9,026 research outputs found

    Symmetric Determinantal Representation of Formulas and Weakly Skew Circuits

    Get PDF
    We deploy algebraic complexity theoretic techniques for constructing symmetric determinantal representations of for00504925mulas and weakly skew circuits. Our representations produce matrices of much smaller dimensions than those given in the convex geometry literature when applied to polynomials having a concise representation (as a sum of monomials, or more generally as an arithmetic formula or a weakly skew circuit). These representations are valid in any field of characteristic different from 2. In characteristic 2 we are led to an almost complete solution to a question of B\"urgisser on the VNP-completeness of the partial permanent. In particular, we show that the partial permanent cannot be VNP-complete in a finite field of characteristic 2 unless the polynomial hierarchy collapses.Comment: To appear in the AMS Contemporary Mathematics volume on Randomization, Relaxation, and Complexity in Polynomial Equation Solving, edited by Gurvits, Pebay, Rojas and Thompso

    Progress on Polynomial Identity Testing - II

    Full text link
    We survey the area of algebraic complexity theory; with the focus being on the problem of polynomial identity testing (PIT). We discuss the key ideas that have gone into the results of the last few years.Comment: 17 pages, 1 figure, surve

    An eigenvalue-based method and determinant representations for general integrable XXZ Richardson-Gaudin models

    Get PDF
    We propose an extension of the numerical approach for integrable Richardson-Gaudin models based on a new set of eigenvalue-based variables. Starting solely from the Gaudin algebra, the approach is generalized towards the full class of XXZ Richardson-Gaudin models. This allows for a fast and robust numerical determination of the spectral properties of these models, avoiding the singularities usually arising at the so-called singular points. We also provide different determinant expressions for the normalization of the Bethe Ansatz states and form factors of local spin operators, opening up possibilities for the study of larger systems, both integrable and non-integrable. These expressions can be written in terms of the new set of variables and generalize the results previously obtained for rational Richardson-Gaudin models and Dicke-Jaynes-Cummings-Gaudin models. Remarkably, these results are independent of the explicit parametrization of the Gaudin algebra, exposing a universality in the properties of Richardson-Gaudin integrable systems deeply linked to the underlying algebraic structure

    Gauge Invariance in Simplicial Gravity

    Get PDF
    The issue of local gauge invariance in the simplicial lattice formulation of gravity is examined. We exhibit explicitly, both in the weak field expansion about flat space, and subsequently for arbitrarily triangulated background manifolds, the exact local gauge invariance of the gravitational action, which includes in general both cosmological constant and curvature squared terms. We show that the local invariance of the discrete action and the ensuing zero modes correspond precisely to the diffeomorphism invariance in the continuum, by carefully relating the fundamental variables in the discrete theory (the edge lengths) to the induced metric components in the continuum. We discuss mostly the two dimensional case, but argue that our results have general validity. The previous analysis is then extended to the coupling with a scalar field, and the invariance properties of the scalar field action under lattice diffeomorphisms are exhibited. The construction of the lattice conformal gauge is then described, as well as the separation of lattice metric perturbations into orthogonal conformal and diffeomorphism part. The local gauge invariance properties of the lattice action show that no Fadeev-Popov determinant is required in the gravitational measure, unless lattice perturbation theory is performed with a gauge-fixed action, such as the one arising in the lattice analog of the conformal or harmonic gauges.Comment: LaTeX, 68 pages, 24 figure

    Exponential Time Complexity of the Permanent and the Tutte Polynomial

    Get PDF
    We show conditional lower bounds for well-studied #P-hard problems: (a) The number of satisfying assignments of a 2-CNF formula with n variables cannot be counted in time exp(o(n)), and the same is true for computing the number of all independent sets in an n-vertex graph. (b) The permanent of an n x n matrix with entries 0 and 1 cannot be computed in time exp(o(n)). (c) The Tutte polynomial of an n-vertex multigraph cannot be computed in time exp(o(n)) at most evaluation points (x,y) in the case of multigraphs, and it cannot be computed in time exp(o(n/polylog n)) in the case of simple graphs. Our lower bounds are relative to (variants of) the Exponential Time Hypothesis (ETH), which says that the satisfiability of n-variable 3-CNF formulas cannot be decided in time exp(o(n)). We relax this hypothesis by introducing its counting version #ETH, namely that the satisfying assignments cannot be counted in time exp(o(n)). In order to use #ETH for our lower bounds, we transfer the sparsification lemma for d-CNF formulas to the counting setting
    • …
    corecore