be considered at stage t. If rt = 0, then ϕt−1 is ϕt with

the removal of the single entry for v and zt is the index of ϕt(v) in Av.

Otherwise, rt = (p, q). Recall that p refers to a vertex class using the index

derived from the neighbours of v and the underlying order on the vertices of

H, say w, and then q refers to the non-edge between vertex sets Av and Aw

using the index derived from the underlying order on the vertices of those

vertex sets. This gives su�cient information to determine the vertex in Av

that was selected at stage t, thereby determining zt, and also the vertex in

Aw that was removed at stage t, so that ϕt−1 is ϕt with the addition of the

mapping from w to that vertex. In both cases, for t ≥ 2, we have determined

zt and ϕt−1. The induction is complete. �
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Let St be the set of vectors Zt such that after step t of the algorithm the

mapping is not complete and let Ft be the set of all vectors Zt. Clearly,

|Ft| = N t and |St| ≤ |Ft|. If the inequality is strict, then there is a vector

input that terminates by stage t � in other words, there is a transversal.

Let Rt be the family of all possible records at stage t that can be produced by

an input from S t. Pairs from (Rt, ϕt) correspond to incomplete mappings

and so, as a consequence of Lemma 2:

|St| ≤ (N + 1)|V (H)| |Rt| .

Therefore, if, for large enough t, (N + 1)|V (H)| |Rt| < N t then St < Ft and

there is a transversal. It remains to provide an upper bound for |Rt|.

5.6. Computing Rt

We de�ne a series of mappings of a record Rt. Recall that Rt =

(0, 0, (p3, q3)..., 0, ...0, (pt, qt)), a vector consisting of a series of entries consist-

ing of either 0 or a pair of integers. De�ne R∗t as the mapping that replaces

each pair with the digit 1. So R∗t looks like (0, 0, 1, ...0, ..., 0, 1). Then de�ne

R•t as the mapping that concatenates R∗t . So R•t looks like 001...0...01.

Our �rst task is to count |R•t |, the family of all possible R•t . To do this, note
that each 0 corresponds to addition of a vertex to the mapping and each 1

corresponds to deletion of a vertex from the mapping. It follows that, for

each pre�x of the sequence, there are at least as many 0s as 1s. This property

de�nes the sequences known as Dyck words. In fact, they are partial Dyck

words, in that the number of 0s and 1s in a complete sequence may not be

equal, but will di�er by a maximum of |V (H)|. Furthermore, there is an

additional constraint in that the maximum descent � the maximum length

of a consecutive sequence of 1s � is ∆. Let Cy,E be the number of Dyck

words with length 2y and all descents in E. We wish to determine Ct/2,[∆].

Asymptotics for generalised Dyck words are considered in [10] and the fol-

lowing Lemma is a restatement of Lemma 8 of [10]:

Lemma 5.5. Let E 6= {1} be a non-empty set of nonnegative integers. De�ne

φE(x) = 1 +
∑

i∈E x
i. If φE(x) − xφ′E(x) = 0 has a solution x = α with

0 < α < R, where R is the radius of convergence of φE, then α is the unique
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solution of the equation in the open interval (0, R). Moreover, there is a

constant cE such that Ct,E ≤ cEγtt−3/2, where γ = φ′E(α) = φE(γ)/γ.

In the case where E = [∆],

φE(x) = 1 +

∆∑
i=1

xi

=
1− x∆+1

1− x

xφ′E(x) =

∆∑
i=1

ixi

= x
−(1− x)(∆ + 1)x∆ + (1− x∆+1)

(1− x)2

=
∆x∆+2 − (∆ + 1)x∆+1 + x

(1− x)2

φ∆(x)− xφ′∆(x) = 1 +
∆∑
i=1

(1− i)xi

=
(1− x∆+1)(1− x)−∆x∆+2 + (∆ + 1)x∆+1 − x

(1− x)2

=
1− x∆+1 − x+ x∆+2 −∆x∆+2 + (∆ + 1)x∆+1 − x

(1− x)2

=
1 + (1−∆)x∆+2 + ∆x∆+1 − 2x

(1− x)2

and so the pre-conditions of the Lemma are satis�ed and there is a constant γ.

Furthermore, by Lemma 6 of [10], we may replace cE with another constant

c′E to take account of the fact that Rt may be a partial Dyck word with a

�xed maximum excess of 0s over 1s.

Next we determine the maximum size of the preimage of each element of R•t
in the mapping fromRt toR•t . For each pair (pi, qi), pi is an integer from 1 to

∆, and qi is an integer from 1 to the number of non-edges between the two rel-

evant vertex classes, which is, by construction, exactly (1− η)N2. Therefore

there are ∆(1−η)N2 mappings from each (p, q) to 1. There are a maximum

of t/2 entries equal to 1 in R•t . Accordingly, the multiplicity of the mapping

from Rt to R•t is
(
∆(1− η)N2

)t/2
and |Rt| ≤ c′Eγt/2t−3/2

(
∆(1− η)N2

)t/2
,

where γ is the constant determined in accordance with Lemma 5.5.
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This enables proof of Theorem 5.1:

Theorem 5.1. Given a graph H with maximum degree ∆, let α = x be the

solution to
∑∆

i=0(i−1)xi = 0 where 0 < α ≤ 1 and let γ =
∑∆

i=0 α
i/α. Then

πd(H) ≤ 1− 1/γ∆.

Proof. Given a graph G ∈ Hη(N) with η > 1 − 1/γ∆, where γ is

determined according to the statement of the Theorem, ie, as in Lemma 5.5,

we need to show that there is a vector Zt ∈ {N}t that yields a transversal

of G. As above, let St be the set of vectors Zt for which the transversal is

incomplete and Ft the set of all vectors Zt. Then

|St| ≤ (N + 1)|V (H)|c′Et
−3/2

(√
γ∆(1− η)N

)t
and |Ft| = N t, so that

|St|
|Ft|

≤ (N + 1)|V (H)|c′Et
−3/2

(√
γ∆(1− η)

)t
.

This converges to 0 as t→∞ provided that√
γ∆(1− η) < 1

η > 1− 1

γ∆
.

And so the theorem is proven given the constraint on η. �

5.7. Further Development

Entropy compression relies on �nding an e�cient method of storing a record

of the algorithm that allows it to be reconstructed. The original Step 4 uses

an index of size ∆ to record the relevant neighbour when, in fact, only a

certain subset of those neighbours, known at that time, need be indexed.

and so it does not use all available information and could be made more

e�cient. Accordingly, Step 4 of the algorithm can be improved by only

indexing neighbours that are included within Dom(ϕt) at Step 4 of stage t.

At each stage t, Dom(ϕt) is known, and so all the neighbours of a vertex

within Dom(ϕt) are known. We cannot state in generality the maximum

number of neighbours of a vertex that are in Dom(ϕt) at stage t, but note

that for any sequence of 1s, each 1 represents deletion of a vertex from

Dom(ϕt) that is a neighbour of the vertex to be considered at stage t + 1.
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This puts an upper bound of ∆ − βt on the neighbours of the vertex to be

considered at stage t, where βt is the length of a maximal sequence of 1s

ending at stage t− 1 (and βt is 0 if r•t−1 = 0).

In particular, substitute Stage 4 of the algorithm with the following:

5.7.1. Step 4

Set rc as the ordered pair (p, q) formed as follows. Pick any vertex a =

ϕ(v) ∈ Av that was identi�ed as part of a missing edge in Step 3. Form

the set of neighbours of k in Dom(ϕc): that is, de�ne Nk = {w ∈ V (H) :

w ∈ Γ(k) and w ∈ Dom(ϕc)). Note that |Nk| ≤ ∆. Index Nk using the

order derived from the �xed ordering of V (H). Set p as the corresponding

index of v in Nk. Next we index all the missing edges between Av and Ak

using the �xed order of each of the vertices � say, by ordering the missing

edges using the lexicographic ordering on Av, Ak. Then q is the index of

the missing edge between a and Azck . Note that there are exactly (1− η)N2

missing edges between any two vertex classes.

5.8. Analysis of Amended Algorithm

Lemma 5.4 applies to the amended algorithm. In particular, the reasoning

for Lemma 5.3 proceeds as before, except that we use the domain of ϕt

and the underlying ordering on V (H) to reconstruct Nk instead of Γ(k).

Furthermore, for each pair (pt, qt), the maximum size of pt is ∆− βt, where
βt is determined as above. So the multiplicity of each mapping from (pt, qt)

to 1 is less than (∆− βt)(1− η)N2.

In order to calculate the product of the (∆− βt)(1− η)N2, recalling that βt

is the length of a maximal sequence of 1s ending at stage t−1, it is necessary

to determine the distribution of lengths of maximal sequences of 1s in Dyck

words. The necessary information is given by this Lemma:

Lemma 5.6. De�ne φ∆(x) = 1 +
∑∆

i=1 x
i. Let α be the solution to φ∆(x)−

xφ′∆(x) = 0 with 0 < α < R, where R is the radius of convergence of φE.

Take a Dyck word, W , of length 2n with no sequence of 1s greater than length

∆ chosen uniformly at random from all such Dyck words of length 2n. De�ne
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the random vector (Xi)n such that there are iXin 1s contained in maximal

sequences of length i in W . De�ne

µi =

(
αi

φ(α)

)
Σij = µiδij − µiµj −

αi+j−2(i− 1)(j − 1)

φ(α)φ′′(α)

and de�ne the random variable

Zi ∼ N (0,Σ).

Then E(nXi,n) = nµi + O(1) and COV(nXi,n) = nΣij + O(1) and
√
n(Xi,n − E(Xi,n)) converges in distribution to Zi.

Remark. A sequence Xn converges in distribution to a random variable X

if limn→∞ P{Xn ≤ x} = P(X ≤ x) holds for all points of continuity (and the

random variables considered here are continuous). It is denoted by Xn
d−→ X.

We have the following additional facts about convergence in distribution:

(1) The multivariate random variable Xn converges in distribution to

X if tXn
d−→ tX for all constant vectors t.

(2) If Xn converges in distribution to X, then for any continuous

bounded function F , F (Xn)
d−→ F (X) and, in particular, this follows

for the exponential function.

(3) For any continuous bounded function F , if Xn
d−→ X, then

limn→∞ E(F (Xn) = E(F (X)).

(4) For any continous bounded function F ,
∫
F (z)dXn(z) →∫

F (z)dX(z).

(5) If
√
n(Xn − µ)

d−→ X, then
√
n(Xn − µ) = X + op(1), where op is

order in probability (Xn is op(n
k) if ∀ε, δ ∃n0 P(

∣∣Xn/n
k
∣∣ > ε) < δ

for all n > n0).

Proof. Consider the following bijection from Dyck words to rooted pla-

nar trees. First, swap 1s and 0s and take the mirror image. Second, take

each 1 terminated list of 0s (of possibly zero length) as the out-degree of the

next vertex considered in depth-�rst order. The result of this composition is

a bijection between the out-degrees of internal nodes of rooted planar trees
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and the length of sequences of 1s in Dyck words. For example, starting with

the following Dyck word

0001101001001111

we swap 1s and 0s

1110010110110000

and take the mirror image

0000110110100111

giving 1 terminated lists of 0s

00001 1 01 1 01 001 1 1

that corresponds to this tree

00001

1 01 01

1 001

1 1

Accordingly, to prove the lemma, it is possible to consider the distribution

of nodes in a random rooted planar tree of size n where no internal node has

degree greater than ∆. The means to calculate this distribution is given by

Theorem 2.23 in [7] and the statement of the Lemma is the result of those

calculations. �

Lemma 5.7. Let

ci =
∆!

(∆− i)!
lci = log(ci)

then

E(

∆∏
i=1

cnXii ) = elciµin+ 1
2
lciΣijlcjn+O(

√
n).

Proof. Let Zi = lciZi and Wi,n = lciXi,n. Then, by the facts about

convergence in distribution listed above,
√
n(Wi,n − E(Wi,n))

d−→ Zi. As a
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linear combination of normal variables forming part of a multivariate nor-

mal distribution, Zi has the distribution N (0, lciΣijlcj). Also E(Wi,nn) =

lciµin+O(1). Next note that

∆∏
i=1

c
nXi,n
i =

∆∏
i=1

elciXi,nn

= eWi,nn

= e
√
n
√
n(Wi,n−E(Wi,n))+E(Wi,nn)

= e
√
n(Zi+op(1))+E(Wi,n)n

= eE(Wi,nn)eop(
√
n)e
√
nZi .

Then, taking the expectation, and using the moment generating function of

the normal distribution (for Q ∼ N (µ, σ2), E(eQ) = eµ+ 1
2
σ2
):

E

(
∆∏
i=1

c
nXi,n
i

)
= E

(
eE(Wi,n)neop(

√
n)e
√
nZi
)

= E
(
eE(Wi,nn)

)
E
(
eop(
√
n)
)
E
(
e
√
nZi
)

= elciµi+O(1)eO(
√
n)e

1
2
lciΣijlcjn

= elciµin+ 1
2
lciΣijlcjn+O(

√
n).

�

Lemmas 5.6 and 5.7 enable us to replace the βt with a single overall average.

Lemma 5.8. Let {R1, R2, ...} be an enumeration of R•n; that is, all Dyck

words of length n with maximal sequences of 1s of length no more than ∆.

Let ra,b be an enumeration of all the n entries in Rb. Let βa,b be the value

of βt corresponding to ra,b (if ra,b = 0 then set βa,b = ∆ − 1). Let Yi,j be

such that there are iYi,j(n/2) 1s contained in a maximal sequence of length

i in Rj. Adopt the de�nitions of µi and Σij from Lemma 5.6 and de�ne the

following additional vectors:

ci =
∆!

(∆− i)!
lci = log (ci) .

Let β∆ be de�ned as follows:

β∆ = ∆− elciµi+
1
2
lciΣijlcj .
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Then, for all β < β∆, there exists n0 such that for all n ≥ n0,

|R•n|∑
b=1

n/2∏
a=1

(∆− β) ≥
|R•n|∑
b=1

n∏
a=1

(∆− βa,b).

.

Proof. Note that ci is the geometric mean of the multiples associated

with a series of 1s of length i. Then (because n/2 of the βa,b are equal to

∆− 1)

|R•n|∑
b=1

n∏
a=1

(∆− βa,b) =

|R•n|∑
j=1

∆∏
i=1

(
(ci)

1/i
)iYi,j(n/2)

=

|R•n|∑
j=1

∆∏
i=1

c
Yi,j(n/2)
i .

From the de�nition of Xi,n in Lemma 5.6, noting that Xi,n may also be seen

as a random sample of Yi,j taken from the uniform distribution over j, it

follows that

|R•n|∑
j=1

∆∏
i=1

c
Yi,j(n/2)
i = |R•n|E

(
∆∏
i=1

c
Xi,n(n/2)
i

)
.

Next, note that

|R•n|∑
i=1

n/2∏
j=1

(∆− β) = |R•n| (∆− β)n/2

so that we wish to determine the β for which

|R•n| (∆− β)n/2 ≥ |R•n|E

(
∆∏
i=1

c
Xi,n(n/2
i

)

β ≤ ∆−

(
E

(
∆∏
i=1

c
Xi,n(n/2)
i

))2/n

.

From the convergence of Xi,n to the normal distribution with parameters set

out in Lemma 5.6 and applying Lemma 5.7, it follows that(
E

(
∆∏
i=1

c
Xi,n(n/2)
i

))2/n

=
(
elciµi(n/2)+ 1

2
lciΣijlcj(n/2)+O(

√
n)
)2/n
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= elciµi+
1
2
lciΣijlc

T
j +O(1/

√
n)

and so the statement is true for all β such that

β ≤ ∆− elciµi+
1
2
lciΣijlc

T
j +O(1/

√
n)

= β∆(1−O(1/
√
n))

which implies the Lemma. �

Theorem 5.2 follows from Lemma 5.8 using similar reasoning to Theorem

5.1.

Theorem 5.2. Given a graph H with maximum degree ∆, πd(H) ≤ η where

η is de�ned as follows:

• Set φ∆(x) = 1 +
∑∆

i=1 x
i.

• Set α as the solution to xφ′∆(x)− φ∆(x) = 0 with 0 < α ≤ 1.

• Set

γ =
φ∆(α)

α
,

and de�ne the vectors

µi =

(
αi

φ∆(α)

)
ci =

(
log

(
∆!

(∆− i)!

))
and the (covariance) matrix

Σij = µiδij − µiµj −
αi+j−2(i− 1)(j − 1)

φ(α)φ′′(α)

where, in each case, i, j run from 0 to ∆.

• Set

β = ∆− eciµi+ciΣijc
T
j

and

η = 1− 1

γ(∆− β)
.
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Proof. Given a graph G ∈ Hη(N) with η > 1 − 1/(γ(∆(H) − β∆)),

where γ is determined as in Lemma 5.5 and β∆ is determined as in the

statement of the Theorem, we need to show that there exists a t0 such that

for all t > t0, there is a vector Zt ∈ {N}t that yields a transversal of G.

There are c′Eγ
t/2t−3/2 possible records (as set out in Lemma 5.5). Applying

Lemma 5.8, for any β > β∆, there is a t0, such that for all t > t0:

|Rt| ≤
c′Eγ

t/2t−3/2∑
j=1

t/2∏
i=1

(
(∆− βi,j)(1− η)N2

)
≤ c′Eγ

t/2t−3/2
(
(∆− β)(1− η)N2

)t/2
.

As previously, let St be the set of vectors Zt for which the transversal is

incomplete and Ft the set of all vectors Zt. Then

|St| ≤ (N + 1)|V (H)|c′Et
−3/2

(√
γ(∆− β)(1− η)N

)t
and |Ft| = N t, so that

|St|
|Ft|

≤ (N + 1)|V (H)|c′Et
−3/2

(√
γ(∆− β)(1− η)

)t
.

This converges to 0 as t→∞ provided that√
γ(∆− β)(1− η) < 1

η > 1− 1

γ(∆− β)
.

And so the theorem is proven given the constraint on η. �

5.9. Values of the upper bound

Here we set out some values of the upper bound.
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∆ α γ ∆− β 4(∆(H)− 1) γ(∆(H)− β)

3 0.657 3.611 2.401 8 8.670

4 0.568 3.834 3.292 12 12.623

5 0.533 3.925 4.242 16 16.650

6 0.517 3.965 5.224 20 20.712

7 0.509 3.983 6.220 24 24.776

8 0.505 3.992 7.220 28 28.821

9 0.503 3.996 8.217 32 32.836

10 0.501 3.998 9.211 36 36.825

20 0.500 4.000 19.089 76 76.356

30 0.500 4.000 29.047 116 116.189

5.10. Conclusion

Entropy compression has been used here as a tool to solve an extremal Turan-

type problem. It is a technique that is suited to such problems when they

can be translated into an algorithmic form.

In this particular case, entropy compression leads to an upper bound for

the density Turan problem that asymptotically approaches the existing best

upper bound but is derived in a completely di�erent fashion. There are two

areas where this upper bound might be improved. Firstly, there is currently

a free choice of vertex to be deleted when there is more than one missing

edge. This suggests that the algorithm might be further compressed if this

free choice were removed in a systematic way. Secondly, the proof relies only

on the most basic characterstics of the graph (the maximum degree), whereas

the previous proof relied on other characteristics - further exploration of those

characteristics might yield an improvement to the compression algorithm.
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