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Mobile localization estimation is a significant research topic in the fields of wireless sensor network (WSN), which is of concern
greatly in the past decades. Non-line-of-sight (NLOS) propagation seriously decreases the positioning accuracy if it is not
considered when the mobile localization algorithm is designed. NLOS propagation has been a serious challenge. This paper
presents a novel mobile localization method in order to overcome the effects of NLOS errors by utilizing the mean shift-based
Kalman filter. The binary hypothesis is firstly carried out to detect the measurements which contain the NLOS errors. For NLOS
propagation condition, mean shift algorithm is utilized to evaluate the means of the NLOS measurements and the data
association method is proposed to mitigate the NLOS errors. Simulation results show that the proposed method can provide
higher location accuracy in comparison with some traditional methods.

1. Introduction

Wireless localization is one of the technologies in the fields of
the intelligent robot, national security, and health surveil-
lance [1] and has received the researcher’s considerable
attention in the past decades. With the increase of the
demand for positioning service, many wireless positioning
systems have been developed, among of which Global Posi-
tioning System (GPS) is one of the most popular localization
systems. However, GPS is not able to provide the desirable
performance when the receiver is in indoor environments.
Wireless sensor network (WSN) is a novel technology with
rapid diffusion. Location is a significant application of
WSN. The WSN-based location methods have widely been
used for indoor location [2, 3].

In the WSN-based localization approaches’ design, the
location of the beacon nodes and the measurements between
the beacon nodes and unknown node are assumed to be the
known prior information. Generally, there are four measure-
ment methods: time of arrival (TOA) [4], time difference of
arrival (TDOA) [5], received signal strength (RSS) [6], and
angle of arrival (AOA) [7]. However, there are many objects
located in some practical environments. These objects may
block the direct propagation path which leads to the non-

line-of-sight (NLOS) environments. The measurement con-
tains a positive bias which is termed as NLOS error. In this
environment, the performance of the conventional position-
ing methods will degrade dramatically. Therefore, the
accurate localization in the NLOS environments has been a
significant topic.

In this paper, we propose a novel location algorithm
which can solve the NLOS errors. This paper is structured
as follows: related works are introduced in Section 2. System
model and mean shift methods are described in Section 3.
Section 4 presents the proposed algorithm. The performance
evolution of the proposed algorithm is shown in Section 5.
Section 6 presents the conclusions.

2. Related Works

In order to solve the NLOS errors, researchers proposed
numerous methods. These methods can be generally divided
into two types [8]: hard-decision ones and soft-decision ones.
In the first methods, an identification and discard strategy is
employed, which means that the NLOS measurements are
firstly identified and then discarded. The localization is only
dependent on the line-of-sight (LOS) measurements. There
are many promising approaches to be proposed to estimate
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the propagation paths [8–11]. These kinds of algorithms
require accurate identification and enough LOS measure-
ments which are not suitable in some practical environments.
The second methods utilize all of the measurements with dif-
ferent weights to locate the target. The interacting multiple
model (IMM) with different filter approaches such as the
Kalman filer [12], the extended Kalman filer [6, 13, 14], the
cubature Kalman filer [15], and the hidden Markov models
[16] can be considered as the most classical soft-decision
methods. These kinds of methods are practical when only a
small number of measurements can be used for positioning.
Most of the methods mentioned above were designed with
the prior information of the NLOS errors. But, in practical
and complicated environments, the prior information is usu-
ally unknown.

There are many approaches proposed to realize the accu-
rate location without any prior knowledge of statistical infor-
mation of the NLOS measurements. These methods are
termed as nonparametric methods. In [17], Chen proposed
a residual weighting (Rwgh) algorithm. The residuals are pre-
sented to compute the weights for the initial node coordi-
nates from the least squares estimation of all possible
combinations of the measurements. The final localization
result is obtained by weighting these initial results. In [18],
Yu et al. constructed a voting matrix to estimate the initial
localization results and then employed the residual weighting
to acquire the final estimated position. In [19, 20], Garcia
et al. utilized a training strategy to obtain the training mea-
surements. The final position is estimated by using these
measurements. In [21], Lloret et al. proposed a novel stochas-
tic algorithm which is based on a combination of deductive
and inductive methods to decide the estimated position. In
[22, 23], the statistical features including mean, variance,
and Rician K factor are used to train the support vector
machine (SVM) classifier to identify the propagation condi-
tion. They can obtain the desirable results with enough
training samples. In [24], a min–max strategy is invented to
identify the propagation paths by constructing a detection
region according to the range measurements. If the localiza-
tion is far away from the edge of the region, the propagation
is an NLOS propagation. In [25], Cheng et al. employed the
Gaussian mixture distributions to describe the distributions
of NLOS errors and the estimated mean is used for poisoning
in the Kalman filter frame. In [26], Hu et al. proposed a prob-
abilistic data-association-based IMM approach to improve
the location accuracy in the rough environment. The position
estimation is performed by using an IMM frame and then the
PDA approach is employed to correct it.

Most of the nonparametric methods mentioned above
were designed with the assumption that the obstacles are
fixed. But, in the practical and complicated environments,
the positions of the obstacles may be changed dynamically.
These nonparametric methods cannot provide desirable
position estimation in mixed LOS/NLOS environments
where some obstacles are always moving. This paper presents
an efficient mobile node localization approach which is
termed as improved Kalman filter (IKF) based on mean shift
[27] to overcome the NLOS effect in mixed LOS/NLOS envi-
ronments. Our algorithm has the desirable location ability

without any prior knowledge of statistical information of
the NLOS measurements. The simulation results demon-
strate its effectiveness.

3. Background

In this section, we consider the scenario with M beacon
nodes and an unknown node. These beacon nodes are ran-
domly distributed, and their coordinates are known which
are given by θn = xn, yn

T , where n = 1,… ,N . There are
many obstacles deployed in the field whose positions are
not given. At time k, the target is moving in the area and its
position is denoted by x k , y k k = 1, 2,… K . The wire-
less signal is transmitted from the beacon nodes to the
unknown node. The measured distance is estimated by
TOA. The illustration of the LOS/NLOS propagation is show
in Figure 1.

3.1. System Model. At time k, the range measurements
between the unknown node and nth (n=1,…, N) beacon
node can be acquired, which is represented by the following:

zn k = dn k + εn, k = 1,… , K , 1

where dn k = x k − xn
2 + y k − yn

2 stands for the

true distance. εn is noise which has different forms in the
LOS environment and NLOS environment. Generally, εn is
modeled by

εn =
vn,  LOS;
vn + bNLOS,  NLOS,

2

where vn is the measurement noise, vn~N 0, σ2n . The NLOS
error bNLOS is often regarded as a positive bias due to the
longer indirect propagation path in NLOS condition and
independent of vn. The NLOS error bNLOS is different from
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Figure 1: The LOS/NLOS propagation.
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vn which may follow different distributions [28], such as
Gaussian distribution, uniform distribution, and exponential
distribution in different conditions.

In the LOS propagation environment, the probability
density function (PDF) of εn is

pL εn = 1
2πσ2n

exp −
ε2n
2σ2n

3

In the NLOS propagation environment, εn has different
forms because the NLOS error bNLOS may obey different
distributions. When bNLOS obeys a Gaussian distribution,
bNLOS~N μb, σ2b , the PDF of εn is

pNL εn = 1
2πσ2ε

exp −
εn − μb

2

2σ2
e

, 4

where σ2ε = σ2b + σ2n. When bNLOS obeys a uniform distribu-
tion, bNLOS~U umin, umax , the PDF of εn can be described
as follows:

pNL εn = 1
umax − umin

Q
εn − umax

σn
−Q

εn − umin
σn

,

5

where Q() stands for the cumulative distribution function of
the standard normal distribution.When bNLOS obeys an expo-
nential distribution, bNLOS ~E λ , the PDF of εn is as follows:

pNL εn = λ

2 exp −λ εn −
λ2σ2

n

2 Φ λσ2
n − εn
2σn

, 6

where λ is a positive constant and Φ is the complementary
error function.

3.2. Mean Shift Method. The prior knowledge of the NLOS
errors cannot be obtained in practical environment. The
mean shift method is employed to approximate the probabil-
ity density. It is assumed that there are M range measure-
ments ẑ k = ẑ1 k ,… , ẑM k at time k. For an initial
estimate z k , the weighted mean of the measurements ẑ k
is determined as follows:

ν z k =
〠ẑ j k ∈N z k KM ẑ j k − z k ẑj k

〠ẑ j k ∈N z k KM ẑj k − z k
, 7

where N z k stands for the neighborhood of the initial
estimate z k and N z k ∈ ẑ k and KM x ≠ 0 stands for
the kernel function with the following forms:

KM
E x = c 1 − x 2 ,  x ≤ 1,

0, otherwise,

KM
U x =

c  x ≤ 1,
0, otherwise,

KM
N x = c ⋅ exp −

1
2 x 2

8

This kernel function is used to determine the weights of
the neighborhood data to re-estimate the mean. In the prac-
tical application, there are many initial estimates required to
obtain the desirable results. The weighted means can be
obtained through an iteration process. This method always
sets the initial estimates z k constantly to obtain the new
estimations of v z k , and the estimation process always
repeats until v z k is converged.

4. Proposed NLOS Localization Method

The range measurements play the significant roles in the
whole process of mobile localization. We adopt the high-
frequency measurements [29], the reliable data. Therefore,
at time k, we can obtain M range measurements ẑn k =
ẑ1n k ,… , ẑMn k between the target and the nth beacon
node. Their mean value is

γn k = 1
M

〠
M

m=1
ẑmn k 9

We define the following state vector of the unknown
node relative to the nth beacon node at time k:

Xn k = γn k , γn k T , k = 1,… , K , 10

where γn k stands for the velocity.
The corresponding state model is

Xn k + 1 =AXn k +Gωn k , 11

where A =
1 t

0 1
stands for the state transition matrix,

G =
t2/2
t

, t stands for the sample period, and ωn k

stands for the random process noise.
The measurement equation in the mixed propagation

environment is

Zn k =HXn k + εn, 12

where H = 1, 0 stands for the observation matrix and εn is
the noise.

Figure 2 indicates the architecture of the proposed
improved Kalman filter. Firstly, the Kalman prediction step
is carried out. Secondly, a hypothesis and an alternative
method are utilized to detect the channel conditions. Thirdly,
in the NLOS condition, the mean shift method is used to cal-
culate the weighted means of the range measurements and a
novel algorithm is proposed to provide the measurement
residual for data association. Fourthly, the Kalman update
step is implemented. Finally, the maximum likelihood algo-
rithm is employed to obtain the final position with the
filtered range measurements. The detailed steps of the pro-
posed algorithm are listed below.

Step 1 (Kalman predication). It is assumed that X̂n 0∣0 ~N
Xn 0 , Pn 0∣0 is known to complete the initialization
of the Kalman filter. For the time interval k = 1,… , K ,
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the conventional time update equation of Kalman filter is
expressed as follows:

X̂n k + 1 k =AX̂n k k ,

Pn k + 1 k =APn k k AT +GQGT ,
13

where X̂n k + 1∣k and X̂n k∣k represent the predicted
and updated state estimate, respectively, of the state vec-
tor of the unknown node relative to the nth beacon at
time k. Pn k∣k and Pn k + 1∣k represent the predicted
and updated covariance. Q denotes the variance of the pro-
cess noise.
The measurement residual is defined by the following:

En k + 1 = γn k + 1 − Ẑn k + 1 k , 14

Ẑn k + 1 k =HX̂n k + 1∣k 15

The innovation covariance matrix is expressed as follows:

Sn k + 1 =HPn k + 1 k HT +Q 16

The Kalman gain is expressed as follows:

Kn k + 1 = Pn k + 1 k HT Sn k + 1 −1 17

Step 2 (NLOS detection). We employ the hypotheses and
alternatives [8] to detect the NLOS propagation. According
to the above equations, in LOS condition, it can be summa-
rized that

En k ~N 0, Sn k , 18

where N 0, Sn k stands for the Gaussian density function
of En k with zero mean and variance S2n k . Due to (18),
the test statistic Γn k is defined as follows:

Γn k = En k TSn k En k 19

The following hypotheses and alternative are utilized to iden-
tify the propagation condition:

H0 Γn k ≥ ξ,

H1 Γn k < ξ,
20

where ξ is the threshold. If Γn k is larger than ξ, the hypoth-
eses, H0, and the range measurements are obtained in the
LOS condition. Otherwise, the range measurements contain
the numerous NLOS errors.

Step 3 (mean shift-based data association). In the NLOS
condition, the mean shift method is employed to compute
the weighted means of the measurements ẑn k with the
corresponding l initial estimates z k = z1 k ,… , zl k .

νi z k =
〠ẑ j k ∈N z k KM ẑj k − z k ẑj k

〠ẑ j k ∈N z k KM ẑj k − z k
21

The output result νi can be obtained through an iterative pro-
cess, and the corresponding measurement residuals are given
by the following:

Ei k + 1 = νi − Ẑn k + 1 k , i = 1,… , I 22
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Figure 2: Structure of the improved Kalman filter.
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If νi is the LOS measurement, it is similar to the predicted
measurement. Hence, the weights for each measurement
residual are given by the following:

μi k = N Ei k  0, Sn k

〠I
i=1N Ei k  0, Sn k

23

The output of the mean shift-based data association is
expressed as

En k = 〠
I

i=1
Ei k μi k 24

Step 4 (Kalman update). In the LOS environment, En k is
computed according to (14). In the NLOS environment,
En k is computed according to (24). The final state estimate
can be obtained using the following equation:

X̂n k + 1 k + 1 = X̂n k + 1 k +Kn k + 1 En k + 1 25

The covariance can be updated as follows:

Pn k + 1 k + 1 = Pn k + 1 k −Kn k + 1 Sn k + 1 Kn k + 1 T

26

After obtaining the state estimation vector X̂n k + 1∣k + 1 ,
the filtered measurements are as follows:

zn k =ΩX̂n k + 1 k + 1 , Ω = 1, 0 27

Step 5 (ML-based location). We use theMLmethod to realize
the final localization estimation. As mentioned above, the
coordinates of the beacon nodes are x1, y1 , x2, y2 ,… ,
xn, yn as the prior information. The evaluated coordinate
of the target is denoted by Y k = x k , y k T , and the proc-
essed range measurements are denoted by zn k at time k.
The following linear equation is summarized as follows:

DY k = B, 28

where

D = 2

x1 − x2 y1 − y2
x1 − x3

⋮

x1 − xN

y1 − y3
⋮

y1 − yN

,

B =

z2 k 2 − z1 k 2 − x21 + y21 + x22 + y22

z3 k 2 − z1 k 2 − x21 + y21 + x23 + y23

⋮

zN k 2 − z1 k 2 − x21 + y21 + x2N + y2N
29

The final position of the moving target can be obtained
as follows:

Y k = DTD −1DTB 30

5. Performance Evaluation

The location ability of the proposed approach in the mixed
LOS/NLOS environments is tested through the following
simulations in this section. The proposed improved Kalman
filter (IKF) algorithm is compared with the maximum likeli-
hood (ML) algorithm, the residual weighting (Rwgh) algo-
rithm, and the Kalman filter (KF) algorithm to validate its
effectiveness. We consider a 100m× 100m square area.
There are seven beacon nodes in this area. The target is mov-
ing in this field with the velocity of 1m/s. The obstacles are
distributed randomly, and their positions are always changed
dynamically. Figure 3 shows the diagram of the simulation
environment. We assumed that the communication ranges
for all sensor nodes are the same which are equal to 150m.
The measure noise vn is the white Gaussian noise with vari-
ance σn (defaulted as 1), vn~N 0, 1 . The NLOS errors obey
Gaussian distribution, uniform distribution, and exponential
distribution, respectively. We carry out 2000 Monte Carlo
runs to obtain the simulation results of these four algorithms
in each case.

The location ability of these four approaches is evaluated
by the average location error:

ALE = 1
K ⋅ ti

〠
ti

i=1
〠
K

k=1
x k − x̂i k

2 + y k − ŷi k
2, 31

where K=2000, ti = 100, and x k , y k and x̂i k , ŷi k
denote the real position and the estimated position of the
moving target at time k.

Firstly, we discuss the location ability of these four
methods in the case of Gaussian distribution, in which the
NOLS error bNLOS~N μb, σ2b . Both Figures 4 and 5 display
the different simulation results in the two cases. The relation-
ship between the mean of the NLOS errors μb and the average
location error is indicated in Figure 4. During the whole
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Figure 3: Diagram of the simulation environment.
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simulation process, the variance of the NLOS errors σ2
b is

equal to 3. The mean of NLOS errors varies from 1 to 5.
Obviously, the average location errors of these four algo-
rithms all rise when the parameter μb increases. The localiza-
tion ability of ML is the worst because its average location
errors have the most rapid rising. The proposed IKF method
outperforms the other three methods. It always has the high-
est localization accuracy than ML, Rwgh, and KF methods,
about 26.73%, 14.17%, and 13.69%, respectively.

We illustrate the variance of NLOS errors versus the aver-
age location error of these four approaches as shown in
Figure 5. In this simulation, the parameter μb is equal to 3.
The variance of NLOS errors varies from 1 to 6. It can be seen
that these four algorithms are all sensitive to the variance of

NLOS errors. The location performance degrades with the
increment of the variance of NLOS errors. By contrast, the
proposed IKF method always has the best performance than
the other three methods.

Secondly, we discuss the location ability of these four
methods in the case of uniform distribution, in which
the NOLS error bNLOS~U umin, umax . In this simulation, the
parameterumin is equal to 3. Figure 6 indicates the relationship
between the parameter umax and the average location error. It
is obvious that the performance of the ML methods is almost
the worst. The average location error of the KF method
always rises with the increment of the parameter umax. The
average location errors of the both the Rwgh and IKF algo-
rithms rise when the parameter umax ≤ 6. The location accu-
racy of both the Rwgh and IKF algorithms improves
significantly when umax > 6 due to their robustness to the
large NLOS errors. The performance of the IKF algorithm
is always the best.

Finally, we investigate the performance of the four
approaches with the assumption that the NLOS errors obey
the exponential distribution bNLOS~E λ . In this simulation,
the parameter λ varies from 1 to 6. Figure 7 indicates the rela-
tionship between the parameter λ and the average location
error. It is obvious that the ML method always owns the
worst location performance. The proposed method offers
the better location estimation than the other three methods.

6. Conclusion

We investigated the mobile localization in rough environ-
ments and presented a novel IKF algorithm which can realize
the accurate mobile node localization. The proposed IKF
algorithm is independent of prior information. In the whole
location process, the NLOS errors are completely unknown.
In the simulation, the proposed method is compared with
three traditional algorithms. The simulation results illustrate
that the proposed IKF approach has the best performance. It
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has higher localization accuracy than KF, Rwgh, and ML
methods about 32.8%, 17.19%, and 13.07%, respectively. In
the future, we will focus on the robust localization method
with the mobile beacon nodes in the mixed LOS/NLOS
environments.
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