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Dynamic Denoising of Tracking Sequences
Oleg Michailovich, Member, IEEE, and Allen Tannenbaum, Member, IEEE

Abstract—In this paper, we describe an approach to the problem
of simultaneously enhancing image sequences and tracking the ob-
jects of interest represented by the latter. The enhancement part
of the algorithm is based on Bayesian wavelet denoising, which
has been chosen due to its exceptional ability to incorporate di-
verse a priori information into the process of image recovery. In
particular, we demonstrate that, in dynamic settings, useful sta-
tistical priors can come both from some reasonable assumptions
on the properties of the image to be enhanced as well as from the
images that have already been observed before the current scene.
Using such priors forms the main contribution of the present paper
which is the proposal of the dynamic denoising as a tool for simulta-
neously enhancing and tracking image sequences. Within the pro-
posed framework, the previous observations of a dynamic scene are
employed to enhance its present observation. The mechanism that
allows the fusion of the information within successive image frames
is Bayesian estimation, while transferring the useful information
between the images is governed by a Kalman filter that is used for
both prediction and estimation of the dynamics of tracked objects.
Therefore, in this methodology, the processes of target tracking and
image enhancement “collaborate” in an interlacing manner, rather
than being applied separately. The dynamic denoising is demon-
strated on several examples of SAR imagery. The results demon-
strated in this paper indicate a number of advantages of the pro-
posed dynamic denoising over “static” approaches, in which the
tracking images are enhanced independently of each other.

Index Terms—Bayesian estimation, Kalman filtering, predictive
tracking, wavelet denoising.

I. INTRODUCTION

I N this paper, we consider the standard problem in which a
sequence of images of a maneuvering target is given with the

goal being to estimate the target dynamics as precisely as pos-
sible. Such an estimation task typically consists of establishing
a functional relationship between the appearance of the target
along consecutive image frames. In particular, depending on a
specific application at hand, the apparent motion of the target
can be perceived through a deformation of its boundary, which
can be described by means of either active contours [1] or active
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polygons [2]. Another possibility for describing the target mo-
tion is to represent the latter by apparent displacements of a set
of control points pertaining to target’s image [3]. The method of
optical flows constitutes another practically important solution
to the problem of modeling the apparent motion [4].

Given a specific description of the apparent motion of an ob-
ject of interest (as well as a relation of this motion to the actual
3-D motion of the object in space), the problem of predictive
tracking could be readily solved by fitting (in a proper sense) a
dynamic model to available observations [5, Ch.2]. Such a di-
rect approach, however, may not be satisfactory in the settings
when the levels of measurement noises are particularly high. In
such cases, applying an image enhancement procedure should
be considered as an important prerequisite which could substan-
tially improve the robustness of tracking [6]. On the other hand,
applying a denoising procedure to each image of the sequence
independently seems to be a suboptimal strategy, as well, since
it discards the information which has been observed up to the
current scene.

A more accurate solution to the aforementioned problem
seems to be possible using a method that takes advantage of
all the useful information about the tracked object which is
contained in tracking images up to the present time point.
Moreover, such information should be used for both enhancing
the current image and updating the dynamic parameters of
the target. In such a case, a basic processing step may include
enhancing the current image using all the available estimates
of the previous images and of their associated dynamic param-
eters, followed by updating the dynamic parameters pertaining
the current image using its enhanced version.

An algorithm that uses the principle described above is pro-
posed in the present paper. The enhancement part of the pro-
posed method is based on wavelet denoising, initially proposed
in [7] as a powerful method of recovering nonstationary signals.
A particularly useful feature of wavelet denoising consists of
its ability to recover spatially nonhomogeneous signals without
oversmoothing their details, while barely exceeding the com-
putational demands of ordinary linear filtering. In this paper,
the wavelet denoising is performed within the Bayesian frame-
work [8], which allows incorporating any a priori information
on the signal to be recovered. In the current implementation,
such a priori knowledge comes from the statistical model as-
sumed for the wavelet coefficients of tracking images, as well
as from their already estimated predecessors.

The dynamic part of the algorithm is based on modeling the
target motion using an affine optical flow, whose time evolution
is governed by a Kalman filter [9]. More specifically, a two-step
Kalman filter is applied in order to estimate and predict the ap-
parent target motion. It is worthwhile noting that this is the par-
ticular structure of the Kalman filtering, which includes predic-
tion as its intrinsic stage, is what allows the wavelet denoising
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and tracking to be effectively combined together. This construc-
tion will be described in much greater details in the sections that
follow.

Finally, in the experimental part of this study, the applicability
of the proposed dynamic denoising to synthetic aperture radar
(SAR) imagery is demonstrated. It is worthwhile noting that the
use of SAR imaging for the purpose of tracking is currently con-
sidered to be a problem of substantial importance. This is mainly
due to the belief that the SAR imagers may come as an attractive
alternative to existing optical devices, primarily because of the
exceptional ability of the former to be all-weather operational.
Unfortunately, target tracking using SAR data still seems to pose
a formidable challenge to both system and image processing en-
gineers, mainly because of the relatively high levels of noises
contaminating this type of imagery data. This is why the SAR
imaging has been chosen as an example of image modality that,
we believe, could benefit from the methodology proposed in this
paper.

The present paper is organized as follows. Section II in-
troduces the Bayesian framework for wavelet denoising. The
way through which the information on previously enhanced
images is “injected” into the current image estimate is detailed
in Section III. Section IV introduces the dynamical model for
affine optical flows. The overall algorithm structure is defined
in Section V. Finally, some relevant reconstruction examples
are demonstrated in Section VI of the paper, while Section VII
finalizes the paper with a discussion and conclusions.

II. BAYESIAN WAVELET DENOISING

A. Diagonal Estimation and Wavelet Shrinkage

In this section, the problem of enhancement of a single image
(with ) is considered first. To this end,

is assumed to be an observation of the original scene con-
taminated by additive white Gaussian noise. Consequently,
can be estimated via applying to a diagonal operator of the
following form [10, Ch.X]

(1)

with being an orthonormal basis in ,
denoting the standard inner product, and being a se-
quence of scalars satisfying for all . It is of impor-
tance to note that, if the above basis provides a sparse repre-
sentation of the image of interest, then the diagonal estimator
(1) can be shown to be nearly optimal (i.e., resulting in the
smallest variance) among all nonlinear estimators [10, Ch.X].
As a result, wavelet orthonormal bases have become here the
most preferable choice, as providing sparse representations for
bounded-variation signals—the functional class, to which most
of real-life images are generally assumed to belong. It should
also be noted that there exits a number of Bayesian approaches
to the problem of image denoising which eventually lead to the
estimation (1). By virtue of the property of sequence to
be positive and bounded by unity, such methods are commonly
referred to as shrinkage estimators [11].

Most of the Bayesian wavelet shrinkage methods proposed so
far can be divided into two main groups based on the way they

treat dependencies between the wavelet coefficients of .
The first group encompasses the methods that assume the coeffi-
cients to be nearly independent due to the decorrelation property
of wavelet transforms [12]–[17]. It is worthwhile noting that, in
this case, the assumption of independency allows one to esti-
mate each wavelet coefficient separately of the others. On the
other hand, the methods of the second group attempt to employ
the information contained in the joint behavior of wavelet co-
efficients. For instance, [18]–[20] perform the shrinkage adap-
tively to each coefficient using the concept of an activity func-
tion of a wavelet coefficient defined over a local neighborhood
of the latter. The inter-scale dependencies between wavelet co-
efficients can be taken into account using either the fusion pro-
cedure of [21] or the approaches of [22], [23] which are based
on the theory of Markov random fields.

Although the methods of the second group are more general
and, hence, can provide more accurate denoising results as com-
pared with the methods of the first group, the latter may still
be preferable in the situations when computational complexity
is of utmost importance. Since this is almost always the case
in tracking applications, we assume the wavelet coefficients of

to be mutually independent—an assumption whose mod-
ification, removal, or mitigation can be derived in subsequent
extensions of the method proposed below. Moreover, as a basis
for our developments, we will use the wavelet shrinkage method
exploited in [15] and [16].

B. MMSE Solution for Wavelet Shrinkage

Let us consider the 1-D case first. A 1-D wavelet transform
provides a representation of the signal of interest in terms of the
basis functions , which are dila-
tions at scale and translations by of the mother wavelet
function . The discrete wavelet transform (DWT) of a
1-D signal is implemented by two-channel subband filtering
followed by downsampling by a factor of 2 [10, Ch.VII]. The
transformation results in a sequence of wavelet coefficients
(doubly indexed by the pair ) which represent the ener-
getic contents of the signal in certain locations and resolutions.

Let , , and denote the wavelet coefficients of
the observed signal , the original signal , and the noise
process , respectively. Then, due to the linearity of the
DWT, we have

(2)

In order to construct an estimator for using the Bayesian
framework, the probabilistic models for the signals in (2) should
be specified first. To this end, the noise samples are assumed to
be normal with mean 0 and variance . Namely, the conditional
probability density function (pdf) of given and is
assumed to obey

(3)

At the same time, the signal coefficients are assumed to be
independently distributed according to

(4)
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where is a scale dependent constant, and are inde-
pendent random variables that obey

Bernoulli (5)

We note that the model above implies that the signal coefficients
are normally distributed with variance when
and degenerate to zero, when . The practical meaning
of is quite intuitive: the set of indices where it is equal to
1 designates significant coefficients of the useful signal ,
whereas the complementary set is associated with the noise
alone. Note that such a model well agrees with the generally
parsimonious representation of signals in the wavelet domain,
where only a relatively small number of signal coefficients bear
the most significant portion of its energy.

Let and denote the pdf
of conditional on the presence and absence of the useful
signal in the coefficient indexed by , respectively. The pos-
terior probability that the coefficient con-
tains the useful signal can be expressed as a function of the pos-
terior odds given by

(6)

where

(7)

Consequently, the posterior mean of , which is nothing else
but its minimum mean square estimate (MMSE) , can be
defined as

(8)

Denoting by (so that
), one can see that the MMS estimate (8) is

indeed of the diagonal form (1).
Finally, we note that, whenever the noise standard deviation
is unknown, it can be estimated from the available data as

[7].

C. Inclusion of Spatial Priors

It is interesting to note that in (8) can be alternatively
derived as a solution to the problem of simultaneously detecting
and estimating signals in a noisy environment as it was orig-
inally addressed by Middleton and Esposito in [24]. This per-
spective provides a very useful insight into the structure of
in (8), which appears as a product of the MMS estimate of
conditional on (which is the “estimation part” of the
combined estimate) and the Bayesian detection term

, with being the familiar generalized likelihood ratio.
From the discussion above, it follows that if one was given

additional information as to the presence of the useful signal

in , then this information could be incorporated in the
“detection part” of (8). This can be done by replacing the un-
conditional prior probabilities and in
(7) with the priors and , re-
spectively, which are conditional on this additional information

. In this case, according to the Bayes rule, the prior ratio (to
be substituted in (7) in place of ) is given by

(9)

In the present work, is defined to represent the informa-
tion about the positions of the signal coefficients , so that the
conditional densities and
(which are defined over the index set ) quantify the proba-
bility of either a signal or noise wavelet coefficient to be present
at a specific scale/location indexed by and , respectively. In
this case, to proceed quantitatively, the question to be addressed
next is: Where are the above “position probabilities” coming
from? The noise part is the easiest. Since the noise is assumed
to be white and Gaussian, its presence at any data coefficient in-
dexed by is equiprobable, implying that

, where is the cardinality of the set
. The situation with , however, is not

that simple, and this is where the dynamics comes into play.
The Section III-A provides a simple recipe for constructing this
probability for an image, based on its time-delayed estimate.

III. DYNAMIC DENOISING

A. Two-Dimensional Separable DWT

A 2-D separable DWT decomposes an image into a hierarchy
of four subbands. At each scale (also referred to as a decompo-
sition level), the subbands consist of an approximation subband

and three detail subbands , , and . While the
approximation subband contains the low-frequency por-
tion of the original image, the detail subbands , , and

capture the image details extending in the horizontal, ver-
tical, and diagonal directions, respectively. In the course of the
decomposition, subband is used as an input for the decom-
position level , with representing the original image.

In the case of a separable DWT, there is a “canonical” way
to organize the wavelet coefficients as it is shown in Fig. 1(A)
for the case of three decomposition levels [Fig. 1(B) exemplifies
this structure by showing the DWT coefficients of the standard
“Lena” image]. In the course of wavelet-based image enhance-
ment, the approximation coefficients are usually not processed.
On the other hand, the detail coefficients of the image can be
processed using the wavelet shrinkage procedure (8) under re-
placing the scale index by a double index , with ac-
counting for a specific orientation.

B. Estimation of “Location” Probabilities

In what follows, the images under consideration are assumed
to be square images with defined to be an integral
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Fig. 1. (A) “Canonical” arrangement of (orthogonal) wavelet coefficients of an
image. (B) DWT decomposition of the Lena image.

power of 2. Consequently, according to the “canonical” struc-
ture of Fig. 1(A), the wavelet coefficients of image at scale
and orientation can be viewed as a matrix.
Let this matrix be denoted by , with its th element
(with ) being equal to the wavelet coef-
ficient of corresponding to scale , orientation , and position

.
Additionally, let and be two square matrices of

the same size as . These matrices will contain the “loca-
tion probabilities” and ,
respectively, as discussed in Section II-C. In order to specify the
above matrices, let us first define an indicator
matrix as

if
if

(10)

whose nonzero entries indicate the positions of the significant
wavelet coefficient, the absolute values of which exceed a pre-
defined threshold . Subsequently, given an
matrix of discrete values of the isotropic Gaussian density
function

(11)

the matrix can be defined as

(12)

where , and stands for the con-
volution operator. It deserves noting that the above construction
is, in fact, a kernel-based estimation of the probability of lo-
cation of the significant wavelet coefficients within the chosen
subband [25]. We also note that the convolution in (12) may be
cyclic if the periodized, interval-adapted DWT of [26] is used
to compute the wavelet coefficients (as it is implemented by the
WaveLab® package of Donoho). In this case, the normalization
guarantees that . Moreover, for the
smoothing effect imposed by the convolution with to be sim-
ilar for different DWT levels, the band-width parameter of
the Gaussian function should be defined as

(13)

Fig. 2. (A) Original image of “Lena”; (B) noisy image of “Lena” ���� �
���� dB�; (C) image estimation using the Bayesian shrinkage without the “lo-
cation” priors ���� � �	�
 dB�; (D) image estimation using the Bayesian
shrinkage with the “location” priors ���� � ���� dB�.

where the bandwidth can be precomputed using any of
the standard methods described, e.g., in [25].

It goes without saying that the local dependencies between
adjacent wavelet coefficients could be better accounted for, if
the kernel function in (11) was chosen to be anisotropic [27].
In this paper, however, this possibility has not been explored
for its being more computationally involved as compared to the
simple choice in (11), which seems to be preferable for real-time
tracking applications.

The “location” distribution matrix pertaining to the
noise process should be defined next. Since the noise is assumed
to be Gaussian and white, the uniform distribution is the only
reasonable choice here. Formally

(14)

so that .
Finally, we note that the matrices and defined

above play the role of the conditional probabilities
and in (9), respectively. Con-

sequently, once these matrices have been computed, the corre-
sponding prior ratio [as defined by (9)] can be substituted in
(7) instead of to compute the MMSE (8). Fig. 2
shows an interim example that compares the performance of the
Bayesian shrinkage without and with the “location” priors. For
the reason which will become clear shortly, we refer to the above
estimates as “static” and “dynamic” MMSE, respectively. These
estimates are shown in Fig. 2(C) and (D), whereas Fig. 2(A) and
(B) shows the original test image and its noise-contaminated
version dB , respectively. Note that, in this ex-
ample, the indicator functions (10) corresponded to about 20%
of the largest wavelet coefficients of “Lena” for each and .
One can see that using the additional information allows con-
siderably improving the SNR from 17.6 to 20.1 dB.
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C. Dynamically Learned Priors

The Bayesian estimation described in the preceding section
would be only possible if we knew the locations of (signif-
icant) wavelet coefficients of the noise-free image , which,
of course, makes this approach rather impractical. However, in
tracking applications, a noisy measurement of is normally
available along with its time-delayed version. Suppose now that
the latter has already been enhanced. Then, using predicted dy-
namic parameters of the target motion, this time-delayed esti-
mate of could be warped-forward to obtain a prediction of
the true image at the present time. Needless to say, this pre-
diction can be used for neither averaging it with the present ob-
servation of nor for any other kind of “compounding.” Be-
cause of the error in estimating the target dynamics, the features
(e.g., edges) in the predicted image can never be expected to be
perfectly aligned with those in . Consequently, the averaging
would have unavoidably smeared the resulting estimates. How-
ever, the above prediction of seems to be a reasonably good
candidate that one can use for computing the indicator functions
(10) and the related “location” probability matrices and

, and this is how these matrices are computed in this study.
It should be noted that precaution should be taken in regard

to using the above estimation approach. As it was noted before,
because of the errors in estimating the target motion, the fea-
tures of the current image and its prediction are never per-
fectly aligned. Moreover, the prediction is prone to errors, since
it is derived from a time-delayed, enhanced version of , which
is, by itself, an estimate. However, all these potential sources of
inaccuracies have already been implicitly taken into account by
the algorithm. First, the “location” probabilities are computed
based only on the significant wavelet coefficients of the predic-
tion (i.e., those exceeding a predefined threshold ), which can
be reasonably assumed to contain the useful signal. This makes
the algorithm resistant to the errors in estimating the time-de-
layed version of , based on which the prediction is computed.
Second, to compute and , the indicator functions are
smoothed by the kernel functions , thereby accounting for
the uncertainty as to the location of the wavelet coefficients of

—the uncertainty that has to be expected because of the in-
accuracies in recovering the associated dynamics. Moreover, to
achieve a more stable convergence of the algorithm, we replace
the time-invariant bandwidth in (13) by a time-dependent
bandwidth defined as

(15)

where , , and stands for the time (or,
equivalently, time-index) of a given image. In this case, when

, the bandwidth of is equal to , and, as a
result, if is much greater than 1, the resulting probabilities

will be substantially oversmoothed. Consequently, the ra-
tios will change relatively slowly as functions of

, implying that the algorithm “ignores” the locational
priors, which may be rather unreliable in the beginning of con-
vergence (it should be noted that, at this stage, the algorithm en-
hances the tacking images almost independently of each other).
As time goes on, the estimates of the target dynamics converge

to their optimal values, implying that the prediction by “warping
forward” is now performed with a relatively high accuracy. This
fact is reflected in the behavior of that approaches as

.
Apparently, the optimal values of and in (15) should de-

pend on the posterior error covariance of the dynamic param-
eters as computed by, e.g., a Kalman filter (see the discussion
below). Finding such an analytical relationship represents an in-
teresting direction of our future research. In the present paper,
however, the parameters and are left to be user-defined.

IV. MOTION ESTIMATION BY KALMAN FILTERING

From the above discussion, it follows that estimating the
target motion constitutes an integral part of the image enhance-
ment process. It is true as well that the enhancement allows
one to estimate the dynamics with a greater precision. Thus, in
this section, we briefly describe the method used for the motion
prediction and estimation.

In the current paper, the estimation of (apparent) target mo-
tion is based on the assumption that any subsequent image of
a tracking sequence can be approximated as a locally trans-
lated version of its “predecessor,” where the translation is gov-
erned by a displacement field, also known as an optical flow [4].
Moreover, whenever the tracking of rigid targets (e.g., tanks,
armored troop-carriers) is of concern, assuming affine displace-
ment fields may be quite reasonable. In this case, denoting by

the column vector of affine parameters corresponding
to the image observed at time , and by and the gra-
dient and the time derivative of the latter, respectively, it can be
shown that, on the assumption of small displacements, it holds
that [28]

(16)

where

(17)

with the gradient being viewed as a column vector
in at every . Note that (16) holds at every point
of the domain of image definitiion , while the vector is
position independent. Therefore, finding the optimal solution
for amounts to solving an overcompleted system of equation,
which can be done using the standard Moore–Penrose pseudo-
inverse.1 Moreover, for the case when the model errors in (16)
can be assumed to be Gaussian and white, this solution can be
rigorously proven to be the MMS estimate of [28].

The optimal solution derived above provides a momen-
tous estimate of the target dynamics, which does not take into
account the time-coherence of target motion. To account for the
time evolution of the affine parameters, the true vector can
be assumed to be a noisy version of , viz.

(18)

1Note that, in this case, the pseudo-inverse involves inversion of only a 6� 6
matrix.
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Fig. 3. Block-diagram of the DDN algorithm.

where is a noise process. Moreover, using the first-order
Markov assumption, itself can be modeled as a noisy ver-
sion of its “predecessor” , namely

(19)

where is an another noise process, different from .
Equations (18) and (19) form the system of equations, which

can be efficiently solved by means of Kalman filtering [9]. It is
important to emphasize that the Kalman filter always estimates
the state in two steps. First, a prediction of the state at time
is computed based on its estimate at time and (19). Second,
this prediction is updated using the information brought in with
a new observation as described by (18). Thus, prediction of
the affine parameters is inherently integrated in the filter struc-
ture, appearing explicitly as one of its stages.

V. OVERALL DIAGRAM OF DDN

In this section, some necessary details on the overall organi-
zation of the proposed dynamic denoising (DDN) are provided.
As before, it is assumed that any image of the tracking se-
quence represents a noise-free image contaminated
by white Gaussian noise. The algorithm is applied recursively,
and its input at time is formed by: 1) the noisy data image ;
2) an estimate of ; and 3) an estimate of the optical
flow parameters pertaining to time . At the output, the
algorithm returns: 1) an estimate of and 2) an estimate
of the optical flow parameters at time .

One recursion of the algorithm is carried out according to the
steps shown in Fig. 3. First, the estimated affine parameters
at time are used to compute a prediction of the param-
eters for time according to the first stage of Kalman filtering,
followed by using this prediction to obtain a prediction of
via warping forward the previously estimated image . Sub-
sequently, the wavelet coefficients of the prediction are used
for computing the “location” probabilities and as
detailed in Section III. These probabilities along with the data
image are then passed on to the Bayesian shrinkage proce-
dure of Sections II, resulting in the estimate of , which is
the first output of the algorithm. Finally, the estimates and

are used to compute the MMS estimate of the affine param-
eters (see Section IV), which is used by the Kalman filter to
update the prediction resulting in a new estimate of the op-
tical flow parameters . The latter forms the second output of
the algorithm.

At the beginning of the recursion, the “location” probabili-
ties can be defined to be uniform, which can be viewed as using
noninformative priors as to the position of signal’s coefficients.
The parameters and of the probability densities in (4) and
(5) are supposed to be either learned through training or esti-
mated directly from data by means of the maximum-likelihood
algorithm as detailed, e.g., in [13].

Finally, we note that once the parameters and (or es-
timates thereof) are available, each recursion of the DDN al-
gorithm can be performed with logarithmic complexity in the
number of image samples. Indeed, the most computationally
expensive procedures which are involved in the estimation ac-
cording to the block-diagram of Fig. 3 are warping forward,
computing the “location” priors according to (12), and wavelet
transformation. While the last two of the aforementioned pro-
cedures require only a few convolution operations, the com-
plexity of warping depends on the type of image interpolation
used. Fortunately, there exist computationally efficient methods
which allow one to perform this procedure in logarithmic time,
as well [29]. Consequently, the overall complexity of DDN re-
mains logarithmic, which implies the possibility of its real-time
implementation.

VI. EXPERIMENTAL RESULTS

A. Data Preprocessing

In the experimental part of this study, the performance of the
proposed DDN algorithm is tested using a set of real-world syn-
thetic aperture radar (SAR) images of military targets. Before
demonstrating some specific reconstruction examples, it should
be noted that, due to the bandlimitedness of radars’ transfer
functions as well as because of the coherent nature of SAR
image formation, such images are normally contaminated by
speckle noise [30]. The statistical properties of this noise has
been addressed in numerous studies, with the Rayleigh, K-, gen-
eralized gamma, and Nakagami distributions being among the
noise models proposed hitherto.

Unfortunately, none of the existing statistical models for
speckle noise suggests that the latter can be approximated by
white Gaussian noise, and, hence, the results of the preceding
sections do not seem to be applicable to the SAR data. To
overcome this difficulty, it is common to use the property of the
speckle noise of being a multiplicative noise, which allows one
to convert the multiplicative noise into additive by means of the
logarithmic transformation. Subsequently, the log-transformed
speckle noise can be rejected via a filtering procedure, followed
by the exponential transformation that takes the result thus
obtained to the original domain.

The procedure explained above is known as homomorphic
despeckling [31], and it has long been used to improve the
quality of coherent-type imagers, including SAR units [32] and
ultrasound scanners [33]. The main deficiency of the algorithms
based on this technique, however, results from their assuming
the log-transformed speckle noise to be Gaussian and white,
while, in practice, this assumption seems to be rarely valid.
In particular, the log-transformed speckle noise can be shown
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Fig. 4. (A1)–(A3) Original image of a T-72 target in the log-domain, its auto-
correlation and histogram, respectively. (B1)–(B3) Corresponding preprocessed
image, its auto-correlation and histogram, respectively.

to be correlative and obeying a bi-exponential, Fisher–Tippett
type distribution [34]. Since the pdf of such a distribution is
heavy tailed, the corresponding noise is necessarily of a spiky
type. Needless to say, that such a noise may not be effectively
rejected by an algorithm that has been designed under the
assumption of noise’s “whiteness” and “Gaussianity.”

Fortunately, the log-transformed speckle noise can be “gaus-
sianized” by means of the two step procedure proposed in
[33]. At the first step of this procedure, the (complex-valued)
data images are subjected to blind equalization that makes the
image samples nearly uncorrelated. At the second step, the
log-transformed magnitudes of the resulting images are sub-
jected outlier-shrinkage that suppresses the spiky component
of the noise. It can be shown that this preprocessing is capable
of transforming the log-transformed speckle noise into nearly
white Gaussian noise, while retaining the underlying image
virtually intact. Moreover, although in [33] the above method
was demonstrated for ultrasound images, it is also applicable
to SAR imaging due to the similarity of the image formation
mechanisms exploited by these imaging modalities. This fact
is further supported by the example shown in Fig. 4(A1) and
(B1) of which demonstrate a section of the log-domain images
of a military target (a T-72 tank) before and after applying the
above preprocessing, respectively.

The effect of suppressing the “spiky” component of the
log-transformed speckle noise can be appreciated through com-
paring the corresponding histograms of the images2 which are
shown in Fig. 4(A2) and (B2). One can see that the histogram of
the preprocessed image has the shape of a Gaussian probability
density as opposed to the “heavy-taled” behavior of the his-
togram of the original image. Additionally, the auto-correlation
function of the preprocessed image [Fig. 4(B3)] converges to
zero considerably fasted as compared to the auto-correlation
function of the original image [Fig. 4(A3)]. This implies that
the samples of the preprocessed image are much less correlated
than in the case of the original image.

In Section VI-B, all the images are enhanced in the log-trans-
form domain after their are preprocessed by the procedure
explained above. After the enhancement is completed, the

2Only homogeneous portions of the backgrounds of the images were used to
compute the histograms.

resulting images may be back-transfromed to the original (i.e.,
linear) domain, if it is required by a specific application at hand.

B. Tracking Military Targets

The upper row of Fig. 5 shows a subset of tracking images
of a military target, viz. a T-72 tank. The images are shown in
the log-transfrom domain after they have been subjected to the
“gaussianization” procedure discussed in the previous subsec-
tion. The estimated SNR of these data images was found to be
about 5 dB.

As the first step, the data images were enhanced indepen-
dently of each other by the classical soft-thresholding in the
wavelet domain as initially proposed in [7]. The uniform
threshold was defined to be equal to , with
being the number of image samples and being the standard
deviation of the noise estimated as mentioned at the end of
Section II-B. The results of this wavelet denoising are shown
in the second row of Fig. 5. One can see that this method is
capable of effectively suppressing the noise. Unfortunately, it
seems to happen on the account of substantially oversmoothing
the target details (e.g., edges). On the other hand, the Bayesian
shrinkage of Section II-B is capable of considerably better
preserving the target’s details as shown by the third row of
Fig. 5. However, in this case, the preservation of the target’s
details comes on the account of letting a significant portion of
the noise “survive” the shrinkage. Moreover, since this type of
Bayesian shrinkage is applied to each of the tracking images
independently, all the estimates appear to be equally noisy.

It should be noted that both above-mentioned results were
obtained using the same type of orthogonal wavelet analysis
based on the nearly symmetric wavelets of I. Daubechies with
four vanishing moments [35, Ch.6]. The wavelet decomposition
level was set to be equal to be . In the case of Bayesian
shrinkage, the hyperparameters of the signal and noise pdf’s
were estimated directly from the data by means of the expec-
tation-maximization algorithm as detailed in [13].

As the next step, the same decomposition and distributional
parameters were used to enhance the tracking images by means
of the proposed DDN method, whose results are demonstrated in
the lowest row of Fig. 5. In this case, the learning parameters
and in (15) were set to be equal to 3 and 0.85, respectively. The
measurement and model noises and in (18) and (19) were
assumed to be mutually independent, white, Gaussian noises
with zero means and covariances equal to and

, respectively (where denotes a 6 6 identity matrix). The
initial value of the posterior error covariance was set to be equal
to .

Analyzing the last row of Fig. 5 one can see that, in the begin-
ning of convergence, the overall quality of the DDN-enhanced
images is virtually identical to that of the images processed by
the “static” Bayesian denoising. However, the noise contami-
nation of the DDN-estimates goes and weakens as the frame
index grows and a constantly increasing amount of information
on the target is accumulated by the algorithm. In particular, one
can see that, by the frame number 25, the noise decreases to the
level comparable to that of the soft-thresholded images, while
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Fig. 5. (First row) Original images of the T-72 target; (second row) reconstruction by the uniform soft-thresholding; (third row) reconstruction by the “static”
Bayesian shrinkage; (fourth row) reconstruction by the DDN method.

the edge preservation of the DDN method is similar to the case
of the “static” Bayesian shrinkage. For qualitative assessment
of the above results, the measure of equivalent number of looks
(ENL) [32] was used in this paper. This measure is convention-
ally used in SAR imagery to quantify the contamination of im-
ages by speckle noise, and it is defined as a ratio of the squared
mean and the variance of a SAR image.3 Note that, in general,
higher values of ENL indicates lower levels of the noise contam-
ination. Thus, for instance, the average ENL for the soft-thresh-
olding and the “static” Bayesian methods were found to be equal
to 9.6 and 7.2, respectively, which implies that the former ap-
proach suppresses the noise more effectively as compared to the
latter (it has to be kept in mind, however, that ENL is a global
criterion and, hence, incapable of assessing the preservation of
image details). On the other hand, in the course of convergence,
the average ENL obtained by DDN improved from 7.2 to 9.46,
thereby closely reaching the smoothness of the soft-thresholded
images, while notably better preserving the target’s details.

VII. DISCUSSION AND CONCLUSION

Whenever reasonable assumptions on the statistical proper-
ties of an image of interest can be made, the Bayesian estima-
tion framework often allows one to derive a considerably more
informative estimate of the image as compared to the case when
the estimation is performed based on observed data alone. This
is why Bayesian estimation has long become a preferred method
of reconstructing signals and images, especially in the situations

3For analogous purposes, a square root of ENL is used in ultrasound imagery,
where it is known as speckle-SNR.

when a priori assumptions are necessary to either recover lost
information or fuse multiple informational sources [36]. Unfor-
tunately, defining the priors is well-known to be a very deli-
cate step that, when performed incorrectly, could produce rather
misleading results [37]. The central idea of the present study
has been to show conceptually and experimentally that, in dy-
namic scenarios, some useful priors can be extracted from pre-
vious observations of the dynamic scene that needs to be en-
hanced. As a result, an image enhancement procedure—referred
to as DDN—was introduced as a method for simultaneously en-
hancing sequences of images and tracking the objects of interest
represented by the latter.

The results of image enhancement by means of the DDN
method were compared with the results obtained using the stan-
dard soft-thresholding procedure of [7] as well as the “static”
Bayesian shrinkage detailed in Section II-B. In both cases, the
performance of the reference approaches was found to be infe-
rior to that of the proposed method. In particular, in the steady
state, the DDN algorithm outperformed the soft-thresholding
in terms of edge-preservation, while resulting in substantially
more effective noise cancellation as compared with the “static”
Bayesian approach.

The above results, however, can be only regarded as prelimi-
nary, as a formal proof of the convergence properties of the DDN
algorithm still needs to be derived. Specifically, a dependency
between the “annealing” parameters and in (15) and the
posterior error covariance of the Kalman filter should be found.
We note that this dependency appears to be central to the con-
vergence properties of the proposed method. Indeed, in the be-
ginning of the recursion, when the Kalman filter has not yet
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converged, and, hence, the error covariance is relatively large,
the “location” priors and have to be oversmoothed.
This is necessary to make the algorithm discard the information
coming from the past observations as not sufficiently certain.
Subsequently, as the filter converges (implying that the error co-
variance decreases), the amount of smoothing can be adequately
diminished. Thus, in some sense, the degree of smoothing in es-
timating the “location” priors is to be inversely proportional to
the posterior error covariance of the Kalman filter.

The wavelet shrinkage procedure used in this paper was based
on orthogonal wavelet transforms. While being preferable from
many perspectives, the latter have been observed to produce
Gibbs-like artifacts when used in denoising applications. On the
other hand, this undesirable phenomenon appears to be much
less pronounced, when nonorthogonal undecimated wavelet de-
compositions are used instead [38]. Consequently, modifying
the DDN method to take advantage of the above property of un-
decimated wavelet transforms may be a possible development
of the present study.

In this paper, the apparent motion of tracked objects was de-
scribed by affine optical flows. Needless to say that whenever
the motion of a nonrigid object has to be estimated and/or the
scenario involves tracking of more than one target, the affine
model may not be appropriate for the task at hand. In this case,
using the displacement models of higher complexity, such as
the local affine [39] or spline-based [40] models, can be con-
sidered instead. Moreover, the linear Kalman filter employed in
the present study can be replaced by either by a more general
extended Kalman filter [41] when (18) and (19) are known to be
nonlinear or by a particle filter [42] when the motion distribu-
tion is, e.g., multimodal (as it would be the case in multiobject
tracking). All the above modifications may also be considered
as possible developments of the method proposed in this paper.
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