192 research outputs found

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Reliability-aware and energy-efficient system level design for networks-on-chip

    Get PDF
    2015 Spring.Includes bibliographical references.With CMOS technology aggressively scaling into the ultra-deep sub-micron (UDSM) regime and application complexity growing rapidly in recent years, processors today are being driven to integrate multiple cores on a chip. Such chip multiprocessor (CMP) architectures offer unprecedented levels of computing performance for highly parallel emerging applications in the era of digital convergence. However, a major challenge facing the designers of these emerging multicore architectures is the increased likelihood of failure due to the rise in transient, permanent, and intermittent faults caused by a variety of factors that are becoming more and more prevalent with technology scaling. On-chip interconnect architectures are particularly susceptible to faults that can corrupt transmitted data or prevent it from reaching its destination. Reliability concerns in UDSM nodes have in part contributed to the shift from traditional bus-based communication fabrics to network-on-chip (NoC) architectures that provide better scalability, performance, and utilization than buses. In this thesis, to overcome potential faults in NoCs, my research began by exploring fault-tolerant routing algorithms. Under the constraint of deadlock freedom, we make use of the inherent redundancy in NoCs due to multiple paths between packet sources and sinks and propose different fault-tolerant routing schemes to achieve much better fault tolerance capabilities than possible with traditional routing schemes. The proposed schemes also use replication opportunistically to optimize the balance between energy overhead and arrival rate. As 3D integrated circuit (3D-IC) technology with wafer-to-wafer bonding has been recently proposed as a promising candidate for future CMPs, we also propose a fault-tolerant routing scheme for 3D NoCs which outperforms the existing popular routing schemes in terms of energy consumption, performance and reliability. To quantify reliability and provide different levels of intelligent protection, for the first time, we propose the network vulnerability factor (NVF) metric to characterize the vulnerability of NoC components to faults. NVF determines the probabilities that faults in NoC components manifest as errors in the final program output of the CMP system. With NVF aware partial protection for NoC components, almost 50% energy cost can be saved compared to the traditional approach of comprehensively protecting all NoC components. Lastly, we focus on the problem of fault-tolerant NoC design, that involves many NP-hard sub-problems such as core mapping, fault-tolerant routing, and fault-tolerant router configuration. We propose a novel design-time (RESYN) and a hybrid design and runtime (HEFT) synthesis framework to trade-off energy consumption and reliability in the NoC fabric at the system level for CMPs. Together, our research in fault-tolerant NoC routing, reliability modeling, and reliability aware NoC synthesis substantially enhances NoC reliability and energy-efficiency beyond what is possible with traditional approaches and state-of-the-art strategies from prior work

    Exploiting Properties of CMP Cache Traffic in Designing Hybrid Packet/Circuit Switched NoCs

    Get PDF
    Chip multiprocessors with few to tens of processing cores are already commercially available. Increased scaling of technology is making it feasible to integrate even more cores on a single chip. Providing the cores with fast access to data is vital to overall system performance. When a core requires access to a piece of data, the core's private cache memory is searched first. If a miss occurs, the data is looked up in the next level(s) of the memory hierarchy, where often one or more levels of cache are shared between two or more cores. Communication between the cores and the slices of the on-chip shared cache is carried through the network-on-chip(NoC). Interestingly, the cache and NoC mutually affect the operation of each other; communication over the NoC affects the access latency of cache data, while the cache organization generates the coherence and data messages, thus affecting the communication patterns and latency over the NoC. This thesis considers hybrid packet/circuit switched NoCs, i.e., packet switched NoCs enhanced with the ability to configure circuits. The communication and performance benefit that come from using circuits is predicated on amortizing the time cost incurred for configuring the circuits. To address this challenge, NoC designs are proposed that take advantage of properties of the cache traffic, namely temporal locality and predictability, to amortize or hide the circuit configuration time cost. First, a coarse-grained circuit configuration policy is proposed that exploits the temporal locality in the cache traffic to periodically configure circuits for the heavily communicating nodes. This allows the design of a locality-aware cache that promotes temporal communication locality through data placement, while designing suitable data replacement and migration policies. Next, a fine-grained configuration policy, called DĂ©jĂ  Vu switching, is proposed for leveraging predictability of data messages by initiating a circuit configuration as soon as a cache hit is detected and before the data becomes available. Its benefit is demonstrated for saving interconnect energy in multi-plane NoCs. Finally, a more proactive configuration policy is proposed for fast caches, where circuit reservations are initiated by request messages, which can greatly improve communication latency and system performance

    Addressing Manufacturing Challenges in NoC-based ULSI Designs

    Full text link
    Hernández Luz, C. (2012). Addressing Manufacturing Challenges in NoC-based ULSI Designs [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1669

    Architectural Support for Efficient Communication in Future Microprocessors

    Get PDF
    Traditionally, the microprocessor design has focused on the computational aspects of the problem at hand. However, as the number of components on a single chip continues to increase, the design of communication architecture has become a crucial and dominating factor in defining performance models of the overall system. On-chip networks, also known as Networks-on-Chip (NoC), emerged recently as a promising architecture to coordinate chip-wide communication. Although there are numerous interconnection network studies in an inter-chip environment, an intra-chip network design poses a number of substantial challenges to this well-established interconnection network field. This research investigates designs and applications of on-chip interconnection network in next-generation microprocessors for optimizing performance, power consumption, and area cost. First, we present domain-specific NoC designs targeted to large-scale and wire-delay dominated L2 cache systems. The domain-specifically designed interconnect shows 38% performance improvement and uses only 12% of the mesh-based interconnect. Then, we present a methodology of communication characterization in parallel programs and application of characterization results to long-channel reconfiguration. Reconfigured long channels suited to communication patterns enhance the latency of the mesh network by 16% and 14% in 16-core and 64-core systems, respectively. Finally, we discuss an adaptive data compression technique that builds a network-wide frequent value pattern map and reduces the packet size. In two examined multi-core systems, cache traffic has 69% compressibility and shows high value sharing among flows. Compression-enabled NoC improves the latency by up to 63% and saves energy consumption by up to 12%

    Scale-Out Processors

    Get PDF
    Global-scale online services, such as Google’s Web search and Facebook’s social networking, run in large-scale datacenters. Due to their massive scale, these services are designed to scale out (or distribute) their respective loads and datasets across thousands of servers in datacenters. The growing demand for online services forced service providers to build networks of datacenters, which require an enormous capital outlay for infrastructure, hardware, and power consumption. Consequently, efficiency has become a major concern in the design and operation of such datacenters, with processor efficiency being of, utmost importance, due to the significant contribution of processors to the overall datacenter performance and cost. Scale-out workloads, which are behind today’s online services, serve independent requests, and have large instruction footprints and little data locality. As such, they benefit from processor designs that feature many cores and a modestly sized Last-Level Cache (LLC), a fast access path to the LLC, and high-bandwidth interfaces to memory. Existing server-class processors with large LLCs and a handful of aggressive out-of-order cores are inefficient in executing scale-out workloads. Moreover, the scaling trajectory for these processors leads to even lower efficiency in future technology nodes. This thesis presents a family of throughput-optimal processors, called Scale-Out Processors, for the efficient execution of scale-out workloads. A unique feature of Scale-Out Processors is that they consist of multiple stand-alone modules, called pods, wherein each module is a server running an operating system and a full software stack. To design a throughput-optimal processor, we developed a methodology based on performance density, defined as throughput per unit area, to quantify how effectively an architecture uses the silicon real estate. The proposed methodology derives a performance-density optimal processor building block (i.e., pod), which tightly couples a number of cores to a small LLC via a fast interconnect. Scale-Out Processors simply consist of multiple pods with no inter-pod connectivity or coherence. Moreover, they deliver the highest throughput in today’s technology and afford near-ideal scalability as process technology advances. We demonstrate that Scale-Out Processors improve datacenters’ efficiency by 4.4x-7.1x over datacenters designed using existing server-class processors

    Implementation of Bus-Based and NoC-Based MP3 Decoders on FPGA

    Get PDF
    The trend of modern System-on-Chip (SoC) design is increasing in size and number of Processing Elements (PE) for various and general purpose tasks. Emergence of Field Programmable Gate Array (FPGA) into the world of technology has lowered the limitations faced by Application Specific Integrated Circuit (ASIC) design. FPGA has a less timeto- market and is a perfect candidate for prototyping purposes due to the flexibility they create for the design and this is the key feature of the FPGA technology. Technology advancements have introduced reconfiguration concepts which increase the flexibility of FPGA designs more. One method to improve SoC's performance is to adopt a sophi sticated communication medium between PEs to achieve a high throughput. Bus architecture has been improved to meet the requirements of high-performance SoCs, however, its inherently poor scalability limjts their enhancement. The Network-on-Chip (NoC) design paradigm has emerged to overcome the scalability limitations of point-to-point and bus communkation. This thesis presents an investigation towards NoC versus bus based implementation of an SoC. An MP3 decoder has been selected as an application to be implemented on the proposed design. The final design in the thes is demonstrated that the NoC based MP3 decoder achieves a 14% faster clock frequency and real time operation with the NoC based design decode an MP3 frame on average in 10% less time that the bus based MP3 decoder

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    Network-on-Chip

    Get PDF
    Limitations of bus-based interconnections related to scalability, latency, bandwidth, and power consumption for supporting the related huge number of on-chip resources result in a communication bottleneck. These challenges can be efficiently addressed with the implementation of a network-on-chip (NoC) system. This book gives a detailed analysis of various on-chip communication architectures and covers different areas of NoCs such as potentials, architecture, technical challenges, optimization, design explorations, and research directions. In addition, it discusses current and future trends that could make an impactful and meaningful contribution to the research and design of on-chip communications and NoC systems
    • …
    corecore