79 research outputs found

    CIR Parametric Rules Precocity For Ranging Error Mitigation In IR-UWB

    Get PDF
    The cutting-edge technology to support high ranging accuracy within the indoor environment is Impulse Radio Ultra Wide Band (IR-UWB) standard. Besides accuracy, IR-UWB’s low-complex architecture and low power consumption align well with mobile devices. A prime challenge in indoor IR-UWB based localization is to achieve a position accuracy under non-line-of-sight (NLOS) and multipath propagation (MPP) conditions. Another challenge is to achieve acceptable accuracy in the conditions mentioned above without any significant increase in latency and computational burden. This dissertation proposes a solution for addressing the accuracy and reliability problem of indoor localization system satisfying acceptable delay or computational complexity overhead. The proposed methodology is based on rules for identification of line-of-sight (LOS) and NLOS and the range error bias estimation and correction due to NLOS and MPP conditions. The proposed methodology provides accuracy for two major application domains, namely, wireless sensor networks (WSNs) and indoor tracking and navigation (ITN). This dissertation offers two different solutions for the localization problem. The first solution is a rules-based classification of LOS / NLOS and geometric-based range correction for WSN. In the first solution, the Boolean logic based classification is designed for identification of LOS/NLOS. The logic is based on channel impulse response (CIR) parameters. The second solution is based on fuzzy logic. The fuzzy based solution is appealing well for the stringent precision requirements in ITN. In this solution, the parametric Boolean logic from the first solution is converted and expanded into rules. These rules are implemented into a fuzzy logic based mechanism for designing a fuzzy inference system. The system estimates the ranging errors and correcting unmitigated ranges. The expanded rules and designed methodology are based on theoretical analysis and empirical observations of the parameters. The rules accommodate the parameters uncertainties for estimating the ranging error through the relationship between the input parameters uncertainties and ranging error using fuzzy inference mechanism. The proposed solutions are evaluated using real-world measurements in different indoor environments. The performance of the proposed solutions is also evaluated in terms of true classification rate, residual ranging errors’ cumulative distributions and probability density distributions, as well as outage probabilities. Evaluation results show that the true classification rate is more than 95%. Moreover, using the proposed fuzzy logic based solution, the residual errors convergence of 90% is attained for error threshold of 10 cm, and the reliability of the localization system is also more than 90% for error threshold of 15 cm

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Mean Shift-Based Mobile Localization Method in Mixed LOS/NLOS Environments for Wireless Sensor Network

    Get PDF
    Mobile localization estimation is a significant research topic in the fields of wireless sensor network (WSN), which is of concern greatly in the past decades. Non-line-of-sight (NLOS) propagation seriously decreases the positioning accuracy if it is not considered when the mobile localization algorithm is designed. NLOS propagation has been a serious challenge. This paper presents a novel mobile localization method in order to overcome the effects of NLOS errors by utilizing the mean shift-based Kalman filter. The binary hypothesis is firstly carried out to detect the measurements which contain the NLOS errors. For NLOS propagation condition, mean shift algorithm is utilized to evaluate the means of the NLOS measurements and the data association method is proposed to mitigate the NLOS errors. Simulation results show that the proposed method can provide higher location accuracy in comparison with some traditional methods

    Improved NLOS Error Mitigation Based on LTS Algorithm

    Get PDF
    A new improved Least Trimmed Squares (LTS) based algorithm for Non-line-of sight (NLOS) error mitigation is proposed for indoor localisation systems. The conventional LTS algorithm has hard threshold to decide the final set of base stations (BSs) to be used in position calculations. When the number of Line of Sight (LOS) base stations is more than the number of NLOS BSs the conventional LTS algorithm does not include some of them in position estimation due to principle of LTS algorithm or under heavy NLOS environments it cannot separate least biased BSs to use. To improve the performance of the conventional LTS algorithm in dynamic environments we have proposed a method that selects BSs for position calculation based on ordered residuals without discarding half of the BSs. By choosing a set of BSs which have least residual errors among all combinations as a final set for position calculation, we were able to decrease the localisation error of the system in dynamic environments. We demonstrate the robustness of the new improved method based on computer simulations under realistic channel environments

    Robust, Energy-Efficient, and Scalable Indoor Localization with Ultra-Wideband Technology

    Get PDF
    Ultra-wideband (UWB) technology has been rediscovered in recent years for its potential to provide centimeter-level accuracy in GNSS-denied environments. The large-scale adoption of UWB chipsets in smartphones brings demanding needs on the energy-efficiency, robustness, scalability, and crossdevice compatibility of UWB localization systems. This thesis investigates, characterizes, and proposes several solutions for these pressing concerns. First, we investigate the impact of different UWB device architectures on the energy efficiency, accuracy, and cross-platform compatibility of UWB localization systems. The thesis provides the first comprehensive comparison between the two types of physical interfaces (PHYs) defined in the IEEE 802.15.4 standard: with low and high pulse repetition frequency (LRP and HRP, respectively). In the comparison, we focus not only on the ranging/localization accuracy but also on the energy efficiency of the PHYs. We found that the LRP PHY consumes between 6.4–100 times less energy than the HRP PHY in the evaluated devices. On the other hand, distance measurements acquired with the HRP devices had 1.23–2 times lower standard deviation than those acquired with the LRP devices. Therefore, the HRP PHY might be more suitable for applications with high-accuracy constraints than the LRP PHY. The impact of different UWB PHYs also extends to the application layer. We found that ranging or localization error-mitigation techniques are frequently trained and tested on only one device and would likely not generalize to different platforms. To this end, we identified four challenges in developing platform-independent error-mitigation techniques in UWB localization, which can guide future research in this direction. Besides the cross-platform compatibility, localization error-mitigation techniques raise another concern: most of them rely on extensive data sets for training and testing. Such data sets are difficult and expensive to collect and often representative only of the precise environment they were collected in. We propose a method to detect and mitigate non-line-of-sight (NLOS) measurements that does not require any manually-collected data sets. Instead, the proposed method automatically labels incoming distance measurements based on their distance residuals during the localization process. The proposed detection and mitigation method reduces, on average, the mean and standard deviation of localization errors by 2.2 and 5.8 times, respectively. UWB and Bluetooth Low Energy (BLE) are frequently integrated in localization solutions since they can provide complementary functionalities: BLE is more energy-efficient than UWB but it can provide location estimates with only meter-level accuracy. On the other hand, UWB can localize targets with centimeter-level accuracy albeit with higher energy consumption than BLE. In this thesis, we provide a comprehensive study of the sources of instabilities in received signal strength (RSS) measurements acquired with BLE devices. The study can be used as a starting point for future research into BLE-based ranging techniques, as well as a benchmark for hybrid UWB–BLE localization systems. Finally, we propose a flexible scheduling scheme for time-difference of arrival (TDOA) localization with UWB devices. Unlike in previous approaches, the reference anchor and the order of the responding anchors changes every time slot. The flexible anchor allocation makes the system more robust to NLOS propagation than traditional approaches. In the proposed setup, the user device is a passive listener which localizes itself using messages received from the anchors. Therefore, the system can scale with an unlimited number of devices and can preserve the location privacy of the user. The proposed method is implemented on custom hardware using a commercial UWB chipset. We evaluated the proposed method against the standard TDOA algorithm and range-based localization. In line of sight (LOS), the proposed TDOA method has a localization accuracy similar to the standard TDOA algorithm, down to a 95% localization error of 15.9 cm. In NLOS, the proposed TDOA method outperforms the classic TDOA method in all scenarios, with a reduction of up to 16.4 cm in the localization error.Cotutelle -yhteisväitöskirj

    Cramer-Rao bounds in the estimation of time of arrival in fading channels

    Get PDF
    This paper computes the Cramer-Rao bounds for the time of arrival estimation in a multipath Rice and Rayleigh fading scenario, conditioned to the previous estimation of a set of propagation channels, since these channel estimates (correlation between received signal and the pilot sequence) are sufficient statistics in the estimation of delays. Furthermore, channel estimation is a constitutive block in receivers, so we can take advantage of this information to improve timing estimation by using time and space diversity. The received signal is modeled as coming from a scattering environment that disperses the signal both in space and time. Spatial scattering is modeled with a Gaussian distribution and temporal dispersion as an exponential random variable. The impact of the sampling rate, the roll-off factor, the spatial and temporal correlation among channel estimates, the number of channel estimates, and the use of multiple sensors in the antenna at the receiver is studied and related to the mobile subscriber positioning issue. To our knowledge, this model is the only one of its kind as a result of the relationship between the space-time diversity and the accuracy of the timing estimation.Peer ReviewedPostprint (published version
    • …
    corecore