473 research outputs found

    Cardinality Reasoning for Bin-Packing Constraint: Application to a Tank Allocation Problem

    Get PDF
    International audienceFlow reasoning has been successfully used in CP for more than a decade. It was originally introduced by Régin in the well-known Alldifferent and Global Cardinality Constraint (GCC) available in most of the CP solvers. The BinPacking constraint was introduced by Shaw and mainly uses an independent knapsack reasoning in each bin to filter the possible bins for each item. This paper considers the use of a cardinal-ity/flow reasoning for improving the filtering of a bin-packing constraint. The idea is to use a GCC as a redundant constraint to the BinPacking that will count the number of items placed in each bin. The cardinality variables of the GCC are then dynamically updated during the propagation. The cardinality reasoning of the redundant GCC makes deductions that the bin-packing constraint cannot see since the placement of all items into every bin is considered at once rather than for each bin individually. This is particularly well suited when a minimum loading in each bin is specified in advance. We apply this idea on a Tank Allocation Problem (TAP). We detail our CP model and give experimental results on a real-life instance demonstrating the added value of the cardinality reasoning for the bin-packing constraint. This constraint enforces the relation L j = i (X i = j) · w i , ∀j. It makes the link between n weighted items (item i has a weight w i) and the m different capacitated bins in which they are to be put. Only the weights of the items are integers, the other arguments of the constraints are finite domain (f.d.) variables. Note that in this formulation, Lj is a variable which is bounded by the maximal capacity of the bin j. Without loss of generality we assume the item variables and their weights are sorted such that w i ≤ w i+1. Example: BinP acking([1, 4, 1, 2, 2], [2, 3, 3, 3, 4], [5, 7, 0, 3])

    Global Constraint Catalog, 2nd Edition (revision a)

    Get PDF
    This report presents a catalogue of global constraints where each constraint is explicitly described in terms of graph properties and/or automata and/or first order logical formulae with arithmetic. When available, it also presents some typical usage as well as some pointers to existing filtering algorithms

    Global Constraint Catalog, 2nd Edition

    Get PDF
    This report presents a catalogue of global constraints where each constraint is explicitly described in terms of graph properties and/or automata and/or first order logical formulae with arithmetic. When available, it also presents some typical usage as well as some pointers to existing filtering algorithms

    An Enhanced Features Extractor for a Portfolio of Constraint Solvers

    Get PDF
    Recent research has shown that a single arbitrarily efficient solver can be significantly outperformed by a portfolio of possibly slower on-average solvers. The solver selection is usually done by means of (un)supervised learning techniques which exploit features extracted from the problem specification. In this paper we present an useful and flexible framework that is able to extract an extensive set of features from a Constraint (Satisfaction/Optimization) Problem defined in possibly different modeling languages: MiniZinc, FlatZinc or XCSP. We also report some empirical results showing that the performances that can be obtained using these features are effective and competitive with state of the art CSP portfolio techniques

    Self-decomposable Global Constraints

    Get PDF
    International audienceScalability becomes more and more critical to decision support technologies. In order to address this issue in Constraint Programming, we introduce the family of self-decomposable constraints. These constraints can be satisfied by applying their own filtering algorithms on variable subsets only. We introduce a generic framework which dynamically decompose propagation, by filtering over variable subsets. Our experiments over the CUMULATIVE constraint illustrate the practical relevance of self-decomposition

    On Guillotine Separable Packings for the Two-Dimensional Geometric Knapsack Problem

    Get PDF
    In two-dimensional geometric knapsack problem, we are given a set of n axis-aligned rectangular items and an axis-aligned square-shaped knapsack. Each item has integral width, integral height and an associated integral profit. The goal is to find a (non-overlapping axis-aligned) packing of a maximum profit subset of rectangles into the knapsack. A well-studied and frequently used constraint in practice is to allow only packings that are guillotine separable, i.e., every rectangle in the packing can be obtained by recursively applying a sequence of edge-to-edge axis-parallel cuts that do not intersect any item of the solution. In this paper we study approximation algorithms for the geometric knapsack problem under guillotine cut constraints. We present polynomial time (1+?)-approximation algorithms for the cases with and without allowing rotations by 90 degrees, assuming that all input numeric data are polynomially bounded in n. In comparison, the best-known approximation factor for this setting is 3+? [Jansen-Zhang, SODA 2004], even in the cardinality case where all items have the same profit. Our main technical contribution is a structural lemma which shows that any guillotine packing can be converted into another structured guillotine packing with almost the same profit. In this packing, each item is completely contained in one of a constant number of boxes and ?-shaped regions, inside which the items are placed by a simple greedy routine. In particular, we provide a clean sufficient condition when such a packing obeys the guillotine cut constraints which might be useful for other settings where these constraints are imposed
    • …
    corecore