33,729 research outputs found

    Dynamic Denoising of Tracking Sequences

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2008.920795In this paper, we describe an approach to the problem of simultaneously enhancing image sequences and tracking the objects of interest represented by the latter. The enhancement part of the algorithm is based on Bayesian wavelet denoising, which has been chosen due to its exceptional ability to incorporate diverse a priori information into the process of image recovery. In particular, we demonstrate that, in dynamic settings, useful statistical priors can come both from some reasonable assumptions on the properties of the image to be enhanced as well as from the images that have already been observed before the current scene. Using such priors forms the main contribution of the present paper which is the proposal of the dynamic denoising as a tool for simultaneously enhancing and tracking image sequences.Within the proposed framework, the previous observations of a dynamic scene are employed to enhance its present observation. The mechanism that allows the fusion of the information within successive image frames is Bayesian estimation, while transferring the useful information between the images is governed by a Kalman filter that is used for both prediction and estimation of the dynamics of tracked objects. Therefore, in this methodology, the processes of target tracking and image enhancement "collaborate" in an interlacing manner, rather than being applied separately. The dynamic denoising is demonstrated on several examples of SAR imagery. The results demonstrated in this paper indicate a number of advantages of the proposed dynamic denoising over "static" approaches, in which the tracking images are enhanced independently of each other

    Variable-fidelity electromagnetic simulations and co-kriging for accurate modeling of antennas

    Get PDF
    Accurate and fast models are indispensable in contemporary antenna design. In this paper, we describe the low-cost antenna modeling methodology involving variable-fidelity electromagnetic (EM) simulations and co-Kriging. Our approach exploits sparsely sampled accurate (high-fidelity) EM data as well as densely sampled coarse-discretization (low-fidelity) EM simulations that are accommodated into one model using the co-Kriging technique. By using coarse-discretization simulations, the computational cost of creating the antenna model is greatly reduced compared to conventional approaches, where high-fidelity simulations are directly used to set up the model. At the same time, the modeling accuracy is not compromised. The proposed technique is demonstrated using three examples of antenna structures. Comparisons with conventional modeling based on high-fidelity data approximation, as well as applications for antenna design, are also discussed

    DNN-Based Source Enhancement to Increase Objective Sound Quality Assessment Score

    Get PDF
    We propose a training method for deep neural network (DNN)-based source enhancement to increase objective sound quality assessment (OSQA) scores such as the perceptual evaluation of speech quality (PESQ). In many conventional studies, DNNs have been used as a mapping function to estimate time-frequency masks and trained to minimize an analytically tractable objective function such as the mean squared error (MSE). Since OSQA scores have been used widely for soundquality evaluation, constructing DNNs to increase OSQA scores would be better than using the minimum-MSE to create highquality output signals. However, since most OSQA scores are not analytically tractable, i.e., they are black boxes, the gradient of the objective function cannot be calculated by simply applying back-propagation. To calculate the gradient of the OSQA-based objective function, we formulated a DNN optimization scheme on the basis of black-box optimization, which is used for training a computer that plays a game. For a black-box-optimization scheme, we adopt the policy gradient method for calculating the gradient on the basis of a sampling algorithm. To simulate output signals using the sampling algorithm, DNNs are used to estimate the probability-density function of the output signals that maximize OSQA scores. The OSQA scores are calculated from the simulated output signals, and the DNNs are trained to increase the probability of generating the simulated output signals that achieve high OSQA scores. Through several experiments, we found that OSQA scores significantly increased by applying the proposed method, even though the MSE was not minimized

    The Composition Gradient in M101 Revisited. II. Electron Temperatures and Implications for the Nebular Abundance Scale

    Full text link
    (Abridged) We use high S/N spectra of 20 HII regions in the giant spiral galaxy M101 to derive electron temperatures for the HII regions and robust metal abundances over radii R = 0.19-1.25 Ro (6-41 kpc). We compare the consistency of electron temperatures measured from the [O III]4363, [N II]5755, [S III]6312, and [O II]7325 auroral lines. Temperatures from [O III], [S III], and [N II] are correlated with relative offsets that are consistent with expectations from nebular photoionization models. However, the temperatures derived from the [O II]7325 line show a large scatter and are nearly uncorrelated with temperatures derived from other ions. Our derived oxygen abundances O/H are well fitted by an exponential distribution over six disk scale lengths, from approximately 1.3 solar in the center to 1/15 solar in the outermost region studied (for solar 12 + log (O/H)=8.7). We measure significant radial gradients in N/O and He/H abundance ratios, but relatively constant S/O and Ar/O. Our abundances are systematically lower by 0.2-0.5 dex than those derived from the most widely used strong-line "empirical" abundance indicators. We suspect that most of the disagreement with the strong-line abundances arises from uncertainties in the nebular models that are used to calibrate the "empirical" scale, and that strong-line abundances derived for HII regions and emission-line galaxies are as much as a factor of two higher than the actual oxygen abundances. However other explanations, such as the effects of temperature fluctuations on the auroral line based abundances cannot be completely ruled out. These results point to the need for direct abundance determinations of a larger sample of extragalactic HII regions, especially for objects more metal-rich than solar.Comment: 50 pages, 14 figures, 8 tables. Accepted by Ap

    Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders

    Get PDF
    Supervised multi-channel audio source separation requires extracting useful spectral, temporal, and spatial features from the mixed signals. The success of many existing systems is therefore largely dependent on the choice of features used for training. In this work, we introduce a novel multi-channel, multi-resolution convolutional auto-encoder neural network that works on raw time-domain signals to determine appropriate multi-resolution features for separating the singing-voice from stereo music. Our experimental results show that the proposed method can achieve multi-channel audio source separation without the need for hand-crafted features or any pre- or post-processing

    Numerical Approaches for Linear Left-invariant Diffusions on SE(2), their Comparison to Exact Solutions, and their Applications in Retinal Imaging

    Full text link
    Left-invariant PDE-evolutions on the roto-translation group SE(2)SE(2) (and their resolvent equations) have been widely studied in the fields of cortical modeling and image analysis. They include hypo-elliptic diffusion (for contour enhancement) proposed by Citti & Sarti, and Petitot, and they include the direction process (for contour completion) proposed by Mumford. This paper presents a thorough study and comparison of the many numerical approaches, which, remarkably, is missing in the literature. Existing numerical approaches can be classified into 3 categories: Finite difference methods, Fourier based methods (equivalent to SE(2)SE(2)-Fourier methods), and stochastic methods (Monte Carlo simulations). There are also 3 types of exact solutions to the PDE-evolutions that were derived explicitly (in the spatial Fourier domain) in previous works by Duits and van Almsick in 2005. Here we provide an overview of these 3 types of exact solutions and explain how they relate to each of the 3 numerical approaches. We compute relative errors of all numerical approaches to the exact solutions, and the Fourier based methods show us the best performance with smallest relative errors. We also provide an improvement of Mathematica algorithms for evaluating Mathieu-functions, crucial in implementations of the exact solutions. Furthermore, we include an asymptotical analysis of the singularities within the kernels and we propose a probabilistic extension of underlying stochastic processes that overcomes the singular behavior in the origin of time-integrated kernels. Finally, we show retinal imaging applications of combining left-invariant PDE-evolutions with invertible orientation scores.Comment: A final and corrected version of the manuscript is Published in Numerical Mathematics: Theory, Methods and Applications (NM-TMA), vol. (9), p.1-50, 201

    Aerospace Medicine and Biology: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 253 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1975
    corecore