
Lifting with Sunflowers
Shachar Lovett #

Department of Computer Science, University of California San Diego, CA, USA

Raghu Meka #

Department of Computer Science, University of California Los Angeles, CA, USA

Ian Mertz #

Department of Computer Science, University of Toronto, Canada

Toniann Pitassi #

Department of Computer Science, University of Toronto, Canada
Department of Mathematics, Institute for Advanced Study, Princeton, NJ, USA

Jiapeng Zhang #

Department of Computer Science, University of Southern California, Los Angeles, CA, USA

Abstract
Query-to-communication lifting theorems translate lower bounds on query complexity to lower
bounds for the corresponding communication model. In this paper, we give a simplified proof of
deterministic lifting (in both the tree-like and dag-like settings). Our proof uses elementary counting
together with a novel connection to the sunflower lemma.

In addition to a simplified proof, our approach opens up a new avenue of attack towards proving
lifting theorems with improved gadget size – one of the main challenges in the area. Focusing on
one of the most widely used gadgets – the index gadget – existing lifting techniques are known to
require at least a quadratic gadget size. Our new approach combined with robust sunflower lemmas
allows us to reduce the gadget size to near linear. We conjecture that it can be further improved to
polylogarithmic, similar to the known bounds for the corresponding robust sunflower lemmas.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Theory
of computation → Communication complexity; Theory of computation → Complexity theory and
logic; Theory of computation → Circuit complexity; Theory of computation → Proof complexity

Keywords and phrases Lifting theorems, communication complexity, combinatorics, sunflowers

Digital Object Identifier 10.4230/LIPIcs.ITCS.2022.104

Related Version Full Version: https://eccc.weizmann.ac.il/report/2020/111/

Funding Shachar Lovett: Research supported by NSF Award DMS-1953928.
Ian Mertz: Research supported by NSERC.
Toniann Pitassi: Research supported by NSF Award CCF-1900460 and NSERC.

Acknowledgements The authors thank Paul Beame for comments.

1 Introduction

A query-to-communication lifting theorem is a reductive lower bound technique that translates
lower bounds on query complexity (such as decision tree complexity) to lower bounds for
the corresponding communication complexity model. For a function f : {0, 1}n → R, and a
function g : X × Y → {0, 1} (called the gadget), their composition f ◦ gn : Xn × Yn → R is
defined by

(f ◦ gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn)).

Here, Alice holds x ∈ Xn and Bob holds y ∈ Yn. Typically g is the popular index gadget
Indm : [m]× {0, 1}m → {0, 1} mapping (x, y) to the x-th bit of y.

© Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang;
licensed under Creative Commons License CC-BY 4.0

13th Innovations in Theoretical Computer Science Conference (ITCS 2022).
Editor: Mark Braverman; Article No. 104; pp. 104:1–104:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:slovett@cs.ucsd.edu
mailto:raghuvardhan@gmail.com
mailto:mertz@cs.toronto.edu
mailto:toni@cs.toronto.edu
mailto:jiapengz@usc.edu
https://doi.org/10.4230/LIPIcs.ITCS.2022.104
https://eccc.weizmann.ac.il/report/2020/111/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

104:2 Lifting with Sunflowers

There is a substantial body of work proving lifting theorems for a variety of flavors
of query-to-communication, including: deterministic [30, 17, 8, 36, 6, 5], nondeterministic
[15, 12], randomized [18, 5], degree-to-rank [34, 27, 28, 32], and nonnegative degree to
nonnegative rank [4, 22]. In these papers and others, lifting theorems have been applied
to simplify and resolve some longstanding open problems, including new separations in
communication complexity [16, 17, 18, 6, 5], proof complexity [15, 20, 16, 8, 7, 14] monotone
circuit complexity [11], monotone span programs and linear secret sharing schemes [32, 27, 28],
and lower bounds on the extension complexity of linear and semi-definite programs [4, 22, 25].
Furthermore within communication complexity most functions of interest – e.g. equality,
set-disjointness, inner product, gap-hamming (c.f. [24, 21]) – are lifted functions.

At the heart of these proofs is a simulation theorem.1 A communication protocol for the
lifted function can “mimic” a decision tree for the original function by taking log m + 1 steps
to calculate each variable queried by the decision tree in turn. For large enough m = nO(1)

and for every f the deterministic simulation theorem [30, 17] shows that this simulation goes
the other way as well:

Pcc(f ◦ Indn
m) = Pdt(f) ·Θ(log m)

The proof of this theorem has evolved considerably since [30], applying to a wider range
of gadgets [36, 6, 5], and with more sharpened results giving somewhat improved parameters
and simulation theorems for the more difficult settings of randomized and dag-like lifting.
The original proof of [30] used the notion of min-degree for the central invariant used to
prove the simulation theorem; later [15] introduced the notion of blockwise min-entropy,
which has since been used for a variety of lifting theorems, including randomized [18] and
dag-like [11]. Nearly all of these proofs used either intricate combinatorial arguments or tools
from Fourier analysis.

Lifting using the sunflower lemma

One important goal of this paper is to give a readable, self-contained and simplified proof of
the deterministic query-to-communication lifting theorem. Our proof uses the same basic
setup as in previous arguments, but our proof of the main invariant – showing that any large
rectangle can be decomposed into a part that has structure and a part that is pseudo-random
– is proven by a direct reduction to the famous sunflower lemma.

The sunflower lemma is one of the most important examples of a structure-versus-
randomness theorem in combinatorics. A sunflower with r petals is a collection of r sets such
that the intersection of each pair is equal to the intersection of all of them. The sunflower
lemma of Erdös and Rado [9] roughly states that any sufficiently large w-uniform set system
(of size about ww) must contain a sunflower. A recent breakthrough result due to Alweiss et
al. [1] proves the sunflower lemma with significantly improved parameters, making a huge
step towards resolving the longstanding open problem of obtaining optimal parameters. A
sequence of followup works [10, 29, 2] extended the technique and sharpened the obtained
bounds.

Both the original sunflower lemma as well as Rossman’s robust version [33] have played an
important role in recent advances in theoretical computer science. Most famously, Razborov
proved the first superpolynomial lower bounds for monotone circuits computing the Clique

1 Here we restrict ourselves to lifting theorems in the setting of Boolean models of query complexity (e.g.,
decision trees, randomized decision trees). Interestingly algebraic lifting theorems which lift polynomial
degree to an associated communication measure, exploit duality in order to give nonconstructive proofs
of lifting (see e.g. [34, 28, 31])

S. Lovett, R. Meka, I. Mertz, T. Pitassi, and J. Zhang 104:3

function, using the sunflower lemma. It has also been a fundamental tool used to obtain a wide
variety of other hardness results including: hardness of approximation, matrix multiplication,
cryptography, and data structure lower bounds. (See the conference version of [1] for a nice
survey of the many applications to Computer Science.)

Additionally, [26] established a connection between sunflowers and randomness extractors,
which implicitly connected sunflowers to lifting theorems through the central notion of
blockwise min-entropy. In particular they showed that if certain functions are extractors
for blockwise min-entropy sources, then one can get improvements on the sunflower lemma.
We close the loop by showing the other direction: we use the sunflower lemma to get lifting
theorems. As a consequence of these two results together, certain improvements to either
lifting theorems or sunflowers directly would imply an improvement in the other. We make
this connection explicit in Section 6, while in Section 4 we make an explicit conjecture which
would give such an improvement.

Gadget size

The second main goal of this paper is to open up a new avenue of attack towards proving
lifting theorems with improved gadget size – one of the main challenges in the area. Gadget
size is a fundamental parameter in lifting theorems and their applications. We define the
gadget size of g : X ×Y → {0, 1} as min(|X |, |Y|). In most applications, one loses factors that
depend polynomially on the gadget size. An ideal lifting theorem - one with constant gadget
size - would give a unified way to prove tight lower bounds in several models of computation.
For example, the best known size lower bounds for extension complexity as well as monotone
circuit size is 2Ω̃(

√
n) [13, 19, 3]. Improving the gadget size from poly(n) to O(1) (or even

poly log(n)) would improve the best known lower bounds for extended formulations and
monotone circuit size to 2Ω̃(n). 2

Despite the tremendous progress in lifting theorems, most generic lifting theorems require
gadget sizes that are polynomial in n.3 Most recently, [6] reduced the gadget size to n2+ϵ for
any ϵ > 0. It has remained an open problem to break through this quadratic barrier.

One of our main contributions is to cross the quadratic barrier firmly; our simplified proof
immediately gives us a gadget of size n1+ϵ for any ϵ > 0. Our approach does not seem to
have the same bottleneck as previous approaches and presents a way forward for obtaining
lifting theorems for polylogarithmic gadget sizes (similar to the improvements made for
the sunflower lemma in [1]; see Section 4). Furthermore, by inspecting the parameters of
the argument, we can prove a “sliding” lifting theorem which allows us to make a tradeoff
between the strength of our lower bound and the size of the gadget, down to a gadget of size
O(n log n).

Dag-like lifting and other improvements

A further strength of our approach is that it can be adapted straightforwardly to prove a
lifting theorem for dag-like communication protocols. Note that previous approaches such as
those of [30], [17] do not extend to such protocols. Such a lifting theorem was first proven in
[11], whose central lemma was built on the randomized lifting theorem of [18]. Our main

2 Typically, a gadget of size q with n variables can lead to a lower bound of 2Ω(n) but on a combinatorial
problem of size N = nq. So for instance, previous black-box lifting theorems would, in the best-case
scenario, lead to a 2Ω̃(N1/3) lower bound on extension complexity for graph problems on N vertices
[19]. Our new lifting theorem with a near-linear gadget size could lead to a 2Ω̃(N1/2) lower bound;
independently, this lower bound was proven by [3].

3 Some notable exceptions for models of communication with better gadget size are [34, 35, 16, 27].

ITCS 2022

104:4 Lifting with Sunflowers

contribution is a substantially simpler proof of their main lemma, which as in our tree-like
lifting theorem, follows from a direct application of the sunflower lemma. Consequently, our
dag-like lifting theorem also improves on the gadget size, from polynomial to near-linear size.
We note that (almost) all of our results extend straightforwardly to the real communication
setting as well.4

Our proof also immediately extends to give a new proof (with even tighter parameters)
of [14] who prove deterministic lifting with the gadget size bounded by a polynomial in the
query complexity of the outer function. This applies to situations such as fixed-parameter
complexity, where the query complexity is modest, allowing us to lift problems whose query
complexity and gadget size are comparable. Again our approach does not seem to suffer from
a bottleneck, and improvements to this theorem would yield, e.g., stronger lower bounds on
the automatizability of Cutting Planes [14].

Organization for the rest of the paper

After setting up the preliminaries in Section 2, in Section 3 we give an overview of our
proof of the basic lifting theorem, as well as some ideas behind the extensions in the rest
of the paper. In Section 4 we discuss a conjecture related to sunflowers which would make
direct progress towards proving lifting with sublinear sized gadgets. In Section 5 we present
our main contribution: a simplified proof of lifting via the sunflower lemma. Then for the
remainder of the paper we investigate various extensions of this basic lifting theorem. In
Section 6 we show that the gadget size m can be improved. Specifically in Subsection 6.1 we
show that the basic lifting theorem can be done with m = n1+ϵ, and by sacrificing in the
strength of the lifting theorem we can even push it down to O(n log n). In Subsection 6.2 we
give a lifting theorem that scales with the decision tree complexity of the underlying function,
instead of the number of variables n. We also briefly discuss the modifications needed to
extend our results to the real communication setting in Subsection 6.3. For these extensions
we make extensive reference to the basic lifting theorem in order to highlight how the proofs
differ, and where necessary how our results fit into the context of their original proofs.

We refer readers to the full version of our paper for results on lifting dag-like query
complexity to dag-like communication complexity.

2 Preliminaries

We will use n to denote the length of the input and N ≤ n to denote an arbitrary number less
than n.5 We also use m to denote an external parameter, and for this preliminaries section
we will use U to denote an arbitrary set. We will mostly focus on two types of universes,
UN and (Um)N . In the case of UN we often refer to i ∈ [N] as being a coordinate, while in
the case of (Um)N we often refer to i ∈ [N] as being a block. We will be primarily using
terminology from previous lifting papers and computational complexity; for a connection to
the language more commonly used in sunflower papers and combinatorics, see Appendix A
in the full version of our paper.

4 In most query-to-communication settings it is relatively simple to extend results for communication
complexity to the real communication setting [23]; we refer readers to, e.g., [8, 11] for examples of these
techniques and applications of lifting to real communication complexity.

5 Later in the paper we will often be dealing with some subset of the input variables, and so N will
generically refer to the number of variables we currently care about.

S. Lovett, R. Meka, I. Mertz, T. Pitassi, and J. Zhang 104:5

Basic notation

For a set S ⊆ U we write S̄ := U ∖ S. For a set U and a set I ⊆ [N] we say a string x is
in UI if each value in x is an element of U indexed by a unique element of I. For a string
x ∈ UN and I ⊆ [N] we define x[I] ∈ UI to be the values of x at the locations in I, and for
a string y ∈ (Um)N and I ⊆ [N], α ∈ [m]I we define y[I, α] ∈ UI to be the values of y at the
locations αi for each i ∈ I. For a set X ⊆ UN we define XI ⊆ UI to be the set that is the
projection of X onto coordinates I, and for a set Y ⊆ (Um)N we define YI ⊆ (Um)I likewise.
For a set system F of subsets of U and a set S ⊆ U , we define FS̄ := {γ ∖ S : γ ∈ F , S ⊆ γ}.

▶ Definition 1. Let γ ⊆ [mN]. Treating each element in γ as being a pair (i, a) where i ∈ [N]
and a ∈ [m], we say γ is over (Um)N , meaning that for s ∈ (Um)N and each (i, a) ∈ γ there
is a corresponding element s[i, a] from U . We sometimes say (i, a) is a pointer. We say a set
system F is over (Um)N if all sets in F are over (Um)N .

For γ over (Um)N , γ is a block-respecting subset of [mN] if γ contains at most one
element per block, or in other words if i ̸= i′ for all distinct (i, a), (i′, a′) ∈ γ. We can
represent such γ by a pair (I, α), where I ⊆ [N] and α ∈ [m]I ; here γ chooses one element
(indicated by αi) from each block i ∈ I. A set system F over (Um)N is block-respecting if all
elements γ ∈ F are block-respecting.

We say that a set ρ ∈ {0, 1, ∗}N is a restriction, or sometimes a partial assignment. We
denote by free(ρ) ⊆ [N] the variables assigned a star, and define fix(ρ) := [N] ∖ free(ρ). If
we have two restrictions ρ, ρ′ such that fix(ρ) ∩ fix(ρ′) = ∅, then we define ρ ∪ ρ′ to be the
restriction which assigns fix(ρ) to ρ[fix(ρ)] and fix(ρ′) to ρ′[fix(ρ′)], with all other coordinates
being assigned ∗.

In general in this paper we will use bold letters to denote random variables. For a set
S we denote by S ∈ S the random variable that is uniform over S. For a block-respecting
set system F over (Um)N and I ⊆ [N], we denote by FI the marginal distribution over FI ,
where we remove all sets γ ∈ F which do not contain elements in all blocks I.

▶ Definition 2. Let S be a set. For a random variable s ∈ S we define its min-entropy
by H∞(s) := mins log(1/Pr[s = s]). We also define the deficiency of s by D∞(s) :=
log |S| −H∞(s) ≥ 0.

▶ Definition 3. Let F be a block-respecting set system over (Um)N . We define the blockwise
min-entropy of F by min∅̸=I⊆[N]

1
|I| H∞(FI), or in other words the least (normalized) marginal

min-entropy over all subsets I of the coordinates [N].

Search problems

A search problem is a relation f ⊆ Z ×O such that for every z ∈ Z there exists some o ∈ O
such that (z, o) ∈ f . Let f(z) ̸= ∅ denote the set of all o ∈ O such that (z, o) ∈ f . Likewise
a bipartite search problem is a relation F ⊆ X × Y ×O such that F (x, y) ̸= ∅, where F (x, y)
is defined analogously to f(z). We say that f is on Z and F is on X × Y.

▶ Definition 4. Let m ∈ N. The index gadget, denoted Indm, is a Boolean function which
takes two inputs x ∈ [m] and y ∈ {0, 1}m, and outputs y[x]. We will often have multiple
separate instances of the index gadget; we use the notation IndN

m to refer to the function which
takes two inputs x ∈ [m]N and y ∈ ({0, 1}m)N and outputs the Boolean string (y[i, xi])i∈[N].
For a search problem f with Z = {0, 1}n, the lifted search problem f ◦ Indn

m is a bipartite
search problem defined by X := [m]n, Y := ({0, 1}m)n, and f ◦ Indn

m(x, y) = {o ∈ O : o ∈
f(Indn

m(x, y))}. Following our existing convention, for a set of variables J ⊆ [n] we write
IndJ

m(x, y) to refer to the function Ind|J|
m ((xi)i∈J , (yi)i∈J).

ITCS 2022

104:6 Lifting with Sunflowers

Intuitively, each x ∈ X can be viewed as a block-respecting subset over the universe [mn]
where n elements are chosen, one from each block of size m. For each i ∈ [n], to determine
the value of the variable zi in the original problem f , we restrict ourselves to the i-th block
of y and take the bit indexed by the i-th coordinate of x.

Consider a search problem f ⊆ {0, 1}n ×O. A decision tree T is a binary tree such that
each non-leaf node v is labeled with an input variable zi, and each leaf v is labeled with a
solution ov ∈ O. The tree T solves f if, for any input z ∈ {0, 1}n, the unique root-to-leaf
path, generated by walking left at node v if the variable zi that v is labeled with is 0 (and
right otherwise), terminates at a leaf u with ou ∈ f(z). We define

Pdt(f) := least depth of a decision tree solving f

Consider a bipartite search problem F . A communication protocol Π is a binary tree where
now each non-leaf node v is labeled with a binary function gv which takes its input either
from X or Y. This is informally viewed as two players Alice and Bob jointly computing a
function, where Alice receives x ∈ X and Bob receives y ∈ Y, and where at each node in
the protocol either Alice or Bob computes gv(x) or gv(y), respectively, and “speaks” as to
which child to go to, depending on whose turn it is. The protocol Π solves F if, for any
input (x, y) ∈ X × Y, the unique root-to-leaf path, generated by walking left at node v if
gv(x, y) = 0 (and right otherwise), terminates at a leaf u with ou ∈ F (x, y). We define

Pcc(F) := least depth of a communication protocol solving F .

An alternative characterization of communication protocols, which will be useful for proving
our main theorem, is as follows. Each non-leaf node v is labeled with a (combinatorial)
rectangle Rv = Xv × Yv ⊆ X × Y, such that if vℓ and vr are the children of v, Rvℓ

and
Rvr

partition Rv. Furthermore this partition is either of the form Xvℓ
× Yv ⊔Xvr

× Yv or
Xv × Yvℓ

⊔Xv × Yvr . The unique root-to-leaf path on input (x, y) is generated by walking to
whichever child v of the current node satisfies (x, y) ∈ Rv.

Sunflowers

Let F be a set system over some universe U . We say that F is a sunflower if there exists
some set S ⊆ U such that γ1 ∩ γ2 = S for any two distinct sets γ1, γ2 ∈ F . We refer to the
sets in FS as the petals and S as the core. The famed sunflower lemma of Erdős and Rado
states the following.

▶ Lemma 5 (Sunflower Lemma). Let s ∈ N and let k ∈ N. Let F be a set system over U
such that a) |γ| ≤ s for all γ ∈ F ; and b) |F| ≥ s!(k − 1)s. Then F contains a sunflower
with k petals.

In this paper we will be mostly concerned with a set system that approximately reflects
the behavior of a sunflower. Let F be a set system over some universe U , and let p, κ ∈ (0, 1].
We say that F is (p, κ)-satisfying if

Pry⊆pU (∀γ ∈ F : γ ̸⊆ y) ≤ κ

where ⊆p means that each element is added to y independently with probability p.
We say that F is a (p, κ)-robust sunflower (sometimes called an approximate sunflower or

a quasi-sunflower) if it satisfies the following. Let S = ∩T ∈F T be the common intersection
of all sets in F . We require that FS is (p, κ)-satisfying. In other words,

Pry⊆pU∖S(∀γ ∈ F : γ ∖ S ̸⊆ y) ≤ κ.

S. Lovett, R. Meka, I. Mertz, T. Pitassi, and J. Zhang 104:7

In this paper we will always be using p = 1/2, and so for convenience we simply write
y ⊆ U ∖ S instead of ⊆1/2 and call F an κ-robust sunflower instead of an (1/2, κ)-robust
sunflower. An analogue of the classic sunflower lemma was proved for robust sunflowers
by Rossman [33], and in a recent breakthrough result [1] (simplified in [29]) obtained an
improvement in the parameters:

▶ Lemma 6 (Robust Sunflower Lemma). There exists an absolute constant K such that the
following holds: Let s ∈ N and κ > 0. Let F be a set system over U such that a) |γ| ≤ s for
all γ ∈ F ; and b) |F| ≥ (K log(s/κ))s. Then F contains a κ-robust sunflower.

As a stepping stone they also prove an improvement on Lemma 6 assuming a condition
called spreadness, but which we will state in the following way.

▶ Lemma 7 (Blockwise Robust Sunflower Lemma). There exists an absolute constant K such
that the following holds: let s ∈ N and κ > 0. Let F be a block-respecting set system over
(Um)N such that a) |γ| ≤ s for all γ ∈ F ; and b) F has blockwise min-entropy at least
log(K log(s/κ)). Then F is κ-satisfying.

In our main argument we will use a simple and general statement about the satisfiability
of monotone CNFs in order to connect sunflowers to restrictions.

▷ Claim 8. Let C = C1 ∧ . . . ∧ Cm be a CNF on the variables x1 . . . xn such that no clause
contains both the literals xi and xi for any i. Let Cmon be the result of replacing, for every
i, every occurrence of xi in C with xi.6 Then

|{x ∈ {0, 1}n : C(x) = 1}| ≤ |{x ∈ {0, 1}n : Cmon(x) = 1}|

Proof. Let Ci be the result of replacing every occurrence of xi in C with xi. It is enough to
show that for any i, Ci(x) is satisfied by at least as many assignments β ∈ {0, 1}n to x as
C(x) is, as we can then apply the argument inductively for i = 1 . . . n. Let β−i ∈ {0, 1}[n]∖{i}

be an assignment to every variable except xi. We claim that for every β−i, Ci(β−i, xi) is
satisfied by at least as many assignments βi ∈ {0, 1} to xi as C(β−i, xi).

Since there are no clauses with both xi and xi, each clause in C is of the form xi ∨ A,
xi ∨ B, or C, where A, B, and C don’t depend on xi; the corresponding clauses in Ci are
xi ∨ A, xi ∨ B, and C. If Ci(β−i, 1) = 1, then A(β−i) = B(β−i) = C(β−i) = 1 for all A,
B, and C, and so Ci(β−i, xi) is always satisfied. If Ci(β−i, 0) = 0, then it must be that
C(β−i) = 0 for some C, and so C(β−i, xi) has no satisfying assignments. Finally assume
neither of these cases hold, and so Ci(β−i, 1) = 0 and Ci(β−i, 0) = 1. Then it must be that
either A(β−i) = 0 for some A, in which case C(β−i, 0) = 0, or B(β−i) = 0 for some B, in
which case C(β−i, 1) = 0. Therefore C(β−i, xi) has at least one falsifying assignment, while
Ci(β−i, xi) has exactly one. ◁

3 Proof overview

In this section we will sketch out the technical ideas that go into proving the basic deterministic
lifting theorem, along with some of the innovations that have helped simplify the proof since
[30]. We also sketch the changes that are required to prove our other lifting theorems, i.e.
dag-like lifting, lifting with smaller gadgets (Subsection 6.1), and lifting whose gadget size
scales with the decision tree depth (Subsection 6.2).

6 Intuitively Cmon is the monotone version of C, and note that it does not matter whether our monotone
version has all variables occurring positively or negatively. This version will happen to be more suggestive
later.

ITCS 2022

104:8 Lifting with Sunflowers

3.1 The basic lifting theorem
The following is our basic deterministic lifting theorem. For simplicity of exposition we focus
on a concrete gadget size m = n1.1, and later show how to adjust the parameters to get
m = n1+ϵ for any ϵ > 0.

▶ Theorem 9 (Basic Lifting Theorem). Let f be a search problem over {0, 1}n, and let
m = n1.1. Then

Pcc(f ◦ Indn
m) = Pdt(f) ·Θ(log m)

We prove that a) a decision tree of depth d for f can be simulated by a communication
protocol of depth O(d log m) for the composed problem f ◦ Indn

m, and b) a communication
protocol of depth d log m for the composed problem f ◦ Indn

m can be simulated by a decision-
tree of depth O(d) for f . Let {zi}i be the variables of f and let {xi}i, {yi}i be the variables
of f ◦ Indn

m; recall that each zi takes values in {0, 1}, xi takes values in [m], and yi takes
values in {0, 1}m. The forward direction of the theorem is obvious: given a decision tree T

for f , Alice and Bob can simply trace down T and compute the appropriate variable zi at
each node v ∈ T visited, spending log m bits to compute Indm(xi, yi) to do so. Thus we
focus on simulating a communication protocol Π of depth d log m.

High level idea: Tracing the “important” coordinates

What does it mean to “simulate” a communication protocol for f ◦ Indn
m by a decision tree

for f? When we look at the communication matrix for f ◦ Indn
m, we label the (x, y) entry

with the solutions o ∈ O satisfying (x, y) ∈ (f ◦ Indn
m)−1(o). However we have no control

over f , and so in some sense what we really care about is the z variables. So instead we
will think of the (x, y) entry as storing z = Indn

m(x, y), and then instead of having to reason
about f we can ask “what does the set of z values that make it to any given leaf of Π look
like?”

For each leaf we want to split the coordinates into two categories: the “important”
coordinates where the z values are (jointly) nearly fixed, and the rest where every possibility
is still open. Hopefully this means that knowing the important coordinates is enough to
declare the answer. Applying the same logic to the internal nodes we can query variables as
they cross the threshold from unfixed to important, which leads us down to the leaves in a
natural way. To do this efficiently, we have to define “importance” in a way that satisfies
all these conditions while also ensuring that no leaf contains more than O(d) important
variables.

Blockwise min-entropy

In order to prove this formally, we will trace down the communication protocol node by
node, at each step looking for the z variables that are fairly “well determined” by the current
rectangle. We focus exclusively on the X side of the current rectangle, since Y is so large that
it would take m≫ n log m rounds just to fix a single yi. Our measure of coordinate i being
well-determined will be the min-entropy of the uniform distribution on X marginalized to
the coordinate i. At the start of the protocol, every coordinate will have min-entropy log m,
while each round can drop the min-entropy of a coordinate by at most 1. Once a coordinate
i falls below a certain min-entropy threshold, say 0.95 log m, we can consider the coordinate
important enough to query in the decision tree. We can think of Π as having “paid” for the
coordinate i; since min-entropy can only drop by 1 each round, it took 0.05 log m rounds

S. Lovett, R. Meka, I. Mertz, T. Pitassi, and J. Zhang 104:9

Figure 1 Rectangle Partition procedure (figure from [18]).

to reduce the entropy of Xi to below the threshold. Since we ultimately want to shave an
Ω(log m) factor off the height of the communication protocol in our decision tree, once Π has
spent Ω(log m) steps transmitting information about coordinate i we can feel satisfied giving
up the rest of the information about Xi and Yi for free.

In fact we will use the generalization of min-entropy to blockwise min-entropy, and so
instead of tracking individual coordinates we stop whenever a set of coordinates I has a joint
assignment x[I] = α which violates 0.95 log m blockwise min-entropy. In addition we will use
an entropy-restoring procedure called the rectangle partition. Whenever we find an assignment
x[I1] = α1 that “violates” 0.95 log m blockwise min-entropy – in other words, I1, α1 such
that Pr(x[I1] = α1) > 2−0.95|I1| log m – we split X into two pieces: X1 = {x : x[I1] = α1}
and X − X1 = {x : x[I1] ̸= α1}. Next we repeat for X − X1; if there is an assignment
x[I2] = α2 that violates 0.95 log m blockwise min-entropy, then we split X −X1 into X2 and
(X −X1)−X2. We repeat until there are no more assignments, and then we can make a
decision to pick one and query z[Ij].7

We now describe our high level procedure using this partitioning subroutine. In addition
to the rectangles Rv at each node v of Π, we maintain a subrectangle R = X × Y – initially
full – which will be our guide for how to proceed down Π. Starting at the root, we go
down to the child v with the larger rectangle R ∩Rv – which guarantees that the blockwise
min-entropy of X ∩Xv goes down by at most 1 from X – and update R to be Rv for
whichever child v we picked. We continue going down the protocol and taking the child
with the larger intersection with R until we find that a set of coordinates has blockwise
min-entropy less than 0.95 log m in R. After running the rectangle partition, we will need to
decide which assignment to query; ultimately once we’ve chosen the assignment x[Ij] = αj ,
we will query z[Ij] and restrict R to be consistent with the result. Our first key lemma states
that if we run the rectangle partition on X such that X has blockwise min-entropy at least
0.95 log m on Ij , and Y has size at least 2mn−n log m, then there is always some choice of j

such that for every possible result z[Ij] = βj , the resulting rectangle R is large on the Y side.
As mentioned before, our choice of min-entropy will be enough to guarantee that at every

step, our rectangle R will have every assignment to z consistent with the current path in the
decision tree available. When we reach a leaf ℓ in Π and have queried some coordinates I, we
want to show that we know enough information to output an answer in the decision tree. To
do this we show that we can output the same answer o as Π outputs at ℓ. Our second key
lemma states that if X and Y are fixed on the coordinates J ⊆ [n], X has min-entropy at
least 0.95 log m on J , and Y has size at least 2mn−n log m, then IndJ

m(X, Y) = {0, 1}J ; thus
R ⊆ Rℓ has every option left for the z variables in the coordinates J . Thus if we consider
any assignment α to all the z values consistent with the assignment to J in the current path
in our decision tree, there must be some (x, y) ∈ Rℓ such that Indn

m(x, y) = α, and so o must
be a correct answer for z = α for any α consistent with our path in the decision tree.

7 As described in Subsection 5.1, unlike in [18] in our proof we truncate this procedure before X is empty,
but the same basic principle applies.

ITCS 2022

104:10 Lifting with Sunflowers

Key lemmas through sunflowers

Up until this point, everything we’ve stated is as it appears in [18]. For our new proof we
unify our two key lemmas with a more challenging but ultimately more straightforward
lemma: given X and Y such that XJ̄ has high blockwise min-entropy and Y is large, there
is some x∗ ∈ X such that x∗ by itself has the full range of the index gadget available, or in
other words IndJ̄

m(x∗, Y) = {0, 1}J̄ .8 Given this statement both claims are easy to see. In
the rectangle partition, for every Ij , αj such that some value βj has few ys consistent with
it, remove those ys from Y ;9 by the lemma there is some x∗ which still has the full range
of values available. Thus whichever Xj part that x∗ appears in must not have had any ys
thrown out of Y on its account, and so y[Ij , αj] should be fairly uniform. At the leaves, if a
single x∗ gives the full range, then so does X ∋ x∗.

Despite seeming more challenging, this unifying lemma follows almost immediately from
the Lemma 7. To illustrate this with a simple (but ultimately completely general) case,
assume the all-ones vector is missing from IndJ̄

m(x, Y) for all x, or in other words there is
no (x, y) such that y[x] = 1J̄ . Consider the universe [mn], and let Sx be the set of size |J̄ |
defined by the values x points to. Since X has high blockwise min-entropy, by Lemma 7 a
random set Sy ⊆ [mn] will contain some Sx with high probability. If we look at the incidence
vector of our random Sy, it is a string y ∈ {0, 1}mn = ({0, 1}m)n, and for Sy to not contain
Sx is equivalent to saying that y[x] ̸= 1J̄ . Thus Pry[∀x : y[x] ̸= 1J̄] is very low, or in other
words a sufficiently large set Y ⊆ ({0, 1}m)N must contain some y such that y[x] = 1J̄ for
some x. This gives us our contradiction since we assumed Y was large.

Recap

Summing up, our final procedure will be as follows. For all v ∈ Π let Rv be the rectangle
associated with node v, let R = [m]n × ({0, 1}m)n, and at the start of the simulation, let
v = root. At each step we go to the child v′ of v maximizing R ∩Rv′ . Then we perform the
rectangle partition on X, query z[Ij] for Ij from the key lemma (possibly empty) to get the
answer βj , and fix R to be consistent with x[Ij] = αj and y[Ij , αj] = βj . As an invariant we
have that at the start of each round R is fixed on the coordinates J queried in our decision
tree, XJ has blockwise min-entropy 0.95 log m, and |Y | ≥ 2mn−n log m. When we reach a leaf
we apply the key lemma one last time to get that all possible z values consistent with our
path in the decision tree are still available, and so we can return the same answer as Π.

3.2 Further results
Dag-like lifting

In [11] they show that a lifting theorem exists for the appropriate notions of dag-like query
complexity (decision dags) and communication complexity (rectangle dags) as well. This
proof is very similar to our basic lifting theorem 10, and so we reprove this theorem using
our new sunflower strategy. See the full version of our paper for all definitions and the exact
statement of the dag-like lifting theorem.

8 This lemma was also proven in [11], as it was necessary to prove their result for lifting in the dag-like
case. We use it to simplify the proof of the tree-like result as well.

9 We note one other seemingly minor but very useful feature of our proof, which is that our union bound
for the sets of y’s removed during the rectangle partition does not require a large gadget size. This
removes the other bottleneck for the gadget size, and consolidates all issues of the choice of m to
Lemma 7.

10 In fact the move from min-entropy to blockwise min-entropy was necessary for this generalization, and
so while we feel the approached outlined above simplifies the original proofs of [30, 17] for tree-like
lifting, this was not the original motivation.

S. Lovett, R. Meka, I. Mertz, T. Pitassi, and J. Zhang 104:11

The main idea is the same as before; at every step our rectangle R has some number of
variables fixed, while we have 0.95 log m blockwise min-entropy on the rest. When we move
to a new node we apply the rectangle partition to get a list of too-likely assignments, using
our key lemma to show that at least one will be safe to query. The main difference from
the tree-like proof is that Π is allowed to “forget” information along a path to the leaves,
which potentially allows it to run for many more rounds. To handle this, when moving to
node v we apply the rectangle partition to Rv itself instead of R ∩ Rv, and we include all
coordinates instead of just the ones unfixed in R. When we find a good assignment and
associated rectangle in R ∩Rv, we set R to be this new rectangle and allow our decision dag
to forget any assignments it was remembering that are not fixed in the new assignment. We
use the same key lemma as in the tree-like case, first to make sure that after we remove all
ys where {y ∈ Y : y[Ij , αj] = βj} is too small – and for technical reasons we now do this in
advance to every Rv in the protocol in a bottom-up fashion, creating a not-too-large set of
bad y values that we throw out before even starting – we can still find a good row x∗; and
second, to make sure that at the leaves we are done.

Even smaller gadgets

The reader may have noticed that the choice of the constant 0.95 in the blockwise min-entropy
threshold 0.95 log m was arbitrary; the important thing is that the number of steps of the
communication protocol required to reduce the blockwise min-entropy of our rectangle below
the threshold is Ω(log m) per coordinate. On the other hand, our gadget size m = n1.1

will directly be a function of this constant: in order to apply Lemma 7 we need that
0.95 log m > log(n log m) + O(1), or in other words m0.95 > O(n log m). Taking these two
facts together, it turns out that taking the constant 0.95 arbitrarily close to 1 allows us to
drive down the gadget size m in tandem, to n1+ϵ for any ϵ > 0.

In fact we can even take our blockwise min-entropy threshold to be (1− o(1)) log m ≥
O(n log m) and get even closer to a linear sized gadget. However now we no longer have
that the number of steps of the communication protocol required to reduce the blockwise
min-entropy of our rectangle below the threshold is Ω(log m) per coordinate. Thus we
get a smooth tradeoff between the gadget size and the strength of the simulation, up to
m = O(n log n).

▶ Theorem 10 (Minimum Gadget Size Lifting Theorem). Let f be a search problem
over {0, 1}n, and let m = Ω(n log n). Then

Pcc(f ◦ Indm) ≥ Ω(Pdt(f))

An analoguous theorem hold for dag-like lifting. We make these statements more formal in
Subsection 6.1.

Lifting that scales with the query complexity

In many applications (e.g. tree-like Cutting Planes automatizability lower bounds) we want
to lift very small decision tree lower bounds to communication lower bounds, and even having
a gadget of size m = nϵ is too large to get anything useful. In [14] they prove a lifting
theorem where the only restriction on m is that it be polynomial in Pdt(f), rather than
having any direct dependence on n. We refer to this as graduated lifting.

In Subsection 6.2 we reprove this theorem for both tree-like lifting and dag-like lifting,
the latter of which is new. In fact, almost nothing is required beyond the basic proofs, only a
small observation in the choice of parameters for our unified key lemma. As a result we also

ITCS 2022

104:12 Lifting with Sunflowers

push the gadget size down to m = (Pdt(f))1+ϵ (and the equivalent statement for dag-like
lifting), which generalizes all our previous results. There is a minor catch due to the case
of the leaves, which restricts us to choosing m = Ω(log1+ϵ n) unless we have some (natural)
structure on the type of search problem we are lifting.11

Real lifting

Finally it is fairly trivial to extend all of our results to the real communication setting, further
generalizing all previous results. The only result which cannot be extended is the case of
dag-like graduated lifting, although it is not clear that this cannot be achieved with a small
modification to the proof. See Subsection 6.3 for more details.

4 Towards polylogarithmic gadget size

As discussed above, the key issue in improving gadget size with current techniques is to prove
the extractor or disperser like analogues of our key lemma (Lemma 12) for small gadget sizes.
To this end, we pose the following concrete conjecture:

▶ Conjecture 11. There exist a constant c such that for all large enough m the following
holds. Let X, Y be distributions on [m]N , ({0, 1}m)N with entropy deficiency at most ∆ each.
Then, IndN

m(X, Y) contains a subcube of co-dimension at most c∆. That is, there exists
I ⊆ [N], |I| ≤ c∆, and α ∈ {0, 1}I such that for all z ∈ {0, 1}N with zI = α, we have

PrX,Y [IndN
m(X, Y) = z] > 0.

Proving the above statement seems necessary for obtaining better lifting theorems with
current techniques. Further, while there are other obstacles to be overcome, proving the
conjecture for smaller gadget-sizes would be a significant step toward improving gadget size
(e.g., at least in the non-deterministic setting as considered in [15]).

The robust-sunflower theorem of [1] can be seen as proving a related statement: For
gadget-size m = poly(log n), if X has deficiency at most ∆, Y is the p-biased distribution,
then we get the stronger guarantee that for some I ⊆ [n], |I| = O(∆), α ∈ {0, 1}I we have
that for all z with zI = αI , PrY [∃x ∈ X, Indn

m(X, Y) = z] = 1 − o(1). Note that the
conclusion is stronger in the latter statement compared to the conjecture (the conjecture
only asks for non-zero probability); however, the assumption on Y is incomparable in the
robust-sunflower lemma (i.e., Y is a p-biased distribution, whereas in the conjecture Y has
high min-entropy). Nevertheless, the present proof uses the robust sunflower lemma to prove
the conjecture for m = O(n log n), whereas previous techniques needed m≫ n2. We believe
that these arguments could be useful in proving the above conjecture when the gadget-size is
m = poly(log n).

5 The basic lifting theorem: full proof

To prove Theorem 9, we prove that if there exists a communication protocol Π of depth
d log m for the composed problem f ◦ Indn

m, then there exists a decision tree of depth O(d)
for f ; the other direction is trivial as a communication protocol can simply compute each

11 Such a restriction was also inherent in [14], who work with the canonical search problem on unsatisfiable
CNFs; this is an example of a class which has such structure.

S. Lovett, R. Meka, I. Mertz, T. Pitassi, and J. Zhang 104:13

variable queried by the decision tree.12 Our proof will follow the basic structure of previous
works [18, 11]. We first define a procedure, called the rectangle partition, which forms the
main technical tool in our simulation. We then prove that with this tool and a few useful
facts about its output, we can efficiently simulate the protocol Π by a decision tree T , using
a number of invariants to show the efficiency and correctness of T .

Before we begin, we prove a very useful lemma that shows that if X has high blockwise
min-entropy outside some set of coordinates J , and furthermore Y is large, then it’s possible
to find an x∗ ∈ X such that the full image of the index gadget is available to x∗ outside
J , or in other words IndJ̄

m(x∗, Y) = {0, 1}J̄ . This appears as Lemma 7 in [11] for dag-like
lifting and is stronger than is necessary for proving Theorem 9, but the proof highlights our
new counting strategy and will be a useful tool throughout the rest of the paper.13 We also
emphasize that this is the only place in the proof of Theorem 9 where we use the size of the
gadget.

▶ Lemma 12 (Full Range Lemma). Let m ≥ n1.1 and let J ⊆ [n]. Let X × Y ⊆ [m]J̄ ×
({0, 1}m)n be such that X has blockwise min-entropy at least 0.95 log m− O(1) and |Y | >
2mn−2n log m. Then there exists an x∗ ∈ X such that for every β ∈ {0, 1}J̄ , there exists a
yβ ∈ Y such that IndJ̄

m(x∗, yβ) = β.

Proof. Assume for contradiction that for all x there exists a βx ∈ {0, 1}J̄ such that |{y ∈
Y : y[x] = βx}| = 0, or in other words for all (x, y) ∈ X × Y , y[x] ̸= βx. Consider the CNF
over y1 . . . ymn where clause Cx is the clause uniquely falsified by y[x] = βx; then by Claim 8
we see that |{y ∈ ({0, 1}m)n : ∀x, y[x] ̸= βx}| is maximized when βx = 1J̄ . Thus because
Y ⊆ ({0, 1}m)n,

|{y ∈ Y : ∀x, y[x] ̸= βx}| ≤ |{y ∈ ({0, 1}m)n : ∀x, y[x] ̸= 1J̄}|

Consider the space [mn] where each element is indexed by (i, α) ∈ [n] × [m]. For each
x ∈ X, let Sx ⊆ [mn] be the set defined by including (i, α) iff x[i] = α, and let SX =
{Sx : x ∈ X}. By the fact that m0.95 ≫ O(n log m) and |J̄ | ≤ n, SX has blockwise min-
entropy 0.95 log m−O(1) > log(O(n log m)) > log(K log(|J̄ |/κ)), where κ := 2−3n log m and
K is the constant given by Lemma 7. Thus we can apply Lemma 7 to SX and get that
PrSy⊆[mn](∀Sx ∈ SX , Sx ̸⊆ Sy) ≤ κ,14 and if we look at y as being the indicator vector for
Sy then we get that Pry∼{0,1}mn(∀x ∈ X, y[x] ̸= 1J̄) ≤ κ. Thus by counting we get

|Y | = |{y ∈ Y : ∀x, y[x] ̸= βx}|
≤ |{y ∈ ({0, 1}m)n : ∀x, y[x] ̸= 1J̄}|
≤ κ · 2mn = 2mn−3n log m

which is a contradiction as |Y | > 2mn−2n log m by assumption. ◀

12 We can assume that d = o(n) as the theorem is trivial otherwise, but this fact will not be necessary for
our proof.

13 While we simplify things in this section by using m = n1.1, our improved gadget size (see Section 6)
crucially uses the improvements in Lemma 7 over the basic Lemma 6; the same improvements also give
us a very short proof of our main lemma. However, these improvements aren’t strictly necessary for our
techniques; using the parameters of the original robust sunflower from [33], we obtain a gadget size of
n2+ϵ, matching previous constructions.

14 Recall that it does not matter that Sy is not necessarily block-respecting.

ITCS 2022

104:14 Lifting with Sunflowers

5.1 Density-restoring partition
Before going into the simulation, we define our essential tool, which is usually called the
density-restoring partition or rectangle partition as per [18]. To understand how this will
be used to define our core invariant on rectangles X × Y , we need the following definition.
Intuitively it states that there is some set of coordinates J ⊆ [n] such that Indn

m(X, Y) is
fixed on J and “very unfixed” on J̄ . For the rest of this section, recall that d ≤ n is a
parameter such that Π has depth d log m.

▶ Definition 13. Let m, n, d be as defined above, and let ρ ∈ {0, 1, ∗}n be a partial assignment
with J := fix(ρ) ⊆ [n], A rectangle R = X × Y ⊆ [m]n × ({0, 1}m)n is ρ-structured if the
following conditions hold:

IndJ
m(XJ , YJ) = {ρ[J]}

XJ is fixed to a single value α, and XJ̄ has blockwise min-entropy at least 0.95 log m

|Y | ≥ 2mn−d log m−|J| log m

If the second condition only holds for 0.95 log m−O(1), we say R is ρ-almost structured.

In this section our goal will be to “restore” an almost-good (almost structured) rectangle R

into a good (structured) rectangle R′ inside it, fixing coordinates as necessary. Let J ⊆ [n], let
ρ be some restriction fixing exactly the coordinates in J , and let X × Y ⊆ [m]n × ({0, 1}m)n

be ρ-almost structured. Our goal will be to output a set of rectangles Xj × Y j,β which cover
most of X × Y such that each Xj × Y j,β is ρj,β-structured for some ρj,β extending ρ.

To perform the partition we will need to find the sets Xj×Y j,β along with a corresponding
assignment ρj,β for which they are ρj,β-structured. This is done in two phases. Our goal in
Phase I will be to break up X into disjoint parts Xj , such that each Xj is fixed on some
set Ij ⊆ J̄ and has blockwise min-entropy 0.95 log m on J̄ ∖ Ij – hence this partition is
“density-restoring” when X starts off with blockwise min-entropy below 0.95 log m. To do
this, the procedure iteratively finds a maximal partial assignment (Ij , αj) such that the
assignment x[Ij] = αj violates 0.95 log m blockwise min-entropy in X, splits the remaining
X into the part Xj satisfying this assignment and the part X ∖ Xj not satisfying it, and
recurses on the latter part. We do this until we’ve covered at least half of X by Xj subsets.

Our goal in Phase II will be to break up Y into disjoint parts Y j,β for each Xj from
Phase I, such that each Xj × Y j,β is ρj,β-structured for some restriction ρj,β . We already
have the blockwise min-entropy of Xj in the coordinates J̄ ∖ Ij by our first goal, and clearly
we will choose ρj,β such that fix(ρj,β) = J ∪Ij for each j. Thus we need to fix the coordinates
of Y within the blocks Ij , and within each Y j,β it should be the case that y[Ij , αj] = β for
all y ∈ Y j,β , at which point ρj,β can be fixed to β on Ij and left free everywhere else in J̄

(with the coordinates of J being fixed by assumption).
Our algorithm is formally described in Algorithm 1. Let X × Y be ρ-almost structured

for some ρ with fix(ρ) = J where |J | = O(d), and let F , {Xj}j , {Y j,β}j,β be the result of
Algorithm 1 on X × Y . Recall that our goal was to break X × Y up into ρj,β-structured
rectangles Xj×Y j,β ; the following simple claims show that the obvious choice of ρj,β achieves
two of the three conditions needed (outside of the part of X that we never touch before the
procedure ends).

▷ Claim 14. For all j and for all β ∈ {0, 1}Ij , define ρj,β ∈ {0, 1, ∗}n to be the restriction
extending ρ by ρj,β [Ij] = β. Then Xj

Ij
= {αj} and IndJ∪Ij

m (Xj , Y j,β) = ρj,β [J ∪ Ij].

Proof. By definition Xj is fixed to αj on the coordinates Ij , while Y j,β only contains values
y such that y[αj] = β. ◁

S. Lovett, R. Meka, I. Mertz, T. Pitassi, and J. Zhang 104:15

Algorithm 1 Rectangle Partition.

Initialize F = ∅, j = 1, and X≥1 := X;
PHASE I (Xj): while |X≥j | ≥ |X|/2 do

Let Ij be a maximal subset of J̄ such that X≥j violates 0.95 log m-blockwise
min-entropy on Ij , or let Ij = ∅ if no such subset exists;

Let αj ∈ [m]Ij be an outcome such that Prx∼X≥j (x[Ij] = αj) > 2−0.95|Ij | log m;
Define Xj := {x ∈ X≥j : x[Ij] = αj};
Update F ← F ∪ {(Ij , αj)}, X≥j+1 := X≥j ∖ Xj , and j ← j + 1; 15

end
PHASE II (Y j,β): for (Ij , αj) ∈ F , β ∈ {0, 1}Ij do

Define Y j,β := {y ∈ Y : y[Ij , αj] = β};
end
return F , {Xj}j , {Y j,β}j,β ;

X1

X2

X3

...

x[I1] = α1

x[I2] = α2 x[I1] ̸= α1

x[I3] = α3
x[I1] ̸= α1

x[I2] ̸= α2

X1

X2

X3

Y 1,00 Y 1,01 Y 1,10 Y 1,11

Y 2,000Y 2,001Y 2,010 Y 2,011Y 2,100Y 2,101

Y 3,0 Y 3,1

Figure 2 Phases I and II of Algorithm 1. In each Xj × Y j,β , x[Ij] is fixed to αj and y[Ij] is fixed
so that IndIj

m(Xj
Ij

, Y j,β
Ij

) = β.

▷ Claim 15. For all j, Xj

J∪Ij
has blockwise min-entropy at least 0.95 log m.

Proof. Assume for contradiction that I∗ ⊆ J̄ ∖ Ij such that Xj violates 0.95 log m-blockwise
min-entropy on I∗, and let α∗ be an outcome witnessing this. Then

Prx∼X≥j (x[Ij] = αj ∧ x[I∗] = α∗) > 2−0.95|Ij | log m ·Prx∼Xj (x[I∗] = α∗)
> 2−0.95|Ij | log m−0.95|I∗| log m = 2−0.95|Ij∪I∗| log m

which contradicts the maximality of Ij . ◁

Claims 14 and 15 do not use the fact that X × Y was ρ-almost structured, while our next
two claims will. Before moving to the third condition, the size of Y j,β , we show that the
deficiency of each Xj drops by Ω(|Ij | log m). This will be used later to show the efficiency of
our simulation.

▷ Claim 16. For all (Ij , αj) ∈ F , D∞(Xj) ≤ D∞(X)− 0.05|Ij | log m + 1.

ITCS 2022

104:16 Lifting with Sunflowers

Proof. By our choice of (Ij , αj) it must be that |Xj | = |X≥j | · Prx∼X≥j (x[Ij] = αj) ≥
|X≥j | · 2−0.95 log m. Then by the fact that Xj is fixed on J ∪ Ij and and X is fixed on J ,

D∞(Xj) = |J ∪ Ij | log m− log |Xj |
≤ (n− |J ∪ Ij |) log m− log(|X≥j | · 2−0.95|Ij | log m)
≤ ((n− |J |)− |Ij |) log m− log |X≥j |+ 0.95|Ij | log m− log |X|+ log |X|
= (|J | log m− log |X|)− 0.05|Ij | log m + log(|X|/|X≥j |)
≤ D∞(X)− 0.05|Ij | log m + 1

where the last step used the fact that |X≥j | ≥ |X|/2, since we terminate as soon as
|X≥j | < |X|/2 at the start of the j-th iteration. ◁

For our last lemma before going into the simulation, instead of showing that |Y j,β | is large
for every j and every β, we want to show that |Y j,β | is large for some j and every β. If every
β were equally likely then |Y j,β | ≈ |Y |/2|Ij |; for us it is enough that the smallest Y j,β be has
size at least |Y |/2|Ij | log m. For convenience we redefine X to only be the union of the Xj

parts – since we terminate after |X≥j | < |X|/2 we can do this and only decrease the blockwise
min-entropy of X by 1 – and furthermore we restrict down to the free coordinates J̄ .

We assume otherwise, and that for every j there exists a bad βj for which Y j,βj is too
small. We split Y into two parts: y’s that are in some bad Y j,βj , and y’s that are in no bad
Y j,βj . Our contradiction will be to show that both sets are much smaller than |Y |/2. While
this strategy was implicit in previous works, our contribution in this paper is to improve both.
For the first set, we use a simple but novel union bound argument which works independent
of the gadget size m; previous union bound strategies relied on the fact that m = poly(n).
Bounding the second set is our central contribution, and is a fairly direct application of
Lemma 12.

▶ Lemma 17. Let X × Y be ρ-almost structured for some ρ with fix(ρ) = J ⊆ [n] and let F ,
{Xj}j , {Y j,β}j,β be the result of Algorithm 1 on X ×Y . Let X ′ := (∪jXj)J̄ be such that X ′

has blockwise min-entropy 0.95 log m−O(1), and let Y be such that |Y | ≥ 2mn−d log m−|J| log m.
Then there is a j such that for all β ∈ {0, 1}Ij ,

|Y j,β | ≥ 2mn−d log m−|J∪Ij | log m

Proof. We will show that there is a j such that for all β ∈ {0, 1}Ij , |Y j,β | ≥ |Y |/2|Ij | log m,
which is sufficient by our bound on |Y |. Assume for contradiction that for every j there
exists a βj such that |Y j,βj | < |Y |/2|Ij | log m. Define Y= := {y ∈ Y : ∃j, y[Ij , αj] = βj} and
Y̸= := Y ∖ Y= = {y ∈ Y : ∀j, y[Ij , αj] ̸= βj}.

Assume for the moment that |Y=| < |Y |/2; if this is the case then it must be that |Y̸=| ≥
|Y |/2 ≥ 2mn−d log m−|J| log m > 2mn−2n log m. By Lemma 12 on X ′

J̄
× Y̸=, there must exist

some x∗ ∈ X ′ such that for every β ∈ {0, 1}J̄ there exists yβ ∈ Y̸= such that yβ [J̄ , x∗[J̄]] = β.
Since x∗ ∈ X ′, there exists some j such that x∗ ∈ Xj , and thus for any β ∈ {0, 1}J̄ such that
β[Ij] = βj , there exists a yβ ∈ Y̸= such that yβ [J̄ , x∗[J̄]] = β. But since x∗ ∈ Xj , x∗[Ij] = αj ,
so yβ [Ij , αj] = βj which is a contradiction since Y̸= = {y ∈ Y : ∀j, y[Ij , αj] ̸= βj}.

We now show that |Y=| < |Y |/2. Define F(k) := {(Ij , αj) ∈ F : |Ij | = k}. Assume
that there exists some k such that |F(k)| > 2m0.95k. Note that every set (Ij , αj) ∈ F(k)
corresponds to an assignment to X which occurs with probability greater than 2−0.95k log m

in X≥j , which has size at least |X|/2 by construction, and so by a union bound we get that

|X| > |F(k)| · (2−0.95k log m |X|
2) > (1

2 · 2
0.95·k log m+1 · 2−0.95·k log m)|X| = |X|

S. Lovett, R. Meka, I. Mertz, T. Pitassi, and J. Zhang 104:17

which is clearly a contradiction. Thus we can assume that |F(k)| ≤ 2m0.95k for all k, then
because we assumed |Y j,βj | < |Y |/2|Ij | log m we get that

|Y=| <

n∑
k=1

(2m0.95k · |Y |2k log m
)

<

n∑
k=1

(20.96k log m−1 · |Y |2k log m
)

= |Y |
2 ·

n∑
k=1

(20.04 log m)−k

<
|Y |
2 ·

∞∑
k=1

2−k = |Y |2

which completes the proof. ◀

5.2 Simulation

Proof of Basic Lifting Theorem. For n sufficiently large let m = n1.1 and let d ≤ n. As
stated in Section 1 given a decision tree T for f of depth d we can build a communication
protocol for f ◦ Indn

m of depth d log m; Alice sends the entirety of xj for whatever variable zj

the decision tree queries, Bob sends back yj [xj], and they go down the appropriate path in
the decision tree. Thus we show the other direction: given a protocol Π of depth d log m for
the composed problem f ◦ Indn

m we want to construct a decision-tree of depth O(d) for f .
The decision-tree is naturally constructed by starting at the root of Π and taking a walk

down the protocol tree guided by occasional queries to the variables z = (z1, . . . , zn) of f .
During the walk, we maintain a ρ-structured rectangle R = X × Y ⊆ [m]n × ({0, 1}m)n

which will be a subset of the inputs that reach the current node in the protocol tree, where ρ

corresponds to the restriction induced by the decision tree at the current step. Thus our goal
is to ensure that the image Indn

m(X × Y) has some of its bits fixed according to the queries
to z made so far, and no information has been leaked about the remaining free bits of z.

To choose which bits to fix, we use the density restoring partition to identify any
assignments to some of the x variables that have occurred with too high a probability; by the
way the rectangle partition is defined the corresponding sets Xj regain blockwise min-entropy.
Then using Lemma 17, we pick one of these assignments and query all the corresponding z

variables, and for the resulting β we know Xj × Y j,β is ρj,β-structured since the size of Y j,β

doesn’t decrease too much. With the blockwise min-entropy of X restored and the size of Y

kept high, we can update ρ to include ρj,β and continue to run the rectangle partition at the
next node, and so we proceed in this way down the whole communication protocol.

We describe our query simulation of the communication protocol Π in Algorithm 2. For
all v ∈ Π let Rv = Xv × Yv be the rectangle induced at node v by the protocol Π. The query
and output actions listed in bold are the ones performed by our decision tree.

Before we prove the correctness and efficiency of our algorithm, we note that we make
no distinction between Alice speaking and Bob speaking in our procedure. Here we note
that each Rv is a rectangle induced by the protocol Π, and so updating v only splits X or
Y – corresponding to when Alice and Bob speak respectively – but not both, and so since
R ⊆ Rv we get that |X ∩Xv| ≥ |X|/2 and |Y ∩ Yv| ≥ |Y |/2.

ITCS 2022

104:18 Lifting with Sunflowers

Algorithm 2 Simulation protocol.

Initialize v := root of Π; R := [m]n × ({0, 1}m)n; ρ = ∗n;
while v is not a leaf do

Precondition: R = X × Y is ρ-structured; for convenience define J := fix(ρ);
Let vℓ, vr be the children of v, and update v ← vℓ if |R ∩Rvℓ

| ≥ |R|/2 and
v ← vr otherwise;

Execute Algorithm 1 on (X ∩Xv)× (Y ∩ Yv) and let F = {(Ij , αj)}j , {Xj}j ,
{Y j,β}j,β be the outputs;

Apply Lemma 17 to F , {Xj}j , {Y j,β}j,β to get some index j corresponding to
(Ij , αj) ∈ F ;

Query each variable zi for every i ∈ Ij , and let β ∈ {0, 1}Ij be the result;
Update X ← Xj and Y ← Y j,β ;
Update ρ← ρj,β (recall that ρj,β ∈ {0, 1, ∗}n is the restriction extending ρ by
ρj,β [Ij] = β);

end
Output the same value as v does;

Efficiency and correctness

To prove the efficiency and correctness of our algorithm, consider the start of the t-th iteration,
where we are at a node v and maintaining Rt = Xt × Y t and ρt.16 Again for convenience we
write J t := fix(ρt). Let (It, αt) be the (possibly empty) assignment returned by Lemma 17
corresponding to index jt, and let βt be the result of querying z[It].

We show that our precondition that Rt is ρt-structured holds for all t ≤ d log m, as well
as the fact that ρt fixes at most O(d) coordinates:
1. IndJt

m (Xt
Jt , Y t

Jt) = ρt[J t]
2. XJt is fixed to a single value and Xt

Jt
has blockwise min-entropy at least 0.95 log m

3. |Y t| ≥ 2mn−t−|Jt| log m.
4. D∞(Xt

Jt
) ≤ 2t− 0.05|J t| log m, which implies |J t| ≤ 40d by non-negativity of deficiency

All invariants hold at the start of the algorithm since ρ0 = ∗n and X0×Y 0 = [m]n×({0, 1}m)n.
Inductively consider the (t + 1)-th iteration assuming all invariant holds for the t-th iteration.
After applying Algorithm 1 invariant 1 follows by Claim 14 and invariant 2 follows by Claims
14 and 15. For invariant 3 we first show that it is valid to apply Lemma 17 in the (t + 1)-th
iteration. First, because |Xt ∩ Xv| ≥ |Xt|/2 we know that the blockwise min-entropy of
(Xt ∩Xv)

Jt is at most one less than the blockwise min-entropy of Xt
Jt

, which is at least
0.95 log m. Second, we have

|(Y t ∩ Yv)| ≥ |Y t|/2 ≥ 2mn−t−|Jt| log m−1 = 2mn−(t+1)−|Jt| log m ≥ 2mn−41d log m

recalling that t + 1 ≤ d log m. Thus we can apply Lemma 17 and we get

|Y t+1| = |Y jt,βt |
≥ 2mn−t−|Jt| log m−1−|It| log m

≥ 2mn−t−1−(|Jt|+It|) log m = 2mn−(t+1)−|Jt+1| log m

16 We understand that this notation is somewhat overloaded with Xj , Y j,β , and ρj,β . Since the proof
that the invariants hold is short and we only ever use t (or t + 1) for the time stamps and j for the
indices, hopefully this won’t cause any confusion.

S. Lovett, R. Meka, I. Mertz, T. Pitassi, and J. Zhang 104:19

Rvℓ
Rvr

R

Figure 3 One iteration of Algorithm 2. We perform Algorithm 1 (green lines) on the larger half
of R after moving from v to its child (shaded in purple), use Lemma 17 to identify a part j (shaded
in blue), and then query Ij and set R to Xj × Y j,β for the result z[Ij] = β (shaded in brown).

For invariant 4, by Claim 16 and induction we get that

D∞(Xt+1) = D∞(Xjt)
≤ D∞(X ∩Xv)− 0.05|It| log m + 1
≤ (2t− 0.05|J t| log m + 1)− 0.05|It| log m + 1
= 2(t + 1)− 0.05|J t+1| log m

which completes the proof of our invariants. Thus our procedure is well-defined.
Lastly we have to argue that if we reach a leaf v of Π while maintaining R and ρ

with fixed coordinates J , then the solution o ∈ O output by Π is also valid solution to
the values of z, of which the decision-tree knows that z[J] = ρ[J]. Suppose Π outputs
o ∈ O at the leaf v, and assume for contradiction that there exists β ∈ {0, 1}n consistent
with ρ such that β /∈ f−1(o). Since IndJ

m(x, y) = ρ[J] = β[J] for all (x, y) ∈ R, we focus
on J̄ = free(ρ). Since R is ρ-structured, XJ̄ has blockwise min-entropy 0.95 log m and
|Y | > 2mn−d log m−|J| log m > 2mn−2n log m. Thus applying Lemma 12 to X × Y , we know
that that there exists (x, y) ∈ R such that Indn

m(x, y) = β, which is a contradiction as
R ⊆ Rv ⊆ (f ◦ Indn

m)−1(o). ◀

6 Smaller gadgets

In Section 5 we loosely chose m = n1.1 for the purpose of showing the basic lifting statement.
In this section we improve from n1.1.

6.1 Optimizing the gadget size
First, we make direct improvements on Theorem 9 by showing that the gadget size can be
improved to m = n1+ϵ with only a small modification of the proof. Second we show that the
same modification can be used to obtain a tradeoff between the gadget size and the strength
of the lifting theorem, which gives an optimal gadget size of m being quasilinear in n for a
slightly weaker lower bound.

ITCS 2022

104:20 Lifting with Sunflowers

Warm-up: m = n1+ϵ

First we improve on Theorem 9 to get a gadget of size n1+ϵ for any ϵ > 0, with no changes in the
asymptotic strength of the lifting theorem nor anything non-trivial in the proof. This comes
from two observations. First, we only use the size of m in the two places we apply Lemma 12,
and in both cases we can apply Lemma 7 as long as 0.95 log m−O(1) ≥ log(Kn log m). Second,
from the perspective of our simulation, the constant 0.95 is only used to set the blockwise
min-entropy threshold for the density-restoring partition, and was chosen arbitrarily.

So for δ > 0 we can instead choose to put the threshold at (1− δ) log m, at which point
our condition on m changes to (1− δ)m ≥ log(Kn log m). Clearly this can be made to fulfill
our condition m ≥ n1+ϵ as long as (1− δ)(1 + ϵ) > 1. The proof itself then simply becomes
a matter of replacing 0.95 with 1− δ and 0.05 with δ throughout the proof, as well as a few
other constants. Since Claim 16 now gives a drop in deficiency of δ for every coordinate we
query, the non-negativity of deficiency gives us |fix(ρt)| ≤ 2t/δ log m at any time t ≤ d log m,
which gives us a decision tree of depth (2/δ) · d = O(d) – or for dag-like lifting, a decision
dag of width (2/δ) · d = O(d) – as required.

Near-linear gadget: m = Θ(n log n)

Building off the intuition from our warm-up, what happens if δ is chosen to be subconstant?
We cannot hope to get a tight lifting theorem, as our decision tree/dag will be of depth
(2/δ) · d. Furthermore choosing δ = o(1/ log m) makes our blockwise min-entropy threshold
(1− δ) log m trivial, as log m is the maximum possible blockwise min-entropy for X. Thus
by choosing δ = Ω(1/ log m) we can get the following general lower bound, which gives
Theorem 9 and Theorem 10 as special cases.

▶ Theorem 18 (Scaling Basic Lifting Theorem). Let f be a search problem over {0, 1}n, and
let m, δ be such that δ ≥ Ω(1

log m) and m1−δ ≥ Ω(n log m). Then

Pcc(f ◦ Indm) ≥ Pdt(f) · Ω(δ log m)

Proof sketch. We start with a given communication protocol Π of depth d · δ log m for the
composed problem f ◦ Indn

m and construct a decision-tree of depth O(d) for f .17 We define
a ρ-structured rectangle R as before except now with the condition that X has blockwise
min-entropy (1− δ) log m. Then in Algorithm 1 we set the blockwise min-entropy threshold
for a violating assignment (Ij , αj) at (1− δ) log m as well.

To prove Lemma 12, note that we can apply Claim 8 regardless of m and N , and we can
still apply Lemma 7 as long as we can choose m such that (1−δ) log m−2 > log(K ·2n log m).
Thus for this altered rectangle partition procedure, by the same proofs as before, Claim 15
states that Xj

J∪Ij
has blockwise min-entropy at least (1 − δ) log m, Claim 16 states that

D∞(Xj) ≤ D∞(X) − |Ij | · δ log m + 1, and Lemma 17 states that if XJ̄ has blockwise
min-entropy (1− δ) log m−O(1) and |Y | > 2mn−d log m−|J| log m, then there exists a j such
that for all β, |Y j,β | ≥ 2mn−d log m−|J∪Ij | log m.

Now our simulation procedure is the same as Algorithm 2. Again at the start of the t-th
iteration we are maintaining Rt = Xt × Y t, ρt, and J t := fix(ρt), where now t ≤ d · δ log m.
By the same argument our procedure is well-defined as long as the precondition of Rt being
ρt-structured holds, and by a deficiency argument using our new Claim 16 we get that

17 This is a bit different than previously, as we are incorporating δ into the size of our communication
protocol rather than our decision tree, but this is purely for readability’s sake.

S. Lovett, R. Meka, I. Mertz, T. Pitassi, and J. Zhang 104:21

D∞(Xt) ≤ 2t− |J t| · δ log m, which implies |J t| ≤ 2t/δ log m ≤ 2d. Our precondition holds
by applying the new versions of Claim 14, Claim 15, and Lemma 17 as before. Finally our
simulation is correct again by the invariants and Lemma 12. ◀

6.2 Graduated lifting
In this section we prove a variant on Theorem 9, which allows us to set the gadget size m in
terms of the target decision tree depth d. The tree-like theorem was originally proven in [14]
but it also follows immediately from our proof of Theorem 9 with significant improvements to
the gadget size. The only technical detail is that for arbitrary search problems we cannot allow
the gadget size to go below Ω(log1+ϵ n),18 although future improvements on the statement
of Lemma 7 could change this restriction. In particular, the Robust Sunflower Conjecture
states that the precondition in Lemma 7 can be improved to log O(log 1/ϵ); if this held then
it would remove our restriction on d.

▶ Theorem 19 (Graduated Lifting Theorem, large d). Let f be a search problem over {0, 1}n

and let m ≥ max(Pdt(f), log n)1+ϵ for some ϵ > 0. Then

Pcc(f ◦ Indm) ≥ Pdt(f) · Ω(log m)

Proof sketch. We start with a given communication protocol Π of depth d · δ log m for the
composed problem f ◦ Indn

m, where δ is such that (1 − δ)(1 + ϵ) > 1, and we construct
a decision-tree of depth O(d) for f . We change the precondition on |Y | in Lemma 12 to
read “|Y | ≥ 2mn−2d log m”, which is guaranteed by the preconditions of Lemma 17 and
our ρ-almost structured invariant whenever it is applied. Accordingly, in the proof of
Lemma 12 we set κ = 2−3d log m. By our choice of m we get that (1 − δ) log m − O(1) ≥
log(K log n + K · 3d log m) ≥ log K log(n/κ). ◀

We also note that for many natural search problems, such as the canonical search problem
on CNF-UNSAT, the restriction m = Ω(log n) can be removed. For simplicity, call a
search problem f “nice” if the following condition holds: for any potential output o ∈ O
to f(z1 . . . zn), any partial assignment ρ ∈ {0, 1, ∗}n to the z variables which admits o,
and any partial assignment ρ′ ∈ {0, 1, ∗}n extending ρ certifying that f does not output
o which is minimal with respect to the number of coordinates in fix(ρ′) ∩ free(ρ), then
|fix(ρ′) ∩ free(ρ)| ≤ 2O(d log d).19

▶ Theorem 20 (Graduated Lifting Theorem, small d). Let f be a nice search problem over
{0, 1}n and let m ≥ (Pdt(f))1+ϵ for some ϵ > 0. Then

Pcc(f ◦ Indm) ≥ Pdt(f) · Ω(log m)

Proof of Theorem 20. We begin by apply all the changes to Lemma 12 as stated in the
previous proof. In order to remove the difficulty of having the set size n in the statement of
Lemma 7, we marginalize each x to subsets of size at most 2O(d log m).

18 This necessarily holds whenever d = Ω(log n), which can be considered the “natural” range of parameters
as otherwise there is a variable that is never queried along any path of our decision tree, meaning f
does not depend on all its variables.

19 If we consider the canonical search problem on CNF-UNSAT, then for any output clause C and any
ρ, either ρ totally falsifies C or it leaves at least one variable in C unfixed, at which point ρ′ can
simply set any unset variable in C to satisfy it. These are the only minimal extensions, and thus
| fix(ρ′) ∩ free(ρ)| = 1.

ITCS 2022

104:22 Lifting with Sunflowers

▶ Lemma 21 (d-Full Range Lemma). Let m ≥ d1+ϵ and let J ⊆ [n]. Let X × Y ⊆
[m]J̄ × ({0, 1}m)n be such that X has blockwise min-entropy at least (1 − δ) log m − O(1)
and |Y | > 2mn−2d log m. Then there exists an x∗ ∈ X such that for every constant C, every
J ′ ⊆ J̄ with |J ′| ≤ 2Cd log m, and every β ∈ {0, 1}J′ , there exists a yβ ∈ Y such that
IndJ′

m (x∗, yβ) = β.

Proof. Assume for contradiction that for all x there exists a set Ix ⊆ J̄ of size at most
2Cd log m and an assignment βx ∈ {0, 1}Ix such that |{y ∈ Y : y[Ix, x[Ix]] = βx}| = 0. As
before, by Claim 8 we can assume that βx = 1Ix . For each x ∈ X, let Sx ⊆ [mn] be the set
defined by including (i, α) iff x[i] = α and i ∈ Ix, and let SX = {Sx : x ∈ X}.

As above we set κ = 2−3d log m. By our choice of m we get that (1 − δ) log m −
O(1) ≥ log(K(C + 3)d log m) ≥ log K log(2Cd log m/κ). Thus by Lemma 7 we get that
PrSy⊆[mn](∀Sx ∈ SX , Sx ̸⊆ Sy) ≤ κ, and if we look at y as being the indicator vector for Sy

then we get that Pry∼{0,1}mn(∀x ∈ X, y[Ix, x[Ix]] ̸= 1Ix) ≤ κ. Thus by counting we get

|Y | = |{y ∈ Y : ∀x, y[Ix, x[Ix]] ̸= βx}|
≤ |{y ∈ ({0, 1}m)n : ∀x, y[Ix, x[Ix]] ̸= 1Ix}|
≤ κ · 2mn = 2mn−3d log m

which is a contradiction as |Y | > 2mn−2d log m by assumption. ◀

Marginalizing to sets of size 2O(d log m) causes no issue for us when we apply Lemma 12 to
show that there exists a good j in the rectangle partition, as we can assume that all sets
have size at most O(d) by either deficiency or error sets. At the leaves we use the fact any
falsifying assignment only depends on at most 2O(d log m) unset variables, since we can no
longer assert that every joint assignment to all remaining free variables exists. ◀

6.3 Real lifting
Our results also generalize to the real lifting setting. At node v of a real communication
protocol, Alice and Bob send Av(x) : X → R and Bv(y) : Y → R, respectively, and they go
left iff Av(x) ≥ Bv(y) and right otherwise. For a combinatorial view, we say a triangle is
a set T ⊆ X × Y ⊆ X × Y and an ordering <X , <Y on X and Y respectively such that if
x1 <X x2 and (x2, y) ∈ T , (x1, y) ∈ T , and if y1 <Y y2 and (x, y2) ∈ T , (x, y1) ∈ T .

▶ Theorem 22 (Real Lifting Theorem). Let f be a search problem over {0, 1}n and let m, δ

be such that δ ≥ Ω(1
log m), m1−δ = Ω(Pdt(f) log m), and either f is nice or m1−δ = Ω(log n).

Then

Prcc(f ◦ Indm) ≥ Pdt(f) · Ω(δ log m)

Proof sketch. Our results immediately extend to the case of real lifting. In Algorithm 2 at
node v the children of v partition our current rectangle R into two triangles T0, T1; after
going to the side which maximizes |Tb|, there exists a rectangle X ′ × Y ′ ⊆ Tb such that
|X ′| ≥ |X|/2 and |Y ′| ≥ |Y |/2, which was already what we assumed in our invariants and
when executing Algorithm 1. This also holds for the tree-like items of Theorems 18, 19, and
20, giving our first point of Theorem 22. ◀

References
1 Ryan Alweiss, Shachar Lovett, Kewen Wu, and Jiapeng Zhang. Improved bounds for the

sunflower lemma. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 624–630. ACM, 2020.

S. Lovett, R. Meka, I. Mertz, T. Pitassi, and J. Zhang 104:23

2 Tolson Bell, Suchakree Chueluecha, and Lutz Warnke. Note on sunflowers. Discrete Mathem-
atics, 344(7):112367, 2021.

3 Bruno Pasqualotto Cavalar, Mrinal Kumar, and Benjamin Rossman. Monotone circuit lower
bounds from robust sunflowers. In LATIN 2020: Theoretical Informatics - 14th Latin American
Symposium, São Paulo, Brazil, January 5-8, 2021, Proceedings, volume 12118 of Lecture Notes
in Computer Science, pages 311–322. Springer, 2020.

4 Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate constraint
satisfaction requires large LP relaxations. J. ACM, 63(4):34:1–34:22, 2016.

5 Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi. Query-to-
communication lifting using low-discrepancy gadgets. Technical Report TR19-103, Electronic
Colloquium on Computational Complexity (ECCC), 2019. URL: https://eccc.weizmann.ac.
il/report/2019/103/.

6 Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay. Simulation
theorems via pseudo-random properties. Comput. Complex., 28(4):617–659, 2019.

7 Susanna de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere, and Marc
Vinyals. Lifting with simple gadgets and applications to circuit and proof complexity. Technical
Report TR19-186, Electronic Colloquium on Computational Complexity (ECCC), 2019. URL:
https://eccc.weizmann.ac.il/report/2019/186/.

8 Susanna de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction hinders
real communication (and what it means for proof and circuit complexity). In Proceedings
of the 57th Symposium on Foundations of Computer Science (FOCS), pages 295–304. IEEE,
2016.

9 Paul Erdös and R. Rado. Intersection theorems for systems of sets. Journal of the London
Mathematical Society, 35(1):85–90, 1960.

10 Keith Frankston, Jeff Kahn, Bhargav Narayanan, and Jinyoung Park. Thresholds versus
fractional expectation-thresholds. Annals of Mathematics, 194(2):475–495, 2021.

11 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds
from resolution. In Proceedings of the 50th Symposium on Theory of Computing (STOC),
pages 902–911. ACM, 2018.

12 Mika Göös. Lower bounds for clique vs. independent set. In Proceedings of the 56th Symposium
on Foundations of Computer Science (FOCS), pages 1066–1076. IEEE Computer Society,
2015.

13 Mika Göös, Rahul Jain, and Thomas Watson. Extension complexity of independent set
polytopes. SIAM J. Comput., 47(1):241–269, 2018.

14 Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting planes is NP-
hard. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 68–77. ACM, 2020.

15 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles
are nonnegative juntas. SIAM J. Comput., 45(5):1835–1869, 2016.

16 Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity.
SIAM Journal on Computing, 47(5):1778–1806, 2018.

17 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition
number. In Proceedings of the 56th Symposium on Foundations of Computer Science (FOCS),
pages 1077–1088. IEEE, 2015.

18 Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for BPP.
In Proceedings of the 58th Symposium on Foundations of Computer Science (FOCS), pages
132–143, 2017.

19 Danny Harnik and Ran Raz. Higher lower bounds on monotone size. In Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland,
OR, USA, pages 378–387. ACM, 2000.

ITCS 2022

https://eccc.weizmann.ac.il/report/2019/103/
https://eccc.weizmann.ac.il/report/2019/103/
https://eccc.weizmann.ac.il/report/2019/186/

104:24 Lifting with Sunflowers

20 Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: Amplifying communica-
tion complexity hardness to time–space trade-offs in proof complexity. In Proceedings of the
44th Symposium on Theory of Computing (STOC), pages 233–248. ACM, 2012.

21 Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer
Science & Business Media, 2012.

22 Pravesh K. Kothari, Raghu Meka, and Prasad Raghavendra. Approximating rectangles by
juntas and weakly-exponential lower bounds for LP relaxations of csps. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 590–603. ACM, 2017.

23 Jan Krajíček. Interpolation by a game. Mathematical Logic Quarterly, 44:450–458, 1998.
24 Eyal Kushilevitz. Communication complexity. In Advances in Computers, volume 44, pages

331–360. Elsevier, 1997.
25 James R. Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of semidefinite

programming relaxations. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 567–576. ACM, 2015.

26 Xin Li, Shachar Lovett, and Jiapeng Zhang. Sunflowers and quasi-sunflowers from randomness
extractors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, volume
116 of LIPIcs, pages 51:1–51:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

27 Toniann Pitassi and Robert Robere. Strongly exponential lower bounds for monotone compu-
tation. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 1246–1255. ACM, 2017.

28 Toniann Pitassi and Robert Robere. Lifting nullstellensatz to monotone span programs
over any field. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 1207–1219. ACM,
2018.

29 Anup Rao. Coding for sunflowers. Discrete Analysis, 2:8, 2020.
30 Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,

19(3):403–435, 1999.
31 Robert Robere. Unified lower bounds for monotone computation. Ph.D Thesis, 2018.
32 Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook. Exponential lower

bounds for monotone span programs. In Proceedings of the 57th Symposium on Foundations
of Computer Science (FOCS), pages 406–415. IEEE Computer Society, 2016.

33 Benjamin Rossman. The monotone complexity of k-clique on random graphs. Proceedings of
the 51st Symposium on Foundations of Computer Science (FOCS), pages 193–201, 2010.

34 Alexander A. Sherstov. The pattern matrix method. SIAM J. Comput., 40(6):1969–2000,
2011.

35 Alexander A Sherstov. Communication lower bounds using directional derivatives. Journal of
the ACM (JACM), 61(6):1–71, 2014.

36 Xiaodi Wu, Penghui Yao, and Henry S. Yuen. Raz-McKenzie simulation with the inner product
gadget. Electronic Colloquium on Computational Complexity (ECCC), 24:10, 2017.

	1 Introduction
	2 Preliminaries
	3 Proof overview
	3.1 The basic lifting theorem
	3.2 Further results

	4 Towards polylogarithmic gadget size
	5 The basic lifting theorem: full proof
	5.1 Density-restoring partition
	5.2 Simulation

	6 Smaller gadgets
	6.1 Optimizing the gadget size
	6.2 Graduated lifting
	6.3 Real lifting

