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ABSTRACT

The issue of local gauge invariance in the simplicial lattice formulation of gravity is examined. We exhibit

explicitly, both in the weak field expansion about flat space, and subsequently for arbitrarily triangulated

background manifolds, the exact local gauge invariance of the gravitational action, which includes in general

both cosmological constant and curvature squared terms. We show that the local invariance of the discrete

action and the ensuing zero modes correspond precisely to the diffeomorphism invariance in the continuum,

by carefully relating the fundamental variables in the discrete theory (the edge lengths) to the induced metric

components in the continuum. We discuss mostly the two dimensional case, but argue that our results have

general validity. The previous analysis is then extended to the coupling with a scalar field, and the invariance

properties of the scalar field action under lattice diffeomorphisms are exhibited. The construction of the

lattice conformal gauge is then described, as well as the separation of lattice metric perturbations into

orthogonal conformal and diffeomorphism part. The local gauge invariance properties of the lattice action

show that no Fadeev-Popov determinant is required in the gravitational measure, unless lattice perturbation

theory is performed with a gauge-fixed action, such as the one arising in the lattice analog of the conformal

or harmonic gauges.
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1 Introduction

In the quantization of gravitational interactions one expects non-perturbative effects to play an important

role [1]. One formulation available for studying such effects is Regge’s simplicial lattice theory of gravity

[2]. It is the only lattice model with a local gauge invariance [3], and the only model known to contain

gravitons in four dimensions [4]. One would hope that a number of fundamental issues in quantum gravity,

such as the existence of a non-trivial ultraviolet fixed point of the renormalization group in four dimensions

and the recovery of general relativity at large distances, could in principle be addressed in such a model.

The presence of a local gauge invariance, which is analogous to the diffeomorphism group in the continuum,

makes the model attractive as a regulated theory of gravity [5], while the existence of a phase transition in

three [6] and four dimensions [3, 7, 8, 9, 10] (but not in two [11]) suggests the existence of a (somewhat

unusual) lattice continuum limit. The two phases of quantized gravity found in [9], can loosely be described

as having in one phase (G < Gc, rough, polymer-like phase)

〈gµν〉 = 0 , (1.1)

and in the other phase (G > Gc, smooth phase),

〈gµν〉 ≈ c ηµν , (1.2)

with a small negative average curvature (anti-DeSitter space) in the vicinity of the critical point at Gc. A

physically similar two-phase structure was later proposed also in [12]; see also the ideas found in [13]. A

discussion of the properties of the two phases characterizing four-dimensional gravity, and of the associated

critical exponents, can be found in [9]. For additional recent numerical results we refer the reader to [10],

while for some earlier attempts we refer to the work in [3, 7, 8]. Recently calculations have progressed to

the point that a first calculation of the Newtonian potential from the correlation of heavy particle world

lines, following the suggestive proposal of [14], seems feasible [15]. The results so far indicate that in the

lattice quantum theory of gravity the potential between heavy spinless bodies is attractive, and has roughly

the correct heavy mass dependence. In the same work a general scaling theory for gravitational correlations,

valid in the vicinity of the fixed point, was put forward. We also refer the reader to [16], where a more

complete set of references to earlier work on Regge gravity can be found. For results with an alternative and

complementary approach based on dynamical triangulations, we refer the reader to the references in [17].

In view of this recent progress it would seem desirable to further elucidate the correspondence between

continuum and lattice theories. The weak field expansion is available to systematically develop this cor-

respondence, and it is well known that such an expansion can be carried out in both formulations. Not
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unexpectedly, it is technically somewhat more complex in the lattice theory due to the presence of addi-

tional vertices, as happens in ordinary lattice gauge theories. In the past most perturbative studies of lattice

gravity have focused on the lowest order terms, and in particular the lattice graviton propagators [4, 11, 6].

Recently it has been extended to include the vertex functions, and the results have been used to compute

the one-loop amplitudes relevant for the conformal anomaly in two dimensions [18].

One central issue in a regularized theory of quantum gravity is the nature of its invariance properties.

Although some discussions of these issues have appeared before, no systematic and coherent exposition

has been presented yet in the literature. In this paper we address the question of what exactly the local

gauge invariance built into Regge’s simplicial gravity looks like. Its existence is intimately tied in with the

appearance of gravitons (in four dimensions) in the lattice weak field expansion about a flat background. It

need not be emphasized here that local gauge invariance plays a central role in both the classical and quantum

formulation of gravity, and its preservation in the lattice theory must therefore be considered of paramount

importance. Physically, it expresses the fact that the same physical geometry can be described by equivalent

metrics. Classically, it leads for example to the invariance of the infinitesimal line element and the Bianchi

identities for the curvature. In the quantum theory it is known to give rise to the Slavnov-Taylor identities

for the gravitational Green’s functions. One would therefore expect that local gauge transformations should

play a central role in the lattice theory as well. This aspect will be therefore the focus of the first part of the

paper, where the analog of local gauge transformations on the lattice will be constructed. The requirement

of gauge invariance will have implications for both the gravitational measure and the coupling to a scalar

field, and we will present in this paper a detailed analysis of its consequences. The second part of this paper

will be devoted to a number of relevant applications.

The plan of the paper is as follows. In Section 2, we introduce our notation, describe the choice of

lattice structure and the relevant degrees of freedom in the lattice theory, the squared edge lengths. We

discuss the discrete actions for the gravitational degrees of freedom, and the relationship to their well-

known continuum counterparts. In Section 3 we move on to the lattice weak field expansion, and discuss

in detail the two-dimensional case (with cosmological and curvature squared terms). We exhibit explicitly

the gauge zero modes and their corresponding eigenvectors, which are shown to correspond precisely to

local gauge transformations in the continuum. We then compute explicitly and analytically the zero modes

for fluctuations about a non-flat background (the tetrahedral, octahedral and icosahedral tessellations of

the two-sphere), and show that the counting of the zero modes is consistent with the expectation from the

continuum theory. We then give further arguments supporting the identification of the zero modes with

the diffeomorphisms in the continuum, which we argue is valid in any dimension. In Section 4 we extend

the previous analysis to arbitrary curved backgrounds and show explicitly the persistence of a local gauge
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invariance for the area, curvature and curvature squared terms. In section 5 we introduce a scalar field

coupled invariantly to the gravitational degrees of freedom. We again exhibit its invariance properties under

local gauge variations of the squared edge lengths, at least for sufficiently smooth scalar field configurations,

by working out the concrete case of background lattices which are close to either equilateral or square. We

then discuss the more general case of arbitrary background lattices, and the construction of the energy-

momentum tensor for the scalar field. Section 6 discusses the implications of the preceding results for the

lattice gravitational measure, and we give arguments that the lattice measure is essentially unique, up to

local volume factors. We will argue therefore that the lattice measure is essentially no less unique than

the original continuum (DeWitt) measure. In Section 7 we consider the possibility of introducing a gauge

fixing term in the lattice action, in order to remove the gauge zero modes of the gravitational action and

subsequently perform perturbative calculations, and in close analogy with the procedure followed in the usual

continuum perturbation theory. As an example, we discuss the explicit construction of the lattice conformal

gauge, starting from an arbitrary configuration of squared edge lengths. Finally, Section 8 contains some

concluding remarks.

2 The Discretized Theory

In this section we will briefly review the construction of the action describing the gravitational field on

the lattice, and define the necessary notation used later in the paper. In concrete examples we will often

refer, because of its simplicity, to the two-dimensional case, where a number of results can be derived easily

and transparently. But in a number of instances here, and throughout the paper, important aspects of

the discussion and of the conclusions will be quite general, and not restricted to specific aspects of the

two-dimensional case.

In simplicial gravity the elementary building blocks for d-dimensional space-time are simplices σd of

dimension d. A 0-simplex is a point, a 1-simplex is an edge and a 2-simplex is a triangle. A d-simplex is

a d-dimensional object with d + 1 vertices and d(d + 1)/2 edges connecting them. Each simplex in turn

contains
(
d+1
k+1

)
sub-simplices σk of dimension k. Thus in two dimensions we shall consider here a fixed

closed simplicial two-manifold consisting of N0 vertices, N1 edges and N2 triangles, joined in such a way

that each point has a neighborhood homeomorphic to the interior of a two-dimensional sphere. A simplicial

geometry is then specified by the assignment of squared edge lengths l2i , i = 1 . . .N1, and a flat Riemannian

metric can be assigned to the interior regions of the simplices in a way that is consistent with the edge length

values. Further restrictions arise from the fact that the triangle inequalities (and their higher dimensional

analogs in d dimensions) have to be satisfied.
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The correspondence between squared edge lengths and an assigned continuum metric field can be made

more precise, with the identification

lab =

∫ τ(b)

τ(a)

dτ

√
gµν(x(τ))dx

µ

dτ
dxν

dτ =
√
gµν l

µ
abl

ν
ab , (2.1)

where lab is the length of the edge connecting neighboring points a and b. For a given set of edge lengths, the

metric gµν(x) has initially support on the edges only. 3 For a metric that is constant inside each simplex,

l2i = gµν l
µ
i l
ν
i , where i labels the edge from a to b and the lµi ’s are the components of the edge lengths.

2.1 Lattice Structure

In two dimensions quantum gravity can be defined on a two-dimensional surface consisting of a network

of flat triangles. The underlying lattice may be constructed in a number of ways. Points may be distributed

randomly on the surface and then joined to form triangles according to some algorithm. In such lattices the

coordination number at each vertex can be kept fixed (quenched random lattice), or allowed to vary (annealed

random lattice), by considering it as an additional, dynamical variable of the model. An alternative procedure

is to start with a regular lattice, like a regular tessellation of the two sphere, or a lattice of squares divided

into triangles by drawing in parallel sets of diagonals, and then allow the edge lengths to vary, which will give

rise to curvature localized on the vertices. It should be emphasized that for arbitrary assignments of edge

lengths, consistent with the imposition of the triangle inequalities constraints, such a lattice is in general far

from regular, and resembles more a random lattice.

The incidence matrix, which provides the information on which edges are adjacent, and fixes therefore

the local coordination number qi, describes the topology of the manifold. It can be chosen to correspond to a

fixed regular or to a fixed random lattice. But one word of caution should be spent here on the terminology.

Since the edge lengths are dynamical variables, the lattice is in fact random in either case: contrary to a

fixed regular lattice (such as the square or triangular one in two dimensions), there are a priori no preferred

directions even for a lattice with fixed coordination number, as neighboring points can have any relative

orientation as long as they are consistent with the triangle inequalities and their higher dimensional analogs.

Universality arguments would then suggest that the choice of local coordination number should not affect

the large distance limit of the model, and a number of explicit calculations on random lattices have shown

to some extent that this is indeed the case [19, 20].

3The above identification parallels an analogous correspondence used sometimes in ordinary lattice gauge theories,
where the SU(n) matrix-valued lattice field Anµ has support only on the links of a hypercubic lattice, Unµ ≡ eiaAnµ=

P exp

(
ia
∫ n+µ

n
dxµAµ(x)

)
. This definition is a convenient starting point for performing perturbation theory and defining the

lattice Feynman rules. For the same construction in perturbative simplicial gravity see [18].
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In the following we will often narrow down the discussion and be even more specific, and usually think of

the “regular” lattice as consisting of a network of triangles with a fixed coordination number of six, qi = 6,

although many of the results in this work are quite general and do not rely on the specific choice of local

coordination numbers.

Quenched random lattices, where the local coordination number qi (which is the number of edges meeting

at i) is random but fixed, were considered in [21, 22, 19, 23]. For such Poissonian random lattices, the average

coordination number is also q = 6 in two dimensions, independent of the topology. This follows from the

expression for the Euler characteristic χ = N0 −N1 +N2 with 2N1 = 3N2 =
∑
i qi in two dimensions,

which gives for large N0

q ≡ lim
N0→∞

∑
i qi∑
i 1

= 6 , (2.2)

irrespective of the value of χ, as well as N1 = 3N0 and N2 = 2N0. In general on such random lattices one

does not have, strictly speaking, translational or rotational invariance for a fixed assignment of edge lengths.

The latter only hold on the average. Explicit calculations confirm that this is indeed the case, at least in

two dimensions [19, 24, 25].

When the edge lengths are allowed to fluctuate one would expect the situation to be different, since

now locally there are no preferred directions any more, as the lattice structure fluctuates from edge length

configuration to edge length configuration. Lastly, one can allow the local coordination number to change

(annealed random lattice) by re-linking neighboring vertices, although there is no unique algorithm to do

so which preserves the geometry. In this case the coordination number fluctuation δqi = qi − 6 becomes

an additional dynamical variable, and is indeed the only dynamical variable in the so-called dynamical

triangulations. Randomness can be shown to be a relevant perturbation in two dimensions, changing the

universality class already for flat surfaces. We shall not consider dynamical random lattices here any further,

as we are interested in discretizations for gravity coupled to matter which maintain the crucial property of

reducing to the ordinary, known flat space field theories in the limit of zero local curvatures. A review of the

properties of random lattices and their relation to matrix models in two dimensions can be found in [26].

2.2 Degrees of Freedom

The elementary degrees of freedom on the lattice are the edge lengths, with the correspondence between

continuum and lattice degrees of freedom given locally by

{ gµν(x) }xεM →
{
l2i
}
i=1...N1

, (2.3)

where the index i ranges over all N edges in the lattice. In general the dynamical lattice will give rise to

some average lattice spacing a0 = [〈l2〉]
1
2 , which in turn will naturally supply the ultraviolet cutoff that is
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needed to define the quantum theory. An important difference with ordinary lattice field theories lies in the

fact that the momentum cutoff Λ = 1/l0 is not determined a priori, but follows instead from the dynamics

(i.e. from the lattice action and lattice measure). The dynamical cutoff turns out to be determined mostly

by the cosmological constant term and the measure factor [9].

Furthermore for finite volumes the lattice theory will have a finite number of degrees of freedom N , and

will therefore inherit an infrared cutoff of the order of 1/L, where L is the physical linear extent of the

lattice.

In the discrete case all the metric information on the piecewise linear space is contained in the values

of the edge lengths. As already emphasized by Regge, and in accordance with the usual view of lattice

discretization of continuum field theories, the discrete manifold L is thought of as an approximation to some

continuum manifold S (this is illustrated in Figure 1). In the limit as the average lattice spacing a0 is sent

to zero, the original continuum theory is recovered. In four dimensions it has been rigorously proven, for the

Einstein-Regge action, that if a piecewise flat space approximates a smooth space in a suitable sense, then

the corresponding curvatures are close in the sense of measures [27]; see also the results of [29]. In general

the expectation is that the lattice and continuum theory will differ by higher order corrections, with the two

actions related to each other by

IL(l2) = IC(gµν) + a0 δI + a2
0 δ

2I + · · · . (2.4)

All corrections can in principle systematically be evaluated by the standard procedure of replacing the finite

differences which appear in the lattice action by derivatives, for example according to the formula

g(n+ a0) − g(n − a0)

2a0
= g′(n) +

1

6
a0 g

′′′(n) +O(a4
0 g

(5)(n)) . (2.5)

It should be noted that higher order corrections are expected to involve higher derivatives of the metric.

The above expansion procedure can be thought of being equivalent to introducing a continuum metric on

the piecewise linear manifold, and expand in the difference between the continuum and the piecewise linear

metric.

L
S

•

•

j

i
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Fig. 1. Piecewise linear space L as an approximation to a smooth d-dimensional enveloping surface S.

This interpretation is analogous to the situation in ordinary lattice gauge theories, where the lattice

gauge fields Unµ are defined on the links only; the continuum fields Aµ(x) can then be reconstructed by

some suitable interpolation to the interior regions of the lattice. It is of course possible to endow the

piecewise linear space with a continuum metric gµν(x) which is defined everywhere, including the interiors of

the simplices. In this case a continuum curvature Rµνρσ(x) can be defined as well, but since the interior of the

simplices is flat, the curvature acquires delta-function singularities on the hinges where the discrete curvature

resides. While such a description can be useful in certain circumstances, it has also some drawbacks, which

have led to considerable confusion in some of the literature. The obvious ones are that the resulting model

is no longer an ultraviolet regulator for the continuum theory, as space-time has become continuous again.

Furthermore the fields are singular, due to the delta-function singularities in the curvature, and the number

of degrees of freedom is no longer finite due to the re-introduction of a continuum metric. In this formalism

new divergences appear, which have to be regulated by some ad-hoc procedure such as the smoothing out

of conical singularities, and lead to difficulties in defining higher order invariant operators such as the ones

containing curvature squared terms [7].

This point of view, while certainly legitimate in discussing some classical aspects of the theory, is therefore

in our opinion not useful in describing a regulated theory of quantum gravity. It leads instead to a string of

paradoxical results when lattice and continuum language are mixed together, and can be especially misleading

when discussing such subtle issues as the gravitational functional integration measure.

It should be emphasized here that in the following we shall restrict our attention almost exclusively to

the lattice theory, which is defined in terms of its lattice degrees of freedom only. Since it is our purpose to

describe an ultraviolet regulated theory of quantum gravity, we shall follow the usual procedure followed in

discussing lattice field theories, and discuss the model exclusively in terms of its primary, lattice degrees of

freedom: the squared edge lengths. As such, the theory will not require any additional ad-hoc regulators.

Below we shall discuss further at length a number of issues related to the precise correspondence between

the lattice degrees of freedom and the continuum ones, the local gauge invariance of the lattice action (which

gives rise in the quantum theory the lattice analogs of the Taylor-Slavnov identities) and the need for (or

lack of) gauge fixing.

2.3 Curvature and Discretized Action

The construction of the lattice action starts from the definition of the elementary building blocks for

spacetime, the n-dimensional simplices. Consider an n-dimensional simplex with vertices 1, 2, 3, ... n+1
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and square edge lengths l212 = l221, ... . Its vertices are specified by a set of vectors ~e0 = 0, ~e1, ... ~en in flat

Euclidean space. The matrix

gij = ~ei · ~ej , (2.6)

with 1 ≤ i, j ≤ n, is positive definite. In terms of the edge lengths lij = |~ei−~ej | (see Figure 2) it is given by

gij(l
2) = 1

2

[
l20i + l20j − l

2
ij

]
. (2.7)

The volume of a general n-simplex is then given by an n-dimensional generalization of the well known formula

for the volume of a tetrahedron,

Vn(l2) =
1

n!

√
det gij(l2) . (2.8)

Conversely, in order to obtain a simplex for an arbitrary assignment of edge lengths, the generalization to

higher dimensions of the triangle inequalities require that V
(i)
n (l2) ≥ 0, with n = 1 . . . d and i = 1 . . .Nn be

satisfied for every edge, triangle, tetrahedron etc. in the lattice. This can be stated equivalently by requiring

det gij(l
2) > 0 (2.9)

for every sub-determinant of the highest dimension det gij. In d dimensions the matrix gij has d(d + 1)/2

components, just as there are d(d + 1)/2 components for the metric gµν(x) per space-time point in the

continuum.

3

1

4

2

0

l03

l34

l02

l14

l24

l12

l04

l23

l01

l13

Fig. 2. Assignments of edge lengths for a four-dimensional simplex. In this paper we shall often refer to the

two-dimensional case. In two dimensions one has simply

gij(l
2) =

(
l201

1
2(l201 + l202 − l

2
12)

1
2 (l201 + l202 − l

2
12) l202

)
, (2.10)
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and therefore

det gij(l
2) = 1

4

[
2(l201l

2
02 + l202l

2
12 + l212l

2
01)− l401 − l

4
02 − l

4
12

]
(2.11)

and √
det gij(l2) = 2AT (l2) , (2.12)

where AT (l2) is the area of the given triangle (see Figure 3).

1

2

l02

l01

0

(1,0)

(0,1)

(0,0)

x2

x1

l12

Fig. 3. Assignments of edge lengths and natural coordinates for a triangle.

In simplicial gravity the curvature is concentrated on the hinges, which are subspaces of dimensions d−2,

and is entirely determined from the assignment of the edge lengths. In two dimensions the hinges correspond

to the vertices and δh, the deficit angle at a hinge, is defined by

δh = 2π −
∑

triangles t
meeting at h

θt , (2.13)

where θt is the dihedral angle associated with the triangle t at the vertex h (see Figure 4). In d dimensions

several d-simplices meet on a (d− 2)-dimensional hinge, and the deficit angle is defined by

δh(l2) = 2π −
∑

d−simplices
meeting on h

θd(l2) , (2.14)

where θd is the dihedral angle in d dimensions. The sine of the dihedral angle can be computed from the

well known formula

sin θd(l2) =
d

d− 1

VdVd−2

Vd−1V ′d−1

, (2.15)

where Vd−2 is the volume of the hinge, Vd is the volume of the d-simplex, and Vd−1, V ′d−1 the volumes of

the two (d − 1)-dimensional faces that meet on the hinge. A general derivation of these formulae can be

found in [5], with some additional results in [7]. Since the sine does not uniquely determine the angle, it

can be useful to obtain an expression for the cosine of the dihedral angle, which can be found in [7]. In two

dimensions the dihedral angle is given by

cos θd =
l201 + l202 − l

2
12

2l01l02
. (2.16)

10



6

4

3

0

5

δ 0

1

2

Fig. 4. In two dimensions the computation of the deficit angle δ0 at the vertex 0 involves the values for the edge

lengths associated with the shaded triangles.

It is useful to introduce a dual lattice following, for example, the Dirichlet-Voronoi cell construction, which

consists in introducing the perpendicular bisectors of the edges in each triangle and joining the resulting

vertices. This provides for a natural subdivision of the original lattice in a set of non-overlapping exhaustive

cells, and has a natural generalization to higher dimensions. It is easy to see that the vertices of the original

lattice then reside on circumscribed circles, centered on the vertices of the dual lattice. For the vertex 0 the

dihedral dual volume contribution, shown in Figure 5, is given by

Ad(l2) =
1

32A

[
l212(l201 + l202)− (l201 − l

2
02)2

]
. (2.17)

It is clear that the above subdivision is not unique. Alternatively, one can introduce a baricenter for each

triangle, defined as the point equidistant from all three vertices, and again join the resulting vertices. The

vertices of the original lattice then reside on inscribed circles, centered on the vertices of the dual lattice.

The baricentric dihedral volume is simply given by

Ad(l2) = A/3 . (2.18)

In general, if the original lattice has local coordination number qi at the site i, then the dual cell centered

on i will have qi faces. A fairly complete set of formulae for dual volumes relevant for lattice gravity and

their derivation can be found in [7]. In the following we shall refer to the Voronoi cell construction as the

“dual subdivision”, while we will call the baricentric cell construction the “baricentric subdivision”.
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1

2

l01

0

l12

l02

θ d
Ad

Fig. 5. Dual area Ad associated with vertex 0, and the corresponding dihedral angle θd.

Two-dimensional Einstein gravity is trivial because the Einstein action is constant and the Ricci tensor

vanishes identically. When a cosmological constant term and a curvature-squared term are included in the

action,

I =

∫
d2x
√
g
[
λ− kR+ aR2

]
, (2.19)

the classical solutions have constant curvature with R = ±
√
λ/a (there being no real solutions for λ < 0).

Thus the theory with the Einstein action and a cosmological constant is metrically trivial, having neither

dynamical degrees of freedom nor field equations. On the other hand the functional measure can lead to a

non-trivial effective action. However, for a system with fixed topology, the only non-classical aspects of 1 +1

dimensional gravity are fluctuations in the local volumes
√
g(x).

The Einstein action for a two-dimensional simplicial lattice is given by [2]∫
d2x
√
g R −→ 2

∑
hinges h

δh . (2.20)

According to the Gauss-Bonnet theorem the Einstein action in two-dimensions is equal to 4π times the Euler

characteristic of the surface. The same result is true on the lattice, with
∑
h δh = 2πχ, where χ is the Euler

characteristic. It is a constant provided we consider, as we shall do below, surfaces with a fixed topology.

A cosmological constant term can be included in the action in the form

λ

∫
d2x
√
g −→ λ

∑
triangles t

At , (2.21)

where At is the area of triangle t. Equivalently one may subdivide the triangles into areas associated with

each hinge Ah and use the expression

λ
∑

hinges h

Ah . (2.22)
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For the baricentric subdivision one has simply

Ah = 1
3

∑
triangles t

meeting at h

At . (2.23)

Ah can also be taken to be the area of the cell surrounding h in the dual lattice (see Figure 6), with

Ah =
∑

triangles t
meeting at h

Ad , (2.24)

with the dual area contribution for each triangle Ad given in Eq. (2.17).

6

4

3

0

5

δ 0

1

2

Fig. 6. Original simplicial lattice (continuous lines) and dual lattice (dotted lines) in two dimensions. The shaded

region corresponds to the dual area associated with vertex 0.

In two dimensions the Weyl tensor vanishes identically, while the other curvature-squared terms are all

proportional to each other,

RµνρσR
µνρσ = 1

2 RµνR
µν = R2 . (2.25)

One therefore needs only one term quadratic in the curvature for the lattice action. Using the requirements

that it be a sum over hinges (the only places where the curvature is non-zero), that it be quadratic in the

deficit angle, and that it have the correct dimension (length)−2, one is led to the unique expression∫
d2x
√
g R2 −→ 4

∑ δ2
h

Ah
. (2.26)

It can be shown that this formula is exact for all regular tessellations of the two-sphere, in the sense that the

discrete lattice expression does not depend on the how fine the tessellation is, once the area of the surface is

kept fixed [7].
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The lattice action corresponding to pure gravity is then

I(l2) =
∑
h

[
λAh − 2k δh + 4a

δ2
h

Ah

]
, (2.27)

which can be written equivalently as

I(l2) =
∑
h

Vh

[
λ− k Rh + aR2

h

]
, (2.28)

with the two-dimensional volume element Vh = Ah, and the local curvature given by Rh = 2 δh/Ah. In the

limit of small fluctuations around a smooth background, I(l2) corresponds to the continuum action

I[g] =

∫
d2x
√
g
[
λ− kR+ aR2

]
. (2.29)

For a manifold of fixed topology the term proportional to k can be dropped, since
∑
h δh = 2πχ, where χ is

the Euler characteristic. The curvature-squared leads to non-trivial interactions in two dimensions, although

the resulting theory is not unitary. In the next section we shall discuss properties of the above action in the

weak field expansion about flat space, and later about an arbitrary lattice manifold.

Arguments based on perturbation theory about two dimensions (where the gravitational coupling is

dimensionless and the Einstein theory becomes renormalizable) suggest that there should be no non-trivial

ultraviolet fixed point of the renormalization group in two dimensions. Explicit calculations in the lattice

theory have shown conclusively that this is indeed the case in the absence of matter [11, 30, 31, 32, 33]. The

equations of motion for pure gravity in two dimensions then follow from the variation

δI[g] = 1
2

∫
d2x
√
g
[
λ− aR2

]
gµνδgµν = 0 , (2.30)

and read

a

2
R2 gµν −

λ

2
gµν = 0 , (2.31)

or, in contracted form, R2 = λ
a . For an arbitrary gauge variation of the metric,

δgµν(x) = −gµλ(x) ∂νχ
λ(x)− gλν(x) ∂µχ

λ(x)− ∂λgµν(x)χλ(x) , (2.32)

one obtains after an integration by parts, and using the fact that the gauge function χλ is arbitrary (and

that (gµν);ν = 0), (
R2gµν

)
;ν

= 0 . (2.33)

This is the two-dimensional analog of the (contracted) Bianchi identity. Since the squared edge lengths are

the primary degrees of freedom, the corresponding lattice field equations of motion are obtained, in any

dimension, from

∂ I[l2]

∂ l2i
= 0 . (2.34)

14



Already in the two-dimensional case they are rather unwieldy when written out explicitly, and will not be

recorded here.

A candidate for the discrete analog of the two-dimensional Bianchi identity is simply∑
h(i)

δh
(
l2i + δl2i

)
−
∑
h(i)

δh
(
l2i
)

= 0 , (2.35)

where the sum includes the four hinges h belonging to the two triangles bordering the edge i, and δl2i

represents a variation of the edges meeting at the vertex h. By considering gauge variations of the edge

lengths in higher dimensions, the corresponding exact lattice Bianchi identities can in principle be written

down. Some further discussion of the Bianchi identities in higher dimensions can be found in the second

reference in [4].

3 Lattice Weak Field Expansion and Zero Modes

One of the simplest problems which can be studied analytically in the continuum as well as on the lattice

is the analysis of small fluctuations about some classical background solution. In the continuum, the weak

field expansion is often performed by expanding the metric and the action about flat Euclidean space

gµν(x) = δµν + κ hµν(x) . (3.1)

In four dimensions κ =
√

32πG, which shows that the weak field expansion there corresponds to an expansion

in powers of G. In two dimensions this is no longer the case and the relation between κ and G is lost; instead

one should regard κ as a dimensionless expansion parameter which is eventually set to one, κ = 1, at the end

of the calculation. The procedure will be sensible as long as wildly fluctuating geometries are not important

in two dimensions (on the lattice or in the continuum). The influence of the latter configurations can only

be studied by numerical simulations of the full path integral [11, 30].

In the lattice case the weak field calculations can be carried out in three [6] and four [4] dimensional flat

background space with the Regge-Einstein action. One finds that the Regge gravity propagator indeed agrees

exactly with the continuum result [34] in the weak-field limit. As a result, the existence of gravitational

waves and gravitons in the discrete lattice theory has been established (indeed it is the only lattice theory

of gravity for which such a result has been obtained 4 ).

The weak field expansion about flat space is relevant for the continuum limit of the lattice quantum theory.

Consider a simplicial lattice approximation to a given continuum manifold. For an arbitrary continuum

4A discretization of the edge lengths, and therefore of the curvatures, as advocated in some models for lattice gravity,
can be considered, the dynamical triangulations being one specific example. This procedure leads obviously to a loss of the
graviton excitation, at least in the weak field expansion. In ordinary non-abelian lattice gauge theories, models based on discrete
subgroups of SU(N) have an artificial freezing transition at finite coupling and no lattice continuum limit, and do not seem to
represent a useful discretization of the original continuum theory [35].
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manifold, one can envision a triangulation which is successively refined by making the simplices and the

corresponding edge lengths smaller and smaller. As the average lattice spacing is reduced, the curvature

on the scale of the lattice spacing becomes eventually sufficiently small that the simplicial manifold can be

regarded as being locally close to flat. In this limit the curvature is small on the scale of the local volume,

and in two dimensions one has

|curvature|h ≡
∣∣∣ δh
Ah

∣∣∣ � (volume)−1
h ≡

1

Ah
or |δh| � 1 . (3.2)

In such regions, which become larger and larger in size as the lattice spacing is reduced, one can meaningfully

apply the weak field expansion about flat space, which becomes only an approximation when it is truncated

to any finite order.

In the following we shall consider in detail only the two-dimensional case, although similar calculations

can in principle be performed in higher dimensions, with considerable more algebraic effort. In the pure

gravity case the Einstein-Regge action is a topological invariant in two dimensions, and one has to consider

the next non-trivial invariant contribution to the action. We shall therefore consider a two-dimensional

lattice with the higher derivative action of Eq. (2.27) and λ = 0,

I(l2) = 4a
∑

hinges h

δ2
h

Ah
. (3.3)

The weak field expansion for such a term has largely been done in [11], and we will first recall here the main

results. Since flat space is a classical solution for such an R2−type action, one can take as a background

space a network of unit squares divided into triangles by drawing in parallel sets of diagonals (see Figure 7).

This is one of an infinite number of possible choices for the background lattice, and a rather convenient one.

Physical results should in the end be insensitive to the choice of the background lattice used as a starting

point for the weak field expansion. Opposite edges of the network are supposed to be identified so that the

lattice acquires the topology of a torus. (In the following we will be concerned with local properties of the

action, and the detailed nature of the boundary conditions will play only a marginal role).

(1,1)

(0,0)

(0,1)(0,1)

(1,0)

0

1

2

3

l3

l1

l2
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Fig. 7. Notation for the weak-field expansion about the rigid square lattice.

It is also convenient to use the binary notation for vertices described in references [4]. As discussed

in the previous section, the edge lengths on the lattice correspond to the metric degrees of freedom in the

continuum. The edge lengths are thus allowed to fluctuate around their flat space values,

li = l0i (1 + εi) , (3.4)

with l01 = l02 = 1 and l03 =
√

2 for our choice of lattice. The second variation of the action is then expressed

as a quadratic form in the ε’s,

δ2I = 4a
∑
ij

εi Mij εj . (3.5)

The properties of Mij are best studied by going to momentum space. One assumes that the fluctuation εi

at the point i, j steps in one coordinate direction and k steps in the other coordinate direction from the

origin, is related to the corresponding εi at the origin by

ε
(j+k)
i = ωj1 ω

k
2 ε

(0)
i , (3.6)

where ωi = e−iki and ki is the momentum in the direction i. The matrix M then reduces to a 3× 3 matrix

Mω with components given by [11]

(Mω)11 = 2 + ω1 − 2ω2 − 2ω1ω2 + ω1ω
2
2 + c.c.

(Mω)12 = 2− ω1 − ω̄2 − ω1ω2 − ω̄1ω̄2 − ω
2
1 − ω̄

2
2 + ω2

1ω2 + ω̄1ω̄
2
2 + 2ω1ω̄2

(Mω)13 = 2(−1 + 2ω1 − ω̄1 + ω2 − ω̄2 − ω1ω2 + 2ω̄1ω̄2 + ω̄2
2 − ω̄1ω̄

2
2 − ω1ω̄2)

(Mω)33 = 4(2− 2ω1 − 2ω2 + ω1ω2 + ω̄1ω2 + c.c.)

(3.7)

with the other components easily obtained by symmetry. For small momenta Mω takes the form

Mω = l4

 k2
2(k1 + k2)2 k1k2(k1 + k2)2 −2k1k

2
2(k1 + k2)

k1k2(k1 + k2)2 k2
1(k1 + k2)2 −2k2

1k2(k1 + k2)
−2k1k

2
2(k1 + k2) −2k2

1k2(k1 + k2) 4k2
1k

2
2

 + O(k5) . (3.8)

The change of variables

ε′1 = ε1 ε′2 = ε2 ε′3 = 1
2(ε1 + ε2) + ε3 . (3.9)

leads for small momenta to the matrix M ′ω given by

M ′ω = l4

 k4
2 k2

1k
2
2 −2k1k

3
2

k2
1k

2
2 k4

1 −2k3
1k2

−2k1k
3
2 −2k3

1k2 4k2
1k

2
2

 + O(k5) . (3.10)
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This expression is identical to what one obtains from the corresponding weak-field limit in the continuum

theory. To see this, define as usual the small fluctuation field hµν about flat space by setting

gµν = δµν + hµν . (3.11)

In two dimensions one has

R = h11,22 + h22,11− 2h12,12 + O(h2) , (3.12)

and also

√
g = 1 + 1

2(h11 + h22) +O(h2) , (3.13)

which gives

√
g R2 = (h11,22 + h22,11− 2h12,12)2 +O(h3) . (3.14)

In momentum space, each derivative ∂ν produces a factor of kν, and so one obtains

√
g R2 = hµν Vµν,ρσ hρσ , (3.15)

where Vµν,ρσ coincides with M ′ above (when the metric components are re-labeled according to 11→ 1, 22→

2, 12→ 3).

One might wonder what the origin of the change of variables in Eq. (3.9) is. Given the three edges in

Figure 7, one can write for the metric at the origin

gij =

(
l21

1
2 (l23 − l

2
1 − l

2
2)

1
2(l23 − l

2
1 − l

2
2) l22

)
. (3.16)

The apparent contradiction with the earlier expression for gij given in Eq. (2.10) arises from the different

choice of coordinates in the triangles (compare Figure 3 with Figure 7). Inserting li = l0i (1+εi), with l0i = 1

for the body principals (i = 1, 2) and l0i =
√

2 for the diagonal (i = 3), one obtains

l21 = (1 + ε1)2 = 1 + h11

l22 = (1 + ε2)2 = 1 + h22

1
2 l

2
3 = (1 + ε3)2 = 1 + 1

2 (h11 + h22) + h12

(3.17)

which can be inverted to give

ε1 = 1
2h11 −

1
8h

2
11 + O(h3

11)

ε2 = 1
2h22 −

1
8h

2
22 + O(h3

22)

ε3 = 1
4 (h11 + h22 + 2h12) − 1

32(h11 + h22 + 2h12)2 +O(h3)

(3.18)

18



and which was then used in Eq. (3.9). Thus the matrix Mω was brought into the continuum form after

performing a suitable local rotation from the local edge lengths to the local metric components.

The weak field expansion for the purely gravitational part can be carried out to higher order, and the

Feynman rules for the vertices of order h3, h4, . . . in the R2-action of Eq. (2.27) can be derived. Since their

expressions are rather complicated, they will not be recorded here.

3.1 Lattice Diffeomorphisms

It is easy to determine the eigenvalues and eigenvectors of the matrix Mω of Eq. (3.7). The eigenvalues

of the matrix Mω are given by

λ1 = 0

λ2 = 0

λ3 = 24− 9(ω1 + ω̄1 + ω2 + ω̄2) + 4(ω1ω̄2 + ω̄1ω2)

+ω1ω
2
2 + ω2

1ω2 + ω̄1ω̄
2
2 + ω̄2

1ω̄2

(3.19)

and there are thus two exact zero modes in the weak field limit. It should be emphasized that the exact

zero modes appear for arbitrary ωi, and not just for small momenta. We shall see later that their presence

reflects an exact local continuous invariance of the gravitational action.

If one were interested in doing lattice perturbation theory, one would have to add a lattice gauge fixing

term to remove the zero modes, such as the lattice analog of the term

1

κ2

(
∂µ
√
g(x) gµν

)2

, (3.20)

and add the necessary Fadeev-Popov non-local ghost determinant. A similar term would have to be included

as well if one were to pick the lattice analog of the conformal gauge [36], to which we shall return later.

If one is not doing perturbation theory, then of course the contribution of the zero modes will cancel out

between the numerator and denominator in the Feynman path integral representation for operator averages,

and such a term should not be included, as in ordinary lattice formulations of Yang-Mills gauge theories.

The eigenvectors corresponding to the two zero modes can be written as ε1(ω)
ε2(ω)
ε3(ω)

 =

 1− ω1 0
0 1− ω2

1
2 (1− ω1ω2) 1

2(1− ω1ω2)

( χ1(ω)
χ2(ω)

)
, (3.21)

where χ1(ω) and χ2(ω) are arbitrary. One might worry that the above result is restricted to two dimensions.

This is not the case. Completely analogous zero modes are found for the Regge action in three [6] and
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four [4] dimensions, leading to expressions rather similar to Eq. (3.21), with as expected d zero modes in

d dimensions. As we shall see, this is not a coincidence. We give here for comparison the corresponding

expression in three dimensions [6], obtained from the weak field expansion of the Regge action,

ε1(ω)
ε2(ω)
ε4(ω)
ε3(ω)
ε5(ω)
ε6(ω)
ε7(ω)


=



1− ω1 0 0
0 1− ω2 0
0 0 1− ω4

1
2
(1− ω1ω2) 1

2
(1− ω1ω2) 0

1
2
(1− ω1ω4) 0 1

2
(1− ω1ω4)

0 1
2
(1− ω2ω4) 1

2
(1− ω2ω4)

1
3
(1− ω1ω2ω4) 1

3
(1− ω1ω2ω4) 1

3
(1− ω1ω2ω4)


 χ1(ω)

χ2(ω)
χ3(ω)

 , (3.22)

again with χ1(ω), χ2(ω) and χ3(ω) arbitrary gauge functions (in the binary notation for the edges, the

indices 1,2,4 correspond to the body principals, the indices 3,5,6 to the face diagonals, and 7 to the body

diagonal).

r
χ ( )n

r
χ µ( $ )n + 1

r
χ µ µ( $ $ )n + +1 2

r
χ µ( $ )n + 2

ε 3( )n

ε1( )nn

ε 2( )n

Fig. 8. Edge length gauge deformations εi(n), and corresponding gauge transformation vector field ~χ(n), defined on

the sites.

It is useful to look at the above relations, and in particular Eq. (3.21, in real space. The replacement

eiki → e
d
dx and e~a·∇f(~x) = f(~x + ~a) yields

ε1(n) = χ1(n) − χ1(n+ µ̂1)

ε2(n) = χ2(n) − χ2(n+ µ̂2)

ε3(n) = 1
2
χ1(n) + 1

2
χ2(n)− 1

2
χ1(n+ µ̂1 + µ̂2)− 1

2
χ2(n+ µ̂1 + µ̂2) .

(3.23)

For our notation, we refer to the drawing in Figure 8. Note how the arbitrary gauge variations act on the

two ends of an edge. This is true in any dimension, where elementary local gauge transformations are always

defined on the vertices of the lattice. The above gauge transformation law is in fact remarkably simple for

those edges that lie in the direction of the chosen coordinates, namely

δl2ij = χ′i − χ′j , (3.24)
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where i and j labels the end-points of the edge, and we have rescaled the arbitrary functions χ by l2ij so that

the quantities χ′i now have dimensions of length squared.

It is easy to see that the above equations solve the constraint
∑
i εi(n) = 0 at the vertex n where ~χn 6= 0,

6∑
i=1

εi(n) = χ1(n) + 1
2
χ1(n) + 1

2
χ2(n) + χ2(n) − χ1(n)− 1

2
χ1(n)− 1

2
χ2(n)− χ2(n)

= 0 .

(3.25)

It can be written equivalently in terms of variations of the squared edge lengths meeting at the vertex n,

labeled clockwise around the vertex n starting with the edge in the positive 1 direction,

a
(
δl2n1 + δl2n3 + δl2n4 + δl2n6

)
+ b

(
δl2n2 + δl2n5

)
= 0 , (3.26)

with a and b arbitrary constants at this point. In other words, gauge variations of the squared edge lengths

are recognized as special variations, where all edges meeting at a point (in two dimensions) are considered,

and which either have the explicit form given in Eq. (3.23) for the weak field case, or equivalently (and more

generally) satisfy a set of defining constraints such as the one in Eq. (3.26).

Incidentally, it should be noted here that conformal transformations, which in the continuum take the

form δgµν(x) = gµν(x) δϕ(x), have a natural lattice analog. They contract (or expand) locally all the edges

meeting on a given vertex n by the same amount,

δl2i (n) = l2i (n) δϕ(n) , (3.27)

and therefore do change locally the curvature at n. When constructed in this way, they can be considered

orthogonal to the χ transformations of Eqs. (3.21) and (3.23).

The cosmological constant term can also be shown to be invariant under the same set of continuous local

transformations, since, using the same notation for the expansion about the square lattice, one obtains

∑
h

Ah =
∑
n

[
1 + 1

3 (ε1(n) + ε2(n)) + O(ε2)
]
, (3.28)

and at the vertex Pn where ~χn 6= 0 one has again

4∑
i=1

εi(n) = χ1(n) + χ2(n) − χ1(n)− χ2(n) = 0 , (3.29)

where the sum is over the four edges pointing in the four principal directions. Written in terms of the

variations of the squared edge lengths, one has

δl2n1 + δl2n3 + δl2n4 + δl2n6 = 0 . (3.30)
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In general one has in two dimensions six edges meeting at a vertex, and therefore four allowed constraints

on the gauge edge length variations. In conclusion we have exhibited an exact local gauge invariance of the

gravitational action in the weak field limit. Later on we shall show that it corresponds precisely to the lattice

analog of the diffeomorphisms.

It is important to notice that the appearance of zero modes in the weak field expansion is not specific

to the expansion about flat space. One can look at the same procedure for variations about spaces which

are classical solutions for the gravitational action with a cosmological constant term as in Eq. (2.27), such

as the regular tessellations of the two-sphere [7]. In the following we will consider edge length fluctuations

about the regular tetrahedron (with 6 edges), octahedron (12 edges), and icosahedron (30 edges).

l13

4

1

l12

3

2

l23

l24

l34

l14

Fig. 9. Tetrahedral tessellation of the two-sphere, with arbitrary edge length assignments.

After expanding about the equilateral configuration, the action at the stationary point reduces to

I = λ 8π
√
a/λ+ a 8π/

√
a/λ = 16π

√
a λ , (3.31)

in fact independently of the tessellation considered. Vanishing of the linear terms in the small fluctuation

expansion gives for the average edge length

l0 =
[
cπ2(4a/λ)

]1/4
, (3.32)

with c = 16/3, 4/3, 16/75 for the tetrahedron, octahedron and icosahedron, respectively. For fluctuations

about the classical solution for a tetrahedral tessellation of S2 (see Figure 9) the small edge length fluctuation

matrix gives rise to the following coefficients

ε212 → 16
√
aλ (54− 6

√
3π + 5π2)/81π

ε12 ε13 → 16
√
aλ π/9

ε12 ε15 → 64
√
aλ (−27 + 3

√
3π + 2π2)/81π

(3.33)
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with the remaining coefficients being determined by symmetry. The small fluctuation matrix is therefore

given by

8π
√
aλ

9


µ 1 1 1 1 2− µ
1 µ 1 2− µ 1 1
1 1 µ 1 2− µ 1
1 2− µ 1 µ 1 1
1 1 2− µ 1 µ 1

2− µ 1 1 1 1 µ

 , (3.34)

where µ = 2(5π2 − 6
√

3π + 54)/9π2 ≈ 1.5919. (the λ/a dependence has disappeared since the couplings a

and λ only appear in the dimensionless combination
√
aλ. The eigenvalues of the above matrix (neglecting

the constants in front of it) are 0 (with multiplicity 2), 2(µ−1) (with multiplicity 3) and 6 (with multiplicity

1). The zero modes correspond to flat directions for which deformations of the edge lengths leave the lattice

geometry unchanged. The multiplicities of the eigenvalues are agree with the dimensions of the irreducible

representations of the symmetry group of the tetrahedron.

l46l26

l13

4

6

1

l12
l15

3

5

2

l36
l56

l23

l45

l34

l25

l14

Fig. 10. Octahedral tessellation of the two-sphere, with arbitrary edge length assignments.

For the octahedron (see Figure 10) one obtains instead the following coefficients of the small fluctuation

matrix

ε212 → 2
√
aλ (216− 12

√
3π + 5π2)/27π

ε12 ε13 → 8
√
aλ (−27− 3

√
3π + 2π2)/27π

ε12 ε14 → 4
√
aλ (54 + π2)/9π

ε12 ε34 → 8
√
aλ (−54 + 3

√
3π + π2)/27π

ε12 ε46 → 4
√
aλ (108 + 12

√
3π + π2)/27π

(3.35)
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again with the remaining coefficients being determined by symmetry. Up to a common factor of 2
√
aλ/27π,

the eigenvalues of the 12 × 12 small fluctuation matrix are given by 36π2 (with multiplicity 1), 972 (with

multiplicity 2), and 8(3
√

3− π)2 (with multiplicity 3), and zero (with multiplicity 6).

l49
l711

l13
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l12

3

6

2

l38

l23 l45l34

l26
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1011

l16

l56

l59

l712

l27
l510

l611 l610

l37

l910

l89l78

l15

l1011

l48

l812

l1112
l1012

l912

l211

Fig. 11. Icosahedral tessellation of the two-sphere, with arbitrary edge length assignments.

Finally, for the icosahedron (shown in Figure 11) one computes the following coefficients of the small

fluctuation matrix

ε212 → 16
√
aλ (270− 6

√
3π + π2)/135π

ε12 ε13 → 16
√
aλ (−675− 30

√
3π + 8π2)/675π

ε12 ε14 → 16
√
aλ (270− 6

√
3 + π2)/135π

ε12 ε34 → 32
√
aλ (−675 + 15

√
3π + 2π2)/675π

ε12 ε45 → 16
√
aλ (−675 + 15

√
3π + 2π2)/675π

ε12 ε38 → 16
√
aλ (−675 + 15

√
3π + 2π2)/675π

ε12 ε48 → 16
√
aλ (675 + 30

√
3π + π2)/675π

(3.36)

with the remaining coefficients being determined by symmetry. Up to a common factor of 8
√
aλ/675π, the

eigenvalues of the 30× 30 small edge length fluctuation matrix are given (numerically) by 12340.173 (with

multiplicity 3), 7238.984 (with multiplicity 5), 888.264 = 90π2 (with multiplicity 1), 20.887 (with multiplicity

3), and zero (with multiplicity 18).
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The presence of the zero modes is related to the gauge (diffeomorphism) invariance of the gravitational

action. The previous results can in fact be summarized as

Tetrahedron (N0 = 4) : 2 zero modes

Octahedron(N0 = 6) : 6 zero modes

Icosahedron(N0 = 12) : 18 zero modes

(3.37)

If the number of zero modes for each triangulation of the sphere is denoted by Nz.m., then the results can

be re-expressed as

Nz.m. = 2N0 − 6 , (3.38)

which agrees with the expectation that in the continuum limit, N0 → ∞, Nz.m./N0 should approach the

constant value d in d space-time dimensions, which is the number of local parameters for a diffeomorphism.

On the lattice the diffeomorphisms correspond to local deformations of the edge lengths about a vertex,

which leave the local geometry physically unchanged, the latter being described by the values of local lattice

operators corresponding to local volumes, and curvatures. The lesson is that the correct count of zero modes

will in general only be recovered asymptotically for large triangulations, where N0 is roughly much larger

than the number of neighbors to a point in d dimensions. It should be possible to find a similar pattern in

higher dimensions.

3.2 Edge Lengths as Metric Components

Returning to the weak field expansion about flat space, it is easy to see that the above lattice gauge

transformation corresponds to the diffeomorphisms in the continuum. Using the relationship between the

metric perturbations and the edge length variations, obtained by choosing coordinates axes along the edges

(as in Eq. (3.16) and Figure 7),

δgij(n) =

(
δl21(n) 1

2(δl23(n) − δl21(n)− δl22(n))
1
2(δl23(n) − δl21(n) − δl22(n)) δl22(n)

)
, (3.39)

one obtains from Eq. (3.23) the result

δg11 = δl21 = 2χ1(n) − 2χ1(n + µ̂1) ≈ −2 ∂1χ1

δg22 = δl22 = 2χ2(n) − 2χ2(n + µ̂2) ≈ −2 ∂2χ2

δg12 = 1
2(δl23 − δl

2
1 − δl

2
2)

= χ1(n + µ̂1)− χ1(n + µ̂1 + µ̂2) + χ2(n+ µ̂2)− χ2(n + µ̂1 + µ̂2)
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≈ −∂2χ1 − ∂1χ2 ,

(3.40)

which can then be combined into the single familiar expression

δgµν = −∂µχν − ∂νχµ , (3.41)

and which is indeed the correct gauge variation in the weak field limit.

Conversely, the above form of the lattice gauge transformation, Eq. (3.23), can be obtained from the

form of infinitesimal diffeomorphisms in the continuum. In order to see this result, start from the definitions

of diffeomorphisms

g′µν(x′) =
∂xρ

∂x′µ

∂xσ

∂x′ν
gρσ(x) , (3.42)

as transformations which leave the infinitesimal line element, as well as any other coordinate invariant

quantity, unchanged

ds′2 ≡ g′µν(x′) dx′µdx′ν = ds2 ≡ gρσ(x) dxρdxσ (3.43)

under an arbitrary change of coordinates

x′µ = xµ + χµ(x) . (3.44)

For infinitesimal variations one obtains

g′µν(x′) = gµν(x) + δgµν(x) = gµν(x)− gµλ(x) ∂νχ
λ(x)− gλν(x) ∂µχ

λ(x) +O(χ2) . (3.45)

The above relationships express the well-known fact that metrics related by a coordinate transformation

describe the same physical manifold. In the discrete case it reflects the invariance of the lattice action under

local deformations of the simplicial manifold which leave the local curvatures unchanged [3]. Since the

continuum metric degrees of freedom correspond on the lattice to the values of edge lengths squared, one

would expect to find analogous deformations of the edge lengths that leave the lattice geometry invariant,

the latter being specified by the local lattice areas and curvatures, in accordance with the principle of

discussing the geometric properties of the lattice theory in terms of lattice quantities only. Clearly the

distance between lattice vertices will change under such a transformation, in accordance with the fact that

only distances between fixed points will remain the same. This invariance is spoiled by the presence of the

triangle inequalities, which places a constraint on how far the individual edge lengths can be deformed. In

the perturbative, weak field expansion about a fixed background the triangle inequalities are not seen to any

order in perturbation theory, they represent non-perturbative constraints.
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These considerations are further illustrated by the following elementary example [38]. In one dimension

(zero space, one time dimension) one can discretize the line by introducing N points, joined by segments of

lengths ln. The only invariant term in one dimension is obviously the length of the curve,

L(l) =
N∑
n=1

ln . (3.46)

From the expression for the invariant line element, ds2 = gdx2, one naturally associates g(x) with l2n, and

the coordinate increment with the lattice spacing, dx = 1. One can take the view that distances can only

be assigned between vertices which appear on some lattice in the ensemble, although this is not strictly

necessary as distances can also be defined for locations that do not coincide with any specific vertex.

The above one-dimensional action has an exact local invariance (compare with Eq. (3.23) in two dimen-

sions)

δln = χn+1 − χn , (3.47)

where the χn’s represent continuous gauge transformations defined on the lattice vertices (actually, in order

for the edge lengths to remain positive, one should also require χn − χn+1 < ln, which is satisfied for

sufficiently small χ’s). These transformations are in fact remarkably close in structure to the ones found

in two dimensions (see Eq. (3.24)). Physically, the local invariance reflects the re-parameterization, or

coordinate invariance, of the original continuum action L =
∫
dx
√
g(x). It is the discrete form of the

change δg(x) = 2g∂χ. Variations of the edges which satisfy Eq. (3.47) leave the physical length of the curve

unchanged. In addition, given any two points on the curve, independent local gauge transformations can

be performed on any of the vertices situated between the two points, while at the same time maintaining

the same physical distance between them (which, for any assignments of edge lengths, is simply obtained by

adding up the intervening edge lengths). It justifies the name lattice diffeomorphisms for the transformations

of Eq. (3.47). 5

In two dimensions one starts from the relationship of Eq. (3.16) between the squared edge lengths and

the metric, and uses the expression for metric perturbations given in Eq. (3.39). From Eq. (3.45) one obtains

δl21 = δg11 = −2 l21 ∂1χ
1 + (l21 + l22 − l

2
3) ∂1χ

2

δl22 = δg22 = −2 l22 ∂2χ
2 + (l21 + l22 − l

2
3) ∂2χ

1

δl23 = δg11 + δg22 + 2δg12

= (−l21 + l22 − l
2
3) (∂1χ

1 + ∂2χ
1) + (l21 − l

2
2 − l

2
3) (∂1χ

2 + ∂2χ
2)

(3.48)

5There is here an (incomplete) analogy with ordinary lattice gauge theories, in the sense that if one defines Un = eln and
Vn = eχn , then the gauge transformation law of Eq. (3.47) can be re-written as Un → V −1

n UnVn+1, which parallels the gauge
transformation law for the SU(N) gauge fields Unµ in d dimensions, Unµ → V −1

n UnµVn+µ, where Vnµ are arbitrary N × N
SU(N) matrices. The “update” Un → V · Un corresponds here to ln → ln + δln.
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After introducing appropriate finite differences for the fields χµ one then has

δl21 = −2 l21 (χ1
1 − χ

1
0) + (l21 + l22 − l

2
3) (χ2

1 − χ
2
0)

δl22 = −2 l22 (χ2
2 − χ

2
0) + (l21 + l22 − l

2
3) (χ1

2 − χ
1
0)

δl23 = (−l21 + l22 − l
2
3) (χ1

3 − χ
1
0) + (l21 − l

2
2 − l

2
3) (χ2

3 − χ
2
0)

(3.49)

Here upper indices on χ label the components, while lower indices indicate the position. Taking ~χ1 = ~χ2 =

~χ3 = 0, ~χ0 6= 0, as well as l1 = l2 = 1, l3 =
√

2 (as appropriate for the square lattice), one finally obtains

the simple result

δl21 = 2χ1
0

δl22 = 2χ2
0

δl23 = 2 (χ1
0 + χ2

0)

(3.50)

which is indeed equivalent to Eq. (3.23). This shows that the zero modes described in Eq. (3.23) correspond to

lattice diffeomorphisms. (The term lattice coordinate transformations would appear to be equally suitable,

provided one identifies the directions associated with the edges with a preferred coordinate system, and

identifies changes in these coordinates as corresponding to variations in the squared edge lengths which leave

the local curvatures unchanged). The case of flat space is obviously the simplest. By moving the location

of the vertices around in flat space, one can find a different assignment of edge lengths which represents the

same flat geometry. This leads to a d ·N0-parameter family of transformations for the edge lengths in flat

space, and to a set of equivalent metrics which are all related by lattice diffeomorphisms, i.e. deformations of

the edge lengths which leave the local curvature invariants unchanged, and respect the triangle inequalities.

In conclusion, the previous analysis shows a direct correspondence between gauge transformations on the

simplicial lattice

l2i −→ l2i + δl2i (χ) , (3.51)

and the analogous diffeomorphisms in the continuum

gµν(x) −→ gµν(x) + δgµν(χ(x)) . (3.52)

These transformations, in which suitable deformations of the edge lengths are shown to correspond to the

local gauge transformations, should be contrasted with the set of what can be called trivial coordinate

transformations. For a given assignment of edge lengths, introduce an arbitrary coordinate system, and a
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corresponding flat metric, within each triangle (or simplex in higher dimensions). Coordinate changes can

then be performed within any triangle such that

l′
2
01(n) = l201(n)

l′
2
02(n) = l202(n)

l′
2
12(n) = l212(n)

(3.53)

within each triangle. These diffeomorphisms are trivial, in the sense that they correspond to a change in

an arbitrary coordinate system, which was not part of the theory to begin with, as Regge’s lattice theory

is formulated exclusively in terms of coordinate-independent squared edge lengths, and not piecewise flat

continuum metrics, which are highly degenerate.

The confusion between the two types of invariance is, in our opinion, at the root of the erroneous

conclusions drawn in Ref. [39], where it is argued that Regge gravity always needs a non-local gauge fixing

term, to compensate for the fact that in the functional integral for gravity the integration is over “invariants”,

the edge lengths. As the edge lengths correspond to components of the metric (see Eqs. (2.7), (3.18), (3.21),

(3.23)), this cannot be true. The above discussion shows in detail that the situation is more subtle, and that

a non-local additional, and in our opinion ad-hoc, gauge fixing term will most likely lead to an incorrect

weighting, as already pointed out in [40].

4 Arbitrary Curved Backgrounds

The previous discussion dealt with the case of an expansion of the gravitational action about flat space,

or a regular tessellation of the sphere, a manifold of constant curvature. To complete our discussion, we now

turn to the more complex task of exhibiting explicitly the local gauge invariance of the simplicial theory, for

an arbitrary background simplicial complex. To this end we write

l2i = l20i + qi + δl2i , (4.1)

where qi describes an arbitrary but small deviation from a regular lattice, and δl2i is a gauge fluctuation,

whose form needs to be determined. We shall keep terms O(q2) and O(q δl2), but neglect terms O(δl4).

The squared volumes V 2
n (σ) of n-dimensional simplices σ are given by homogeneous polynomials of order

(l2)n. In particular for the area of a triangle A∆ with arbitrary edges l1, l2, l3 one has

δA2
∆ = 1

8(−l21 + l22 + l23) δl21 + 1
8 (l21 − l

2
2 + l23) δl22 + 1

8(l21 + l22 − l
2
3) δl23 , (4.2)
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and similarly for the other quantities in Eqs. (2.16), (2.17) and (2.18) which are needed in order to construct

the action.

For our notation in two dimensions we will refer to Figure 12. The subsequent Figures 13 and 14 illustrate

the difference between a gauge deformation of the surface which leaves the area and curvature at the point

labeled by 0 invariant, and a physical deformation which corresponds to a re-assignment of edge lengths

meeting at the vertex 0 such that it alters the area and curvature at 0. In the following we will characterize

unambiguously what we mean by the two different operations.

q03

6

4

3

0

5

q02

q06

q05

q04

q01

1

2

Fig. 12. Notation for an arbitrary simplicial lattice, where the edge lengths meeting at the vertex 0 have been deformed

away from a regular lattice by a small amount qi (minimally deformed equilateral lattice).

6

4

3

0

1

2

5

Fig. 13. Local gauge deformations of the lattice act on the edge lengths meeting at the vertex 0, and are performed in

such a way that the area and curvature at the vertex 0 are left unchanged.
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6

4

3

0

2

5

Fig. 14. Physical deformations change the area and curvature at the vertex 0, thus changing the lattice geometry.

4.1 Equilateral Lattices

First consider the expansion about a deformed equilateral lattice, for which l0i = 1 to start with. A

motivation for this choice is provided by the fact that in the numerical studies of two-dimensional gravity the

averages of the squared edge lengths in the three principal directions turn out to be equal, 〈l21〉 = 〈l22〉 = 〈l23〉.

The baricentric area associated with vertex 0 is then given by

A = A0(q) +
1

2 · 35/2

[
δl201 (3 + q06 − 4q01 + q02 + q16 + q12)

+ δl202 (3 + q01 − 4q02 + q03 + q12 + q23)

+ δl203 (3 + q02 − 4q03 + q04 + q23 + q34)

+ δl204 (3 + q03 − 4q04 + q05 + q34 + q45)

+ δl205 (3 + q04 − 4q05 + q06 + q45 + q56)

+ δl206 (3 + q05 − 4q06 + q01 + q56 + q16)
]

+ O(δl4) .

(4.3)

Our normalization is such that A0 =
√

3
2 for qi = 0. Equivalently one can write, in more compact notation,

at the vertex 0

A = A0(q) + 1
3
~vA(q) · ~δl2 +O(δl4) , (4.4)

with ~δl2 = (δl201, . . . , δl
2
06). After adding the contributions from the neighboring vertices one obtains

∑
P0...P6

A =
∑

P0...P6

A0(q) + ~vA(q) · ~δl2 +O(δl4) . (4.5)
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Therefore the area associated with the vertex 0 will remain unchanged provided the variations in the squared

edge lengths meeting at 0 satisfy the constraint

~vA(q) · ~δl2 = 0 . (4.6)

This is nothing but the curved space equivalent of the condition of Eq. (3.30), which for the flat equilateral

lattice takes the form
6∑
i=1

δl2i (n) = 0 . (4.7)

Alternatively, if one considers a dual subdivision, one has to consider the dual area associated with vertex

0. In this case one has

A = A0(q) +
1

4 · 33/2

[
δl201 (1 + 2q06 − 4q01 + 2q02)

+ δl202 (1 + 2q01 − 4q02 + 2q03)

+ δl203 (1 + 2q02 − 4q03 + 2q04)

+ δl204 (1 + 2q03 − 4q04 + 2q05)

+ δl205 (1 + 2q04 − 4q05 + 2q06)

+ δl206 (1 + 2q05 − 4q06 + 2q01)
]

+ O(δl4) .

(4.8)

leading to a result formally similar (in fact in this case identical) to the baricentric case.

A similar calculation can be done for the curvature associated with vertex 0. One has for the deficit

angle at 0

δ = δ0(q) +
1

33/2

[
δl201 (3− 2q06 − q01 − 2q02 + q16 + q12)

+ δl202 (3− 2q01 − q02 − 2q03 + q12 + q23)

+ · · ·
]

+ O(δl4) .

(4.9)

and therefore for the variation of the sum of the deficit angles surrounding 0

∆

(∑
h

δh

)
=

∑
P0...P6

∆δ , (4.10)

and ∑
P0...P6

δ =
∑
P0...P6

δ0(q) + ~vR(q) · ~δl2 + O(δl4) , (4.11)
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with in this case, as expected, ~vR(q) ≡ 0.

Finally for the curvature squared associated with vertex 0 one computes

δ2/A = δ2
0/A0(q) +

4

33/2

[
δl201 (q01 + q02 + q03 + q04 + q05 + q06 − q12 − q23 − q34 − q45 − q56 − q16)

+ δl202 (q01 + q02 + q03 + q04 + q05 + q06 − q12 − q23 − q34 − q45 − q56 − q16)

+ · · ·
]

+ O(δl4) .

(4.12)

Adding up all seven contributions one gets

∆

(∑
h

δ2
h/Ah

)
=

∑
P0...P6

∆(δ2/A) , (4.13)

and therefore ∑
P0...P6

δ2/A =
∑
P0...P6

(
δ2/A

)
0

+ ~vR2(q) · ~δl2 + O(δl4) . (4.14)

In this case the curvature squared associated with the vertex 0 will remain unchanged, provided the variations

in the squared edge lengths meeting at 0 satisfy the constraint

~vR2(q) · ~δl2 = 0 . (4.15)

which provides a second constraint on the edge length variations ~δl2 at the vertex 0. Again this constraint

is the generalization to curved space of the condition of Eq. (3.26), which was valid for flat space.

4.2 Square Lattice

A similar calculation can be performed for the square lattice with l01 = l02 = 1 and l03 =
√

2. The

baricentric area associated with vertex 0 is now given by

A = A0(q) +
1

24

[
δl201 (4− 4q01 + q02 + q16)

+ δl202 (q01 − 2q02 + q03 + q12 + q23)

+ δl203 (4 + q02 − 4q03 + q34)

+ δl204 (4− 4q04 + q05 + q34)

+ δl205 (q04 − 2q05 + q06 + q45 + q56)

+ δl206 (4 + q05 − 4q06 + q16)
]

+ O(δl4) .

(4.16)
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Our normalization here is such that A0 = 1 for qi = 0. Summing up all relevant contributions, one can write

∑
P0...P6

A =
∑
P0...P6

A0(q) + ~v′A(q) · ~δl2 + O(δl4) , (4.17)

leading to the invariance constraint on the edge length variations

~v′A(q) · ~δl2 = 0 . (4.18)

This provides a first constraint on the edge length variations ~δl2 at the vertex 0, for the deformed square

lattice.

For the dual (Voronoi) area associated with vertex 0 one has instead

A = A0(q) +
1

16

[
δl201 (2− 3q01 + 2q02 + 2q06 − q16 − q12)

+ δl202 (−2 + 2q01 − 3q02 + 2q03 + q12 + q23)

+ δl203 (2 + 2q02− 3q03 + 2q04 − q23 − q34)

+ δl204 (2 + 2q03− 3q04 + 2q05 − q34 − q45)

+ δl205 (−2 + 2q04 − 3q05 + 2q06 + q45 + q56)

+ δl206 (2 + 2q01 + 2q05− 3q06 − q56 − q16)
]

+ O(δl4) ,

(4.19)

leading to a constraint similar to the one for the baricentric area. For the curvature associated with vertex

0 one has

δ = δ0(q) +
1

4

[
δl201 (2− 2q06 − q01− q02 + q16 + q12)

+ δl202 (2− q01 − q03)

+ δl203 (2− q02 − q03 − 2q04 + q23 + q34)

+ δl204 (2− 2q03 − q04− q05 + q34 + q45)

+ δl205 (2− q04 − q06)

+ δl206 (2− q05 − q06 − 2q01 + q56 + q16)
]

+ O(δl4) ,

(4.20)

which gives now ∑
P0...P6

δ =
∑
P0...P6

δ0(q) + ~v′R(q) · ~δl2 +O(δl4) , (4.21)

34



with ~v′R(q) ≡ 0.

Finally, the curvature squared associated with just the vertex 0 is given by

δ2/A = δ2
0/A0(q) + 1

2

[
δl201 (q01 + q02 + q03 + q04 + q05 + q06 − q12 − q23 − q34 − q45 − q56 − q16)

+ δl202 (q01 + q02 + q03 + q04 + q05 + q06 − q12 − q23 − q34 − q45 − q56 − q16)

+ · · ·
]

+ O(δl4) .

(4.22)

The labeling in the previous formulae is a bit clumsy in dealing with nearest next-nearest neighbor interac-

tions; for the labeling in the following formula we refer to Figure 15.

2-1 1+3

1+11

2+3

0

-3 1-2-2-1-3

3

-2-2-2-3-3-3

-1-1-1

2

3+3
2+2

Fig. 15. Labeling of lattice vertices for the expansion of the curvature squared term around a minimally deformed

square lattice.

Adding up the contributions from the seven distinct vertices 0− 6 one obtains for the term linear in δl2

1
2

[
δl20,1( 4q0,1 + 2q0,2 + q0,−1 − q0,−2 − q0,3 + 2q0,−3

−q1,3 − 2q2,3− q−1,−3− 2q−2,−3− q−1,2− q1,−2

+q1,1+1 + 2q1,1−2 + 2q1,1+3 − q1+1,1−2− q1+1,1+3

+q2,2+3 − 2q−2,1−2− q−2,−2−2− q−2,−2−3 + q−2−2,−2+1 + q−2−2,−2−3

−2q3,1+3 − q3,2+3 − q3,3+3− q−3,−2−3 + q3+3,1+3 + q3+3,2+3)

+ δl20,3( −q0,1 − q0,2 + 4q0,3 + 2q0,−1 + 2q0,−2 + q0,−3

−q1,3 − q2,3− q−1,−3− q−2,−3 − 2q−1,2 − 2q1,−2

−q1,1+1 − q1,1−2− 2q1,1+3 + q−1,2−1 + q1+1,1−2 + q1+1,1+3

−q2,2+2 − q2,2−1− 2q2,2+3 + q−2,1−2 + q2+2,2−1 + q2+2,2+3
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+2q3,1+3 + 2q3,2+3 + q3,3+3 − q3+3,1+3 − q3+3,2+3)

+ · · ·
]

+ O(δl4) .

(4.23)

which can be written in short form as

∑
P0...P6

δ2/A(q) =
∑
P0...P6

(
δ2/A

)
0

+ ~v′R2(q) · ~δl2 +O(δl4) . (4.24)

Again the curvature squared associated with the vertex 0 will remain unchanged provided the variations in

the squared edge lengths meeting at 0 satisfy the constraint

~v′R2(q) · ~δl2 = 0 . (4.25)

which provides the second constraint on the edge length variations ~δl2 at the vertex 0, for the deformed

square lattice (compare with Eq. (3.26)).

In conclusion, we have shown explicitly how gauge variations of the edge lengths at each vertex can be

defined by requiring that the action contributions be locally invariant. We have looked at small deformations,

but large deformations can be treated as well along the same lines, provided one is careful not to violate the

triangle inequalities, which impose a non-perturbative cutoff in orbit space The same approach can also be

extended to higher dimensions, leading to similar (but rather more complicated, when written out explicitly!)

results. The main conclusions do not change.

5 Scalar Field

In the previous section we have discussed the invariance properties of the lattice action for pure gravity.

Next a scalar field is introduced, as the simplest type of dynamical matter that can be coupled to gravity.

The scalar lattice action in the continuum is

I[g, φ] = 1
2

∫
d2x
√
g [ gµν ∂µφ ∂νφ+ (m2 + ξR)φ2] , (5.1)

The dimensionless coupling ξ is arbitrary; two special cases are the minimal (ξ = 0) and the conformal

(ξ = 1
6) coupling case. In the following we will mostly consider the case ξ = 0.

5.1 Construction of the Lattice Action

On the lattice consider a scalar φi and define this field at the vertices of the simplices. The corresponding

lattice action can be obtained through the usual procedure which replaces the original continuum metric
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with the induced metric on the lattice, written in terms of the edge lengths [4, 6]. Here we shall consider

only the two-dimensional case; the generalization to higher dimensions is straightforward. It is convenient

to use the notation of Figure 16, which will bring out more readily the symmetries of the resulting lattice

action. Here coordinates will be picked in each triangle along the (1,2) and (1,3) directions.

2

3l2

l3

1

φ 2

φ1

φ3

l1

Fig. 16. Labeling of edges and fields for the construction of the scalar field action.

To construct the scalar lattice action, one performs in two dimensions the replacement

gµν(x) −→ gij(∆) =

(
l23

1
2
(−l21 + l22 + l23)

1
2
(−l21 + l22 + l23) l22

)
, (5.2)

which then gives

det gµν(x) −→ det gij(∆) = 1
4

{
2(l21l

2
2 + l22l

2
3 + l23l

2
1)− l41 − l

4
2 − l

4
3

}
≡ 4A2

∆ , (5.3)

and also

gµν(x) −→ gij(∆) =
1

det g(∆)

(
l22

1
2
(l21 − l

2
2 − l

2
3)

1
2(l21 − l

2
2 − l

2
3) l23

)
. (5.4)

For the scalar field derivatives one writes [41, 42]

∂µφ ∂νφ −→ ∆iφ∆jφ =

(
(φ2 − φ1)2 (φ2 − φ1)(φ3 − φ1)

(φ2 − φ1)(φ3 − φ1) (φ3 − φ1)2

)
, (5.5)

which corresponds to introducing finite lattice differences defined in the usual way by

∂µφ −→ (∆µφ)i = φi+µ − φi . (5.6)

Here the index µ labels the possible directions in which one can move from a point in a given triangle. The

discrete scalar field action then takes the form

Im(l2, φ) = 1
16

∑
∆

1

A∆

[
l21(φ2 − φ1)(φ3 − φ1) + l22(φ3 − φ2)(φ1 − φ2) + l23(φ1 − φ3)(φ2 − φ3)

]
. (5.7)

Using the identity

(φi − φj)(φi − φk) = 1
2

[
(φi − φj)

2 + (φi − φk)2 − (φj − φk)2
]
, (5.8)

37



one obtains after some re-arrangements the simpler expression [41]

Im(l2, φ) = 1
2

∑
<ij>

Aij

(φi − φj
lij

)2

, (5.9)

where Aij is the dual (Voronoi) area associated with the edge ij. In terms of the edge length lij and the

dual edge length hij, connecting neighboring vertices in the dual lattice, one has Aij = 1
2hijlij (see Figure

17). Other choices for the lattice subdivision will lead to a similar formula for the lattice action, but with

the Voronoi dual volumes replaced by their appropriate counterparts in the new lattice.

2

l2

l3

1φ1

φ3

l5

φ 4

φ 2

4
3

l 4

h1

l1

Fig. 17. Dual area associated with the edge l1 (shaded area), and the corresponding dual link h1.

For the edge of length l1 the dihedral dual volume contribution is given by

Al1 =
l21(l22 + l23 − l

2
1)

16A123
+
l21(l24 + l25 − l

2
1)

16A234
= 1

2 l1h1 , (5.10)

with h1 is the length of the edge dual to l1. The baricentric dihedral volume for the same edge would be

simply

Al1 = (A123 +A234)/3 . (5.11)

It is well known that one of the disadvantages of the Voronoi construction is the lack of positivity of the dual

volumes, as already pointed out in [7]. Thus some of the weights appearing in Eq. (5.9) can be negative for

such an action. On the other hand, for the baricentric subdivision this problem does not arise, as the areas

Aij are always positive due to the enforcement of the triangle inequalities. It is immediate to generalize the

action of Eq. (5.9) to higher dimensions, with the two-dimensional Voronoi volumes replaced by their higher

dimensional analogs.

Mass and curvature terms can be added to the action, so that the total scalar action contribution becomes

Im(l2, φ) = 1
2

∑
<ij>

Aij

(φi − φj
lij

)2

+ 1
2

∑
i

Ai (m2 + ξRi)φ
2
i . (5.12)
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The term containing the discrete analog of the scalar curvature involves the quantity

AiRi ≡
∑
h⊃i

δh ∼
√
g R . (5.13)

In the above expression for the scalar action, Aij is the area associated with the edge lij , whileAi is associated

with the site i. Again there is more than one way to define the volume element Ai, [7], but under reasonable

assumptions, such as positivity, one expects to get equivalent results in the lattice continuum limit. In the

following we shall mainly consider the simplest form for the scalar action, with m2 = ξ = 0.

One of the simplest problems which can be studied analytically in the continuum as well as on the lattice

is the analysis of small fluctuations about some classical background solution. In the continuum, the weak

field expansion is often performed by expanding the metric and the action about flat Euclidean space

gµν = δµν + κ hµν . (5.14)

In four dimensions κ =
√

32πG, which shows that the weak field expansion there corresponds to an expansion

in powers of G. In two dimensions this is no longer the case and the relation between κ and G is lost; instead

one should regard κ as a dimensionless expansion parameter which is eventually set to one, κ = 1, at the end

of the calculation. The procedure will be sensible as long as wildly fluctuating geometries are not important

in two dimensions (on the lattice or in the continuum). The influence of the latter configurations can only

be studied by numerical simulations of the full path integral [11, 30].

In the continuum, the Feynman rules are obtained by expanding out the action in the weak fields hµν(x),

1
2

∫
d2x
√
ggµν ∂µφ ∂νφ = 1

2

∫
d2x (∂φ)2 + 1

2

∫
d2x hµν

{
1
2δµν (∂φ)2 − ∂µφ ∂νφ

}
+ O(h2) , (5.15)

and by then transforming the resulting expressions to momentum space.

On the lattice the action is again expanded in the small fluctuation fields εi, which depend on the specific

choice of parameterization for the flat background lattice - a convenient starting point is (in two dimensions)

the square lattice with diagonals. It is convenient to define the edge variables at the midpoints of the links

[18]. For the edge lengths one then defines the lattice Fourier transforms as

ε1(n) =

∫ π

−π

∫ π

−π

d2k

(2π)2
e−ik·n−ik1/2 ε1(k)

ε2(n) =

∫ π

−π

∫ π

−π

d2k

(2π)2
e−ik·n−ik2/2 ε2(k)

ε3(n) =

∫ π

−π

∫ π

−π

d2k

(2π)2
e−ik·n−ik1/2−ik2/2 ε3(k) ,

(5.16)

while the scalar fields are still defined on the vertices, and are Fourier transformed in the usual way, namely

φ(n) =

∫ π

−π

∫ π

−π

d2p

(2π)2
e−ip·n φ(p) . (5.17)
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These formulae are completely analogous to the ones used in developing the perturbative expansion for

lattice gauge theories [44]. They are easy to generalize to higher dimensions when a simplicial subdivision

of a hypercubic lattice is employed, as first suggested in [4]. Following this procedure, the Feynman rules

for the lattice scalar field action were derived in [18] (using the Voronoi dual volumes), and shown to agree

completely with the continuum Feynman rules for small momenta. For more details, and the computation of

the Feynman diagrams relevant to the conformal anomaly, we refer the interested reader to the cited work.

5.2 Equilateral Lattice

In order to compare and analyze the difference between the two volume discretizations (baricentric vs.

dual) for the scalar action, it will be useful to look at their form for small deformations of the edges about

a regular lattice, such as an equilateral or a square one. One would expect that the precise form of the

discretization should not matter, as long as the correct long distance (small momentum) properties are

preserved. Let us see how this can come about.

The next step is therefore the expansion of the lattice scalar field action of Eq. (5.9) with volumes Aij

defined via for example a baricentric subdivision, starting from an equilateral lattice with l2i = l0 2
i + δl2i ,

and l0i = 1. It will be sufficient to limit oneself to the contributions coming from one site (0) and its six

neighbors (1-6), which for the kinetic term is given by

(φ1 − φ0)2
[

1
4
√

3
+ 1

24
√

3
(δl206 − 4δl201 + δl202 + δl216 + δl212) + O(δl4)

]
+ (φ2 − φ0)2

[
1

4
√

3
+ 1

24
√

3
(δl201 − 4δl202 + δl203 + δl212 + δl223) + O(δl4)

]
+ (φ3 − φ0)2

[
1

4
√

3
+ 1

24
√

3
(δl202 − 4δl203 + δl204 + δl223 + δl234) + O(δl4)

]
+ (φ4 − φ0)2

[
1

4
√

3
+ 1

24
√

3
(δl203 − 4δl204 + δl205 + δl234 + δl245) + O(δl4)

]
+ (φ5 − φ0)2

[
1

4
√

3
+ 1

24
√

3
(δl204 − 4δl205 + δl206 + δl245 + δl256) + O(δl4)

]
+ (φ6 − φ0)2

[
1

4
√

3
+ 1

24
√

3
(δl205 − 4δl206 + δl201 + δl256 + δl216) + O(δl4)

]
.

(5.18)

For our notation and labeling of the edge lengths we refer again to Figure 12. In the case of the dual

(Voronoi) subdivision, the results is identical to this order except for the replacement of the coefficient

1
24
√

3
→ 1

12
√

3
, which can be interpreted as a rescaling of the gravitational coupling between the metric field

and the scalar. For fields that are smoothly varying on the scale of the cutoff, the scalar action contribution

is invariant under a gauge transformation on the edges acting at the origin 0, if the defining condition for

gauge transformations, analogous to Eq. (3.26) pertaining to the square lattice in the weak field expansion,
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is satisfied
6∑
i=1

δl2i (n) ≈ 0 . (5.19)

This result is also very similar to what happens in one dimensions, where the exact invariance of the scalar

action can be written down explicitly with more ease [38].

For the same (equilateral) lattice let us consider next the mass term; it is given by

1
2 m

2

∫
d2x
√
g φ2 ∼ 1

2 m
2
∑
i

Ai φ
2
i . (5.20)

Again expanding about the equilateral lattice with l2i = l0 2
i + δl2i one obtains for the baricentric subdivision

1
2 m

2 φ2
0

[ √3

2
+

1

12
√

3
(2δl201 + 2δl202 + · · ·+ δl212 + δl223 + · · ·) + O(δl4)

]
, (5.21)

while in the dual case one has.

1
2 m

2 φ2
0

[ √3

2
+

1

12
√

3
(δl201 + δl202 + · · ·+ 2δl212 + 2δl223 + · · ·) + O(δl4)

]
. (5.22)

Again to this order the mass term is invariant under a gauge transformation on the edges acting at the

origin 0, if the defining condition for gauge transformations (compare to Eq. (3.30) obtained in the weak

field expansion) is satisfied
6∑
i=1

δl2i (n) = 0 . (5.23)

Finally one can consider the curvature term,

1
2 ξ

∫
d2x
√
g R φ2 ∼ 1

2 ξ
∑
i

Ai (2δi/Ai)φ
2
i . (5.24)

Its expansion is given by

1
2 ξ φ

2
0

[ 2
√

3
(δl201 + δl202 + · · · − δl212 − δl

2
23 − · · ·) +O(δl4)

]
, (5.25)

with baricentric and dual forms identical to all orders in δl2, since Ai does not appear in this term. Again

it is obvious that this term is invariant under gauge transformations at 0.

Further higher order terms involving the curvature, such as∫
d2x
√
g R gµν ∂µφ ∂νφ ∼

∑
i

2
δi
Ai

∑
j⊃i

Aij
l2ij

(φi − φj)
2 , (5.26)

become increasingly complicated in their structure, as they involve neighbors which are further apart. They

are strongly suppressed for smooth manifolds due to the presence of the deficit angle. In the baricentric case

one finds

(φ1 − φ0)2 1
3
√

3
( 2δl201 + 0 · δl202 + δl203 + δl204 + δl205 + 0 · δl206 + · · ·

− 0 · δl212 − δl
2
23 − δl

2
34 − δl

2
45 − 0 · δl216 + · · ·) +O(δl4) ,

(5.27)
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and we have omitted the terms involving (φ2 − φ0)2 etc. since they can be obtained by symmetry. Again

for slowly varying scalar fields the above term is invariant under gauge transformations at the origin.

5.3 Square Lattice

A similar calculation can be performed for the square background lattice with again l2i = l0 2
i + δl2i , and

l01 = l02 = 1 and l03 =
√

2. Using the baricentric subdivision, the kinetic term gives

(φ1 − φ0)2
[

1
6

+ 1
24

(δl206 − 2δl201 + δl212) + O(δl4)
]

+ (φ2 − φ0)2
[

1
12 + 1

48 (δl201 − 2δl202 + δl203 + δl212 + δl223) +O(δl4)
]

+ (φ3 − φ0)2
[

1
6 + 1

24 (−2δl203 + δl204 + δl223) + O(δl4)
]

+ (φ4 − φ0)2
[

1
6 + 1

24 (δl203 − 2δl204 + δl245) + O(δl4)
]

+ (φ5 − φ0)2
[

1
12 + 1

48 (δl204 − 2δl205 + δl206 + δl245 + δl256) +O(δl4)
]

+ (φ6 − φ0)2
[

1
6 + 1

24 (−2δl206 + δl201 + δl256) + O(δl4)
]
.

(5.28)

Again for smoothly varying scalar fields, the above action will be invariant under gauge variations of the

edge lengths at the vertex 0, provided one has δl201 +2δl202 + δl203 + δl204 +2δl205 + δl206 = 0 (which is the scalar

field action analog of Eq. (4.18)).

In the case of the dual subdivision, one obtains for the same lattice

(φ1 − φ0)2
[

1
4 + 1

16 (−4δl201 + δl202 + δl216) + O(δl4)
]

+ (φ2 − φ0)2
[

0 + 1
16 (δl201 − 2δl202 + δl203 + δl212 + δl223) + O(δl4)

]
+ (φ3 − φ0)2

[
1
4 + 1

16 (−4δl203 + δl202 + δl234) + O(δl4)
]

+ (φ4 − φ0)2
[

1
4

+ 1
16

(−4δl204 + δl205 + δl234) + O(δl4)
]

+ (φ5 − φ0)2
[

0 + 1
16

(δl204 − 2δl205 + δl206 + δl245 + δl256) + O(δl4)
]

+ (φ6 − φ0)2
[

1
4 + 1

16 (−4δl206 + δl205 + δl216) + O(δl4)
]
,

(5.29)

Due to the asymmetry of the lattice in this case, the difference between the two discretizations is quite

marked. We will argue below that the dual volume form represents in fact an “improved” discretization over

the baricentric form.

For the mass term one proceeds in the same way, and for the baricentric subdivision one obtains

1
2
m2 φ2

0

[
1 +

1

12
(2δl201 + 0 · δl202 + 2δl203 + · · ·+ δl212 + δl223 + 0 · l234 + · · ·) + O(δl4)

]
, (5.30)
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Again, this term is invariant under a gauge transformation if Eq. (4.18) is satisfied. For the dual (Voronoi)

case one finds similarly

1
2 m

2 φ2
0

[
1 +

1

8
(δl201 − δl

2
02 + δl203 + · · ·+ δl212 + δl223 + δl234 + · · ·) + O(δl4)

]
. (5.31)

which is invariant again if the area at 0 is invariant.

Finally for the curvature term of Eq. (5.24) one has

1
2
ξ φ2

0

[
δl201 + δl202 + δl203 + δl204 + δl205 + δl206

−δl212 − δl
2
23 − δl

2
34 − δl

2
45 − δl

2
56 − δl

2
16 + O(δl4)

]
+ 1

2 ξ φ
2
1

[
δl201 − δl

2
02 − δl

2
06 + δl212 + δl216 +O(δl4)

]
+ · · · , (5.32)

with the baricentric discretization equal to the dual discretization to all orders in δl2, since the local area

Ai does not appear. Again it is obvious that this term is invariant under gauge transformations at 0.

Let us now return to the apparent discrepancy between the scalar kinetic term in the baricentric and

dual discretizations. It is useful to look at the two discretized forms in momentum space. Thus we assume

that the edge length fluctuations εi ≡ δl2i /2 l
0 2
i and φ at the point i, j steps in one coordinate direction and

k steps in the other coordinate direction from the origin, are related to the corresponding εi and φ at the

origin by

ε
(j+k)
i = ωj1 ω

k
2 ε

(0)
i , (5.33)

where ωi = e−iki , and ki is the momentum in the direction i. Similarly for φ one writes

φ(j+k) = ω′
j
1 ω
′k
2 φ

(0)
i , (5.34)

where ω′i = e−ipi .

After making the substitution εi → hµν of Eq. (3.18) (which is the same as the change of variables in

Eq. (3.9)) one obtains for the interaction in momentum space, in the dual case

p2
1 φ

2
[

1
2 + 1

4 (−h11 + h22) +O(h2)
]

+ p2
2 φ

2
[

1
2 + 1

4 (+h11 − h22) +O(h2)
]

+ p1p2 φ
2
[
−h12 + O(h2)

]
,

(5.35)

which indeed coincides with the weak field expansion of the kinetic term for the original scalar field action

in the continuum, Eqs. (5.1) and (5.15). In the baricentric case one obtains instead

p2
1 φ

2
[

1
2

+ 1
6
(−h11 + h22 − h12) +O(h2)

]
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+ p2
2 φ

2
[

1
2 + 1

6(+h11 − h22 − h12) +O(h2)
]

+ p1p2 φ
2
[

1
3
− 1

3
h12 +O(h2)

]
,

(5.36)

which at first looks quite different from the dual (Voronoi) volume case.

(b)(a)

Fig. 18. Two equivalent triangulation of flat space, based on different subdivisions of the square lattice.

On the other hand this result is not too surprising, as an analogous situation occurs in flat space. Consider

for example the two lattices of Figure 18 (up to now we only considered the one corresponding to 18a), and

compute in each case the action for one momentum mode, which is just the inverse scalar propagator in

momentum space. In the absence of any interaction terms along the lattice diagonals one has

2
∑
µ

[ 1− cos pµ ] ∼ p2
1 + p2

2 +O(p4) . (5.37)

The interaction terms along the lattice diagonals in Figure 18a contribute

2[ 1− cos(p1 + p2) ] ∼ p2
1 + p2

2 + 2p1p2 + O(p4) , (5.38)

while the interaction terms along the lattice diagonals in Figure 18b contribute

2[ 1− cos(p1 − p2) ] ∼ p2
1 + p2

2 − 2p1p2 + O(p4) . (5.39)

Thus when one averages over the two equivalent contributions (since the lattice is dynamical, and both

contributions are equally probable) one obtains

2[ 1− cos p1 cos p2 ] ∼ p2
1 + p2

2 + O(p4) , (5.40)
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which is now rotationally invariant to order p2. When the same procedure is applied to the lattice scalar

action in the presence of the gravitational field, Eqs. (5.35) and (5.36) can be shown to become equivalent,

after a rescaling of the gravitational coupling. Still, the action based on dual Voronoi volumes of Eq. (5.35)

appears to lead to a more attractive discretization, as the unwanted terms do not appear at all for the choice

of lattice of Figure 18a, and no averaging over the gravitational field fluctuations is necessary to exhibit the

correct correspondence with the continuum action. How seriously one takes this class of problems depends

on how seriously one trusts low-order perturbation theory about a fixed flat background as a tool for the

study of fluctuating geometries.

5.4 Invariance Properties of the Scalar Action

It is instructive to look at the invariance properties of the scalar action under the continuous lattice gauge

transformations defined in Eqs. (3.23) and (3.49). Physically, these local gauge transformations, which act on

the vertices, correspond to re-assignments of edge lengths which leave the distance between two fixed points

unchanged. In the simplest case, only two neighboring edge lengths are changed, leaving the total distance

between the end points unchanged. On physical grounds one would like to maintain such an invariance also

in the case of coupling to matter, just as is done in the continuum.

The scalar nature of the field requires that in the continuum under a change of coordinates x→ x′,

φ′(x′) = φ(x) , (5.41)

where x and x′ refer to the same physical point in the two coordinate systems. Let us first look at the

one-dimensional case, which is the simplest. On the lattice, as discussed previously, gauge transformations

move the points around, and at the same vertex labeled by n we expect

φn → φ′n ≈ φn +

(
φn+1 − φn

ln

)
εn , (5.42)

One can determine the exact form of the change needed in φn by requiring that the local variation of the

scalar field action

1

ln−1 + εn
(φn + ∆φn − φn−1)2 +

1

ln − εn
(φn+1 − φn −∆φn)2

−
1

ln−1
(φn − φn−1)2 −

1

ln
(φn+1 − φn)2 = 0 (5.43)

be identically zero. Solving the resulting quadratic equation for ∆φn one obtains a rather unwieldy expres-

sion, which to lowest order is given by [38]

∆φn =
εn

2

[
φn − φn−1

ln−1
+
φn+1 − φn

ln

]
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+
ε2n
8

[
−
φn − φn−1

l2n−1

+
φn+1 − φn

l2n
+
φn+1 − 2φn + φn−1

ln−1ln

]
+ O(ε3n) , (5.44)

and which is indeed of the expected form (as well as being symmetric in the vertices n− 1 and n+ 1). For

fields which are reasonably smooth, this correction is suppressed if |φn+1−φn|/ln � 1. On the other hand it

should be clear that the functional measure dφn is no longer manifestly invariant, due to the rather involved

transformation property of the scalar field.

A similar line of argument can be pursued in higher dimensions. Thus in two dimensions one should

require that locally the variation of the action contribution be again zero for edge length deformations δlij,

associated with edges meeting at the vertex i, and which correspond to lattice gauge transformations (in the

weak field, for example, they have the explicit form given in Eqs. (3.21) to (3.23)), namely

∑
j

Aij(l
2
ij + δl2ij)

φi + ∆φi − φj√
l2ij + δl2ij

2

−
∑
j

Aij(l
2
ij)

φi − φj√
l2ij

2

= 0 , (5.45)

where j labels the neighbors of the site i. The transformation law for φi is then determined by solving the

above equation for ∆φi, given an arbitrary gauge variation δl2(χ) at the vertex i.

5.5 Equations of Motion and Lattice Energy Momentum Tensor

The equations of motion for φi are obtained from

∂

∂φk

∑
<ij>

Aij

(φi − φj
lij

)2

+ m2
∑
i

Ai φ
2
i

 = 0 , (5.46)

and read ∑
j(i)

Aij

lij
·
φi − φj
lij

+ m2Ai φi = 0 , (5.47)

where the notation j(i) indicates that the site j is taken to be adjacent to i. For the choice of indices in

Figure 12 (see also Figure 17), the equation with i = 0 reads

−
2

A01 + . . .+A06

{
A01

l01
·
φ1 − φ0

l01
+ · · ·+

A06

l06
·
φ6 − φ0

l06

}
+ m2φ0 = 0 , (5.48)

and represents the discrete analog of 1√
g ∂µg

µνg∂νφ+m2φ = 0. Eq. (5.47) can be re-written, for m2 = 0, as

∑
j(i)

(
Aij
Ai d

)
φi − φj
l2ij

≡
∑
j(i)

Pij
φi − φj
l2ij

= 0 , (5.49)

The weights Pij = Aij/Aid can be interpreted as normalized hopping amplitudes, with a normalization

condition ∑
j(i)

Pij = 1 , (5.50)
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It is easy to verify that this last property does not depend on the way the original lattice has been subdivided

in order to construct the dual lattice. Both the Voronoi construction of Eq. (2.17) and the baricentric one

of Eq. (2.18) lead to the same normalization for Pij. And indeed it is easy to show that this result holds in

higher dimensions as well.

Some very interesting properties regarding the spectrum of the Laplacian on flat random lattices have

been worked out in [24, 19] and the reader is referred to these papers for further details. Perhaps one of the

most interesting results which can be derived by the method of replicas in the weak disorder limit is that, at

least in sufficiently low dimension, the spectrum of the Laplacian coincides with the continuum result at low

frequencies, with subleading corrections which then reflect specific aspects of the edge length distribution

such as its Poissonian form [24, 38]. In other words, quenched random lattices and regular lattices give the

same (continuum) result at low frequencies.

In the continuum the energy momentum tensor for matter described by action Im is defined via the

relationship

δIm = 1
2

∫
ddx
√
g Tµν δgµν (5.51)

For infinitesimal gauge variations, which have the form

δgµν(x) = −gµλ(x) ∂νχ
λ(x)− gλν(x) ∂µχ

λ(x)− ∂λgµν(x)χλ(x) ≡ ∆χ gµν , (5.52)

one expects δIm = 0. After an integration by parts in Eq. (5.51), one then obtains

(Tµλ)
;µ

= 0 . (5.53)

The energy momentum tensor defined by equation Eq. (5.51) will be conserved if and only if the matter

action is a scalar. More concretely, for one real scalar field of mass m, one has

Tµν = ∂µφ ∂νφ−
1
2 gµν (∂λφ ∂

λφ+m2φ2) . (5.54)

Taking the trace one obtains

Tµµ =
(

2−d
2

)
∂µφ ∂

µφ− d
2 m

2φ2 . (5.55)

It is natural to proceed on the lattice in analogy with the continuum case. For the scalar action contribution

of Eq. (5.9) one computes the variation

δIm =
∑
k

∑
ij

(φi − φj)
2 ∂

∂l2k

(
Aij
2l2ij

)
δl2k . (5.56)
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Fig. 19. Notation for Eq. (5.58) describing the variation of the action.

Since the derivative term inside the sum is non-zero only for edges ij which belong to triangles touching

the edge k (see Figure 19), only four terms contribute to the sum over < ij >. It is actually more convenient

to start from the equivalent form for the scalar action given in Eq. (5.7), and one obtains

δIm =
1

16

[
1

16A3
1

{
l21(l22 + l23) − (l22 − l

2
3)2
}

(φ2 − φ1) (φ3 − φ1) (5.57)

+ 1
16A3

2

{
l21(l24 + l25) − (l24 − l

2
5)2
}

(φ2 − φ4) (φ3 − φ4)
]
δl21 +

1

16
[ . . . ] δl22 + · · ·

Using the definition for the dual volumes (see Eq. (2.17), and Figure 20 for our notation here) one can

re-write the above expression more compactly as

δIm =
1

8

[ A11

A2
1

(φ2 − φ1) (φ3 − φ1) +
A24

A2
2

(φ2 − φ4) (φ3 − φ4)
]
δl21 +

1

8
[ . . . ] δl22 + · · · (5.58)

Therefore one can introduce the quantities Tk such that

δIm = 1
2

∑
k

Tk(l2) δl2k , (5.59)

with

T1 =
1

4

{ A11

A2
1

(φ2 − φ1) (φ3 − φ1) +
A24

A2
2

(φ2 − φ4) (φ3 − φ4)
}
, (5.60)

associated with the edge labeled by 1 in Figure 19, and similarly for all the other edges in the lattice. It is

clear that this equation defines the analog of the energy-momentum tensor in the discrete case.
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Fig. 20. Labeling of the dual areas appearing in Eq. (5.58).

The coefficients in the above expansion in δl2i can be regarded as the components of the Regge lattice

analog of the energy-momentum tensor,

Tk = Tµν l
µ
k l

ν
k , (5.61)

just as we can define for the simplicial components of the metric tensor [45]

gk = gµν l
µ
k l
ν
k ≡ l2i . (5.62)

From Eq. (2.7) and Eq. (3.39)

δgij(l
2) = 1

2

[
δl20i + δl20j − δl

2
ij

]
, (5.63)

and therefore within triangle 1, (with vertices 1,2,3 and choosing coordinates along 23 and 21), one has (see

Figure 20)

δl21 = δg11

δl22 = δg22

δl23 = δg11 + δg22 − 2δg12 .

(5.64)

For one triangle (for example, triangle 1 in Figure 19) one obtains

Tµν δgµν −→ (T 11 + T 12) δl21 + (T 22 + T 12) δl22 − T 12 δl23 (5.65)

In the lattice case it is clear that, inserting for the variation of the squared edge lengths corresponding to

gauge variations, as in Eq. (3.21) and Eq. (3.23), and then equating the resulting coefficients of the arbitrary

gauge parameters χin to zero, gives the discrete equation of conservation for the energy-momentum tensor.

On the other hand, the equations of motion for l2i (as opposed to the equations of motion for φ, which

are given in Eq. (5.48)) are obtained directly from Eq. (5.58), namely

∂ Im[l2]

∂ l2i
= A11

16 A2
1

[
(φ2 − φ1)2 + (φ3 − φ1)2 − (φ3 − φ2)2

]
(5.66)
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+ A24

16A2
2

[
(φ2 − φ4)2 + (φ3 − φ4)2 − (φ3 − φ2)2

]
= 0 .

It corresponds to the continuum equation Tµν = 0. In the presence of a cosmological constant term, λ
∑
t At,

an additional term appears in the equations of motion, which become, again with the notation of Figures 19

and 20,

A11

16 A2
1

[
(φ2 − φ1)2 + (φ3 − φ1)2 − (φ3 − φ2)2

]
(5.67)

+ A24

16 A2
2

[
(φ2 − φ4)2 + (φ3 − φ4)2 − (φ3 − φ2)2

]
+ λ

[ 1

16A1
(l22 + l23 − l

2
1) +

1

16A2
(l24 + l25 − l

2
1)
]

= 0 ,

and relates the squared edge lengths to the derivatives (or, more properly here, finite differences) of the

scalar field.

6 Gravitational Functional Measure

In this section we will re-examine the issue of the gravitational functional measure in light of the results

of the previous sections, and in particular the local gauge invariance of the lattice gravitational action. It

is well know that in ordinary (lattice) gauge theories the invariance of the action selects a unique measure

(the group invariant Haar measure). A natural way to construct the gravitational functional measure in the

continuum is to introduce a metric over metrics (or super-metric), and then compute the resulting functional

volume element. We shall see that what appears at first as a rather straightforward procedure, is in fact

affected by a number of rather subtle ambiguities.

6.1 Continuum Case

Following DeWitt [47], one introduces a super-metric G over metric deformations δgµν(x), which in the

simplest local form leads to the following norm-squared for metric deformations

‖δg‖2 ≡

∫
ddx Gµν,αβ[g(x)] δgµν(x) δgαβ(x) , (6.1)

with the inverse of the DeWitt supermetric given by

Gµν,αβ[g(x)] = 1
2

√
g(x)

[
gµα(x)gνβ(x) + gµβ(x)gνα(x) + λ gµν(x)gαβ(x)

]
, (6.2)

and λ 6= −2/d, to avoid the vanishing of the determinant of G. It is easy to check that the above expression
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for ‖δg‖2 is invariant under diffeomorphisms. 6 The usual procedure is then to derive the functional measure

in the form ∫
dµ[g] =

∫ ∏
x

(det[G(g(x))])
1
2
∏
µ≥ν

dgµν(x) , (6.3)

with the determinant of the super-metric Gµν,αβ(g(x)) given by

detG(g(x)) ∝ (1 + 1
2dλ) [g(x)](d−4)(d+1)/4 . (6.4)

Up to irrelevant constants, in four dimensions it reduces to the very simple expression∫
dµ[g] =

∫ ∏
x

[g(x)](d−4)(d+1)/8
∏
µ≥ν

dgµν(x) →
d=4

∫ ∏
x

∏
µ≥ν

dgµν(x) . (6.5)

Unfortunately this measure is not gauge invariant, if the product over x is interpreted as one over ‘physical’

points, and coordinate invariance is imposed at one and the same ‘physical’ point, as discussed in [48]. Here

this is seen as a consequence of the fact that ‖δg‖2 has been split in two separately non-invariant parts. The

measure that does satisfies the invariance property is∫
dµ[g] =

∫ ∏
x

(
det
[
G(g(x))/

√
g(x)

]) 1
2
∏
µ≥ν

dgµν(x) , (6.6)

and was originally proposed by Misner [49]. Explicitly,∫
dµ[g] =

∫ ∏
x

(g(x))
−(d+1)/2

∏
µ≥ν

dgµν(x) . (6.7)

It has the property of being scale invariant in any dimension. Unfortunately it is also singular, and needs

therefore to be regulated in some way for small g (on the lattice this requires some cutoff for small local

volumes).

Indeed both measures can be obtained as particular cases if one introduces a real parameter ω, and writes

‖δg‖2 =

∫
ddx (g(x))

ω/2
Gµν,αβ[g(x);ω] δgµν(x) δgαβ(x) , (6.8)

with

Gµν,αβ[g(x);ω] = 1
2

(g(x))
(1−ω)/2 [

gµα(x)gνβ(x) + gµβ(x)gνα(x) + λ gµν (x)gαβ(x)
]
. (6.9)

The metric in function space is obviously left unchanged by this rewriting, but the measure (obtained from

detG) depends on ω, and by the usual argument one obtains the parameterized functional gravitational

measure ∫
dµ[g] =

∫ ∏
x

[√
g(x)

]σ ∏
µ≥ν

gµν(x) . (6.10)

6While it should be clear that the functional norm should be invariant, it is less obvious that it should be local. Ultimately
the justification for locality lies in the fact that the resulting functional measure is local in the continuum, a rather desirable
feature.
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with the measure parameter σ related to the choice of ω via

σ = −(d+ 1) + (ω − 1)
d(d+ 1)

4
. (6.11)

For ω = 0 one obtains the DeWitt measure of Eq. (6.5), while for ω = 1 one has the Misner measure of

Eq. (6.7). The close relationship between the DeWitt and Misner measures was pointed out in [50]. 7

As there is no way of deciding between these two choices, or any intermediate one for that matter, one

is forced to consider σ as an arbitrary (and hopefully ultimately irrelevant) real parameter of the theory, the

only constraint being σ > −(d + 1). In general the volume factor gσ/2 in the functional measure is absent

in d dimensions for the special choice ω = 1 + 4/d. It should be emphasized here that gauge invariance

does not select a specific value for σ, but does otherwise completely constrain the form of the measure. The

criteria of simplicity and universality would suggest the above to be the preferred choice for ω. The reason

for the ambiguity in the gravitational functional measure appears to be a lack of a clear definition of what

is meant by
∏
x. In spite of some recurrent claims to the contrary, such an ambiguity persists in all lattice

formulations. Also, the volume term in the measure is completely local since it contains no derivatives. It

does not effect the propagation of gravitons, as it contributes δd(0) terms to the effective action. To some

extent these can be regarded as renormalizations of the cosmological constant, since they clearly only affect

the distribution of local volumes. As such they are expected to only affect the short distance behavior of the

theory, leaving the more interesting universal large distance properties unmodified (the recent work in Ref.

[51] gives a more concrete realization of these ideas in the framework of continuum perturbation theory).

Support to this interpretation also comes from a number of simple examples [38].

6.2 Lattice Transcription

Let us examine the consequences of this discussion in the discrete case. As the edge lengths play the role

of the metric in the continuum, one expects the discrete measure to involve an integration over edge lengths

[3, 5]. Indeed the induced metric at a simplex is related to the edge lengths squared within that simplex, via

the expression for the invariant line element ds2 = gµνdx
µdxν. The relation between metric perturbations

and squared edge length variations for a given simplex in d dimensions is (see Eqs. (2.7) and (3.39), and

Figure 3)

δgij(l
2) = 1

2 (δl20i + δl20j − δl
2
ij) . (6.13)

7The gravitational measure has to be modified in the presence of the matter fields. For an n-component massless scalar field
the invariant measure is ∫

dµ[φ] =

∫ ∏
x

gn/4(x)

n∏
a=1

dφa(x) , (6.12)

and therefore σ = −(d+ 1) + (ω− 1)
d(d+1)

4
+ n/2.
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Thus for one simplex the integration over the metric is equivalent to an integration over the edge lengths,

and one has (
1

d!

√
det gij(s)

)σ ∏
i≥j

dgij(s) =
(
−1

2

) d(d−1)
2

[
Vd(l2)

]σ d(d+1)/2∏
k=1

dl2k . (6.14)

There are d(d+ 1)/2 edges for each simplex, just as there are d(d + 1)/2 independent components for the

metric tensor in d dimensions. (We are ignoring for the moment the triangle inequality constraints, which

further require all sub-determinants of gij to be positive as well, including the obvious restriction l2k > 0).

The extension to many simplices glued together at their common faces is then immediate, and after summing

over all simplices one obtains, up to an irrelevant numerical constant,∫
dµ[l2] =

∫ ∞
0

∏
s

[Vd(s)]
σ
∏
ij

dl2ij . (6.15)

In four dimensions the lattice DeWitt measure (σ = 0) is particularly simple,∫
dµ[l2] =

∫ ∞
0

∏
ij

dl2ij F [l2ij] . (6.16)

Here Fε[l] is a (step) function of the edge lengths, with the property that it is equal to one whenever the

triangle inequalities and their higher dimensional analogs are satisfied, and zero otherwise. 8

The above lattice measure over edge lengths has recently been used extensively in numerical simulations

of simplicial gravity [9, 15, 52, 53, 8, 10, 33] (Figure 21 gives an example of the edge length distribution

obtained in four dimensions with measure parameter σ = 0). One would expect that physical properties of

the theory should not depend on the arbitrary parameter σ, but for the moment this universality argument

remains largely an unproven conjecture. The universality argument is in part tenuously supported by some

systematic numerical studies in two [30] and three [6] dimensions, although there is no solid evidence for it

yet in four dimensions [9, 10]. The authors of Ref. [10] have also independently emphasized the importance

of exploring the effects of different choices for the measure parameter σ. In the context of dynamical

triangulations and their relationship with simplicial gravity, the irrelevance of the measure parameter has

also been proposed in [55]. Finally let us mention that one can argue backwards [54] that the Regge lattice

measure of Eqs. (6.14) and (6.16) provides further support for the correctness of the continuum DeWitt

functional measure approach.

The above measure can also be obtained by considering a simplicial analog of the DeWitt supermetric,

as was suggested in [27, 28]. One writes for the induced metric of Eq. (2.7)

‖ δg(s) ‖2 =
∑
s

Gijkl (g(s)) δgij(s) δgkl(s) , (6.17)

8The functional measure over edge lengths in Eq. (6.16) does not have compact support, and a cosmological term (with
coefficient λ > 0) is therefore essential in obtaining convergence of the functional integral for large edge lengths.
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with the inverse of the lattice DeWitt supermetric given now by

Gijkl[g(s)] = 1
2

√
g(s)

[
gik(s)gjl(s) + gil(s)gjk(s) + λ gij(s)gkl(s)

]
, (6.18)

and (λ 6= −2/d). This defines a metric on the tangent space of positive real symmetric matrices g. The

resulting functional measure is the one of Eq. (6.15), with, by construction, σ = (d−4)(d+1)/4, the DeWitt

value. Thus ∫
dµ[l2] =

∫ ∏
s

[ detG(g(s)) ]
1
2
∏
i≥j

dgij(s) , (6.19)

with the determinant of the super-metric Gijkl(g(s)) given by

detG(g(s)) ∝ (1 + 1
2dλ) [g(s)]

(d−4)(d+1)/4
, (6.20)

and therefore up to irrelevant constants∫
dµ[l2] =

∫ ∞
0

∏
s

[V (s)]
σ
∏
ij

dl2ij , (6.21)

with σ = (d− 4)(d+ 1)/4. The measure factor can be exponentiated and written equivalently as an effective

action contribution ∫
dµ[l2] =

∫ ∞
0

∏
ij

dl2ij exp

{
σ
∑
s

logV (s)

}
. (6.22)

Its effect is to suppress or enhance, depending on the sign of σ, contributions from small volumes. As such,

it acts much like a cosmological constant contribution

exp

{
− λ

∑
s

V (s)

}
. (6.23)

6.3 Lund Regge Approach

The previous approach to the functional measure is based on a direct discretization of the continuum

measure, and leads to a unique local measure over the squared edge lengths (modulo the volume factors),

in close analogy to the continuum expression. Alternatively, one can try to find a discrete form for the

supermetric, and then evaluate the resulting determinant.

In a paper Lund and Regge offered a slightly different approach to the measure problem [45], in connection

with the 3 + 1 formulation of simplicial gravity. The idea, recently re-analyzed by the authors of Ref. [46],

was to obtain a lattice analog of the DeWitt supermetric, by considering the quantity

‖δl2‖2 =
∑
ij

Gij(l
2) δl2i δl

2
j , (6.24)
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where Gij(l
2) plays a role analogous to the DeWitt supermetric, but now on the space of squared edge

lengths. One way of constructing the explicit form for Gij(l
2) is to write the squared volume of a given

simplex in terms of the induced metric within the same simplex,

V 2(s) =
(

1
d!

)2
det
{
gij(l

2(s))
}

. (6.25)

Then compare the expansion of the determinant of the metric in the continuum,

det(gij + δgij) = exp Tr log(gij + δgij)

= det(gij)
[

1 + gijδgij + 1
2
gijgklδgijδgkl −

1
2
gijgklδgjkδgli + · · ·

]
,

(6.26)

to the analogous expansion for the square of the volume of a simplex

V 2(l2 + δl2) = V 2(l2) +
∑
i

∂V 2(l2)

∂l2i
δl2i + 1

2

∑
ij

∂2V 2(l2)

∂l2i ∂l
2
j

δl2i δl
2
j + · · · . (6.27)

Identifying terms of order (δl2i )n in Eq. (6.27) with terms of order (δgij)
n in Eq. (6.26) one obtains to linear

order

1

V (l2)

∂V 2(l2)

∂l2i
δl2i = 1

d!

√
det(gij) g

ij δgij , (6.28)

and to quadratic order

1

V (l2)

∑
ij

∂2V 2(l2)

∂l2i ∂l
2
j

δl2i δl
2
j = 1

d!

√
det(gij)

[
gijgklδgijδgkl − g

ijgklδgjkδgli
]
. (6.29)

Remarkably, the right hand side of this equation contains precisely the expression appearing in the continuum

supermetric of Eq. (6.2), for the specific choice λ = −2. After summing over simplices one obtains

1
2

∑
s

√
det(gij(s))

[
gik(s) gjl(s) + gil(s) gjk(s) − 2gij(s) gkl(s)

]
δgij(s) δgkl(s) =

∑
ij

Gij(l
2) δl2i δl

2
j ,

(6.30)

with

Gij(l
2) = − d!

∑
s

1

V (s)

∂2 V 2(s)

∂l2i ∂l
2
j

, (6.31)

which now determines the matrix Gij(l
2) appearing in the Lund-Regge metric for deformations in the space

of squared edge lengths, Eq. (6.24). The analogy with the continuum expression is brought out more clearly

when one factors out the volume element, and writes

‖δl2‖2 =
∑
s

V (s)

 − d!

V 2(s)

∑
ij

∂2 V 2(s)

∂l2i ∂l
2
j

δl2i δl
2
j

 . (6.32)
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The volume factor ambiguity present in the continuum measure is not removed though. As in the continuum,

different measures on the edge lengths are obtained, depending on whether the local volume factor V (s) is

included in the supermetric or not. In parallel with Eq. (6.9) one writes therefore

‖δl2‖2 =
∑
s

[V (s)]ω
′

 − d!

[V (s)]1+ω′

∑
ij

∂2 V 2(s)

∂l2i ∂l
2
j

δl2i δl
2
j

 . (6.33)

The metric in edge length space is again left unchanged by this rewriting, but the measure obtained from

detG depends on a parameter ω′, and by the usual arguments one obtains a parameterized functional

gravitational measure ∫
dµ[l2] =

∫ ∏
i

√
detG

(ω′)
ij (l2) dl2i . (6.34)

with

G
(ω′)
ij (l2) = − d!

∑
s

1

[V (s)]1+ω′
∂2 V 2(s)

∂l2i ∂l
2
j

, (6.35)

Thus the matrix G
(ω′)
ij should be thought of as defining a one-parameter family of measures.

A somewhat disturbing feature of the Lund-Regge lattice measure of Eq. (6.34) is that it does not give

the correct result already in one dimension [38]. The one-dimensional action for pure gravity of Eq. (3.46),

proportional to the length of the curve, is invariant under the local gauge transformations of Eq. (3.47),

δln = χn+1 − χn , (6.36)

where the χn’s represent continuous parameters defined on the lattice vertices. Any local variations of the

edges which have the above form (and, we should add, also do not violate the constraint ln > 0) obviously

leave the physical length of the curve unchanged. The invariant measure in one dimension is therefore∫
dµ[l2] =

∫ ∞
0

N∏
i=0

dli . (6.37)

which falls precisely in the class of measures encompassed by Eq. (6.15), with σ = −1. On the other hand,

the arguments leading to the measure of Eq. (6.34) give l2 = g to zeroth order, δl2/l2 = δg/g to first order,

and 0 = 0 to second order, and therefore, since Gnm = 0, ‖δl2‖2 = 0! Incidentally, in one dimensions a

physically motivated invariant distance between manifolds is d2(l, l′) ≡ [L(l) − L′(l′)]2, which is nonlocal.

Another somewhat undesirable feature of the Lund-Regge metric is that in general it is non-local, in

spite of the fact that the original continuum measure of Eq. (6.10) is completely local. 9 After all, metric

perturbations and squared edge lengths are linearly related to each other, and locality for one measure should

translate into locality for the other measure. Non-local contribution to the original (non gauge-fixed) measure

9After imposing a gauge condition, such as the conformal gauge, the measure can become non-local as in ordinary gauge
theories. But such a gauge fixing term is only necessary in perturbation theory to remove the zero modes of the action, discussed
in Sections 3. and 4. Nonperturbatively one would expect that no gauge fixing is necessary, as the effects of the gauge zero
modes are expected to cancel out in averages of physical quantities, as in ordinary lattice gauge theories [5].
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seem as unattractive as non-local action contributions. A non-local measure makes it virtually impossible to

study the theory non-perturbatively. On the other hand it is clear that, for some special choices of ω′ and d,

one does recover a local measure. Thus in two dimensions for ω′ = −1 one obtains again the simple result,∫
dµ[l2] =

∫ ∞
0

∏
i

dl2i , (6.38)

(which incidentally is non-singular at small edge lengths and represents therefore in this respect an acceptable

measure). This measure appears therefore, on the basis of purely theoretical arguments, to be as good as

any other measure with a different ω′. Given the possibility of a choice for ω′, it would seem natural that

one should chose its value in such a way that the measure has the simplest form, here the local form without

any volume factors: after all the physical theory should not depend on the bare parameter ω′.

We should also remark that the appearance of non-local measure contributions (and in particular for

some values of the parameter ω′, but not for others) makes one question the initial justification for starting

in the first place with an expression, such as the one in Eq. (6.18), which is local. In conclusion it appears

that the local measure of Eq. (6.16) provides the simplest theoretically justifiable starting point, if not the

only possible one.

7 Gauge Fixing and Lattice Conformal Gauge

Regge’s simplicial quantum gravity does not require gauge fixing [3, 5], unless one intends to perform

a diagrammatic perturbative expansion on the lattice [18]. In this respect, the situation is completely

analogous to ordinary gauge theories, and one expects the volume of the gauge group, the diffeomorphism

group in the case of gravity, eventually to cancel out in the expression for physical averages,

〈O〉 =

∫
dµ[l2] O(l2) exp{−I[l2]}∫

dµ[l2] exp{−I[l2]}
(7.1)

The lattice diffeomorphism zero modes discussed here (see Eq. (3.21) and subsequent expressions) do not

therefore in principle pose a problem in nonperturbative studies of quantized gravity, such as the ones

presented in [9, 15]. Zero modes are automatically taken into account as the measure explores gauge-

equivalent choices of metrics. One important distinction with the formal continuum theory is the presence

of a cutoff in orbit space, due to the enforcement of the triangle inequalities. As a result, the gravitational

functional measure is highly non-trivial. Such a constraint is not seen to any order in the perturbative weak

field expansion, it is a genuinely non-perturbative constraint.

On the other hand in two dimensions the continuum theory can be studied by perturbative methods,

which are most suitably applied in the conformal gauge [36]. It is the purpose of this section to elaborate
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Fig. 24 . Typical edge length distribution P(l) in four dimensions, for the lattice analog of the DeWitt measure σ = 0

(see Eq. (6.15)), close to the critical point at Gc (from ref. [9]).

58



on the connection between the continuum and the lattice theory, both being formulated here in a particular

gauge. Let us first summarize the results in the continuum. The weak field expansion is used, and one sets

as usual

gµν(x) = δµν + κ hµν(x) . (7.2)

As there is no small parameter in two dimension to play with, one assumes κ � 1, expands, and then sets

κ = 1 at the end. The easiest quantity to compute is the “graviton” vacuum polarization due to one massless

scalar particle, a one loop diagram here. It is given by

Πµν,αβ(q) = 1
2

∫
d2p

(2 π)2

tµν(p, q) tαβ(p, q)

p2 (p+ q)2

tµν(p, q) = 1
2 [ δµν p · (p + q) − pµ (pν + qν)− pν (pµ + qµ) ] . (7.3)

The calculation of the integral is easily done using dimensional regularization [18], or by the methods of

[37]. In either case one obtains

Πµν,αβ(q) =
1

48 π
(q2δµν − qµqν)

1

q2
(q2δαβ − qαqβ) . (7.4)

For a D-component scalar field, the above result is simply multiplied by a factor of D, and the effective

action, to lowest order in the weak field expansion, is then

Ieff = −1
2

∫
d2q

(2π)2
hµν(q) Πµνρσ(q)hρσ(−q) . (7.5)

In the conformal gauge, coordinates are chosen which are locally orthogonal, so as to bring the metric into

the form

gµν(x) = δµν e
ϕ(x) . (7.6)

Then one has for the scalar curvature

R(q) = (qµqν − δµνq
2) hµν(q) = q2 ϕ(q) , (7.7)

and one can therefore re-write the effective action in the form

Ieff (ϕ) = −
D

96π

∫
d2q

(2π)2
ϕ(q) q2 ϕ(−q) = −

D

96π

∫
d2x

[
(∂µϕ)2 + (λ− λc) e

ϕ
]
. (7.8)

On the lattice one can perform a similar computation, using again perturbation theory [18]. The lattice

Feynman rules are written down, the integration over the scalar is performed, and an effective action results,

which can be expanded out in the weak field limit. As the scalar couples invariantly to the gravitational

degrees of freedom, one would expect that the result should be eventually expressible in terms of invariants.

Indeed in the continuum one can re-write the effective action of Eq. (7.8) in an invariant form,

1
2

∫
d2x d2y R

√
g(x) 〈x|

1

−∂2
|y〉R

√
g(y) , (7.9)
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where ∂2 is the continuum covariant Laplacian, ∂2 ≡ ∂µ
√
ggµν∂ν . On the lattice this expression has an

obvious invariant counterpart [11],

1
2

∑
hingesh,h′

δh

[ 1

−∆

]
h,h′

δh′ , (7.10)

which is obtained from the correspondence between lattice and continuum curvatures derived in [7]. ∆

here is the nearest-neighbor covariant lattice Laplacian, as obtained from the discrete scalar action (see

Eqs. (5.9) and (5.48)); for a recent discussion of the discretization of this term see also [56]. It introduces

an effective long-range interaction between deficit angles. For this reason it is actually preferable to study

non-perturbative aspects of the model leaving the scalar fields un-integrated, which keeps the action local

[30]. 10

The previous discussion provides a background for motivating the introduction of the conformal gauge

on the lattice. It is legitimate to ask therefore what is the simplicial lattice analog of the gauge condition

of Eq. (7.6). The conformal gauge implies a local choice of orthogonal coordinates. It is clear from the

discussion in Section 3.1 that there is a corresponding choice on the lattice. Indeed in the development of

the weak field expansion a uniform orthogonal set of coordinates was chosen, with a diagonal background

metric (with edge length assignments l0i = 1 for the body principals (i = 1, 2) and l0i =
√

2 for the diagonal

(i = 3)). For these coordinates (see Eq. (3.16)) one has for the background metric

g
(0)
ij = δij . (7.11)

The lattice conformal gauge choice corresponds to an assignment of edge lengths such that locally

gij(n) =

(
l21(n) 1

2
(l23(n)− l21(n)− l22(n))

1
2
(l23(n) − l21(n)− l22(n)) l22(n)

)
≈ δij e

ϕ(n) . (7.12)

Here the lattice fields ϕ(n) have to be defined on the lattice vertices, and so are the gauge degrees of freedom

χµ(n), as can be inferred from Eq. (3.23). It is clear therefore that a choice of lattice conformal gauge

corresponds to a re-assignment of edge lengths about each vertex, in such a way that the local curvature is

left unchanged, but at the same time the induced metric is brought into diagonal form; it corresponds to a

choice of approximately right-angle triangles at each lattice vertex.

This result is further illustrated in Figures 22 to 24. The surface shown in Figure 22 has been brought

into the lattice analog of the conformal gauge, by re-assigning edge lengths in such a way that individual

triangles look as close as possible to right-angle triangles. In going from Figure 24 to Figure 23, repeated

gauge transformations must be performed on the vertices, by reassigning edge lengths in such a way that

local areas and volumes are kept unchanged. It is easy to see that such a construction can always be done,

except in some rather pathological cases.

10It is encouraging that the conformal mode stays massless in the full non-perturbative treatment of the two-dimensional
simplicial lattice theory, without the necessity of any sort of fine-tuning of bare parameters [30, 31].
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Fig. 21. Description of a smooth surface in the lattice analog of the conformal gauge.

Fig. 22. Enlarged view of a small region on the surface in Fig. 21.

Fig. 23. Gauge equivalent description of the enlarged view, of a small region of the original surface, represented in

Fig. 21.

The gravitational contribution to the effective action in the lattice conformal gauge can, at least in

principle, be computed in a similar way. Let us sketch here how the analogous lattice calculation would
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proceed; a more detailed discussion will be presented elsewhere. In the continuum the metric perturbations

are naturally decomposed into orthogonal conformal and diffeomorphism parts,

δgµν(x) = gµν(x) δϕ(x) +∇µχν(x) +∇νχµ(x) . (7.13)

where ∇ν denotes the covariant derivative. It should be clear from the discussion in Section 3. that a

rather similar decomposition can be done for the lattice degrees of freedom, by separating out the lattice

gauge transformations (which act on the vertices and change the edge lengths without changing the local

volumes and curvatures) from the conformal transformations (which do change them) in Eq. (3.39). The

explicit form for the lattice diffeomorphisms, to lowest order in the lattice weak field expansion, is given in

Eq. (3.21), while the explicit form for the lattice conformal transformations in given in Eq. (3.27), which

makes it obvious that such a decomposition can indeed be performed on the lattice. In the continuum, after

rewriting the gravitational functional measure in terms of conformal and diffeomorphism degrees of freedom,∫
dµ[g] =

∫
dµ[ϕ]dµ[χ]

[
det(L+L)

] 1
2 , (7.14)

one has to compute Jacobian of the operator L. It is determined, in the continuum, from

(L+L χ)µ = ∇ν(∇µχν +∇νχµ − gµν∇
ρχρ) , (7.15)

One then obtains for the effective action contribution in the conformal gauge,

[
det(L+L)

]− 1
2 ∼ exp {−Ieff (ϕ)} . (7.16)

with Ieff of the form in Eq. (7.5) to lowest order in the weak field expansion. A diagrammatic calculation,

similar to the one for the scalar field contribution, gives in the continuum the celebrated result [36, 37]

Πµνρσ(q) =
13

48π
(qµqν − δµνq

2)
1

q2
(qρqσ − δρσq

2) . (7.17)

On the lattice the functional integration is performed over the squared edge lengths, as in Eq. (6.15).

But it seems a technically challenging task to compute that Jacobian that maps the edge length variables

(which define the lattice metric) to the orthogonal lattice diffeomorphism variables of Eq. (3.23) and the

lattice conformal fields of Eq. (3.27), with the appropriate Jacobian included. It is also quite possible that

one might have to go beyond the lowest order in the lattice perturbative expansion.

As a consequence the total Liouville action for the Liouville field ϕ = 1
∂2R becomes

Ieff (ϕ) =
26−D

96π

∫
d2x

[
(∂µϕ)2 + (λ− λc) e

ϕ
]
, (7.18)

To lowest order in the weak field expansion the critical value of D for which the action vanishes is Dc = 26,

but this number is modified by higher order quantum corrections. In any case, for sufficiently large D one

62



expects an instability to develop. Numerical nonperturbative studies of two-dimensional gravity suggest that

in the lattice theory the correction is large, and one finds that the threshold of instability moves to values as

low as Dc ≈ 13 [31]. It is unclear if this critical value can be regarded as truly universal, and independent

for example on the detailed choice of gravitational measure (we are referring here to the choice of parameter

σ).

8 Conclusions

We have shown in this paper that Regge’s formulation of simplicial gravity is endowed with a remnant

of the continuous local gauge invariance of the original continuum theory. The appearance of zero modes

corresponding to the diffeomorphisms in the continuum is particularly transparent in the weak field expan-

sion. Nevertheless, the presence of a local invariance in the discrete action can be exhibited, via the detailed

explicit calculations presented in this paper, for almost any conceivable choice of background lattice. It was

shows in particular that the structure of the zero modes corresponds precisely to the discretized form of

the diffeomorphism transformation law in the continuum. We have underscored the fact that the squared

edge lengths correspond to the metric components in the continuum, and that such a result is therefore

hardly surprising (indeed it has been known for some time in some special cases). Explicit calculations also

show that the gauge and conformal modes are consistently defined as acting on the vertices of the lattice.

Although our derivations have mainly been restricted to the two dimensional case, where they are more

transparent and one does not run the risk of drowning is a sea of indices, wa have argued that they have

general applicability, and in a number of cases we have indicated the structure of the general result.

Our results have a bearing on the issue of the gravitational measure in simplicial gravity. As the metric

degrees of freedom in the continuum correspond to the squared edge lengths in the lattice theory, it is clear

that functional integration in the latter should be performed again over the edge lengths squared. We have

provided a number of arguments in support of this statement, based on DeWitt’s approach to the functional

measure in the continuum. We have argued that the lattice measure is essentially no less unique than the

original continuum (DeWitt) measure, with ambiguities restricted to local volume factors, and which most

likely are not relevant in four dimensions. It is unlikely that further insight into this issue can come from

analytical work, and it is hoped that future numerical simulations will support this conclusion, for which

there is already some partial and incomplete evidence. At the end of the paper we have considered the

introduction of gauge fixing terms in the lattice action, which are needed in order to remove the gauge zero

modes of the gravitational action in perturbative calculations. Again the situation is similar to what happens

in the continuum when one performs perturbation theory, where one first separates out the infinite gauge
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Table 1: Critical exponents of random and non-random Ising models.

γ/ν β/ν α/ν α ν

Onsager solution on regular flat lattice 1.75 0.125 0 0 1

Ising spins coupled to gravity[30, 33] 1.73(2) 0.124(3) -0.06(11) - 0.98(1)

Matrix model and CFT [57, 58] 1.333... 0.333... -0.666... -1.0 1.5

Random Ising spins in flat space[60] 1.32(3) 0.31(4) -0.65(4) -0.98(4) 1.46(8)

volume contribution. As a specific example, we have discussed how one goes about constructing the lattice

conformal gauge.

A more practical motivation for our work has been to try to understand the recently discovered discrep-

ancy between the critical exponents for matter coupled to gravity in two dimensions as computed in the

lattice regularized model for gravity [30, 33], and the corresponding conformal field theory predictions for

central charge c = 1
2 [58, 57]. Particularly significant in this respect appears to be the recent realization

that the conformal field theory exponents describe two-dimensional random systems in flat space, and do

not correspond to “gravitational” dressing of correlators [60] (see Table I). Recent independent calculations

have to some extent confirmed this result [61].

Previously the authors of Ref. [62] had considered the Dirac equation on a two-dimensional lattice where

sites have been removed randomly - a doped lattice. They argued that in this case the fermions acquire a

quartic interaction and become Thirring fermions, thus changing the critical exponents and the universality

class. In our opinion, the results for simplicial gravity found in [30], and the conformal field theory exponents

of [58], can simply be made consistent with each other, if an additive gravitational dressing of critical

exponents is taken to be zero in both cases, for both non-random and random matter (which are known to

have different critical exponents in flat space to begin with).
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