Implementation of Bus-Based and NoC-Based MP3 Decoders on FPGA

Abstract

The trend of modern System-on-Chip (SoC) design is increasing in size and number of Processing Elements (PE) for various and general purpose tasks. Emergence of Field Programmable Gate Array (FPGA) into the world of technology has lowered the limitations faced by Application Specific Integrated Circuit (ASIC) design. FPGA has a less timeto- market and is a perfect candidate for prototyping purposes due to the flexibility they create for the design and this is the key feature of the FPGA technology. Technology advancements have introduced reconfiguration concepts which increase the flexibility of FPGA designs more. One method to improve SoC's performance is to adopt a sophi sticated communication medium between PEs to achieve a high throughput. Bus architecture has been improved to meet the requirements of high-performance SoCs, however, its inherently poor scalability limjts their enhancement. The Network-on-Chip (NoC) design paradigm has emerged to overcome the scalability limitations of point-to-point and bus communkation. This thesis presents an investigation towards NoC versus bus based implementation of an SoC. An MP3 decoder has been selected as an application to be implemented on the proposed design. The final design in the thes is demonstrated that the NoC based MP3 decoder achieves a 14% faster clock frequency and real time operation with the NoC based design decode an MP3 frame on average in 10% less time that the bus based MP3 decoder

    Similar works