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Abstract
A graph U is an induced universal graph for a family F of graphs if every graph in F is a
vertex-induced subgraph of U .

We give upper and lower bounds for the size of induced universal graphs for the family of
graphs with n vertices of maximum degree D. Our new bounds improve several previous results
except for the special cases where D is either near-constant or almost n/2. For constant even
D Butler [Graphs and Combinatorics 2009] has shown O

(
nD/2

)
and recently Alon and Nenadov

[SODA 2017] showed the same bound for constant odd D. For constant D Butler also gave
a matching lower bound. For generals graphs, which corresponds to D = n, Alon [Geometric
and Functional Analysis, to appear] proved the existence of an induced universal graph with
(1 + o(1)) · 2(n−1)/2 vertices, leading to a smaller constant than in the previously best known
bound of 16 · 2n/2 by Alstrup, Kaplan, Thorup, and Zwick [STOC 2015].

In this paper we give the following lower and upper bound of(
bn/2c
bD/2c

)
· n−O(1) and

(
bn/2c
bD/2c

)
· 2O
(√

D logD·log(n/D)
)
,

respectively, where the upper bound is the main contribution. The proof that it is an induced
universal graph relies on a randomized argument. We also give a deterministic upper bound of
O
(

nk

(k−1)!

)
. These upper bounds are the best known when D ≤ n/2 − Ω̃(n3/4) and either D is

even and D = ω(1) or D is odd and D = ω
(

logn
log logn

)
. In this range we improve asymptotically

on the previous best known results by Butler [Graphs and Combinatorics 2009], Esperet, Arnaud
and Ochem [IPL 2008], Adjiashvili and Rotbart [ICALP 2014], Alon and Nenadov [SODA 2017],
and Alon [Geometric and Functional Analysis, to appear].
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1 Introduction

A graph G = (V,E) is said to be an induced universal graph for a family F of graphs if it
contains each graph in F as a vertex-induced subgraph. A graph H = (V ′, E′) is contained
in G as a vertex-induced subgraph if V ′ ⊆ V and E′ = {vw | v, w ∈ V ′ ∧ vw ∈ E}. Induced
universal graphs have been studied since the 1960s [45, 49], and bounds on the sizes of
induced universal graphs have been given for many families of graphs, including general,
bipartite [11], and bounded arboricity graphs [10]. In Table 2 in Section 2.3 we give an
overview of the state of the art for various graph families along with the results in this paper.

1.1 Adjacency labeling schemes and induced universal graphs
An adjacency labeling scheme for a given family F of graphs assigns labels to the vertices
of each graph in F such that a decoder given the labels of two vertices from a graph, and
no other information, can determine whether or not the vertices are adjacent in the graph.
The labels are assumed to be bit strings, and the goal is to minimize the maximum label
size. A b-bit labeling scheme uses at most b bits per label. Information theoretical studies
of adjacency labeling schemes go back to the 1960s [16, 17], and efficient labeling schemes
were introduced in [35, 47]. The first labeling schemes for bounded degree graphs were given
in [17]. Let gv(F) be the smallest number of vertices in any induced universal graph for a
family of graphs F . In the families of graphs we study in this paper, a graph always has n
vertices, unless explicitly stated otherwise.

A labelling scheme for F is said to have unique labels if no two vertices in the same
graph from F are given the same label. We have the following connection between induced
universal graph sizes and label sizes.

I Theorem 1 ([35]). A family F of graphs has a b-bit adjacency labeling scheme with unique
labels iff gv(F) ≤ 2b.

1.2 Our results
The contribution of this paper are stronger bounds on the size of induced universal graphs
for bounded degree graphs. Our new bounds are the best known for a significant part of the
parameter space, specifically we improve on previous results unless D is either near-constant
or almost n/2. The best known results for the entire parameter range of induced universal
graphs for bounded degree D graphs are shown in Table 1. When the bounded degree D is
constant then Butler [18] along with Alon and Nenadov [8] gave optimal bounds. When D is
even and of size ω(1) and when D is odd and of size ω(logn/ log logn) our first new upper
bound is the best known as long as D = O((logn) log logn). Let GD be the family of graphs
with n vertices and maximum degree D. We show the following.

I Theorem 2. For the family GD of graphs with bounded degree D on n nodes

gv(GD) ≤ 8 · nk

(k − 1)! , where k = dD/2e .

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.128
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Table 1 The state-of-the-art landscape for induced universal graph sizes. The first column
denotes in which range the corresponding bound is the best known.

Range of D Bound Reference
D even and D = O(1) O(n)D/2 [18]

D odd and D ∈
[
3, O

( log n
log log n

)]
O(D)D nD/2 [8]

D even and D ∈
[
ω(1), O

(
(log n)2 log log n

)]
O
(

nD/2

(D/2−1)!

)
Theorem 2

D odd and D ∈
[
ω
( log n

log log n

)
, O
(
(log n)2 log log n

)]
O
(

n(D+1)/2

((D−1)/2)!

)
Theorem 2

D ∈
[
ω
(
(log n)2 log log n

)
, n

2 − Ω
(
n3/4 log3/4 n

)] (bn/2c
bD/2c

)
2O
(√

D log D log(n/D)
)

Theorem 3
D ≥ n

2 −O
(
n3/4 log3/4 n

)
(1 + o(1))2(n−1)/2 [5]

Our second new upper bound is the smallest induced universal graph for the interval starting
where Theorem 2 ends and as long as D ≤ n

2 −O
(
n3/4 log3/4 n

)
. The previous best upper

bound for such large D was
(

n
dD/2e

)
nO(1) due to Adjiashvili and Rotbart [3]. The bound

presented in Theorem 3 is a randomized construction, which works for any D, and which
improves asymptotically on Adjiashvili and Rotbart [3] for D = ω(1). We show the following.

I Theorem 3. For the family GD of graphs with bounded degree D on n ≥ 2D nodes

gv(GD) ≤
(
bn/2c
bD/2c

)
· 2O
(√

D logD·log(n/D)
)
.

We note that our bound together with the lower bound from Corollary 8 shows that for
D = ω(1), gv(GD) =

(bn/2c
bD/2c

)1±o(1)
. In contrast when D ≤ n/2(1− Ω(1)) and D = Ω(n) the

bound
(

n
dD/2e

)
nO(1) due to Adjiashvili and Rotbart [3] is

(bn/2c
bD/2c

)1+Ω(1)
, so we give the first

near-optimal induced universal graph when D is superconstant.
From a labeling scheme perspective, the combination of Theorems 2 and 3 shows the

existence of an adjacency labeling scheme for GD of size

log
(
bn/2c
bD/2c

)
+O

(
min

{
D + logn,

√
D logD log(n/D)

})
.

This new labeling scheme improves upon previous in the same ranges as the improvements
for the induced universal graphs as shown in Table 1.

In Corollary 8 we show that the any adjacency labeling scheme for GD must have labels
of size at least log

(bn/2c|
bD/2c

)
−O(logn). Our new lower bounds differ from our upper bounds

by O
(
min

{
D + logn,

√
D logD log(n/D)

})
, which is at most O(

√
n logn).

2 Related results

2.1 Maximum degree D

Let k = dD/2e. To give an upper bound for any value of D Butler [18] showed the following
corollary, which follows from the classic decomposition theorem by Petersen (see [41]):

I Corollary 4 ([18]). Let G ∈ GD be a graph on n vertices with maximum degree D. Then G
can be decomposed into k edge disjoint subgraphs where the maximum degree of each subgraph
is at most 2.

To achieve an upper bound for gv(GD) this can be combined with:

ICALP 2017
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I Theorem 5 ([20]). Let F and Q be two families of graphs and let G be an induced universal
graph for F . Suppose that every graph in the family Q can be edge-partitioned into ` parts,
each of which forms a graph in F . Then gv(Q) ≤ |V [G]|`.

Using Theorem 5, Butler [18] concluded that gv(GD) ≤ (6.5n)k. Similarly Esperet et
al. [29] achieved gv(GD) ≤ (2.5n+O(1))k, and most recently it was shown by Abrahamsen
et al. [2] that gv(GD) ≤ (2n− 1)k < 2knk due to an induced universal graph for G2 of size
2n− 1.

For constant maximum degree D, Butler [18] also showed gv(GD) = Ω(nD/2), hence when
D is even and constant, gv(GD) = Θ(nD/2) is the right answer up to constant factors due to
the above bounds.

2.2 Constant odd degree
A universal graph for a family of graphs F is a graph that contains each graph from F as a
subgraph (not necessarily vertex induced). It is a natural question how to construct universal
graphs with as few edges as possible.

A graph has arboricity k if the edges of the graph can be partitioned into at most k
forests. Graphs with maximum degree D have arboricity bounded by

⌊
D
2
⌋

+ 1 [19, 40].
When D is odd and constant, some improvement has been achieved on the above bounds

on gv(GD) by arguments involving universal graphs and graphs with bounded arboricity
[7, 29]. Let Ak denote a family of graphs with arboricity at most k.

I Theorem 6 ([20]). Let G be a universal graph for Ak and di the degree of vertex i in G.
Then gv(Ak) ≤

∑
i(di + 1)k.

Alon and Capalbo [6] described a universal graph with n vertices of maximum degree
c(D)n1−2/D log4/D n for the family GD, where D ≥ 3 and c(D) is a constant. Using this
bound in Theorem 6, Esperet et al. [29] noted that for odd D (and hence arboricity k =

⌈
D
2
⌉
),

we get gv(GD) ≤ c1(D)nk− 1
D log2+ 2

D n, for a constant c1(D).1 Using the slightly better
universal graphs from [7] the maximum degree is reduced to c(D)n1−2/D [4], giving gv(GD) ≤
c2(D)nk− 1

D , for a constant c2(D). Note that applying Theorem 6 along with universal
graph [7] as above, then for even values of D this would give gv(GD) ≤ c3(D)nD

2 +1− 2
D , for a

constant c3(D). Recently, Alon and Nenadov [8] showed an upper bound gv(GD) = O(nD/2),
coinciding with Butler’s lower bound up to constant factors for any constant D.

2.3 Other graph families
For the family of general, undirected graphs on n vertices, Alstrup et al. [11] gave an induced
universal graph with O(2n/2) vertices, which matches a lower bound by Moon [45]. More
recently Alon [5] showed a construction that is tight up to an additive lower order term. We
note that whereas the construction of [11] is presented as a labeling scheme, with efficient
encoding and constant decoding time. However, it is not obvious if the the induced universal
graph from [5] can be transformed into a labeling scheme without requiring that either the
encoder or decoder use exponential space or time.

1 In [29] a typo states that the maximum degree for the universal graph in [6] is c(D)n2−2/D log4/D n.
The theorem in [6] only states the total number of edges being c(D)n2−2/D log4/D n, however the
maximum degree is c(D)n1−2/D log4/D n [4].
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Table 2 Induced-universal graphs for various families of graphs. “P” is results in this paper.
For the max degree results k = dD/2e. In the result for families of graphs with an excluded minor,
the O(1) term in the exponent depends on the fixed minor excluded.
∗ The upper bounds from [11] are labeling schemes with efficient encoding and constant decoding time,
but the upper bounds are larger by a constant factor. It is not obvious if the induced universal graph
from [5] can be transformed into a labeling scheme without requiring that either the encoder or decoder
use exponential space or time.

Graph family Lower bound Upper bound Lower/Upper

General ∗ 2
n−1

2 (1 + o(1)) · 2
n−1

2 [45]/[5, 11]
Tournaments ∗ 2

n−1
2 (1 + o(1)) · 2

n−1
2 [46]/[5, 11]

Bipartite ∗ (1− o(1)) · 2 n
4 (1 + o(1)) · 2 n

4 [42]/[5, 11]

A: Max degree D
(bn/2c
bD/2c

)
· n−O(1) O

(
nk

(k−1)!

)
P([39, 43, 44])/P

B: Max degree D
(bn/2c
bD/2c

)
· n−O(1) (bn/2c

bD/2c

)
· 2O(
√

D log D·log(n/D)) P([39, 43, 44])/P
C: Constant max degree D Ω(nD/2) O(nD/2) [18]/[8]

Max degree 2 11 bn/6c 2n− 1 [29]/[2]
Acyclic, max degree 2 b3/2nc b3/2nc [2]/[2]

Excluding a fixed minor Ω(n) n2(log n)O(1) [33]
Planar Ω(n) n2(log n)O(1) [33]

Planar, constant degree Ω(n) O(n2) [20]
Outerplanar Ω(n) n(log n)O(1) [33]

Outerplanar, constant degree Ω(n) O(n) [20]

Treewidth l n2Ω(l) n(log n
l
)O(l) [33]

Constant arboricity l Ω(nl) O(nl) [12]/[10]

It follows from [10, 12] that gv(Ak) = Θ(nk) for the family Ak of graphs with constant
arboricity k and n vertices. Using universal graphs constructed by Babai et al. [13], Bhatt
et al. [14], and Chung et al. [21, 22, 23, 24], Chung [20] obtained the best currently known
bounds for e.g. induced universal graphs for planar and outerplanar bounded degree graphs.

Labeling schemes are being widely used and well-studied in the theory community:
Chung [20] gave labels of size logn+O(log logn) for adjacency labeling in trees, which was
improved to logn+O(log∗ n) [12] and in [15, 20, 31, 32, 36] to logn+Θ(1) for various special
cases of trees. Finally it was improved to logn+ Θ(1) for general trees [10].

Using labeling schemes, it is possible to avoid costly access to large global tables and instead
only perform local and distributed computations. Such properties are used in applications
such as XML search engines [1], network routing and distributed algorithms [26, 27, 30, 51],
dynamic and parallel settings [25, 38], and various other applications [37, 48, 50].

A survey on induced universal graphs and adjacency labeling can be found in [11]. See [34]
for a survey on labeling schemes for various queries. We give an overview in Table 2 of
dominating existing and new results. In the table, “P” refer to a result in this paper and we
define k = dD/2e. The “A” and “B” case below represent two different constructions. The
upper bound in “B” is a randomized construction.

ICALP 2017
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3 Preliminaries

Let [n] = {0, . . . , n− 1}, N0 = {0, 1, 2, . . .}, N = N1 = {1, 2, . . .}, and let logn refer to log2 n.
For a graph G, let V [G] be the set of vertices and E[G] be the set of edges of G, and let
|G| = |V [G]| be the number of vertices. We denote the maximum degree of graph G as ∆(G).
For i ∈ N, let Pi denote a path with i vertices, and for i > 2, let Ci denote a simple cycle
with i vertices. We let G2 denote the square of the unweighted graph G, i.e., there is an edge
between two nodes in G2 if they have at most distance two in G. For a boolean statement B
we will denote by [B] the value 1 if B is true and 0 otherwise.

Let G and U be two graphs and let λ : V [G]→ V [U ] be an injective function. If λ has
the property that uv ∈ E[G] if and only if λ(u)λ(v) ∈ E[U ], we say that λ is an embedding
function of G into U . G is an induced subgraph of U if there exists an embedding function of
G into U , and in that case, we say that G is embedded in U and that U embeds G. Let F be
a family of graphs. U is an induced universal graph for F if G is an induced subgraph of U
for each G ∈ F .

4 General D

In this section we present two upper bounds on gv(GD), the number of nodes in the smallest
induced universal graph for graphs on n nodes with bounded degree D. In Theorem 2 we
give a deterministic construction of an induced universal graph for GD that relies on the fact
that P 2

n is a sparse universal graph for G2.
In Theorem 3 we give a randomized labeling scheme for GD. For every graph in the

family GD we give a randomized assignment of labels to the nodes of the graph and show
that the labels are short with non-zero probability, thereby showing that there exist short
labels for every graph in GD. This in turn implies an upper bound on gv(GD). Combining the
two results shows the existence of an adjacency labeling scheme for GD of size log

(bn/2c|
bD/2c

)
+

O
(
min

{
D + logn,

√
D logD log(n/D)

})
.

In Section 4.2 we show to use the results by Liebenau and Wormald [39] to give lower
bounds on gv(GD). These lower bounds imply that any adjacency labeling scheme for GD
must have labels of size at least log

(bn/2c|
bD/2c

)
−O(logn), which means that the upper bounds

are tight up to an additive term of size O
(
min

{
D + logn,

√
D logD log(n/D)

})
, which is at

most O(
√
n logn).

4.1 Upper bounds on gv(GD)

We present the proof of our first upper bound stated in Theorem 2.

Proof. For a set S we let S≤` denote the set of all subsets of S of size ≤ `. We note that∣∣S≤`∣∣ ≤ 2 |S|
`

`! whenever S is finite.
Fix n,D, let k = dD/2e and let Hn = P 2

n be the square of the path of length n. Identify
the vertices of Hn with [n] in the obvious way. Then two nodes i, j in Hn are adjacent if
and only if they are different and |i− j| ≤ 2. We define the graph G to have vertex set
V [G] = [n]× [2]2 × [n]≤k−1. For a node u = (i, x, y, S) in G, we define id(u) = i. We also
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define N ′(u) in the following way:

N ′(u) =


S x = y = 0

S ∪ {i+ 1} x = 1, y = 0
S ∪ {i+ 2} x = 0, y = 1

S ∪ {i+ 1, i+ 2} x = y = 1

.

There is an edge between u and v in G if id(u) ∈ N ′(v) or id(v) ∈ N ′(u). We proceed
to show that G is an induced universal graph for GD. Let H be a graph in GD. We will
show that H is an induced subgraph of G. By Corollary 4 we know that we can decompose
the edges of H into k edge disjoint subgraphs, H0, H1, . . . ,Hk−1, such that each Hi has
vertex set V [Hi] = V [H] and maximum degree at most 2. First we order the nodes of H as
u0, u1, . . . , un−1 such that all edges (ui, uj) in H0 satisfy |i− j| ≤ 2. This is possible since
H0 has maximum degree at most 2, and therefore consists of only paths and cycles. We let
xi (resp. yi) be 1 if there is an edge from ui to ui+1 (resp. ui+2) in H0. That is:

xi = [(ui, ui+1) ∈ E[H0]] , yi = [(ui, ui+2) ∈ E[H0]] .

We now orient the edges of each of the graphs H1, . . . ,Hk−1 such that the out degree of each
node is at most 1. This is possible since each of Hi has maximum degree at most 2. We let
Si be the set of all ui’s outgoing neighbours in the graphs H1, . . . ,Hk−1, and note that Si
contains at most k − 1 elements. We let λ : H → G be defined by λ(i) = (i, xi, yi, Si). It
is now straightforward to check that λ is an embedding function and therefore that H is
an induced subgraph of G. Since H was arbitrarily chosen this shows that G is an induced
universal graph of GD. The number of nodes in G is exactly 4n ·

∣∣[n]≤k−1
∣∣ which yields the

desired result. J

The intuition behind the randomized bound below is the following. Consider placing all
n vertices on a circle in a randomly chosen order and rename the vertices with indices [n]
following the order on the circle. Now, a vertex v ∈ [n] remembers its neighbours in the next
half of the circle, i.e., v stores all the adjacent vertices among {v + 1, . . . , v + dn/2e} (where
indices are taken modulu n). If two vertices u, v are adjacent, then clearly either u stores
the index of v or conversely, hence an adjacency query can be answered. See Figure 1. A
standard application of Chernoff bounds implies that vertex v with high probability stores at
most D/2 +O(

√
D logn) indices. However, this can be tightened by a Lovász Local Lemma

argument, since each random variable that denote which indices should be stored depend on
at most D2 other such random variables. This allows us to tigthen the number of stored
indices to D/2 +O(

√
D logD), and it follows that there exists an ordering of the points on

the circle where every vertex stores that many neighbours and the theorem follows.
We are ready to show Theorem 3.

Proof. Fix n,D and wlog assume that n is odd. For D ≤ logn the result follows from
Theorem 2 so assume that D ≥ logn. We assume that n and D are bounded from below by
a sufficiently large constant. Let G be a graph in GD, and wlog assume that V [G] = [n]. Let
t0, t1, . . . , tn−1 ∈ [n] be chosen independently and uniformly at random, and let id : [n]→ [n]
be a bijection that assigns an identifier to each node of G such that

(ti, i) ≺ (tj , j)⇒ id(i) < id(j),

for all values of i, j ∈ [n], where ≺ is the lexicographical ordering. We construct the
function id by sorting the values ti, and then choosing id to be a bijection such that

ICALP 2017
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v1

u2
u1

v2

Figure 1 The intuition of the randomized upper bound. Pictured are adjacency relations stored
by v1 and v2 – an edge denotes adjecency and a directed edge (v, u) denotes v stores its relation to
u. Here v1 stores v2 but not u2 as u2 is on the wrong side of v1’s bisection, and v2 stores u1 and u2,
but not v1 as it is on the wrong side of v2’s bisection.

(tid(0), id(0)), . . . , (tid(n−1), id(n− 1)) is a non-decreasing sequence. We note that the values
ti determine id uniquely.

For each i ∈ [n] we let Si ⊆ [n] be the set that contains all neighbours j of i for which it
holds that:

(tj − ti) mod n ∈
{

0, 1, 2, . . . , n− 1
2

}
That is, we define Si by:

Si =
{
j ∈ [n] | {i, j} ∈ E[G], (tj − ti) mod n ∈

{
0, 1, 2, . . . , n− 1

2

}}
(1)

We say that the values ti are good if the following properties hold for all i ∈ [n]:

|Si| ≤
D

2 + C
√
D logD (2)

max
j∈Si

{(id(j)− id(i)) mod n} ≤ n

2 + max
{ n
D
,C
√
n logn

}
(3)

where C > 0 is a (sufficiently large) constant to be chosen later. Firstly, we will show that,
when choosing the ti’s randomly, they are good with non-zero probability. For i ∈ [n] let
Ai be the event that (2) does not hold for Si. Let A = {Ai | i ∈ [n]} and for each Ai ∈ A
let Γ(Ai) denote the set of all events Aj where j 6= i has distance at most two to i in G.
We note that since G has maximum degree at most D we have that |Γ(Ai)| ≤ D2. For each
i ∈ [n] the event Ai is independent of all events A \ ({Ai} ∪ Γ(Ai)) for the following reason.
The event Ai is determined exclusively by the values tj where j = i or j is a neighbour of i
in G. For each Aj such that Aj ∈ A \ ({Ai} ∪ Γ(Ai)) we have that j has distance at least
three to i, and Aj is determined by the values tj′ where j′ = j or j′ is a neighbour of j. No
such j′ can also be a neighbour of i since j has distance three to i and we conclude that Ai is
independent of the events A \ ({Ai} ∪ Γ(Ai)) for each i ∈ [n]. By a Chernoff bound we have
that Ai happens, i.e. (2) is false for Si, with probability at most e−Θ(C2 logD). Choosing C
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sufficiently large this is smaller than 1
2D
−10. Let x(Ai) = D−10 for each i ∈ [n]. Then for

each i ∈ [n] we have:

x(Ai)
∏

Aj∈Γ(Ai)

(1− x(Aj)) ≥ D−10 (1−D−10)D2

= D−10e−Θ(D−10)·D2

>
1
2D
−10 ≥ P (Ai)

By the Lovász Local Lemma [28, 9] we conclude that the probability that none of Ai, i ∈ [n]
happen is bounded below by∏

i∈[n]

(1− x(Ai)) =
(
1−D−10)n = e−Θ(nD−10) .

That is, (2) holds for all Si with probability at least e−Θ(nD−10). For a any value of i ∈ [n]
the probability that (3) is false is at most min

{
e−Θ(nD−2), n−Ω(C2)

}
by a standard Chernoff

bound. And by a union bound over all choices of i ∈ [n] (3) holds for all values of i with
probability a least 1 − nmin

{
e−Θ(nD−2), n−Ω(C2)

}
. Therefore, the probability that the

chosen tis are good is at least

e−Θ(nD−10) +
(

1− nmin
{
e−Θ(nD−2), n−Ω(C2)

})
− 1 . (4)

We note that (4) is positive if and only if

e−Θ(nD−10) > nmin
{
e−Θ(nD−2), n−Ω(C2)

}
, (5)

and this can be verified, e.g. by considering the cases D ≤ n1/3 and D > n1/3. That is, the
values ti are good with non-zero probability.

Now fix a good choice of ti and the corresponding identifier function, id, and the sets
Si. We can now encode the values id(i) and the set Si using at most O(logn) + lg

(
n′

D′

)
bits

where n′ and D′ are defined by:

n′ =
⌊n

2 + max
{ n
D
,C
√
n logn

}⌋
, D′ =

⌊
D

2 + C
√
D logD

⌋
Let D′′ = min

{⌊
n′

2

⌋
, D′
}
. Then for any node i we can encode id(i) and the set

{(id(j)− id(i)) mod n | j ∈ Si} using at most O(logn) + log
(
n′

D′′

)
bits for the following

reason: Firstly, id(i) can clearly be stored using O(logn) bits. Secondly, the set of differences
{(id(j)− id(i)) mod n | j ∈ Si} contains at most D′ elements which are all contained in
{1, 2, . . . , n′}, and hence it can be stored using at most log

(
n
(
n′

D′′

))
bits. Given the labels

of two nodes i, j we can compute their ids, id(i) and id(j), and infer whether id(i) ∈ Sj or
id(j) ∈ Si, i.e. whether i and j are adjacent. Hence we have described a labeling scheme for
GD using at most O(logn) + log

(
n′

D′′

)
bits, and therefore

gv(GD) ≤
(
n′

D′′

)
nO(1) . (6)

We first note that:(
n′

D′′

)
≤
(

n′

bD/2c

)
·
(

n′

bD/2c

)D′′−bD/2c
≤
(

n′

bD/2c

)
· 2O
(√

D logD·log(n/D)
)
. (7)

ICALP 2017
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Furthermore we also have:(
n′

bD/2c

)
≤
(
bn/2c
bD/2c

)
·
(

n′ − bD/2c
bn/2c − bD/2c

)bD/2c
=
(
bn/2c
bD/2c

)
·
(

1 + n′ − bn/2c
bn/2c − bD/2c

)bD/2c
. (8)

We have that bn/2c − bD/2c = Ω(n) since D ≤ n
2 and therefore we get:(

1 + n′ − bn/2c
bn/2c − bD/2c

)bD/2c
=
(

1 +O

(
n′ − bn/2c

n

))bD/2c
≤ eO

(
n′−bn/2c

n ·bD/2c
)
. (9)

By the definition of n′ we have that

n′ − bn/2c
n

bD/2c = max
{

1
D
,C

√
logn
n

}
· bD/2c = O

(√
D logD

)
. (10)

Combining (8), (9) and (10) we get that(
n′

bD/2c

)
≤ 2O

(√
D logD

)(bn/2c
bD/2c

)
. (11)

Combining (6) with (7) and (11) gives us the desired upper bound on gv(GD)

gv(GD) ≤
(
bn/2c
bD/2c

)
· 2O
(√

D logD·log(n/D)
)
.

J

4.2 Lower bounds on gv(GD)
In this section we show how to apply the bounds from [39] on the number of graphs of a
given degree sequence. For a graph G with nodes (u1, u2, . . . , un) the degree sequence of G
is (d1, d2, . . . , dn) where di is the degree of ui. Applying [39, Conjecture 1.1] on a degree
sequence (d, d, . . . , d) we obtain

I Corollary 7 ([39]). Let n, d be integers such that nd is even and 1 ≤ d ≤ n − 1. Let
µ = d

n−1 . The number of d-regular graphs on n nodes is

(1 + o(1))
√

2e1/4 (µµ(1− µ)1−µ)n(n−1)/2
(
n− 1
d

)n
.

We now show that the bound from Corollary 7 implies a lower bound on the size of the
induced universal graph for bounded degree graphs:

I Corollary 8. For the family GD of graphs with bounded degree D on n nodes

gv(GD) = Ω
(√

1√
D

(
n

D

))
. (12)

We remark that together with Stirling’s approximation, Corollary 8 implies that gv(GD) ≥(bn/2c
bD/2c

)
n−O(1).
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Proof. It is clearly enough to prove (12) when D ≤
⌊
n
2
⌋
, since the right hand side is non-

increasing for D ≥
⌊
n
2
⌋
. Let N = 2

⌊
n
2
⌋
be the largest even integer not greater than n. So

we assume that 2D ≤ N .
Let X be the number of D-regular graphs on N nodes. By Corollary 7 we have that

X = Θ
((
µµ(1− µ)1−µ)N(N−1)/2

(
N − 1
D

)N)
, (13)

where µ = D
N−1 . By Stirling’s approximation we have that:(

N − 1
D

)
= Θ

( √
N − 1

(
N−1
e

)N−1

√
D
(
D
e

)D√
N − 1−D

(
D
e

)D
)

= Θ
(√

N − 1
D(N − 1−D)

(
µµ(1− µ)1−µ)−(N−1)

)

= Θ
(√

1
D

(
µµ(1− µ)1−µ)−(N−1)

)
.

Rearranging gives that:

(
µµ(1− µ)1−µ)(N−1)N/2 = Θ

(√
1
D

(
N − 1
D

)−1
)N/2

If we insert this into (13) we get that:

X = Θ
(√

1
D

(
N − 1
D

)−1
)N/2(

N − 1
D

)N
= Θ

(√
1√
D

(
N − 1
D

))N
.

Since 2D ≤ N we have that
(
N−1
D

)
= Θ

((
n
D

))
. Clearly X is smaller than GD, and therefore:

|GD|1/n = Ω
(√

1√
D

(
n

D

))
(14)

Let G be the induced universal graph for the family GD. Let V = [n]. Any graph H from
GD on the vertex set V is uniquely defined by the embedding function f of H in G. Since
there are no more than |V [G]|n ways to choose f we get that |V [G]|n ≥ |GD|. Inserting (14)
this shows (12) the following way,

gv(GD) = |V [G]| ≥ |GD|1/n = Ω
(√

1√
D

(
n

D

))
.

J
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