2,107 research outputs found

    Underwater Inductive Power Transfer with Wireless Charging Applications

    Get PDF
    Underwater wireless power transfer (UWPT) has become an area of great interest due to the advancement of autonomous underwater vehicles (AUVs) and electic boats. This paper seeks to investigate the variation of the coupling coefficient and power transfer in air versus in seawater. The design is based on a class E converter as it can achieve soft-switching inherently. I made the transmitter and receiver coils then measured self-inductance and parasitic resistance in air and in water. I noted that self-inductance increases when they are placed in water but the mutual inductance is lower. I then calculated the component values for the class E converter based on inductor values (140 μH and 105 μH) and simulated the circuit on LTspice. The power at the output was 74W which is lower than the required value. However, I noted that reducing the coils inductance values while maintaining the value of the other passive components increased the efficiency and power at the output upto four times (311W). The final value chosen for making the inductors was 115 μH and 75 μH as these values gave the maximum power at the output while achieving ZVS. I then designed the transmitter and receiver circuits on Altium and printed the PCBs. All the components were then soldered onto the board and the tests done

    USV charging based on WPT system

    Get PDF
    With the increasing demand of water and underwater exploration, more and more electric unmanned surface vehicles (USV) are put into use in recent years. However, because of the present battery technology limits, these devices require to be recharged frequently that is a challenging problem taking into account the complex water environment where these equipments are acting. To improve safety and convenience of USV charging a wireless power transfer (WPT) system is proposed in this dissertation. In this case, the boat can be controlled to go to the charging facilities. During charging by the implemented WPT system, the state of charging can be remotely monitored by host computer. The moving control is based on embedded system. The relative position between transmitting coil and receiving coil is supposed to be sensed by magnetic sensor, since the relative position has great impact on transmission efficiency. The remote monitoring software was implemented in the host computer and was developed in LABVIEW. A graphical user interface was developed to control the boat moving and collect the data from the WPT and the boat sensors. The effectiveness of the proposed system was tested for instance in the laboratory environment and in-field tests are also planned in the near future.Com a crescente procura da exploração em ambientes aquáticos e subaquáticos , os veículos elétricos de superfície não tripulados ("electric unmanned surface vehicle" -USV) têm sido cada vez mais utilizados nestes últimos anos. No entanto, devido aos limites atuais relacionados com a tecnologia utilizada nas baterias, os dispositivos precisam de ser recarregados com frequência para poderem operar num ambiente aquático complexo. Para melhorar a segurança e a conveniência do carregamento da bateria de um USV, um sistema para recarregamento da bateria de um barco não tripulado através de transferência de energia sem fios("wireless power transfer" - WPT) é proposto nesta dissertação. Neste caso de estudo, o barco tem a capacidade de ser controlado para chegar a um ponto de recarregamento da bateria, que se encontra fixado por uma doca mecânica. Enquanto o sistema WPT érecarregado, os dados associados ao processo de recarregamento da bateria podem ser monitorizados por um computador host. O controlo da movimentação do barco é baseado num sistema embebido. A posição relativa entre a bobina transmissora e a bobina receptora deve ser detectada pelo sensor magnético, uma vez que a posição relativa tem um grande impacto na eficiência da transmissão. Em termos do computador host, foi utilizado o software LABVIEW para programar a interface que permite controlar o movimento do barco e recolher os dados. Finalmente, a eficácia do sistema proposto foi experimentada e testada num ambiente de laboratório

    Parity-Time Symmetric Capacitive Wireless Power Transfer with Extended Transfer Distance

    Get PDF
    Despite increasing popularity of capacitive wireless power transfer as a complementary technique to its inductive counterpart, the capacitive system entails a major performance bottleneck in terms of robustness of power transfer level over separating distance due to inherently low nature of electric couplings as compared to magnetic fields. This work develops an enhanced capacitive wireless power transfer system by means of incorporating the parity-time symmetry, with the capability to maintain transferred power over a significantly extended distance. General theoretical analysis is derived for parity-time symmetric capacitive power transfer based on both series and parallel coupled resonators. A practical parity-time symmetric capacitive system with a 10-W power delivery was designed and simulated. Extensive simulation using practical components indicates more than twenty-fold increase in the transfer distance than its conventional non-parity-time-symmetric capacitive counterpart, with an efficiency over 90%

    Orbital Angular Momentum Waves: Generation, Detection and Emerging Applications

    Full text link
    Orbital angular momentum (OAM) has aroused a widespread interest in many fields, especially in telecommunications due to its potential for unleashing new capacity in the severely congested spectrum of commercial communication systems. Beams carrying OAM have a helical phase front and a field strength with a singularity along the axial center, which can be used for information transmission, imaging and particle manipulation. The number of orthogonal OAM modes in a single beam is theoretically infinite and each mode is an element of a complete orthogonal basis that can be employed for multiplexing different signals, thus greatly improving the spectrum efficiency. In this paper, we comprehensively summarize and compare the methods for generation and detection of optical OAM, radio OAM and acoustic OAM. Then, we represent the applications and technical challenges of OAM in communications, including free-space optical communications, optical fiber communications, radio communications and acoustic communications. To complete our survey, we also discuss the state of art of particle manipulation and target imaging with OAM beams

    Emerging Works on Wireless Inductive Power Transfer: AUV Charging from Constant Current Distribution and Analysis of Controls in EV Dynamic Charging

    Get PDF
    Wireless power transfer through inductive coupling, termed as inductive power transfer (IPT), is one of the important technologies in power electronics that enable transfer of power between entities without physical connections. While it has seen significant growth in the areas such as electric vehicle charging, phone charging and biomedical implants, its emerging applications include charging of autonomous underwater vehicles (AUVs) and dynamic charging of electric vehicles from the roadway. This dissertation addresses a few key challenges in these areas of IPT applications, paving the way for future developments. For the WPT for AUV, the recently developing sea-bed installed marine systems are targeted, which typically gets power from on-shore sources through constant dc low-current distribution. As the present underwater IPT topologies are not suitable for such applications, this dissertation proposes underwater IPT topologies to interface directly with such constant current distribution and provide a constant voltage output supply to the on-board systems inside the AUVs. The considerations for seawater losses and the small-signal models for control purposes are also addressed. Analysis and experimental results are provided for validations of the analytical designs and models. In the area of electric vehicle dynamic wireless power transfer (EV DWPT), the comparison of control performances of different coupler, compensation topologies and control implementations are addressed. The effect of communication latency on control bandwidth are also addressed. The outcomes are presented through analysis and simulations, and based on that future research recommendations are made to pave way for future commercial developments of well regulated and interoperable EV DWPT systems

    Improved Design of Wireless Electrical Energy Transfer System for Various Power Applications

    Get PDF
    This thesis introduces a state-of-the-art review of existing wireless power transfer (WPT) technologies with a detailed comparison and presents the limitations of the inductive power transfer system through simulation and practical analyses. This thesis also presents the expanded use of the high-frequency analysis tool, known as FEKO, and the novel application of frequency response analyser (FRA) with various simulations and practical demonstrations for enhancing the design and maintenance of WPT systems

    Underwater Communications based on Resonant Inductive Links

    Get PDF
    Em anos mais recentes, os veículos não tripulados têm sofrido um avanço considerável no seu desenvolvimento. Devido ao subsequente aumento de interesse na exploração do oceano, em especial zonas de condições extremas cujo acesso está impossibilitado. Em concreto, nas aplicações subaquáticas, existem problemas substanciais relativos ao carregamento de forma wireless dos aparelhos, mais especificamente, à monitorização deste processo, assim como, na transferência dos dados recolhidos. Esta dissertação apresenta uma solução para o controlo de parâmetros associados ao carregamento wireless, reaproveitando o acoplamento indutivo ressonante para, além da transferência de potência já implementada, transmitir dados. Denote-se que o estudo e implementação foram desenvolvidos num sistema com um comutador de alta tensão, optimizado para uma resistência de carga igual a 12.5 Ohm, uma frequência de ressonância de 240 kHz para uma transferência de potência na ordem dos 80 W com uma eficiência máxima no acoplamento de 94%. O trabalho desenvolvido explora um patamar substancial de corrente disponível, desde 0.5 A a 2.5 A com um conjunto de resistências entre 1 Ohm a 11 Ohm. Com estes valores é possível determinar diferentes estados que, por sua vez, permitem uma comunicação wireless com um grande alcance dinâmico. A eficiência geral do acoplamento não sofre uma grande alteração para os diferentes estados necessários para o envio de informação. Sabendo que o teor de sal afeta diretamente o acoplamento e, consequentemente, os níveis de corrente do sistema, e ainda que os valores de salinidade do mar variam de região para região, é possível regular esta variação mudando o valor da resistência responsável pela modulação da carga, reforçando a modularidade do sistema. Este desenvolvimento apresenta uma solução simples e viável, apresentando-se como uma forte alternativa ao uso de circuitos externos adicionais.During more recent years there has been a considerable advancement in unmanned vehicles, more so in autonomous underwater vehicles, following the increasing interest in exploring unreachable parts of the ocean. Underwater autonomous work poses substantial obstacles when it comes to wirelessly charging the devices and most importantly to the monitoring of such operation, as well as the transfer of the data gathered. This thesis presents a solution for overseeing the parameters that come with the wireless charging of a system, repurposing the resonant inductive link to transmit bits of data in addition to the power transfer already in place. Furthermore, the work was developed on system designed with a high-voltage switching power driver, optimized for load resistance equal to 12.5 Ohm, having a resonance frequency of 240 kHz for a power transfer in the order of 80 W with a link efficiency up to 94%. The present work explores the substantial threshold of current available at the primary coil, from 0.5 A to 2.5 A with a variation of resistance from 1 Ohm to 11 Ohm seen at the secondary coil. This allows for a detection of different states which provide a wireless communication with a wide dynamic range. The overall efficiency of the link is not greatly affected by the different states necessary to transmit information. Knowing that the salinity value of the sea differs from region to region and in turn, both the levels of current and threshold are affected, it is possible to regulate the value of the resistance responsible for the load modulation to atone such difference, which makes for a system with a high level of modularity. This presents a simple and viable solution that is a clear alternative to the need of additional aftermarket circuits to monitor and assist the charging of devices underwater

    Subsea inspection and monitoring challenges

    Get PDF
    Master's thesis in Offshore technology : industrial asset managementThis paper uncovers and suggests solutions for the challenges to control change over time more reliable and cost effective. Front-end concept engineering, design, inspection and monitoring strategies, technologies, systems and methods for Life-of-Field are recommended. Autonomous underwater vehicles (AUV) are identified as a possible cost- efficient opportunity to reduce cost of inspections and monitoring operations while safeguarding asset integrity. A recognized design spiral methodology is used to perform a front-end concept evaluation of an AUV system. Investigation of key technological limitations and new developments within underwater communication, energy storage and wireless power transmission is performed. It further enables opportunities such as AUV recharging station on the seafloor for better utilization. One major learning point is through the use of numerical models and the outcome being a better and more hydro effective hull design. One expectation from this paper may be the aid to collaborating partners in their design work

    Oceanic Challenges to Technological Solutions : A Review of Autonomous Underwater Vehicle Path Technologies in Biomimicry, Control, Navigation, and Sensing

    Get PDF
    Autonomous Underwater Vehicles (AUVs) epitomize a revolutionary stride in underwater exploration, seamlessly assuming tasks once exclusive to manned vehicles. Their collaborative prowess within joint missions has inaugurated a new epoch of intricate applications in underwater domains. This study’s primary aim is to scrutinize recent technological advancements in AUVs and their role in navigating the complexities of underwater environments. Through a meticulous review of literature and empirical studies, this review synthesizes recent technological strides, spotlighting developments in biomimicry models, cutting-edge control systems, adaptive navigation algorithms, and pivotal sensor arrays crucial for exploring and mapping the ocean floor. The article meticulously delineates the profound impact of AUVs on underwater robotics, offering a comprehensive panorama of advancements and illustrating their far-reaching implications for underwater exploration and mapping. This review furnishes a holistic comprehension of the current landscape of AUV technology. This condensed overview furnishes a swift comparative analysis, aiding in discerning the focal points of each study while spotlighting gaps and intersections within the existing body of knowledge. It efficiently steers researchers toward complementary sources, enabling a focused examination and judicious allocation of time to the most pertinent studies. Furthermore, it functions as a blueprint for comprehensive studies within the AUV domain, pinpointing areas where amalgamating multiple sources would yield a more comprehensive understanding. By elucidating the purpose, employing a robust methodology, and anticipating comprehensive results, this study endeavors to serve as a cornerstone resource that not only encapsulates recent technological strides but also provides actionable insights and directions for advancing the field of underwater robotics.© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore