
On Multicast in Asynchronous Networks-on-Chip:

Techniques, Architectures, and FPGA Implementation

Kshitij Bhardwaj

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2018

©2018

Kshitij Bhardwaj

All Rights Reserved

ABSTRACT

On Multicast in Asynchronous Networks-on-Chip:

Techniques, Architectures, and FPGA Implementation

Kshitij Bhardwaj

In this era of exascale computing, conventional synchronous design techniques are facing unprece-

dented challenges. The consumer electronics market is replete with many-core systems in the range

of 16 cores to thousands of cores on chip, integrating multi-billion transistors. However, with this

ever increasing complexity, the traditional design approaches are facing key issues such as increas-

ing chip power, process variability, aging, thermal problems, and scalability.

An alternative paradigm that has gained significant interest in the last decade is asynchronous

design. Asynchronous designs have several potential advantages: they are naturally energy propor-

tional, burning power only when active, do not require complex clock distribution, are robust to

different forms of variability, and provide ease of composability for heterogeneous platforms.

Networks-on-chip (NoCs) is an interconnect paradigm that has been introduced to deal with the

ever-increasing system complexity. NoCs provide a distributed, scalable, and efficient interconnect

solution for today’s many-core systems. Moreover, NoCs are a natural match with asynchronous de-

sign techniques, as they separate communication infrastructure and timing from the computational

elements. To this end, globally-asynchronous locally-synchronous (GALS) systems that intercon-

nect multiple processing cores, operating at different clock speeds, using an asynchronous NoC,

have gained significant interest.

While asynchronous NoCs have several advantages, they also face a key challenge of supporting

new types of traffic patterns. Once such pattern is multicast communication, where a source sends

packets to arbitrary number of destinations. Multicast is not only common in parallel computing,

such as for cache coherency, but also for emerging areas such as neuromorphic computing. This

important capability has been largely missing from asynchronous NoCs.

This thesis introduces several efficient multicast solutions for these interconnects. In particular,

techniques, and network architectures are introduced to support high-performance and low-power

multicast. Two leading network topologies are the focus: a variant mesh-of-trees (MoT) and a 2D

mesh. In addition, for a more realistic implementation and analysis, as well as significantly advanc-

ing the field of asynchronous NoCs, this thesis also targets synthesis of these NoCs on commercial

FPGAs. While there has been significant advances in FPGA technologies, there has been only lim-

ited research on implementing asynchronous NoCs on FPGAs. To this end, a systematic computer-

aided design (CAD) methodology has been introduced to efficiently and safely map asynchronous

NoCs on FPGAs. Overall, this thesis makes the following three contributions.

The first contribution is a multicast solution for a variant MoT network topology. This topology

consists of simple low-radix switches, and has been used in high-performance computing platforms.

A novel local speculation technique is introduced, where a subset of the network’s switches are

speculative that always broadcast every packet. These switches are very simple and have high per-

formance. Speculative switches are surrounded by non-speculative ones that route packets based on

their destinations and also throttle any redundant copies created by the former. This hybrid network

architecture achieved significant performance and power benefits over other multicast approaches.

The second contribution is a multicast solution for a 2D-mesh topology, which is more complex

with higher-radix switches and also is more commonly used. A novel continuous-time replication

strategy is introduced to optimize the critical multi-way forking operation of a multicast transmis-

sion. In this technique, a multicast packet is first stored in an input port of a switch, from where it is

sent through distinct output ports towards different destinations concurrently, at each output’s own

rate and in continuous time. This strategy is shown to have significant latency and energy benefits

over an approach that performs multicast using multiple distinct serial unicasts to each destination.

Finally, a systematic CAD methodology is introduced to synthesize asynchronous NoCs on

commercial FPGAs. A two-fold goal is targeted: correctness and high performance. For ease of

implementation, only existing FPGA synthesis tools are used. Moreover, since asynchronous NoCs

involve special asynchronous components, a comprehensive guide is introduced to map these ele-

ments correctly and efficiently. Two asynchronous NoC switches are synthesized using the proposed

approach on a leading Xilinx FPGA in 28 nm: one that only handles unicast, and the other that also

supports multicast. Both showed significant energy benefits with some performance gains over a

state-of-the-art synchronous switch.

Table of Contents

List of Figures vi

List of Tables x

1 Introduction 1

1.1 Synchronous Design: Challenges . 3

1.2 Asynchronous Design: An Alternative Paradigm 5

1.2.1 Advantages of Asynchronous Design . 5

1.2.2 Challenges with Asynchronous Design 6

1.2.3 History and Overview of Recent Success 7

1.3 Networks-on-Chip: An Introduction . 10

1.3.1 NoCs: Motivation, Basics, and Advantages 10

1.3.2 Advances in Synchronous NoCs . 12

1.3.3 Advances in Asynchronous NoCs . 14

1.4 Multicast Communication and its Applications 16

1.5 FPGAs: Architecture, and Applications . 18

1.5.1 FPGA Architecture . 18

1.5.2 FPGA Applications . 20

1.6 Research Focus . 20

1.6.1 Challenges with Supporting Multicast in Asynchronous NoCs 21

1.6.2 Challenges with Implementing Asynchronous NoCs on FPGAs 22

1.7 Contribution of Thesis . 22

1.8 Organization of Thesis . 24

i

2 Background: Asynchronous Design 26

2.1 Handshaking Protocols . 26

2.1.1 Four-Phase Protocol . 27

2.1.2 Two-Phase Protocol . 27

2.1.3 Trade-Offs . 28

2.2 Data Encoding Schemes . 28

2.2.1 Delay-Insensitive (DI) Codes . 28

2.2.2 Single-Rail Bundled Data . 29

2.2.3 Trade-Offs . 29

2.3 Special Asynchronous Components . 30

2.3.1 The C-Element . 30

2.3.2 The Mutex . 31

2.3.3 The N-Way Arbiters . 32

2.4 Mousetrap Pipelines . 34

2.4.1 Mousetrap Structure . 34

2.4.2 Mousetrap Operation . 34

2.4.3 Timing Constraints . 35

2.5 Mixed-Timing Interfaces . 35

3 Background: Networks-on-Chip 38

3.1 Network Topologies . 38

3.1.1 A Variant MoT Topology . 39

3.1.2 A 2D-Mesh Topology . 40

3.2 Routing Algorithms . 41

3.2.1 Deterministic Routing . 42

3.2.2 Oblivious Routing . 42

3.2.3 Adaptive Routing . 42

3.3 Packet Encoding Schemes . 43

3.4 Synchronous Unicast Router: Micro-Architectures and Performance Optimizations 44

3.4.1 A Traditional 5-Cycle Router . 44

3.4.2 Recent Single-Cycle Routers . 45

ii

3.4.3 Extreme Bypassing in Single Cycle Using SMART NoCs 46

3.5 Multicast Techniques and Related Work . 47

3.5.1 Techniques . 47

3.5.2 Related Work . 48

3.6 Leading Synchronous Multicast NoCs . 49

3.6.1 Multicast Using Single-Cycle Routers . 49

3.6.2 Multicast Using SMART NoCs . 49

4 A Local Speculation Approach for Multicast in Mesh-of-Trees NoCs 52

4.1 Introduction . 52

4.2 Baseline Asynchronous NoC . 53

4.2.1 Fanout Node . 55

4.2.2 Fanin Node . 56

4.2.3 Results . 57

4.2.4 Baseline for the New Multicast Research 57

4.3 Proposed Multicast Approaches . 58

4.3.1 Simple Tree-Based Multicast . 58

4.3.2 Local Speculation-Based Multicast . 59

4.3.3 Protocol Optimizations . 61

4.3.4 Target Parallel Multicast Networks . 62

4.4 Proposed Fanout Node Designs . 62

4.4.1 Unoptimized Speculative Fanout Node 62

4.4.2 Unoptimized Non-Speculative Fanout Node 64

4.4.3 Optimized Speculative Fanout Node . 68

4.4.4 Optimized Non-Speculative Fanout Node 71

4.5 Experimental Results . 76

4.5.1 Experimental Framework . 76

4.5.2 Node- and Network-Level Results . 78

4.6 Conclusions . 84

iii

5 A Continuous-Time Replication Strategy for Multicast in 2D-Mesh NoCs 85

5.1 Introduction . 85

5.2 Baseline Asynchronous NoC . 86

5.2.1 The Baseline NoC Without VCs . 87

5.2.2 Industrial Extension of the Baseline NoC to VCs 92

5.3 New Multicast Approach . 96

5.3.1 Tree-Based Parallel Multicast . 96

5.3.2 Continuous-Time Replication Strategy . 97

5.3.3 Route Computation and Buffering Policy 98

5.3.4 Simulation of Multicast Routing . 99

5.3.5 Resource-Dependent Deadlock Avoidance 101

5.4 Design Details: New Input Port Module (IPM) 104

5.4.1 IPM Structure and Operation . 104

5.4.2 Route Computation Unit (RCU) . 106

5.4.3 CMR Buffer . 107

5.4.4 Address Modifier Unit (AMU) . 111

5.5 Experimental Setup and Node-level Results . 112

5.5.1 Experimental Framework . 112

5.5.2 Node-Level Results . 114

5.6 Network-level results . 117

5.6.1 Multi-Flit Network-Level Results . 118

5.6.2 Single-Flit Network-Level Results . 127

5.6.3 Analytical comparison with state-of-the-art synchronous multicast NoCs . 128

5.7 Conclusions . 131

6 Synthesizing Asynchronous NoCs on FPGAs: a Systematic Methodology 133

6.1 Introduction . 133

6.2 Implementing Asynchronous Circuits on FPGAs: Related Work 135

6.3 Mousetrap Pipeline and Timing Requirements of Bundled-Data Circuits: A Brief

Background . 136

6.3.1 Mousetrap Pipeline . 136

iv

6.3.2 Timing Requirements of Bundled-Data Circuits 137

6.4 A CAD Methodology for Bundled-Data Asynchronous Circuits 137

6.4.1 Tool Flow . 137

6.4.2 Validation Approach . 142

6.4.3 Tool Flow Illustration: A Mousetrap Pipeline 142

6.5 Synthesis of Special Asynchronous Components on FPGAs 145

6.5.1 C-Element . 145

6.5.2 Mutex . 147

6.5.3 4-Input Arbiter . 152

6.6 Case Study: Asynchronous NoC Routers . 154

6.6.1 A Brief Recap: Unicast-Only and Multicast Asynchronous Routers 154

6.6.2 Implementing Asynchronous Routers on FPGAs 156

6.7 Experimental Results . 158

6.7.1 Experimental Setup . 159

6.7.2 Results . 159

6.8 Conclusions . 163

7 Conclusions and Future Work 165

7.1 Conclusions . 165

7.2 Future Work . 168

Bibliography 168

v

List of Figures

1.1 A typical synchronous system . 3

1.2 An asynchronous system . 5

1.3 A GALS system . 9

1.4 Network-on-chip structure . 12

1.5 Xilinx 7 Series FPGA block view [86] . 19

1.6 FPGA programmable logic fabric . 20

2.1 A typical asynchronous communication . 27

2.2 Two common handshaking protocols . 27

2.3 Two widely-used data encoding schemes . 29

2.4 The C-element: (a) symbol, (b) a transistor-level design, and (c) a standard-

cell based design . 30

2.5 Mutex: (a) block-level view, (b) design details [147] 31

2.6 A 4-input arbiter [135] . 33

2.7 A 3-stage Mousetrap pipeline [171] . 34

2.8 Put/get interfaces for mixed-timing FIFOs: (a) synchronous interfaces, (b)

asynchronous interfaces [29] . 36

2.9 Basic sync-sync FIFO architecture [29] . 37

3.1 Original 4× 4 MoT topology [6] . 39

3.2 A variant mesh-of-trees (MoT) topology, connecting processors to memory

modules [7] . 40

3.3 A 2D-mesh topology and the details of its nodes 41

vi

3.4 A traditional 5-cycle router micro-architecture [103] 45

3.5 Pipeline stages in single-cycle routers . 46

3.6 A SMART NoC structure and operation . 47

3.7 Multicast techniques: (a) path-based, (b) tree-based 48

3.8 A single-cycle multicast router architecture [149] 50

4.1 Variant mesh-of-trees (MoT): connecting processors to memory modules . . 54

4.2 Baseline fanout node . 55

4.3 Baseline fanin node . 56

4.4 New fanout network architectures: (a)-(c) full range for 8x8 MoT, (d) One

possible hybrid network for 16x16 MoT . 59

4.5 Hybrid network: unicast/multicast simulations 60

4.6 Unoptimized speculative fanout node . 63

4.7 Unoptimized non-speculative fanout node . 65

4.8 Unoptimized non-speculative fanout node: Input Channel Monitor and Con-

trol Unit details . 67

4.9 Unoptimized non-speculative fanout node: Ack Module details 67

4.10 Optimized speculative fanout node . 70

4.11 Optimized speculative fanout node: control unit details 72

4.12 Optimized speculative fanout node: Ack Module details 72

4.13 Optimized speculative fanout node: Input Channel Monitor and Phase Cor-

rector details . 73

4.14 Optimized non-speculative fanout node . 74

4.15 Optimized non-speculative fanout node: Control Unit details 75

4.16 Optimized non-speculative fanout node: Phase Corrector details 76

4.17 Contribution trajectory: network latency at 25% saturation load of respective

networks . 79

4.18 Contribution trajectory: saturated throughput 80

4.19 Contribution trajectory: total network power 82

4.20 Architectural design space exploration: network latency at 25% saturation

load of respective networks . 83

vii

4.21 Architectural design space exploration: saturated throughput 83

4.22 Architectural design space exploration: total network power 83

5.1 Baseline IPM micro-architecture . 88

5.2 Baseline circular FIFO . 89

5.3 Baseline OPM micro-architecture . 90

5.4 Node structure for double-plane baseline asynchronous router 93

5.5 VC control for an output channel interface . 94

5.6 Baseline asynchronous vs. synchronous router: basic comparison for 2 VCs 96

5.7 Asynchronous vs. synchronous router: projected results 96

5.8 New router architecture and tree-based multicast operation 97

5.9 Continuous-time replication strategy operation for a 3-flit packet: highlight-

ing interesting aspects of parallel route computation, independent read oper-

ations, and packet-based buffering . 100

5.10 Cyclic dependency between multicast packets 102

5.11 Centralized arbitration: an alternative approach to avoid resource-dependent

deadlocks for multicast . 103

5.12 New IPM micro-architecture with CMR buffer 105

5.13 New route computation unit architecture . 106

5.14 CMR buffer: write interface control . 109

5.15 CMR buffer: read interface control . 111

5.16 Address modifier unit (AMU) . 112

5.17 Node-level energy results for different unicast and multicast transmission

scenarios . 116

5.18 Network latency for unicast and mixed unicast/multicast benchmarks at 25%

saturation load of baseline . 119

5.19 Unicast network latency at varying injection loads 120

5.20 Mixed unicast/multicast latency at varying injection loads 121

5.21 Output throughput at saturation load . 124

5.22 Total network energy results measured at 25% saturation load of baseline . . 125

5.23 Isolated multicast case study: network latency for corner source 125

viii

5.24 Isolated multicast case study: network latency for center source 126

5.25 Isolated multicast case study: network energy for corner source 126

5.26 Isolated multicast case study: network energy for center source 126

5.27 Network latency for single-flit traffic at 25% saturation load of baseline . . . 128

5.28 Saturation throughput for single-flit traffic . 128

5.29 Total network energy for single-flit traffic at 25% saturation load of baseline 129

6.1 A 3-stage Mousetrap pipeline . 137

6.2 Tool flow for implementing bundled-data asynchronous circuits on FPGAs . 141

6.3 Illustrating the proposed tool flow of performance-oriented stage on a Mouse-

trap pipeline example . 143

6.4 Illustrating the proposed tool flow of robustness-oriented stage on a Mouse-

trap pipeline example . 144

6.5 C-element: Standard-cell designs and FPGA mappings 146

6.6 The analog mutex . 147

6.7 The digital standard-cell mutex . 149

6.8 Validation setup for mapped mutex . 152

6.9 A 4-input arbiter . 153

6.10 Asynchronous unicast router input port module 155

6.11 Asynchronous unicast/multicast router output port module 156

6.12 Asynchronous multicast router input port module 157

6.13 Resource utilization for the three switch designs 160

6.14 Switch latency for the header and body flits 161

6.15 Switch energy per packet for different unicast and multicast transmissions . 162

ix

List of Tables

4.1 Node-level area and latency comparisons . 79

5.1 Node-level area and latency comparisons . 115

5.2 Zero-load latency for all-multicast and all-broadcast 120

5.3 Minimum, average, and maximum multicast delivery time for different bench-

marks, averaged over the total number of multicast packets injected for each

benchmark. 122

x

Acknowledgments

I would like to thank many people who have helped me throughout my PhD at Columbia and

have made this thesis possible.

First, I would like to thank my advisor and mentor, Steven Nowick, for his guidance and support.

I admire Steve’s way of conducting research, which he has taught me during my Ph.D.: understand-

ing the fundamentals of a research problem, defining the problem in the simplest possible ways,

performing a careful review of the relevant literature, and then coming up with systematic new solu-

tions. Steve has also helped me improve my presentation skills. While new and interesting research

ideas are important, presenting them clearly and simply, when writing a paper or giving a talk, is

also critical. Steve is an excellent teacher and I have learned a lot from him, both by taking his

classes and as his teaching assistant. Thanks Steve for patiently guiding me and making me a better

researcher.

I would like to thank other members of my dissertation committee – Simha Sethumadhavan,

Luca Carloni, Mingoo Seok and Gennette Gill – for their time, insightful feedback and valuable

comments. During my Ph.D., I have approached Simha, Luca and Mingoo several times with my

research-related questions, and they were always happy to answer them. I also enjoyed excellent

classes from both Simha and Luca that helped me develop solid background in computer architec-

ture and system design. I also had an excellent opportunity to collaborate with Luca on my final

project of synthesizing asynchronous NoCs on FPGAs, and his guidance was very helpful.

I would like to thank Ram Krishnamurthy for giving me an opportunity to work at Intel Labs

for a 3-month internship. During this time, I enjoyed working with other members of his team:

Gregory Chen, Himanshu Kaul, Huseyin Sumbul, Phil Knag, and Raghavan Kumar. The internship

was a success and we jointly filed for a US patent on my work.

I also had the pleasure of interning at Cadence Design Systems under the expert guidance of

Ping-Sheng Tseng. At Cadence, I enjoyed working with Ping’s team: Cheoljoo Jeong (a former

xi

student of Steve), Paraminder Sahai, and Rajiv Roy.

I would like to thank my colleagues in the Computer Systems Lab at Columbia. I am thankful for

their support and for all the interesting discussions: Weiwei Jiang, Paolo Mantovani, Kanad Sinha,

Emilio Cota, Andrea Lottarini, Davide Giri, Tom Repetti, Richard Townsend, Luca Piccolboni, and

Yipeng Huang. I really enjoyed working with Paolo on my final FPGA project. I always enjoyed

the delicious Indian lunches with Kanad at Doaba Deli!

This thesis would not have been possible without the support from my family. My brother,

Kartikeya, a fellow Ph.D. student at CMU and an excellent researcher, was always there to support

me and put a smile on my face. Thanks for introducing me to several awesome restaurants of

Pittsburgh. My wife, Prachi, also a Ph.D. student at BU, who constantly motivated me. Her love

and support have been very valuable and helped me through some difficult times. A special thanks

to my parents-in-law and my brother-in-law, who are always there for me.

Finally, none of this would have been possible without my parents’ unparalleled guidance, love

and blessings. They are always a great source of inspiration and encouragement. My father’s inter-

esting stories from his own Ph.D. years motivated me, and his words energized me. My mother’s

care and affection have always been there, and her cooking was very helpful! Thanks mom and dad!

I would also like to acknowledge some miscellaneous things that played important roles. Since

I commuted a lot during my Ph.D., a special thanks to Metro-North for making my train travel

(between Poughkeepsie and NYC) a relaxing commute, albeit a slow one. Merritt parkway for

some high-speed driving experiences between Boston and NYC. I am also thankful to the hilarious

British comedy TV shows - I could rely on them after a long day. Last but not the least, several

grants have made this research possible: NSF Grant No. CCF-1527796 and NSF Grant No. CCF-

1219013.

xii

This thesis is dedicated to:

My late grandfather, an eminent scholar.

xiii

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

We are in the age of exascale computing [131]. Shrinking transistor sizes have led to ultra-scale

integration with the number of transistors on a single chip in the multi-billion range. Intel recently

revealed its behemoth 72-core chip called Knights Landing, to be used in supercomputers [141]. The

consumer market is already replete with many-core processors, ranging from 16 cores to almost

thousand cores on chip. Examples include AMD 16-core Opteron 6000, Intel 24-core Xeon-E7,

Intel 80-core Xeon Phi, and graphic processors such as AMD FirePro and Nvidia Titan X that have

2500-3500 GPU cores. However, given the ever-increasing scale of integration, conventional design

approaches are facing unprecedented challenges: process variability, aging, chip power and thermal

challenges, and scalability issues [147].

In the last two decades, asynchronous, or a hybrid mix of asynchronous and synchronous de-

sign approaches, has emerged as an alternative paradigm to address the challenges faced by the

conventional synchronous or centralized clock-based approaches. Asynchronous designs are natu-

rally energy proportional, where they burn dynamic power only when active. These systems also

do not require complex clock distribution, are highly modular and support ‘object-oriented’ de-

sign style with ease of composability, and are very robust to process- and environment-induced

variability [147]. Asynchronous design is gaining visibility in not just general-purpose processors

and embedded systems, but are also suitable for the emerging areas of neuromorphic computing,

quantum cellular automata, energy harvesting, and systems used in space missions [147], [148].

Another concept that has seen significant recent interest is networks-on-chip (NoCs), that have

effectively replaced traditional bus-based interconnects in today’s complex many-core systems.

1

CHAPTER 1. INTRODUCTION

NoCs have several advantages over the conventional interconnects such as buses or point-to-point

networks [22]: (i) they provide a distributed architecture, which can be shared by multiple traffic

flows in parallel leading to high performance; (ii) NoCs support modularity by separating commu-

nication from computation, thus allowing easy integration of processing cores, possibly operating at

different rates; (iii) NoCs are more scalable, where their effective bandwidth scales with size, unlike

buses; and (iv) they are also more cost-effective than point-to-point interconnects, which can have

large area/power overheads.

In recent years, there has been significant research on combining asynchronous design with

networks-on-chip [66], [83], [89], [96], [185]. Asynchronous NoCs can be used not only to in-

terconnect components in a fully-asynchronous system but also for globally-synchronous locally-

synchronous (GALS) systems, where synchronous components can be running at different speeds.

Asynchronous NoCs are promising due to their several advantages in terms of no clock distribution,

no clock switching power, and ease of integration of heterogeneous processing elements.

While asynchronous NoCs provide several advantages, they also face a key challenge of sup-

porting new types of traffic patterns. These NoCs must be able to support communication require-

ments of advanced parallel computer architectures, new interconnect technologies, such as wireless

and photonics, and traffic due to emerging computing paradigms, e.g. neuromorphic computing.

One important class is multicast, i.e. 1-to-many communication, which has recently seen growing

interest [15].

While there is significant research on supporting multicast in synchronous NoCs [81], [88],

[149] [164], [193], this capability has been largely missing from asynchronous NoCs. The aim of

this thesis is to significantly advance the field of asynchronous NoCs by designing efficient multicast

solutions that (i) exploit potential advantages of asynchronous NoCs in terms of low area/energy

footprint while maintaining high performance, and (ii) introduce novel multicast paradigms that are

unique to asynchronous, which can lead to lightweight NoC designs. To this end, new multicast

strategies are introduced for two leading NoC topologies: simpler variant mesh-of-trees, and more

complex but common 2D mesh. To the best of our knowledge, these are the first general-purpose

asynchronous NoCs to support parallel multicast.

Additionally, for a more realistic analysis and evaluation, and also to advance the field of asyn-

chronous NoCs, this thesis targets synthesis of these NoCs on commercial field-programmable gate

2

CHAPTER 1. INTRODUCTION

Figure 1.1: A typical synchronous system

arrays (FPGAs). Modern FPGAs not only include standard programmable logic but also consist of

multiple cores, accelerators, GPUs and memories. These FPGAs have gained significant importance

in hardware-assisted acceleration [151]. Even though there has been major advancement in FPGAs,

there has been only limited research on mapping asynchronous NoCs to these devices. To this end,

this thesis proposes the first systematic CAD methodology to efficiently synthesize asynchronous

NoCs on commercial FPGAs. The target is a challenging two-fold goal of not only correctness but

also high performance. Only the existing synchronous FPGA synthesis tools are used for ease of

implementation. This methodology will enable efficient implementation of asynchronous NoCs on

FPGAs to help with their deployment in accelerating real-world applications.

1.1 Synchronous Design: Challenges

Digital systems most commonly use the synchronous design style. In such systems, usually all

computing elements communicate with each other using a global clock as shown in Figure 1.1.

The clock is used to validate computations, which are performed during a clock cycle, and must

be complete by the end of the current cycle. This discrete-time operation greatly simplifies the

implementation and verification of digital systems.

The use of global clock in synchronous systems leads to a simple solution but also faces nu-

merous challenges. Modern chips are highly-complex, can integrate thousands of computing cores,

accelerators and memories, that perform different functionalities, and have distinct performance and

power requirements. Designing such large-scale heterogeneous systems poses major challenges for

3

CHAPTER 1. INTRODUCTION

the globally-synchronous design paradigm, as discussed below.

Clock distribution. Designing a robust clock distribution network for today’s highly-complex

systems is a major challenge [174]. A single clock distributed to a large chip can suffer from static

and dynamic uncertainties, such as skew and jitter, respectively. The generated clock period must

include appropriate margins to account for these uncertainties, which can increase as the chip size

grows, leading to performance degradations. This problem is further exacerbated when high clock

frequencies (upwards of 3 GHz) are used. Moreover, physical design of a global clock distribution

network for such chips is also an arduous task, and can have its own challenges.

Clock power dissipation. Modern processor clock frequencies can no longer exceed 3-4 GHz

as power consumption has hit a so-called power wall [129]. The switching energy of the clock net-

work, even when the system is idle, can lead to significant power dissipation: almost 25-30% of a

synchronous chip’s power is due to the clock distribution network [173]. Clock power is a major is-

sue for consumer electronics and embedded systems such as smart phones, where it directly impacts

the battery life [73]. While techniques such as clock gating can be used to ‘turn off’ the clock for

the inactive components [155], they can also incur extra overhead due to the complex clock-gating

circuitry. In particular, clock gating can be applied at two levels: coarse-grain, where entire clock

network can be shut down or fine-grain, where individual flip-flops can be selectively enabled or

disabled. The former is partially effective when only a portion of the entire chip, connected to the

same clock tree, is active [16]. The latter requires adding clock-gating logic at the leaves of a clock

network, which has its own challenges pertaining to physical design [87].

Worst-case performance. The operating clock rate of a synchronous system is determined by

its slowest component, and are therefore bound to worst-case performance. These systems cannot

easily exploit the variation in data-dependent computation times to achieve higher performance.

Interfacing with heterogeneous components. There is a big push towards heterogeneous sys-

tems, for applications such as Internet-of-Things (IoT), consisting of different accelerators, cores,

and memories. These components usually operate at different clock rates, and will therefore require

complex synchronizers for interfacing between the different clock domains, which can lead to extra

power, performance and area overheads.

4

CHAPTER 1. INTRODUCTION

Figure 1.2: An asynchronous system

1.2 Asynchronous Design: An Alternative Paradigm

To address the challenges of the conventional synchronous designs, this thesis targets an alternative

design style: asynchronous or clockless design. Figure 1.2 shows a high-level view of an asyn-

chronous system, where the processing elements communicate with each other using local hand-

shaking channels. In the absence of a global clock, these components are free to operate at different

speeds.

Asynchronous designs exhibit several potential advantages over the conventional synchronous

designs, which have led to a recent surge in the use of asynchronous circuits for various industrial

applications. However, these designs also have their own unique challenges that must be addressed

by the research community to make asynchronous more mainstream.

1.2.1 Advantages of Asynchronous Design

Asynchronous circuits can exhibit several potential advantages over synchronous in terms of lower

power, higher performance, better scalability and design reuse.

Potential lower power. The absence of a clock and the associated clocking circuitry can lead

to significant power savings for the asynchronous designs. Asynchronous circuits are also energy

proportional, where they burn dynamic power only when active [147]. In contrast, as highlighted

earlier, synchronous designs consume power even when inactive due to switching of the clock; clock

gating can be used to inactivate modules that are not being used, but it can have its own limitations

and overheads.

5

CHAPTER 1. INTRODUCTION

Potentially higher average-case performance. Unlike synchronous, performance of asyn-

chronous systems is not limited by its slowest component, rather it is determined by an average of

the operating speeds of different components, which can potentially lead to overall higher perfor-

mance.

Better scalability and design reuse. Asynchronous systems exhibit high composability, where

a larger complex system can be built using a simple aggregation of smaller components. In contrast,

adding new modules to a synchronous system requires re-designing clocking networks. In addition

some of these components might not be compatible with the target clock frequency, and therefore

need to be re-designed as well. These issues do not exist for asynchronous systems. Recently,

several large-scale industrial fully-asynchronous or GALS systems have been introduced that exhibit

this ease of integration: Intel’s asynchronous Ethernet switch [45], STMicroelectronics’ P2012 [11],

IBM’s TrueNorth [2], and Intel’s Loihi neuromorphic chip [117].

1.2.2 Challenges with Asynchronous Design

Even though the asynchronous approach has the above advantages, there are some major challenges

associated with these designs that must be addressed: hazard-free operation, the lack of CAD tool

support, and testing of asynchronous circuits.

Hazard-free designs. In synchronous designs, freedom from hazards is usually not a require-

ment as long as the result of a computation becomes stable before the start of the next clock cycle.

However, in asynchronous designs, since there is no clock, freedom from hazards is therefore a

requirement to achieve glitch-free operation. Freedom from hazards must be guaranteed at dif-

ferent levels of the synthesis flow: from two-level/multi-level logic minimization to technology

mapping [148].

Lack of CAD support. While small asynchronous designs can be synthesized manually, larger

designs will require automation for faster time-to-market, targeting both correctness and efficiency.

There is a two-fold goal for developing automated tool flows for asynchronous circuits [148]: (i)

these flows must be compatible with the existing synchronous languages and CAD tools, and (ii)

new specification languages need to be developed, which can capture the asynchronous-specific

aspects: absence of clock, fine-grain concurrency, and distributed synchronization.

6

CHAPTER 1. INTRODUCTION

Testability of asynchronous circuits. Testing of asynchronous circuits faces unique challenges

compared to synchronous designs [148]. A typical testing procedure for synchronous designs, called

single-stepped approach, involves pausing or slowing down the system, and checking the internal

states by comparing with the ’golden’ results. However, this testing approach is not possible for

asynchronous designs due to the absence of a global clock. In addition, the testing tools for asyn-

chronous designs should not only check for functional correctness but also for hazards, which adds

further complications.

1.2.3 History and Overview of Recent Success

There has been a large amount of work in addressing various challenges of asynchronous design as

well as exploiting its advantages to develop highly-efficient systems. This section presents a brief

history of asynchronous designs, followed by an overview of the research on hazard-free logic syn-

thesis, CAD flows, asynchronous processors, GALS systems, and various commercial applications

of asynchronous designs.

Brief history. The early years between 1950s to 1970s mostly saw advent of the classical asyn-

chronous theory by Unger [187], and Muller [143], as well as the use of asynchronous design in

many commercial processors (Iliac, Iliac II, Atlas, MU-5) and in LDS-1 graphics system. The mid

1970s to early 1980s did not see much advancement in asynchronous designs and was a period

of reduced activity. However, the mid 1980s to late 1990s was a “coming-of-age” era for asyn-

chronous with significant new developments: correct and efficient methodologies for asynchronous

controllers [9], [37], [60], [146] and pipeline designs [61], [114], [203], the first academic asyn-

chronous processors from Caltech [124], and University of Manchester [65], and initial commercial

uptake by Philips Semiconductor for low-power consumer products [63]. In the modern era, from

early 2000s, there has been a surge of recent activity: new CAD tool development [8], [116]; asyn-

chronous networks-on-chip [23], [66], [185]; asynchronous FPGAs [183]; industrial uptake such

as from STMicroelectronics [11] and Intel [45]; and applications, for example, emerging areas of

neuromorphic computing [2], [46], sensor networks [55], and energy harvesting [34].

Hazard-free logic synthesis. Two widely-used methods for the specification and synthesis of

hazard-free asynchronous controllers have been proposed: burst-mode (BM) [145], and Petri-net

based [38]. BM is effectively an asynchronous state machine, where state transitions are event-

7

CHAPTER 1. INTRODUCTION

driven: once an “input burst” of one or more signal transitions arrives, the dependent output changes,

and the machine advances to the next state. Although a BM specification can leverage existing

synchronous approaches for synthesis, it requires a simple hold time requirement, also known as

generalized fundamental mode timing requirement: no new input burst may arrive until the machine

has stabilized from the previous burst. On the other hand, a Petri-net based method uses a directed

bipartite graph, in which the nodes represent transitions (i.e. events that may occur) and places (i.e.

conditions). Petri-net based controllers only use a quasi-delay insensitive (QDI) timing assumption,

which requires that at each wire fanout point, the forked wires have roughly the same delay. Al-

ternatively, NULL Convention Logic (NCL), introduced by Karl Fant, targeted a unified synthesis

of both control and datapath, where synchronous netlists are translated to asynchronous threshold

gates, such as m-of-n gates [116].

Synthesis CAD flows. Several CAD flows have been developed for asynchronous circuits. The

earliest is the Caltech Synthesis Method from Alain Martin’s group [123], followed by Philips’ Tan-

gram Compiler, which was used for development of 80C51 microcontrollers, that had several appli-

cations with one of most prominent one being for smart card applications [14]. In addition, several

automated tool flows have been developed for NCL-based systems, from as early as 2000 [116] to

more recent ones [139]. Multiple pipeline optimization frameworks have also been proposed, which

use techniques such as slack matching and loop unrolling. One of these pipeline optimization flows

is Proteus, from 2011, which has been used in the development of Intel’s Ethernet switch [8], [45].

Also, around the same period as Proteus, Tiempo was introduced, which uses high-level transaction-

level modeling (TLM) of SystemVerilog, for specification entry, and then compiles it to a gate-level

netlist, followed by synthesizing to layout using commercial synchronous tools [160].

Asynchronous processors. The first modern asynchronous 16-bit RISC processor was devel-

oped at Caltech by Martin’s group in 1988 [124]. In 1993, another influential processor, Amulet

1, was designed at University of Manchester, which is an asynchronous version of the ARM pro-

cessors [65]. Since then, there have been several processors that have advanced the field with new

pipeline optimizations, cache and memory design, exception handling, speculative operation [148]:

TITAC-1/2 [179], Amulet2e and Amulet3i [65], and MiniMIPS [125].

GALS systems. An alternative to fully-asynchronous systems are globally-asynchronous locally-

synchronous (GALS) systems. An example GALS system is shown in Figure 1.3, where syn-

8

CHAPTER 1. INTRODUCTION

Figure 1.3: A GALS system

chronous computing elements, operating at different clock frequencies, are connected using an

asynchronous interconnection network. For correct synchronization between synchronous and asyn-

chronous components, mixed-timing wrappers are required at the sync-async boundaries. The

GALS approach eliminates the use of global clock for the entire chip [107], [147], [182].

Commercial applications. Asynchronous designs have been used in several industrial applica-

tions.

Philips Semiconductors (now NXP) developed an asynchronous 80C51 microcontroller in the

late 1990s to early 2000s [63]. This microcontroller showed 3-4× lower power as well as lower

electromagnetic interference (EMI) noise than its commercial synchronous version. This combined

advantage led to the use of these controllers in wide-range of consumer electronics, such as pagers,

cell phones, smart cards and digital IDs.

Asynchronous design has also made in-roads in FPGA development. Achronix Semiconductor

introduced the Speedster 22i family of FPGAs in the mid 2000s [183]. These high-performance

FPGAs used fine-grain bit-level pipelining, and could operate at 1.5 GHz in 22 nm technology.

Intel acquired the asynchronous startup Fulcrum Microsystems in 2011 to develop its industry-

leading FM5000/6000 series Ethernet switch chips [45]. This switch supports a 40 Gigabit Ethernet

using a fully-asynchronous high-speed crossbar, providing a maximum of 640 Gbps bandwidth with

high energy efficiency.

9

CHAPTER 1. INTRODUCTION

Asynchronous design has also seen an increasing interest in brain-inspired neuromorphic com-

puters, from both IBM [2] and Intel [46], aiming to achieve the high efficiency of the biological

brain. These computers follow a non-Von-Neumann architecture, where neurons are the main com-

puting elements, with closely-coupled memories, and these neurons are connected to each other

using synapses, modeled as the interconnection framework of the computer. IBM’s TrueNorth is

5.4 billion transistor neuromorphic GALS chip, which connects 4096 synchronous cores, modeling

1 million neurons and 256 million synapses using a fully-asynchronous NoC. Intel’s Loihi is a fully-

asynchronous 2.1 billion transistors system, comprising 128 cores, each modeling 1024 neurons.

1.3 Networks-on-Chip: An Introduction

Networks-on-Chip (NoCs) are becoming the de facto standard of communication for many-core

systems, and are the focus of this thesis. This section presents the motivation behind the rise of

NoCs, its basics and advantages, and recent advances in synchronous as well as asynchronous NoCs.

1.3.1 NoCs: Motivation, Basics, and Advantages

System performance and power depend not only on computing efficiency but are also governed by

the communication efficacy of the on-chip interconnects [122]. In particular, on-chip interconnects

have become the limiting factor to achieve high performance and low power for today’s many-core

systems due to two reasons: (i) cores for these systems operate on different clock frequencies, and a

reliable and efficient interconnect is required to manage interaction between these different timing

domains; and (ii) with technology scaling, computational elements and memories have become

faster and more energy-efficient but the performance and power of the interconnects has not scaled

down. Given these reasons, it is important to consider designing efficient on-chip communication

framework as a first-class research problem.

Traditional global buses are often not suitable for today’s large-scale many-core processors [122].

In bus-based interconnects, a single bus is shared between multiple processors, graphics cards, mem-

ory modules, and accelerators, which is not scalable as the number of units increase, both in terms of

performance and power. Due to the centralized architecture, buses have limited support for handling

multiple communication flows in parallel. To start a transmission, a sender first requests access to

10

CHAPTER 1. INTRODUCTION

the bus. Since, there can be multiple senders active at one time, arbitration is performed and the bus

access is granted to the winner. The winner then broadcasts messages on the bus, which are received

by all ‘slave’ units but are accepted only by the intended receiver, and ignored by the others. Such

bus-wide broadcasts can have significant power overheads.

Another conventional interconnect is the point-to-point interconnect. These interconnects use

dedicated wires connecting each source-destination pair, e.g. a crossbar. This network can lead

to high performance but at a cost of significant power and area overheads, and may not scale well

with large networks. These interconnects also suffer from significant physical design issues, where

routing of these large number of dedicated wires is an arduous task.

As shown in Figure 1.4, NoC provides a distributed communication infrastructure, consisting of

switches and channels. Each processing element (PE) is connected to the switch through a network

interface (or NI), and the switches are in turn connected to each other using channels or links. The

switches and channels are organized in a fixed structure called a topology, which can be of different

types, e.g. mesh, torus, ring, etc. [122]. During a transmission, the PE sends a message to the NI,

which performs packetization, and converts the message into multiple packets, which are sent to the

attached switch. The switches use an underlying routing algorithm to determine the path for routing

the packets to the destination switch, traversing intermediate channels. The destination switch sends

the received packets to the NI, which converts them back to messages, compatible to the formats

used by the PEs, and sends them to the destination PE. In cases where the PEs are operating at

a different clock rate than the NoC, the NIs may also use mixed-timing interfaces to synchronize

between the NoC and the PEs.

NoCs have several advantages over the traditional interconnects:

• High performance and energy efficiency. NoCs provide a shared communication infrastruc-

ture, which can be utilized by many traffic flows at the same time. This parallel and distributed

operation leads to high performance, without utilizing extra dedicated wiring resources, hence

with minimum area and power overheads.

• Scalability and reliability. The aggregated bandwidth of the NoCs scales with the network

size. In contrast, bandwidth is limited in traditional global buses, which is shared by all the

attached units and suffers when the number of units increase. Further, NoCs have regular ar-

11

CHAPTER 1. INTRODUCTION

Figure 1.4: Network-on-chip structure

chitectures, with short wires that have controlled and predictable electrical properties, leading

to a more reliable operation compared to global long wires.

• Modularity and ease of integration. NoCs support modularity by separating communication

from computation. They also facilitate design reuse where optimized standard IPs can be

simply plugged in, considerably decreasing the design efforts and allowing faster testing and

validation, hence improving the overall design cycle.

1.3.2 Advances in Synchronous NoCs

The synchronous design style is the most common approach used for NoCs. The earliest syn-

chronous NoCs were seen in the early 2000s [12], [40], [72], [76], [197]. Since then, there has been

much advancement in this field.

Topologies. Many different network topologies have been used, as well as new ones proposed

for NoCs. The most common topologies are: mesh [70], [132], torus [204], ring [93], and trees [72].

Some high-radix topologies are also proposed for high-performance computing, such as Dragon-

fly [99].

12

CHAPTER 1. INTRODUCTION

Routing Algorithms. There has been significant research on routing algorithms for NoCs.

There are two main categories: deterministic, where the path taken by a packet is fixed stati-

cally [79], [93], [177], [204], and adaptive routing, where a packet can dynamically select the

best path based on network state such as congestion [69], [72], [80], [132].

Guaranteed service. NoCs also play a critical role in systems with hard real time deadlines in

order to deliver packets on time. Such systems require NoCs to support guaranteed service (GS)

and multiple service levels [70], [93], [132].

Power and performance optimization. Several power and performance optimization tech-

niques have been introduced for NoCs. To minimize power, novel router architectures have been

proposed [192], and techniques such as dynamic voltage and frequency scaling (DVFS) have been

used to select the best V,F settings depending on channel utilization [169]. To improve perfor-

mance, optimization techniques such as speculation [150], prediction [127] and bypassing or looka-

head [149] have been used within routers. Recently, SMART NoCs were introduced that use ex-

treme bypassing, where multiple routers on the correct path are bypassed by a packet in a single

clock cycle [104].

Support for new traffic patterns. There has also been significant recent research to support

communication patterns common in parallel computing application, such as cache coherency, and

emerging areas of deep neural network architectures. These patterns involve multicast (1-to-many)

and aggregation (many-to-1) traffic. Several approaches have been proposed to support these pat-

terns while simultaneously achieving high performance with low overheads [106], [81], [88], [106],

[193].

Reliability. Fault tolerance and reliability are major concerns for NoCs as feature sizes keep

scaling down [22]. Fault-tolerant routing algorithms that route around the faulty components have

been introduced [59], [156], [209], some of which can tolerate any number of faults as long as good

connections exist [156]. Defect-tolerant router architectures have also been proposed that use error

detection codes such as CRC and redundant hardware to improve reliability [36].

Real chips and prototypes. Synchronous NoCs have been used in several academic and indus-

trial chips, which are large-scale, involve many processors, and are used for different applications.

Some of the academic prototypes include: TRIPS [71], where a NoC replaced the traditional bus for

the applications of operand networks, and more recent 36-core SCORPIO [47] with a mesh-based

13

CHAPTER 1. INTRODUCTION

NoC to support a scalable snoopy cache coherence protocol. Some of the industrial systems using

NoCs are from Tilera [10], Intel [189], and IBM [208].

Emerging technologies. Recently, several high-performance NoCs using emerging technolo-

gies such as 3D, wireless, and photonics have been proposed. A 3D chip stacks multiple device lay-

ers, connected using vertical interfaces such as Through-Silicon Vias (TSVs) [44]. New 3D NoCs

have been proposed to connect processing elements in these chips. These NoCs have many advan-

tages: lower network diameter leading to potentially high performance, reduction in total wiring

cost, and higher packing density [43], [92], [186]. In addition, wireless NoCs have been proposed

that add high-speed wireless links on top of a conventional wired NoC to create a small world effect

of bringing far nodes closer, significantly improving performance [49]. Such hybrid wireless/wired

NoCs use different wireless technologies, e.g., mm-wave or surface wave [49], [95]. Similarly,

photonics NoCs have been introduced that exploit wavelength-division multiplexing (WDM) to send

multiple packet streams in parallel, using different wavelengths, on a single channel, at speed of

light, leading to very high performance [119], [168].

1.3.3 Advances in Asynchronous NoCs

Even though synchronous NoCs are mainstream, they can still incur significant power and perfor-

mance overheads, making asynchronous NoCs a promising alternative.

Asynchronous NoCs can be used to connect synchronous components, forming globally-asynchronous

locally-synchronous (GALS) systems, or can be used in fully-asynchronous systems. The use of

asynchronous NoCs eliminates global clock management, and the associated overheads of clock

skew, clock power or any clock-gating circuitry. Given the promise of asynchronous NoCs, there

has been much research in this area in the last decade, including industrial advancements and use of

these NoCs in emerging areas of neuromorphic computing, as described below.

General asynchronous NoC research. A number of research challenges for asynchronous

NoCs have been targeted. To achieve quality of service (QoS), asynchronous NoCs have been

proposed that provide guaranteed service and multiple levels of services, in addition to best effort

traffic [23], [51], [162]. There has been important research on improving fault-tolerance and relia-

bility of asynchronous NoCs [84], [176], [205] with some works focusing on developing efficient

asynchronous NoCs that also mitigate effects of process variation [56], [142]. Automated tool flows

14

CHAPTER 1. INTRODUCTION

have also been proposed for asynchronous NoCs that guarantee not only correctness but also lead to

high-performance implementation [66], [134], [184]. Interestingly, a recent asynchronous NoC that

supports time division multiplexing (TDM) was proposed [96]; TDM is usually performed in a syn-

chronous setting, since the use of clock helps provide a time reference. In addition, space division

multiplexing (SDM) has also been used for asynchronous NoCs [206]. Further, virtual channels

(VCs) have been added to asynchronous NoCs without significant overheads in terms of area and

power [51], [136]. Multiple recent works target latency optimization of asynchronous NoCs us-

ing a low-overhead bypassing technique, where the routers on the path of a packet are informed

in advance of the arrival so they can pre-allocate the resources, and the packet is then simply fast

forwarded through the routers after arrival [57], [90]. Finally, there also has been recent interest in

using asynchronous NoCs for 3D technology [190], as well as for vision applications [163].

Industrial comparisons with synchronous NoCs. Recently, there have been asynchronous

and GALS NoCs developed at STMicroelectronics, Intel and AMD, which have been shown to be

more efficient than their synchronous counterparts.

A GALS system called P2012 from STMicroelectronics uses a fully-asynchronous NoC to con-

nect highly-customizable accelerators [11]. This system comprises 4 clusters, each consisting of 16

synchronous processors. The system delivers a performance of 80 GOPS but consuming only 2W

power. Compared to recent Quadro and Nvidia commercial GPUs, P2012 achieves significantly

better performance per unit area and performance per unit power.

Intel Labs proposed a hybrid packet/circuit-switched NoC, fabricated in advanced 22 nm tri-gate

CMOS technology [30]. This NoC supports two modes: normal synchronous packet-switched, and

a source-synchronous circuit-switched mode. The latter mode is actually an asynchronous circuit-

switched implementation, which was shown to achieve 2.7× better network throughput and a 93%

reduction in latency, compared to the synchronous packet-switched mode.

A recent asynchronous NoC router, developed jointly by AMD research and Asynchronous Cir-

cuits Lab of Columbia University, showed 55% less area and 28% reduction in latency in a head-to-

head comparison with a state-of-the-art synchronous router used in high-end AMD processors [89].

Both the routers were synthesized in advanced 14 nm FinFET technology, and used two virtual

channels. Similar improvements were also estimated for this asynchronous router with 8 VCs.

Neuromorphic computing. Neuromorphic computing is an emerging area of brain-inspired

15

CHAPTER 1. INTRODUCTION

computers that target brain-like high performance and power efficiency. These systems have billions

of computing elements, each following a non-Von Neumann architecture with a closely-coupled

local memory. The neurons, in these systems, are implemented by computing elements, either

using digital design [2] or analog [13], while the communication between neurons (or synapses)

are implemented using an interconnect. Interestingly, asynchronous NoCs are often used as these

interconnection networks, connecting billions of synchronous neural cores, forming a substantial

GALS system. Neuromorphic computing fits the asynchronous paradigm because of the event-

driven communication between neurons, and can utilize the various benefits of asynchronous NoCs

in terms of scalability, low power, and ease-of-integration.

On of the first examples of a neuromorphic computer is SpiNNaker (Spiking Neural Network

Architecture), developed at University of Manchester [62]. Spinnaker is a massively-parallel sys-

tem, where 1 million neurons are modeled in software using synchronous ARM9 cores, which are

connected using an asynchronous communication infrastructure. This system achieves burns only

50 mJ of energy when processing a 1024 by 1024 image, compared to 1.5 J for a GPU-based system.

TrueNorth from IBM is a recent example, which is a 5.4-billion transistor neuromorphic chip [2].

TrueNorth is also a GALS system with 4096 synchronous neurosynaptic cores, modeling 1 million

neurons and 256 million synapses, connected using a fully-asynchronous NoC. This chip only con-

sumes 63 mW of power while processing a 400×240 video input. TrueNorth is also being used for

other applications such as face recognition.

Very recently, Intel announced the Loihi neuromorphic chip, which is a fully-asynchronous 2.1-

billion transistor system [46], [117]. This chip comprises of 128 neural cores, modeling 1024 neu-

rons each, and consuming only 25 pJ energy per operation at 1 V supply. These cores are connected

using a 8×4 asynchronous mesh NoC. Loihi is the first system to support on-chip learning.

1.4 Multicast Communication and its Applications

While NoCs have several benefits, they also face a key challenge of supporting new types of traffic

patterns. Modern NoCs must be able to support communication requirements of advanced parallel

architectures. One such important class of traffic is multicast, i.e. 1-to-many communication, which

has seen a growing interest recently [15]. Even though there has been significant research on sup-

16

CHAPTER 1. INTRODUCTION

porting multicast in synchronous NoCs, this capability has been largely missing from asynchronous

NoCs, despite the numerous applications of multicast as described below. This thesis focuses on

supporting high-performance multicast in asynchronous NoCs while maintaining low overheads.

Multicast communication is defined as sending the same packet from one source to an arbitrary

number of destinations. There are three main domains where this traffic pattern is common: (i)

parallel computing applications, (ii) new interconnect technologies, and (iii) emerging NoC appli-

cations.

Multicast has been widely used in parallel computing domain for three main applications: cache

coherence protocols, shared operand networks, and barrier synchronization [88]. In cache coher-

ence, multicast can be used to send write invalidates to multiple processors in directory-based pro-

tocols. There are also multicast [21] and broadcast-based [126] snoopy cache coherence protocols.

In shared operand networks such as RAW [181], TRIPS [166], Wavescalar [178], multicast can be

used to deliver operands to multiple instructions. Also, barrier synchronization can be performed

using multicast, crucial for message passing based shared memory systems. This approach is useful

in bringing a set of processors to a known global phase before proceeding to a new phase of compu-

tation. In this case, a barrier-sync packet indicating thread synchronization is multicast/broadcast to

all the participating processors [175]. Therefore, given these important applications, the NoCs for

these advanced parallel architectures must support efficient multicast.

Multicast is also gaining importance with new technologies replacing the traditional electrical

wires in NoCs. Emerging interconnect paradigms such as nanophotonics, wireless, and 3D integra-

tion have seen recent interest [26], [49], [168], [202]. Multicast and broadcast are inherent forms

of communication used in radio frequency (RF) [28], [27], [94] wireless [49], [50], [111], photon-

ics [33], [133], [201], and CDMA technologies [112], [153], [195]. Supporting lightweight, and

power-performance efficient multicast in these emerging NoCs is an active area of research [94].

There is also interesting research in handling multicast in 3D NoCs [54].

Finally, 1-to-many (multicast) and 1-to-all (broadcast) communication patterns are also com-

mon in emerging areas of neuromorphic computing [2], [46] [130], [138], [144], and computational

genomics [24]. A significant portion (sometimes 100%) of spiking neural networks (SNNs) [188] or

deep neural networks (DNNs) [32], [109], traffic is multicast/broadcast, where a neuron communi-

cates with several other neurons. Similarly, broadcast patterns are common for genomic applications

17

CHAPTER 1. INTRODUCTION

such as sequence analysis and parallel sequence alignment [24]. NoCs designed for these emerging

applications must be able to support multicast and broadcast efficiently. Recently, asynchronous

NoCs have also been used to handle communication requirements of hardware implementations of

SNNs [130]. However, an efficient multicast capability has been entirely missing from general-

purpose asynchronous NoCs.

1.5 FPGAs: Architecture, and Applications

In the last decade, research and development in the field of reconfigurable computing has led to

FPGAs becoming more mainstream and being deployed as SoCs for variety of applications. Modern

FPGAs not only consist of the standard programmable logic fabric but also a processing system

comprising multiple cores, GPUs, accelerators, and memories [151], [161]. The combination of

programmability with a high-performance processing unit enables efficient implementation of large-

scale systems, targeting different applications, at low cost, low power, and achieving fast time-to-

market.

FPGAs have come a long way from the production of the first Xilinx FPGA in 1985, which

could support 1000 ASIC gates to Xilinx’s latest Zynq Ultrascale+ FPGA, which supports up to

6.2 million ASIC gates. Since 1999, there has been a major push towards integrating processors

and memories with the programmable logic: from a single core to multi-core homogeneous and

heterogeneous systems with different processors targeting specialized tasks and supporting different

operating systems [151]. However, given the advancement in this field, there has been only limited

research on implementing asynchronous circuits on FPGAs. This thesis takes on this challenge of

safely and optimally implementing asynchronous NoCs on the modern FPGAs.

Before discussing the implementation of asynchronous NoCs on FPGAs, it is important to first

understand the basic architecture of an FPGA, and the recent trends of its different applications.

1.5.1 FPGA Architecture

Figure 1.5 shows the high-level architecture of a Xilinx 7 series FPGA, such as Zynq 7000, Kintex

7, and Virtex 7 [20]. There are two main components: a processing system, and a programmable

logic fabric.

18

CHAPTER 1. INTRODUCTION

Figure 1.5: Xilinx 7 Series FPGA block view [86]

The processing system consists of an advanced processor subsystem with dual-core ARM Cortex-

A9 CPUs, L1/L2 caches, on-chip memory, and other useful units such as DMA and interrupt con-

troller. Other important components of the processing system are the flash controller, multi-port

DRAM controller that supports DDR2 and DDR3, and a rich set of standard I/O peripherals. This

system connects to the programmable logic fabric using a high-performance low-latency AXI-based

interconnect that can enable 16 parallel DMA channels and a functional bandwidth of over 300

MB/s.

The structure of a programmable logic fabric is shown in Figure 1.6 [98]. It uses an island-

style architecture with two main components: configurable logic blocks (CLBs) and an underlying

programmable interconnect, connecting the CLBs. The CLBs consist of configurable one-to-five

input look-up tables (LUTs) that can implement different logic functions, and flip-flops for storage

19

CHAPTER 1. INTRODUCTION

Figure 1.6: FPGA programmable logic fabric

purposes. The programmable interconnect consists of switch boxes, and horizontal and vertical

channels. The switch boxes mainly consist of multiplexers that can be configured, as well as buffers

to drive the wires of the channels.

1.5.2 FPGA Applications

Due to the advancement in FPGA technology, these devices are being deployed for several industrial

applications [151], [161]. Some of the important ones are [161]: to develop efficient digital signal

processing systems, implementing vision applications in FPGA for aerial vehicles such as UAVs,

and in automative systems for vehicle velocity estimation, etc. With the ever-increasing interest

in machine learning algorithms, FPGAs are also being used for hardware-assisted acceleration of

these algorithms: prominent examples are at Microsoft, where FPGAs are being used to accelerate

the Bing search engine [3], [25]. Additionally, other applications of FPGAs include: developing

security circuits such as PUFs [91], as well as for big-data analytics acceleration [191].

1.6 Research Focus

This thesis aims to significantly advance the field of asynchronous NoCs by introducing the first sys-

tematic and efficient approach to support multicast in these NoCs. While there has been significant

20

CHAPTER 1. INTRODUCTION

work on handling multicast in synchronous NoCs, this capability has been entirely missing from

general-purpose asynchronous NoCs.

While the primary focus of this thesis is on supporting multicast in asynchronous NoCs, a sec-

ondary focus is on efficiently and safely synthesizing these NoCs on modern FPGAs. Synthesis and

evaluation of these NoCs on commercial FPGAs is required to not only perform a realistic analy-

sis of the actual physical design in terms of performance and energy, but also to advance the field

of asynchronous NoCs by introducing a systematic and efficient methodology to map these NoCs

on FPGAs, targeting both robustness and high performance. Such a methodology has been largely

missing from asynchronous NoCs research, even though there has been significant advancement in

FPGAs and their increased commercial uptake.

1.6.1 Challenges with Supporting Multicast in Asynchronous NoCs

To achieve high-performance and low-overhead multicast, there are multiple challenges that must

be addressed: (i) selecting a multicast addressing that can efficiently encode multiple destinations;

(ii) efficient multi-way forking of the flits of multicast packets; and (iii) avoiding any deadlocks that

can occur due to multicast.

There are trade-offs involved in selecting the best multicast addressing scheme. There can

be several possibilities: encoding addresses (x,y coordinates) of all destinations, using bit-string to

encode destinations, or encoding the paths taken at various intermediate switches to the destinations.

It is important that the selected addressing not only has a good coding efficiency but also leads to a

simpler decoding logic in the switches for low latency.

Replication of flits of multicast packets at switches is the core operation of parallel multicast,

and must be performed efficiently. In synchronous NoCs, this replication can either take multiple

clock cycles [81], [88], or can be performed in parallel in a single clock cycle [149], [164], [193].

For high-performance multicast in asynchronous NoCs, switches must support forking of the flits of

a multicast packet in parallel towards multiple output ports, and this replication must be performed

without adding significant area/energy overheads. In addition, due to the asynchronous operation,

this multi-way routing is performed in continuous time without waiting for discrete clock cycles,

which can also potentially lead to high performance.

Multicast operation is potentially prone to deadlocks. Deadlocks can occur within a switch,

21

CHAPTER 1. INTRODUCTION

due to cyclic dependency between multiple multicast packets, where one packet acquires some

resources needed by the other packet, and vice versa, and both packets wait on each other to free

up these resources [164]. Such deadlocks must be avoided but without incurring significant costs in

terms of area, power, and performance.

1.6.2 Challenges with Implementing Asynchronous NoCs on FPGAs

There are three main challenges with implementing asynchronous NoCs on FPGAs: (i) mapping

of special asynchronous elements that are not used in traditional synchronous designs; (ii) in the

absence of clocks, asynchronous circuits rely on timing constraints that must be satisfied for correct

operation; and (iii) developing an automated CAD tool flow for implementation on FPGAs.

There are elements, which are not used in synchronous designs but widely-used in asynchronous

NoCs. These are: C-element, used for storage, and a mutual exclusion (mutex) element for arbitra-

tion. Mapping these elements on FPGAs, both safely and efficiently, is required.

The focus of this thesis is on single-rail bundled-data asynchronous NoCs, a design style which

has gained significant interest recently to achieve high performance at low overheads, but also rely

on moderate timing constraints for correctness [66], [83], [89], [163]. These NoCs use a single-

rail bundled data encoding, where synchronous-style datapath is strobed by a req wire. While the

use of single-rail data encoding leads to low overheads, two timing constraints are required for

correctness: in the datapath, req must arrive only after data is stable (i.e. a bundling constraint),

and in the control, relative timing constraints (RTCs) between any two paths must be satisfied. The

methodology to map these NoCs on FPGAs must guarantee that these constraints are satisfied.

Finally, developing an automated tool flow to map asynchronous NoCs on FPGAs is challeng-

ing. These flows must not only satisfy all timing constraints for correctness but also lead to a high-

performance mapping. In addition, these flows must use existing commercial tools for convenience

of the designers.

1.7 Contribution of Thesis

In this thesis, new multicast strategies are introduced for two different network topologies, first

starting with a simpler variant mesh-of-trees with low-radix routers, followed by the more common

22

CHAPTER 1. INTRODUCTION

and complex 2D mesh with higher radix routers. To the best of our knowledge, these are the first

general-purpose asynchronous NoCs to directly support parallel multicast.

Additionally, for a more realistic analysis and evaluation, and also to advance the general field of

asynchronous NoCs, a systematic CAD methodology is introduced to synthesize these NoCs on FP-

GAs. A challenging two-fold goal is targeted for the final implementation: it must be highly robust

and also achieve high performance. To the best of our knowledge, this is the first systematic method-

ology to efficiently map asynchronous NoCs on FPGAs. To demonstrate the effectiveness of the

proposed flow, two distinct 5-port asynchronous NoC switches are implemented using the proposed

tool flow: one highly-efficient switch that only handles unicast, and the other that also supports

multicast, proposed as part of this thesis. A head-to-head comparison was performed between these

switches and a state-of-the-art synchronous switch: the asynchronous switches significantly outper-

form the synchronous one in terms of energy and idle power, as well as in some critical performance

metrics.

Multicast in variant mesh-of-trees NoCs using local speculation. The first topology targeted

in this thesis for supporting multicast is variant mesh-of-trees (MoT). This topology is simple, in-

volves low-radix switches, and has been used for high-performance parallel computing to intercon-

nect processing cores with memory modules.

For variant MoT, a novel strategy, local speculation, is introduced for high-performance and

low-overhead multicast [18]. In this strategy, a packet (unicast or multicast) is always broadcast

at a fixed subset of speculative routers in the network. To restrict the distance traveled by any re-

dundant packets to small ‘local’ regions, these packets are throttled by neighboring non-speculative

routers, hence, limiting the penalties of speculation to minimal impact on congestion and power.

Speculative routers are very simple and fast as they do not perform route computation or channel

allocation. Non-speculative routers perform throttling with almost no hardware overhead. This mix

of speculative and non-speculative routers leads to a hybrid network architecture. For multicast

traffic, significant performance benefits with small power savings are obtained by the new hybrid

network over a fully non-speculative baseline. Interestingly, similar improvements are also shown

for unicast traffic.

Multicast in 2D-mesh NoCs using a continuous-time replication strategy. The second topol-

ogy used for handling multicast is 2D mesh, which is a more common topology. Multicast in 2D

23

CHAPTER 1. INTRODUCTION

mesh is a more challenging problem, as it involves higher-radix routers, and exhibits significant

amount of parallelism with multiple packets routed through different input ports of a router at the

same time.

For 2D mesh, a new replication strategy is introduced to achieve high-performance multicast

but still maintaining low overheads [17], [19]. In this approach, the flits of a multicast packet are

routed through the distinct outputs of the router according to each output’s own rate, concurrently

and in continuous time. Unlike synchronous, this unique asynchronous approach, not discretized

to clock cycles can provide considerable performance benefits by accommodating subtle variations

in network congestion and exploiting ’sub-cycle’ differences in interface operating rates. Exhaus-

tive experiments on wide-ranging multicast benchmarks, created with traffic patterns common in

cache coherence protocols and neural networks, show significant latency and throughput gains,

with small-moderate energy improvements, over a baseline network that performs multicast using

several unicasts, injected and routed serially. Interestingly, moderate latency improvements were

also shown for unicast traffic.

A systematic methodology for synthesizing asynchronous NoCs on FPGAs. Finally, a com-

prehensive CAD tool flow is proposed for mapping asynchronous NoCs on modern commercial

FPGAs. The target of this work is bundled-data asynchronous NoCs, which are shown to be highly-

efficient but also involve moderate timing constraints for correct operation. The proposed methodol-

ogy not only makes sure that all timing constraints are satisfied, but also achieves high performance

for these NoCs. For ease of implementation and convenience for the designs, only existing FPGA

synthesis tool is used. In addition, asynchronous NoCs also use some special asynchronous compo-

nents such as a C-element and a mutex; a systematic guide on how to map these components both

efficiently and safely is also proposed. Two distinct bundled-data 5-port switches are synthesized

using the proposed tool flow on Xilinx Virtex 7 in 28 nm: one that only supports unicast [66], and the

other that also handles multicast (Chapter 5). Compared to a high-performance synchronous switch,

the unicast asynchronous switch achieved 30.7% lower latency and 44.4% lower energy. Interest-

ingly, the multicast asynchronous switch also achieved 11.5% lower latency with similar energy as

synchronous for a unicast transmission, despite the extra instrumentation for multicast support.

24

CHAPTER 1. INTRODUCTION

1.8 Organization of Thesis

The thesis is organized as follows.

Background of the thesis is provided in Chapter 2 and Chapter 3. Chapter 2 covers the basic

concepts of asynchronous design: different handshaking protocols, data encoding schemes, spe-

cial asynchronous components, overview of asynchronous pipelines with a particular focus on the

Mousetrap pipeline, and mixed-timing interfaces, which are used to design GALS systems. Chap-

ter 3 presents the background on networks-on-chip: different topologies that are used in this thesis,

routing algorithms, packet encoding schemes, basic synchronous router architecture and optimiza-

tion strategies, multicast techniques and related work on supporting multicast in synchronous NoCs,

followed by examples of state-of-the-art synchronous NoCs that support multicast.

Chapters 4, 5 and 6 present the new research, and form the core of the thesis. Chapters 4 and 5

introduce the new multicast strategies, targeting simpler mesh-of-trees topology and more complex

2D mesh, respectively. Chapter 6 introduces a new CAD methodology to implement asynchronous

NoCs on FPGAs, addressing various challenges, and using a unicast asynchronous NoC router, and

the multicast-aware asynchronous router from Chapter 5 as case studies.

Finally, concluding remarks and future research directions are presented in Chapter 7.

25

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN

Chapter 2

Background: Asynchronous Design

Since the focus of this thesis is on asynchronous NoCs, a brief background on asynchronous design

style is presented in this chapter before getting to the new research. This background covers several

fundamentals for designing asynchronous NoCs: the types of handshaking protocols that can be

used and their trade-offs, different data encoding schemes, some special asynchronous components

that will be used in these NoCs, an overview of Mousetrap pipelines that form the basis of these

NoCs, and different types of mixed-timing interfaces that are required to build GALS systems.

2.1 Handshaking Protocols

Figure 2.1 shows a typical asynchronous communication between a sender and a receiver. The

communication channel involves a request (req) wire and an acknowledge (ack) wire. The req wire

indicates when the data sent by the sender is valid, and the ack wire indicates that the receiver

successfully received the data.

There are two most common handshaking protocols used for the communication channel. The

first is a four-phase (return-to-zero (RZ) protocol), and the second is a two-phase (non-return-to-

zero (NRZ) protocol) [147]. There are other non-standard communication protocols as well, such as

pulse mode [152], which combine the advantages of the RZ and NRZ protocols, but have complex

timing requirements and implementation. Hence, the focus of this thesis is only on two-phase and

four-phase protocols, and the trade-offs of selecting one over the other.

26

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN

REQ

ACK

Sender Receiver

Figure 2.1: A typical asynchronous communication

Figure 2.2: Two common handshaking protocols

2.1.1 Four-Phase Protocol

Figure 2.2(a) shows a single transaction using a four-phase protocol [45], [172], [183], [185], [198].

In this protocol, req and ack are initially low. The sender initiates a transaction by asserting req,

and the receiver responds by asserting ack. These events form the active phase. In the following

reset phase, these two wires are in turn deasserted low. Therefore, a single transaction requires two

roundtrip communications.

2.1.2 Two-Phase Protocol

Figure 2.2(b) shows two transactions using a two-phase protocol [85], [154], [171]. In this protocol,

a single transition on the req wire starts the transaction, which is terminated by a single transition

on the ack wire. Hence a transaction only involves one roundtrip communication.

27

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN

2.1.3 Trade-Offs

There are interesting cost trade-offs involved in selecting the right handshaking protocol. A four-

phase protocol may lead to simpler designs due to the return-to-zero phase. However, two roundtrip

communications per transaction can lead to performance overheads. A two-phase protocol, on the

other hand, may lead to complex designs but is a better choice for performance due to only a single

roundtrip communication per transaction. Moreover, recently, the two-phase protocol has been used

to design asynchronous NoCs which are not only high-performance but also very simple [66], [83],

[89], [96]. Therefore, a two-phase protocol is mainly used in this thesis.

2.2 Data Encoding Schemes

After deciding the handshaking protocol, the next major decision is which encoding scheme to use

for the data. There are two widely-used data encoding schemes: delay-insensitive (DI) codes, and

single-rail bundled-data [147].

2.2.1 Delay-Insensitive (DI) Codes

In DI encoding, the req wire is typically replaced by the data bits, where a code is used that identifies

both the data value and its validity [45], [183], [185], [198]. The data bits in this encoding can be

sent to the receiver in any arbitrary order, and the arrival times of the bits can also be arbitrarily

skewed, but the receiver is still able to successfully identify when data is valid and to extract the data.

A completion detector is required at the receiver to detect the termination of a data transmission.

A common and simple instance of the DI codes is dual-rail encoding [45], [183], [198]. As

shown in the Figure 2.3, the dual-rail code encodes a data bit using two wires. The bit combination

‘01’ is used to encode 0 and ‘10’ represents 1. ‘00’ is called a spacer, used between two valid

transmissions, and ‘11’ is not used and is invalid in this scheme. Other popular approaches include

1-of-4, more generalized m-of-n codes, level-encoded dual-rail (LEDR) [48], and level-encoded

transition-signaling (LETS) codes [128].

28

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN

Figure 2.3: Two widely-used data encoding schemes

2.2.2 Single-Rail Bundled Data

An alternative is a single-rail bundled data encoding. As shown in the Figure 2.3, this scheme uses

a synchronous-style single-rail data channel with an extra req wire, called bundling signal that is

used as a local strobe [74], [89], [100], [171]. A simple single-sided timing constraint is required

for correctness: the req arrive after the data is stable, and therefore models a worst-case delay. This

matched bundling delay can be implemented as an inverter chain or a carefully replicated critical

path taken from the datapath [147]. Recently, a set of heuristics have been proposed to select the best

mix of gates, taken from the same standard-cell libraries used to synthesize the datapaths and wire

lengths to generate high-performance and dynamically reconfigurable bundling delay lines [140].

Moreover, these delays can be made fairly tight.

2.2.3 Trade-Offs

Like the handshaking protocols, there are interesting trade-offs involved with the encoding schemes.

DI encoding may have lower coding efficiency (2n wires for n bits in dual-rail), which can lead to

high dynamic power and area, but is also more timing-robust to static process variations or dynamic

timing deviations. Single-rail bundled data, on the other hand, can be less timing-robust but only

involves simple timing constraints, which, in practice, are easily satisfied, while also providing

higher coding efficiency with lower energy/area footprint. Given these advantages, the single-rail

bundled data encoding has been widely-used in recent asynchronous NoCs [66], [83], [89], [96],

and is therefore, also used in this thesis.

29

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN

C
A

B

Out
Out

keeper

B

A

Out

Can be implemented as

an AOI222 gate

A

B

(c)(b)(a)

Figure 2.4: The C-element: (a) symbol, (b) a transistor-level design, and (c) a

standard-cell based design

2.3 Special Asynchronous Components

There are some special asynchronous elements that are not typically used in synchronous designs.

These components are: the C-element and the mutual exclusion (mutex) element. Another critical

component is an n-way asynchronous arbiter, which mediates between multiple requests for a shared

resource. These arbiters, and in particular, the 4-way arbiters, are important parts of the proposed

asynchronous NoC routers.

2.3.1 The C-Element

The C-element is an asynchronous state-holding component [147]. As shown in Figure 2.4(a), it

has two inputs: A and B, and one output. The output is deasserted when both inputs are low, and

asserted when both inputs are high. For all other cases, the element holds its output.

Figure 2.4 shows two possible designs of the C-element. One possibility is at the transistor-

level, as shown in Figure 2.4(b), which has advantages of higher performance and lower power. The

other option is a standard-cell design, as shown in Figure 2.4(c), which can be easily integrated into

an automated design flow. The latter was also used in Tangram, an early design flow, developed at

Philips Semiconductors [14], and used in a number of products. Moreover, both the designs can be

simply extended to support higher number of inputs.

30

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN

(a) (b)

Figure 2.5: Mutex: (a) block-level view, (b) design details [147]

2.3.2 The Mutex

The mutex is used for basic arbitration in asynchronous systems. Arbitration in an asynchronous

design is more challenging than in the synchronous designs. In synchronous, the result of the arbi-

tration between requests is decided based on the order of arrival of the requests during discrete clock

cycles. While in asynchronous, these requests arrive in continuous time, and can be only picosec-

onds apart. The mutex element is specially designed to handle this continuous-time arbitration.

There are two requests input to the mutex, with one grant output corresponding to each request,

as shown by a block-level view in Figure 2.5(a). The design of the mutex is shown in the Fig-

ure 2.5(b), introduced by Seitz [147]. This mutex contains two stages: a digital arbiter stage and an

analog filter stage. The arbiter stage performs arbitration between requests using a cross-coupled

NAND structure, similar to an SR latch. If the two requests arrive close to each other, the arbiter can

become metastable. The filter stage keeps the grant outputs of the mutex low while the arbitration

is being resolved, and once the arbitration is complete, it cleanly asserts exactly one grant high.

The mutex operates using a four-phase handshaking protocol. In a basic scenario with no con-

tention, an assertion on one request leads to an assertion on the corresponding grant, followed by

deassertion of both. In a scenario with contention, with one request arriving slightly before the

other, the arbiter stage performs arbitration, during which the filter stage keeps the outputs low.

Once the arbitration is resolved, the grant corresponding to the winning request is asserted. This set

phase is then followed by a reset phase, where both the request and the grant go back to low, in turn.

This deassertion is then followed by the other pending request being granted.

The resolution time for arbitration during contention depends on the difference in arrival times

31

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN

of the requests. When the requests are far apart, the resolution is quite fast, with the resolution time

degrading as the difference in arrival times gets smaller. When the requests arrive extremely close

to each other (nearly 1 ps apart) then the time to resolve arbitration can be relatively long. However,

in practice, ambient physical conditions, such as noise, can lead to fast resolution of arbitration.

2.3.3 The N-Way Arbiters

An n-way arbiter is an important component that mediates between n requests, which are trying to

gain access to a shared resource. This resource can be a shared bus in a multi-processor system or

an output channel of a NoC router node requested by multiple input ports. Designing these arbiters

efficiently and robustly is critical, especially for NoCs, where the current trend is towards the use of

topologies with high-radix (5-7) routers that will require n-way arbiters with n greater than 3.

Three cost metrics are considered when designing n-way arbiters: high performance, impartial-

ity, and scalability [135]. High performance not only includes the latency of the arbiter to access the

shared resource but also its throughput in processing the requests in various competing scenarios.

Impartiality involves two facets: (i) latency equalization, i.e., latency from each input request to the

corresponding grant output must be similar, and (ii) arbitration fairness, where every input request

should have similar probability of winning the arbitration. In addition, the arbiters must also be

scalable to larger sizes, and its performance and impartiality should not degrade as n increases.

A recent work introduced a novel tree-based architecture for n-way arbiters that mitigates vari-

ous forms of impartiality and also achieves high performance [135]. This tree architecture is highly

balanced and therefore has equalized latency response, as well as a higher degree of arbitration fair-

ness. This paper introduced a scalable family of n-way arbiters, with n ranging from 3 to 9, that

also achieved lower latency with higher throughput, compared to other arbiters.

A 4-way arbiter is an important case of n-way arbiters. An efficient and robust design of this

arbiter is required, as it not only forms a building block of bigger arbiters but is also crucial for

5-port asynchronous NoC routers, which are the focus of this thesis.

The design of a 4-way arbiter is shown in Figure 2.6 [135]. The arbiter takes four input re-

quests and has grant output corresponding to each request. This design achieves high performance

using three mutexes in parallel: left and right mutexes arbitrate between the requests req0/req1 and

req2/req3, respectively, while the middle mutex arbitrates between the two pairs. The final decision

32

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN

Figure 2.6: A 4-input arbiter [135]

on which request to grant access is made using a merge of the individual arbitration results of the

mutexes, performed using C-elements, which synchronize the result of the middle mutex with the

side ones.

The arbiter effectively implements a round robin arbitration policy, both between the left and

right side, and between the requests on the same side, in active scenarios. For example, in a con-

tention scenario, with three or four requests, whenever one of these requests is granted, any other

request from the the same side of the winner will be masked for the time being. The idea behind

this masking is to make sure that there is no other active request on the same side when the winning

request is deasserted so that the middle mutex can be released. This operation results in an advan-

tage for the requests from the other side to now acquire the middle mutex, hence leading to a fair

arbitration.

33

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN

Figure 2.7: A 3-stage Mousetrap pipeline [171]

2.4 Mousetrap Pipelines

Mousetrap is a high-performance pipeline that uses a two-phase handshaking protocol and single-

rail bundled data encoding [171]. This pipeline forms the basis of the proposed asynchronous

NoCs, and it is therefore important to understand its structure and operation. Also, since Mousetrap

is a bundled-data design, it relies on one-sided timing constraints for correct operation. These

constraints are also reviewed below.

2.4.1 Mousetrap Structure

Figure 2.7 shows a 3-stage Mousetrap pipeline. Each stage consists of a single bank of normally-

transparent D-latches with a simple local control: an XNOR gate. The interface between adjacent

stages has single-rail data and a bundling req going forward and an ack going backward. A delay

element is added on the req wire to match the worst-case logic block delay.

2.4.2 Mousetrap Operation

Mousetrap operation is based on a capture-pass protocol, where the latches are initially transparent

with all the req/ack wires at 0. At a stage i, as new data arrives with its bundling req, it is passed

through the latch and the corresponding reqi is toggled, causing the XNOR of that stage to close

the latch, storing the data. In parallel, acki is sent upstream to request new data. Finally, when

an acki+1 is received from right, the XNORi makes the register transparent, again completing the

34

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN

entire cycle.

2.4.3 Timing Constraints

To ensure correct operation of the bundled-data circuits, two types of timing constraints must be

satisfied. First, a bundling constraint in datapath: req must transition after data is stable. Second,

relative timing constraints (RTCs) in control: the delay across one path should be less or greater

than the other.

Mousetrap exhibits examples of these timing constraints. Bundling constraint: a delay element

must be added on the req wire to match the worst-case delay across the logic block between two

stages, as shown in Figure 2.7. Data protection RTC: once data enters a stage (e.g. stage 2), it

must be securely stored in the latch register before new data is produced by the previous stage. This

constraint involves two paths starting after req2 toggles: one path to close the latch2 through the

XNOR2, and the other path comprising of re-enabling latch1 through XNOR1, followed by the

delay of latch1 and logic1. Clearly the delay of first path must be less than the second.

2.5 Mixed-Timing Interfaces

Mixed-timing interfaces are crucial in building GALS systems [147]. In these systems, the mixed-

timing interfaces are required to connect processing cores, accelerators, memories, operating at

different clock frequencies with an asynchronous NoC. Although this thesis does not immediately

focus on GALS systems, an important future work is to implement such systems on FPGAs.

There are three kinds of mixed-timing interfaces. These are: (i) sync-sync that connects a syn-

chronous sender with another synchronous receiver that is operating at a different clock frequency,

(ii) sync-async that connect a synchronous sender to an asynchronous receiver, and (iii) async-sync,

which is a dual of sync-async.

Robust and high-performance FIFO-based mixed-timing interfaces have been introduced for

the above three cases [29]. Each FIFO has a put interface for the sender, and a get interface for

the receiver. These interfaces can be either synchronous or asynchronous, depending on the type of

FIFO: sync-sync, async-sync or sync-async. For example, for an async-sync FIFO, an asynchronous

put interface is combined with a synchronous get interface.

35

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN

Figure 2.8: Put/get interfaces for mixed-timing FIFOs: (a) synchronous interfaces, (b)

asynchronous interfaces [29]

The block-view of the synchronous put and get interfaces is shown in Figure 2.8(a). The syn-

chronous put interface has three inputs: a clock (CLKput), a control request to initiate put operation

(reqput), and a data bus (dataput). It has one status output, full, which indicates if the FIFO is full

or not. The synchronous get interface has two inputs: CLKget, and reqget. This interface has two

outputs: a data bus dataget, where the data is placed, and an empty status signal, which indicates if

the FIFO is empty or not.

The block view of the asynchronous put and get interfaces is shown in Figure 2.8(b). These

interfaces are more simplified compared to the synchronous ones. Each interface only contains a

data bus as input (for put) or output (for get), and handshaking controls req and ack. A req is used

to request a put or get operation, while an ack indicates completion of these operations. Note that

there are no full or empty status signals. In case of FIFO being full, the put interface will simply

hold the putack, and when empty, the get interface will hold the getack.

As an example, the basic architecture of a sync-sync FIFO is shown in Figure 2.9. Similar

architectures can be defined for other FIFOs: different synchronous and asynchronous put and get

interfaces can be freely combined to construct these FIFOs.

Each FIFO is a circular array of identical cells, comprising put and get interfaces, that com-

municate with the sender and receiver data buses. The input and output behaviors of the FIFO are

controlled by two tokens: a put token to insert data items, and a get token to remove data items. The

cell with the put token is the tail of the queue, while the cell with the get token is the head. After a

token has been used by the current cell for data operation, it is passed to the next cell. An interesting

feature of these circular FIFOs is that data remains immobile and is not moved between cells: data

is enqueued and dequeued in place.

There are several advantages of the above architecture, which are common to the all the FIFOs.

36

CHAPTER 2. BACKGROUND: ASYNCHRONOUS DESIGN

Figure 2.9: Basic sync-sync FIFO architecture [29]

Since data is immobile, these FIFOs have a potential for low latency: as soon as a data item is

enqueued, it is also available for dequeuing. This immobility can also lead to potentially lower

power. Finally, the FIFOs are very scalable as the FIFO capacity can be changed with only small

design modifications.

Now that we have covered the relevant background on asynchronous design, in the next chapter

we go over the basics on networks-on-chip, which form the second thread of this thesis.

37

CHAPTER 3. BACKGROUND: NETWORKS-ON-CHIP

Chapter 3

Background: Networks-on-Chip

Since Networks-on-Chip (NoCs) are at the center of this thesis, it is important to understand their

basics before presenting the new research. This chapter covers several NoC fundamentals: net-

work topologies, routing algorithms, and packet encoding schemes. The different synchronous

NoC switch micro-architectures and optimizations to improve their performance are also presented.

In addition, the focus of the thesis is to support multicast in NoCs. Therefore, the main tech-

niques to perform multicast in synchronous NoCs and related work are also covered in this chapter.

As case studies, two leading synchronous NoCs with multicast capability are discussed in terms of

their structure and protocols.

3.1 Network Topologies

A network topology defines the structure in which the switches and the channels are arranged [41],

[22]. Selecting an appropriate topology is usually the first step in designing a NoC, and depends

on the applications and power/performance requirements of the NoC. This thesis focuses on two

topologies: a variant mesh-of-trees (MoT) and a 2D-mesh topology.

These topologies belong to two different classes: an indirect topology and a direct topology.

The variant MoT is an indirect topology, where the network consists of two different types of router

nodes: terminal and switching. The terminal node is a source or a sink for data transmission,

sending packets from or to an attached processing element. The switching node is not connected to

any processing elements and only forwards data to another node. The 2D mesh, on the other hand,

38

CHAPTER 3. BACKGROUND: NETWORKS-ON-CHIP

2.1.1 Definition and Properties 281

the Ν χ Ν mesh of trees nodes and edges added
to form column trees

F i g u r e 2-1 The two-dimensional mesh of trees. Leaf nodes from the original

grid are denoted with circles. Nodes added to form column trees are denoted with

squares, and nodes added to form row trees are denoted with triangles.

Ν χ Ν grid of nodes nodes and edges added
to form row trees

Figure 3.1: Original 4× 4 MoT topology [6]

is a direct topology, where the router nodes act as both terminal and switching nodes; each router is

connected to a processing or storage element and also forwards data to other nodes.

3.1.1 A Variant MoT Topology

Before discussing the variant MoT, it is important to first go over the original MoT. The structure of

the original 4× 4 MoT is shown in the Figure 3.1 [6]. A grid of terminal nodes, each attached to a

processing element, are connected using horizontal tree connections (row of trees) and vertical tree

connections (column of trees) to form this topology. The triangles and squares in the figure show

intermediate nodes, while the circles are the terminal nodes. The routing path between a source and

a destination, involves sending packets up or down the trees. These paths can also be shared by

different packets and therefore can cause congestion.

Figure 3.2 shows the structure of a 4 × 4 variant MoT [7]. It contains two binary trees: a

fanout tree composed of routing (i.e. fanout) nodes, and a fanin tree composed of arbitration (i.e.

fanin) nodes. The trees are mirror copies: the fanout network from a source root to leaves, and the

fanin network from leaves to a destination root. The fanout nodes route packets from a single input

39

CHAPTER 3. BACKGROUND: NETWORKS-ON-CHIP

Figure 3.2: A variant mesh-of-trees (MoT) topology, connecting processors to memory

modules [7]

channel to the correct one of the two output channels. The fanin nodes arbitrate between two input

streams and routes the winner on the output channel.

Variant MoT is a high-performance topology [7]. It provides two key advantages: (a) the hop

count from source to destination is always a small constant, log(n), leading to low latency; and (b)

unlike the original MoT, each distinct source-destination pair has a unique path through the net-

work, which can minimize network contention significantly. However, the lack of path diversity

can be a potential performance bottleneck for some adversarial cases, where traffic is extremely un-

balanced. Overall, though, recent results demonstrate significant benefits for saturation throughput

in high-performance systems, where variant MoT has been used to connect processing cores with

memory [5], [78], [158].

3.1.2 A 2D-Mesh Topology

Figure 3.3 shows the architecture of a 4 × 4 2D-mesh topology connecting 16 tile nodes. The

structure of each tile is also shown in this figure, which consists of a router, connected to an IP core

through a network interface (NI). Unlike the variant MoT with only one-input fanout nodes and

two-input fanin nodes, 2D-mesh exhibits more parallel operations with generally 5-port routers that

handle both routing and arbitration functions. Therefore there are five input port modules (IPMs),

40

CHAPTER 3. BACKGROUND: NETWORKS-ON-CHIP

Figure 3.3: A 2D-mesh topology and the details of its nodes

which perform the input buffering and route computation to select one of the other four outputs,

and five output port modules (OPMs), each of which arbitrates between four other inputs. These

IPMs and OPMs are connected using a shared crossbar. Compared to a variant MoT, another major

difference is the existence of multiple routing paths between a source and destination in 2D mesh.

This path diversity can be used for load balancing to minimize congestion, hence improving overall

network performance.

3.2 Routing Algorithms

After deciding the network topology, the next step is to select an appropriate routing algorithm that

determines a path between a source and a destination. These algorithms are important and have

impact on network performance and power consumption. While the usual approach is to select a

shortest routing path, it is sometimes beneficial to pick a longer path in order to avoid an already

congested minimal path.

The routing algorithms can be broadly divided into three categories: deterministic, oblivious,

and adaptive [22].

41

CHAPTER 3. BACKGROUND: NETWORKS-ON-CHIP

3.2.1 Deterministic Routing

In deterministic routing, the route between a source and a destination is statically pre-determined

and fixed. This approach is the simplest way of routing. Dimension-ordered routing, such as XY is

an example of deterministic routing, where the packet first travels in the X direction until it reaches

the destination’s X dimension, after which it travels in the Y direction and reaches the destination.

XY routing, and its dual YX are very commonly used [47], [166]. Recently, other deterministic

routing approaches have also been introduced [58], [159].

Although deterministic routing is simple and easy to implement, it also has some limitations.

This routing approach does not provide any path diversity – always selecting the same path for

routing between a source and a destination, which can lead to congestion that can incur performance

overheads. Deterministic routing is also not fault-tolerant: if a links on the fixed path break due to

issues such as aging, the packets are unable to route around these faulty links and the network has

to stop operation. However, for uniformly distributed traffic scenarios, and non-faulty conditions,

this routing approach is often an excellent solution.

3.2.2 Oblivious Routing

Oblivious routing is more flexible than deterministic routing, where the routing paths are dynam-

ically determined and are not fixed [170], [101], [167]. Therefore, multiple routes exist between

the same source/destination pair in oblivious routing. An example is O1TURN model, where the

first dimension for routing a packet is selected randomly, and the packet is only allowed to turn

once [167]. Although more flexible and simple, this routing approach still does not consider network

state, such as congestion, when deciding routes, and therefore can incur performance bottlenecks

for non-uniform traffic.

3.2.3 Adaptive Routing

In adaptive routing, paths between sources and destinations are dynamically selected based on the

network state, such as congestion [53], [115], [120]. This approach is more advanced, and often

more effective for non-uniform traffic. Adaptive routing can also be used to route around the faults

in the network. However, this scheme usually results in more complex switch design that can have

42

CHAPTER 3. BACKGROUND: NETWORKS-ON-CHIP

impact on its latency, area and power. Moreover, since the routes are selected on the fly, there is

no guarantee that these paths will not lead to deadlocks. Therefore, additional deadlock-avoidance

techniques are used with adaptive routing. A prominent work introducing adaptive deadlock-free

routing algorithms is from Glass and Ni [69]. Their proposal was to prohibit a small number of

turns such that packets do not form a cyclic dependency on each other, hence avoiding deadlocks.

3.3 Packet Encoding Schemes

The basic unit for data transmission between IP cores is a packet. The packet is further divided into

flits or flow control units. A packet typically contains a header flit, which carries the destination

address information and may contain some data, and body and tail flits, which usually contain

only data. There are two approaches to encode addressing in the header flits: source routing, and

destination-based routing [22].

In source routing, the address field of the header directly contains routes to take at each router

node on the path to destination. This encoding is performed at the source network interface during

the injection of the packet. Source routing can lead to very simple router node design, efficient in

terms of latency, area, and power. However, this approach can have lower coding efficiency with

long address fields. It also can not be used with adaptive routing, where the paths are determined

dynamically.

In destination-based routing, the address field of the header only contains the destination ad-

dress. This address can be in the form of X, Y coordinates of the destination, or a bit string that con-

tains a bit for each node of the network, which is 1 if the node is a destination, and 0 otherwise. The

destination-based routing generally have small address field but can lead to more complex switch

design as each switch must decode and select the correct path based on the destination address.

In this thesis, for multicast transmissions, both source routing and destination-based routing

have been used. Packet encoding for multicast is a challenging problem, where multiple destinations

must be encoded in the header but still maintaining a good trade-off between coding efficiency and

switch design complexity. For multicast in a variant MoT, source routing was used, which led to

very simple switch designs and had only small overheads in terms of coding efficiency. This is

because each switch has only two output ports so there are very small number of possible routes to

43

CHAPTER 3. BACKGROUND: NETWORKS-ON-CHIP

select. On the other hand, for 2D mesh, source routing was infeasible for multicast as each switch

has five ports and therefore there are a large number of possible routes to encode, leading to a long

addressing field. Hence, destination-based routing with a simple bit string was used. Interestingly,

bit-string addressing still yielded simple switch designs.

3.4 Synchronous Unicast Router: Micro-Architectures and Perfor-

mance Optimizations

In the early 2000s, a synchronous NoC router typically consisted of 4-5 pipeline stages, each of

which performed a different functionality in series [41]. These functionalities include buffering

packets in one clock cycle, followed by route computation to select the correct path in the next cycle,

then arbitration to gain access to the shared resources such as an output channel, etc. Later, several

optimizations had been proposed to perform some or all of these operations in parallel, resulting in

a single-cycle router operation [102], [108], [149]. Recently, more extreme optimizations have been

proposed that can route a packet through multiple routers in a single cycle, which has resulted in

very high-performance SMART NoC designs [104].

3.4.1 A Traditional 5-Cycle Router

The early classic synchronous routers involved five stages as shown in Figure 3.4 [41]. These stages

perform the following functionalities serially, each taking one clock cycle: (i) buffer write: a flit

is written to a free input buffer space corresponding to a pre-determined virtual channel (VC) (ii)

route computation (RC): decode the addressing in the header and select the correct output port for

routing, (iii) virtual channel allocation (VA): assign a free VC of the downstream router to the flit

buffered at the current router, (iv) switch allocation (SA): for each output channel of the current

router, multiple input ports arbitrate to gain access, and (v) switch traversal (ST): route the flit from

the input to the output of the router through a crossbar. Finally, the flit then traverses the link in the

next clock cycle to reach the neighboring router, which is called link traversal (LT).

44

CHAPTER 3. BACKGROUND: NETWORKS-ON-CHIP

Figure 3.4: A traditional 5-cycle router micro-architecture [103]

3.4.2 Recent Single-Cycle Routers

The above 5-cycle router can be radically transformed to perform all its operations in parallel in

a single cycle [102], [108], [149]. Such a transformation is possible using two pipeline optimiza-

tion techniques: lookahead and speculation. In lookahead, the results of a pipeline stage are fast

forwarded to a later stage, which is waiting on these results, so it can start early computation. In

speculation, two pipeline stages, which are normally performed in series, can be performed in paral-

lel, where the latter stage is completed assuming certain outcomes of the previous stage. Speculation

may require rollback of the latter stage, if it is found out that previous stage resulted in a different

outcome than the assumed one.

Figure 3.5 shows the pipeline operations of a single-cycle router. This router receives a route

information from an upstream router, along with the flit. This route information includes which

output port to select at the current router and the destination of the packet. The destination is used

to compute the output port to select, but for the downstream router (i.e. RC). In parallel, based on

the correct output port information for the current router, switch allocation and VC allocation are

performed speculatively, assuming that there is a free VC at the downstream router. The buffer write

is also bypassed speculatively, assuming that the switch allocation will be completed successfully

for the flit and there is a free VC at the next router. Under these assumptions, the flit directly goes

into switch traversal. By the end of the ST, SA and VA results are available, and it is checked if all

assumptions were correct or any rollbacks are required. Usually, no rollbacks are needed for uniform

uncongested traffic scenarios and the flit traverses the link (LT). However, under congestion, these

45

CHAPTER 3. BACKGROUND: NETWORKS-ON-CHIP

Figure 3.5: Pipeline stages in single-cycle routers

rollbacks may be required, which can take additional cycles to re-do SA and/or VA.

3.4.3 Extreme Bypassing in Single Cycle Using SMART NoCs

While in the previous router, a flit traverses only a single switch in one clock cycle, a high-

performance SMART NoC has been introduced, where a flit can route through multiple routers

and links in a single cycle [104]. This NoC uses a high-speed monitoring network, that shadows

the regular datapath network, to dynamically pre-allocate the routers on the path to destination in

advance of the arrival of a flit. Before injecting the data flit at the source, a small ‘monitoring’

packet is injected, which rapidly traverses through the monitoring network to the destination, pre-

allocating the routers on the path, which will allow them to operate in a simple very low-latency

“bypass” mode. The data flit then simply follows the pre-allocated path to reach the destination in

a single cycle. For a SMART NoC, operating at 1 GHz in 45 nm, it is shown that 9-11 hops can be

bypassed in a single clock cycle.

Figure 3.6 briefly shows the structure and operation of a SMART NoC. For simplicity, only four

routers are assumed with the leftmost one as the source and the rightmost one as the destination.

These routers are connected using both the regular datapath network and a monitoring network with

dedicated links between the source router and each of the other routers. Assume that the injected

flit at the source gets stored in buffer 1 of the router. In the first cycle, local arbitration is performed

between the stored flits to gain access to the east output channel. Assuming that the flit in buffer 1

wins this arbitration, in the second cycle, a request is forwarded on the monitoring network to all

the routers on the path to destination. At each of these routers, pre-allocation is performed using the

monitoring request, i.e., the routers are configured into a bypass mode. In the third cycle, the data

46

CHAPTER 3. BACKGROUND: NETWORKS-ON-CHIP

Figure 3.6: A SMART NoC structure and operation

flit simply traverses through all these routers in a single cycle to reach the destination.

Although SMART NoCs can achieve very high performance, they can also incur significant

power and area overheads. These overheads are due to the expensive monitoring network with

dedicated links (nearly 24) emanating from each router to all the other routers. Moreover, each such

link can be 2-4 bits wide. As a result, a number of these switches have several dozen extra wires

(e.g. 48-96) solely devoted to monitoring.

3.5 Multicast Techniques and Related Work

There are two main techniques to perform multicast in NoCs: one is serial and the other parallel.

There has been significant research on both of these approaches.

3.5.1 Techniques

Figure 3.7 illustrates the two main multicast techniques: serial path-based multicast and parallel

tree-based multicast. In path-based, a multicast packet is serially routed from the source to its

first destination, from there to the next, and so on. For example, in Figure 3.7(a), a packet is first

routed from source A to destination D, from there to E and C and finally to B. This technique is

simple but can incur significant latency overheads for large number of destinations. Tree-based

multicast is more widely-used, where a multicast packet is first routed on a common path from the

source towards all destinations. When this common path ends, the packet is replicated and the new

copies also follow a recursive tree approach, replicating multiple times to reach the destinations. In

Figure 3.7(b), the packet first gets replicated at the source and one copy is sent to D, E and the other

copy is sent to B, C. Each of these copies is replicated further at intermediate nodes to finally reach

the destinations.

47

CHAPTER 3. BACKGROUND: NETWORKS-ON-CHIP

Figure 3.7: Multicast techniques: (a) path-based, (b) tree-based

3.5.2 Related Work

The path-based technique is far less attractive than the tree-based due to its serial operation, where

packet cycles through all destinations one by one, which can have serious latency overheads, spe-

cially for large number of destinations. However, there has been previous work that tries to improve

upon this issue by dividing the paths into smaller sub-paths using partitioning schemes and selecting

the best ordering of routing to the destinations such that the overall path is optimized [4], [42]. A

similar approach was also proposed for 3D NoCs recently [54].

Several recent synchronous NoCs use the tree approach for high-performance multicast, but

these can still incur significant cost overheads. Early tree approaches used multiple unicast pack-

ets, sent to each destination, to set up paths for a multicast packet. The output port taken by each

individual unicast packet at any router, is stored in a routing table inside that router, which is later

accessed by the multicast packet. This preconfiguration phase can be expensive in terms of net-

work latency, extra congestion and power [81], [88]. Recent approaches avoid setup entirely and

dynamically compute the multicast tree paths based on the destinations and an underlying routing

algorithm. However, these approaches lead to complex router designs due to highly-customized

route computation [193], [200], multiple virtual channels per port [149], and turn prohibitions and

other expensive methods to avoid deadlocks [106], [165], [193].

Finally, a recent NoC supports high-performance multicast [105], extending the unicast-only

state-of-the-art SMART NoC [104], to perform multicast. This NoC is discussed in more detail

later. The multicast SMART NoC achieves full broadcast in just 2 cycles for an 8x8 2D mesh using

an early arbitration and channel pre-allocation approach, facilitated by a high-speed monitoring

network that shadows the datapath. However, this NoC supports multicast either using a full-chip

48

CHAPTER 3. BACKGROUND: NETWORKS-ON-CHIP

broadcast and then dropping packets at non-destinations or by routing several unicasts serially to

each destination. Both of these approaches can have serious energy overheads. Moreover, the

SMART monitoring network, as highlighted earlier, also adds significant area and power costs.

3.6 Leading Synchronous Multicast NoCs

Two state-of-the-art synchronous multicast NoCs are discussed: one that uses single-cycle routers to

support tree-based multicast [149], and the other is a multicast SMART NoC that uses the SMART

framework to optimize the performance of multicast packets [104].

3.6.1 Multicast Using Single-Cycle Routers

The architecture of a single-cycle multicast router is shown in Figure 3.8 [149]. This router performs

lookahead route computation (RC), switch allocation (SA), virtual channel allocation (VA), switch

traversal (ST), as well as link traversal (LT) in a single clock cycle. There are five basic differences

from a single-cycle unicast router in order to support multicast: (i) multicast addressing is used

in the packet header that encodes multiple destinations; (ii) a new lookahead route computation is

able to decode the new multicast addressing and select multiple output ports, instead of just one, in

the downstream router; (iii) switch allocation and virtual channel allocation are now performed for

multiple output ports based on the paths taken by a multicast packet; (iv) a new crossbar design is

used to support multi-way forking of a multicast flit in parallel; and (v) a low-swing crossbar and

links are used, that have low latency, allowing the switch and link traversals to be performed within

a single clock cycle.

In Chapter 5, this leading synchronous multicast NoC is analytically compared with the pro-

posed 2D-mesh asynchronous multicast NoC. The proposed asynchronous NoC is shown to achieve

better network latency for a multicast scenario as well as lower switch-level area than this syn-

chronous NoC.

3.6.2 Multicast Using SMART NoCs

The basic idea is to use the original unicast-only SMART framework [104] for multicast also without

major modifications [105]. To this end, the multicast SMART NoC uses almost the same monitoring

49

CHAPTER 3. BACKGROUND: NETWORKS-ON-CHIP

Figure 3.8: A single-cycle multicast router architecture [149]

network as the unicast SMART NoC with small changes in the switch design. The monitoring

network is now used to pre-allocate routers on different paths to all destinations of a multicast

packet, instead of just a single path as in the original SMART NoC. The multicast packet then

simply follows these pre-allocated paths, bypassing multiple routers in a single clock cycle to reach

its destinations. The new router designs are now able to support multicast addressing and efficient

multi-way forking of multicast flits.

The multicast SMART NoC, however, is optimized only for broadcast, and uses inefficient ways

to handle multicasts. To support multicast, there are two techniques: 1) if a multicast is to large

number of destinations (dense multicast), then it is performed by broadcasting the packet to all

nodes, using the SMART framework, followed by dropping copies at the non-destinations, and 2) if

multicast is to only small number of destinations (sparse multicast), then it is performed by breaking

the multicast packet into several unicasts and sending each unicast serially to each destination using

the SMART technique. Both of these methods can have severe power/energy overheads due to

significantly extra network utilization compared to a standard tree-based parallel multicast.

This multicast SMART NoC is also later analytically compared with the proposed 2D-mesh

asynchronous multicast NoC. Although the SMART NoC achieves better latency than the proposed

asynchronous NoC, it can incur significant power and area overheads. Higher power dissipation

50

CHAPTER 3. BACKGROUND: NETWORKS-ON-CHIP

can result for multicast transmissions in the SMART NoC due to the use of an expensive protocol

as highlighted above. In contrast, the proposed asynchronous NoC only uses parallel tree-based

transmission to handle multicast and does not involve any wasted energy. Moreover, the multicast

SMART NoC can still incur both area and power overheads due to the extra substantial monitoring

network, while no such network is used in the proposed asynchronous NoC.

Now that we have covered the background on the three main threads of this thesis: asynchronous

design, networks-on-chip, and multicast, the remaining chapters will cover the new research contri-

butions.

51

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Chapter 4

A Local Speculation Approach for

Multicast in Mesh-of-Trees NoCs

4.1 Introduction

The first research contribution of this thesis is an efficient asynchronous multicast solution for a

variant mesh-of-trees (MoT) topology. Variant MoT is an indirect topology, combining a binary fan-

out network (i.e. routing network), and a binary fan-in network (i.e. arbitration network) consisting

of low-radix fan-out and fan-in nodes, respectively, as discussed in Section 3.1.1. This simple

topology is targeted first, before moving on to the more complex 2D-mesh topology.

In this chapter, multiple routing strategies and network architectures are proposed and evaluated

to support efficient parallel multicast in asynchronous NoCs [18], which are now presented briefly.

As a first solution, the standard tree-based multicast approach is performed in an asynchronous

NoC with variant MoT topology. In this approach, a multicast packet follows a tree path from

source, replicating at intermediate routing nodes if needed, to reach all its destinations. This solu-

tion, although simple, is not very efficient in terms of performance. Therefore, further enhancements

are proposed.

A novel strategy, local speculation, is next introduced for high-performance parallel multicast.

Local speculation is a new paradigm, where some routing nodes of a network always locally broad-

cast every packet (unicast or multicast), i.e. send a packet received on its input through all its output

ports. Since some redundant copies might be created due to this ’always broadcast’ approach, these

52

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

copies are throttled by the neighboring routing nodes, which always route based on the packet’s ac-

tual destination. Therefore, the redundant copies are restricted to small ’local’ regions, not allowing

them to travel long distances. The former nodes are called speculative nodes, which have highly

simplified designs as they do not perform any route computation or channel allocation, thereby im-

proving network performance. The latter nodes are called non-speculative nodes, which perform

the usual route computation and channel allocation as well as have a new capability of throttling re-

dundant packets. Local speculation, therefore, leads to a hybrid network architecture that provides

interesting opportunities to mix these two types of nodes.

Local speculation is a unique asynchronous paradigm. This strategy leads to very simple spec-

ulative routers, operating much faster than a clock cycle, surrounded by slower non-speculative

routers with ’sub-cycle’ low-overhead throttling capability, while still maintaining a pipelined op-

eration. This level of simplicity and lightweight designs may not be possible with synchronous

techniques.

For an exhaustive design space exploration, two more architectures are introduced besides hy-

brid, with extreme degrees of speculation. The first does not use any speculation, which is the same

as our tree-based solution, while the other is almost fully speculative.

Although the new speculative and non-speculative fanout nodes are very efficient, further power

and performance improvements are achieved using novel protocol optimizations. These optimiza-

tions are performed for multi-flit packets and are triggered by the header. Speculative routers are

very fast but can dissipate extra power due to redundant packets. These extra copies can be min-

imized by switching to non-speculative mode for body/tail flits after the header is broadcast. In

contrast, in case of non-speculative, routing of the header is used to pre-allocate correct outputs for

the trailing flits, which are then fast forwarded, optimizing performance.

4.2 Baseline Asynchronous NoC

The new multicast research builds on a previous recent asynchronous NoC, targeting a variant MoT

topology, but which only supports unicast communication [78]. This NoC was developed as part

of the C-MAIN (Columbia University/University of Maryland Asynchronous Interconnection Net-

work) Project: an effort to develop low-cost and flexible NoCs for high-performance shared memory

53

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Figure 4.1: Variant mesh-of-trees (MoT): connecting processors to memory modules

architectures. This earlier NoC will be significantly enhanced for multicast and will also form the

baseline for the new work.

This baseline NoC uses the variant MoT topology, as shown in Figure 4.1, which consists of

very simple routing and arbitration nodes. These nodes are designed using a 2-phase communication

protocol with only one roundtrip communication per transaction, resulting in higher performance,

compared to 4-phase protocol with two roundtrip communications. Single-rail bundled data encod-

ing is used, which exhibits higher coding efficiency and lower area and energy overheads than the

delay-insensitive encoding [147].

The fanout network of the variant MoT, consisting of the fanout nodes, route packets from

a source towards the fanin network. A fanout node receives packets on one input channel and

forwards them to one of the two output channels, based on the source routing addressing. Source

routing leads to simpler fanout node designs, where each packet header only contains the address

fields of every fanout node on its path, which is only 1-bit wide, identifying the output port for

routing: top or bottom.

The fanin network, on the other hand, consists of the fanin nodes that arbitrate between multiple

packets and send the winner to the attached destination. A fanin node receives packets on two input

channels, performs arbitration in continuous time, and forwards the winning packet on the single

output channel.

54

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Figure 4.2: Baseline fanout node

4.2.1 Fanout Node

The micro-architecture of a baseline fanout node is shown in Figure 4.2. There are 5 main compo-

nents: Input Channel Monitor, Address Storage Unit, two Output Port Modules, and Ack Module.

The Input Channel Monitor detects the arrival of each flit of a packet. The Address Storage Unit

stores the address of the header flit, which it holds until after the arrival of the tail flit. The two

Output Port modules, which are normally opaque, manage routing and flow control of each output

channel. Finally, the Ack Module observes when either output channel transmits a flit, in unicast

traffic, then completes handshaking on the input channel.

The fanout node has relatively simple operation [[78]]. When a packet arrives on the input

channel, the header is directed to inputs of both Output Port Modules. The Input Channel Moni-

tor detects the arrival of the flit, enabling storing of its address in the Address Storage Unit. The

monitoring flit-detect also partially-enables both Output Modules; the one receiving the correct ad-

dress is then activated, and the flit is sent out on that output channel along with a toggled Reqout.

This signal enables two concurrent operations: closing of the Output Port Module (for data protec-

55

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Figure 4.3: Baseline fanin node

tion) and enabling of the Ack Module to generate the acknowledge on the input channel. Finally,

the downstream node acknowledges (toggles the Ackin signal), completing the handshaking on the

output channel. Similar operation occurs for the remaining body and tail flits.

4.2.2 Fanin Node

The micro-architecture of a baseline fanin node is shown in Figure 4.3. There are six main compo-

nents: a 2-way arbiter, two on-demand (i.e. normally-closed) input registers corresponding to each

input stream, a 2:1 data mux, a capture-pass (i.e. normally-transparent) output register, and an ack

generator consisting of two on-demand latches.

The functionality of these components is first presented before describing the operation of the

fanin node. The arbiter must operate in continuous time (in contrast to synchronous arbiters), where

inputs arrive at arbitrary temporal intervals not discretized to clock cycle. Therefore, the arbiter

is implemented as an analog mutual-exclusion (mutex) element, and is the only except to use of

standard-cell components in the fanin node (see [147] and Section 2.3.2 for more details). Based

on the arbitration, the correct input channel of the fanin node is allocated: enable the selected input

register and select the winning packet’s data stream of the data mux. The output register performs

56

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

flow control on the output channel to the downstream fanin node. The ack generator is used to

complete handshaking on the winning input channel after routing each flit of the packet.

In a basic scenario with no contention, a header flit of a packet arrives on one of the input

channels, accompanied with its bundling request. This request is used by the mutex to perform

arbitration for every flit. In the absence of competition, the mutex grants access to this header. This

acquisition is followed by three operations in parallel: (i) the correct L1-L2 input request register

is allocated i.e., made transparent, (ii) the appropriate data stream in the data mux is selected, (iii)

the corresponding latch of the ack generator is also enabled, and (iv) disable any competing request

(pending or future) to the arbiter to enforce wormhole routing: this ’kill your rival’ approach biases

the mutex towards the winning packet so that the next flits of this packet are prioritized for routing

through the fanin node instead of any competing packet. Next the header is sent out on the output

channel through the capture-pass register; the toggling of the output request closes the normally-

transparent output register transiently for protection and flow control. In parallel, the mutex is

released, and the ack is sent on the input channel through the already enabled latch of the ack

generator.

Similar operations happen for body and tail flits. In addition, once the tail flit arrives and is

being sent out, the blocking of any competing request to the arbiter is also released so as to enable

routing of the other packet through the fanin node.

4.2.3 Results

This baseline NoC has been shown to handle unicast traffic very efficiently. At the node-level,

the asynchronous fanout and fanin nodes showed 5.6-10.7x lower energy per packet and 2.8-6.4x

lower area than similar synchronous nodes in post-layout comparisons. At the network-level, an

8x8 MoT asynchronous NoC, built using the above nodes, showed 1.7x lower network latency with

comparable throughput than a 800 MHz synchronous NoC.

4.2.4 Baseline for the New Multicast Research

This baseline NoC cannot directly handle parallel multicast, and only supports unicast. The only

way to route multicast packets in this NoC is using a serial unicast-based approach, where for each

multicast packet, the source NI creates multiple unicast copies destined to different destinations,

57

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

which are then injected and routed serially. However, as shown in Section 4.5, performing multicast

using the serial unicast approach can have severe performance and power overheads.

In this chapter, the above network will be significantly enhanced to support multicast operation.

Only fanout nodes will be modified; existing fanin nodes are directly reused. In particular, fanout

nodes are responsible for all routing, so must support distribution of multiple packet copies; hence

they must be instrumented with new addressing and replication capability. In contrast, even with

multicast, the existing fanin network will still arbitrate between multiple packets, and direct all

packets to their destinations without making any routing decisions.

4.3 Proposed Multicast Approaches

Complete new asynchronous solutions to support multicast in a variant MoT topology are presented

in this section. Building loosely on the previous unicast solution, the new work starts with a basic

tree-based parallel multicast approach, and then enhances it with novel “local speculation” tech-

nique. Moreover, additional optimizations are also applied to the new routers to further improve

their power and performance.

4.3.1 Simple Tree-Based Multicast

The first contribution is a simple tree-based parallel multicast, applied for the first time to a general-

purpose asynchronous NoC. A multicast packet follows a common path towards its destinations and

replicates when this common path ends, then copies are routed in parallel towards the destinations.

Routing of a unicast packet is the same as in the baseline network. The fanout network architecture,

in Figure 4.4(a), has all non-speculative nodes. New fanout nodes are designed to handle parallel

replication, as described in Section 4.4(b).

Source routing is used to encode the address for every fanout node on each path to the destina-

tion(s). The address at each fanout node must encode 3 symbols: top route, bottom route or both.

Therefore, 2-bit encoding is used for the address field of each fanout node.

This basic parallel tree-based multicast is simple, but not efficient in terms of latency and

throughput. The new fanout nodes are relatively slow due to expensive route computation and

channel allocation protocols, required to handle a more complex set of transmission modes. An-

58

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Figure 4.4: New fanout network architectures: (a)-(c) full range for 8x8 MoT, (d) One

possible hybrid network for 16x16 MoT

other limitation is that the source routing, as described above, leads to low packet coding efficiency,

which does not scale with larger network sizes.

4.3.2 Local Speculation-Based Multicast

A new strategy, local speculation, is introduced for high-performance parallel multicast. In local

speculation, a subset of fanout nodes is speculative and always locally broadcasts a multicast (or

unicast) packet. These nodes are surrounded by non-speculative nodes that always send packets on

the right path(s) and throttle any received redundant packets from the speculative nodes, restricting

these packets to small “local” regions. A hybrid network architecture is introduced to mix these two

types of fanout nodes. Figure 4.4(b) shows one possible hybrid fanout network for an 8x8 MoT.

The detailed design of a speculative node is presented in Section 4.4(a).

Interestingly, the use of this new hybrid network also improves packet coding efficiency using a

simplified source routing, which is not required to encode the addressing for the speculative nodes

on the path to the destination(s). This simplification is a direct consequence of the simplicity of

speculative nodes that always broadcast and therefore do not require any addressing. As a result,

only a subset of fanout nodes (i.e. non-speculative ones) requires address fields in the packet header.

The operation of the hybrid fanout network is illustrated using two simulations: for unicast and

59

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Figure 4.5: Hybrid network: unicast/multicast simulations

multicast.

Figure 4.5(a) shows the routing of a unicast packet in an 8x8 MoT network. The packet is first

broadcast by the speculative root node, sending one copy on the right path and the other on the

wrong path. The copy on the wrong path is throttled in the top sub-tree by non-speculative node

2. The copy on the right path is forwarded by non-speculative nodes 3 and 7 through their bottom

output ports, based on actual addressing, towards D8.

Figure 4.5(b) shows the routing of a multicast packet. Similar to unicast, the speculative root

node broadcasts, sending copies on the right and wrong paths. The latter is throttled in the bottom

sub-tree by non-speculative node 3. As non-speculative nodes can also broadcast, the copy on the

right path is broadcast by node 2 on both output channels. One copy is correctly routed to D1 by

node 4 through its top output port, while the other is correctly routed to D2 and D3 by another

broadcast at node 5.

So far, two architectural design points have been covered, non-speculative and hybrid, as shown

in Figures 4.4(a) and (b). To complete the design space, a third extreme point is introduced, an

almost fully-speculative architecture. As shown in Figure 4.4(c), only the last level must be non-

speculative, since the fanin network cannot throttle any misrouted packets. Such global speculation

can achieve high performance, but suffers from major power overheads due to the large distances

traveled by misrouted packets. Overall, this hybrid architecture approach provides an interesting

60

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

design space, allowing different mixes of speculative and non-speculative nodes, resulting in various

cost trade-offs.

While the focus of the discussion of the above contributions and the evaluations in this chapter

is on 8x8 MoT, it is interesting to consider future directions of larger-sized networks. The hybrid

architecture for the larger networks has more degrees of freedom to mix the speculative and non-

speculative nodes and therefore a wider design space. Figure 4.4(d) shows one possible hybrid

fanout network for a 16x16 MoT, out of a family of many possibilities.

4.3.3 Protocol Optimizations

The above speculative and non-speculative nodes are efficient, but may incur some overheads,

which can be minimized for multi-flit packets using protocol optimizations triggered by the header.

Speculative nodes can create redundant copies and therefore lead to extra switching power. Non-

speculative nodes have complex route computation and channel allocation steps, which are per-

formed for every flit, and therefore, can lead to performance bottlenecks.

Extra power due to speculative nodes is minimized by reverting immediately to the non-speculative

mode for body flits of packets. Therefore, no redundant copies are created for the body flits. Routing

of the header is used by the node to identify and close the output port on the incorrect path before

the trailing body flits arrive. The body flits are then routed through only the correct output port(s),

effectively reverting to non-speculative mode and thus saving power. Arrival of tail flit is used by

the node to return to always broadcast state. These optimized nodes are called as power-optimized

speculative nodes, and are described in Section 4.4(c).

Latency and throughput of the non-speculative nodes is optimized by performing route compu-

tation and channel allocation only for the header and not for the other flits. Routing of the header

is used to reserve the correct output channel(s) for the remainder of the packet (body/tail flits), i.e.

the correct path through the node is pre-allocated for these flits. The body/tail flits are then fast

forwarded through the allocated output channel(s) after their arrival, optimizing latency of these

flits and improving overall network latency and throughput. These optimized nodes are called as

performance-optimized non-speculative nodes, and are described in Section 4.4(d).

61

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

4.3.4 Target Parallel Multicast Networks

The above parallel multicast approaches are incorporated into five network configurations, repre-

senting three distinct points in the design space of speculative architectures: (i) non-speculative,

(ii) hybrid, and (iii) almost fully speculative. The goal is to explore the tradeoffs associated with

varying degrees of speculation and protocol optimizations.

In particular, the chapter targets two non-speculative networks (BasicNonSpeculative, Opt-

NonSpeculative), two hybrid networks (BasicHybridSpeculative, OptHybridSpeculative), and

one extreme case of a nearly fully speculative network, with non-speculative nodes only at its

leaves (OptAllSpeculative). To support the design of these networks, four distinct fanout nodes

are introduced.

4.4 Proposed Fanout Node Designs

This section presents the design and operation of the new fanout nodes, which are the main build-

ing blocks of the new parallel multicast networks. The basic new networks are composed of the

unoptimized fanout nodes, and the more advanced new networks are composed of the power- and

performance-optimized fanout nodes, discussed in turn.

4.4.1 Unoptimized Speculative Fanout Node

The structure and operation of the simple unoptimized speculative fanout node are first presented.

4.4.1.1 Structure

The micro-architecture of the simple speculative node is shown in Figure 4.6. There are three main

differences from the baseline fanout:

(i) Drastically simplified design: due to elimination of the Input Channel Monitor and Address

Storage Unit, which are not needed as the new node always broadcasts every packet and does not

perform any route computation.

(ii) New Output Port Modules with normally-transparent registers: these registers can now

be used in the new node as it always sends both ways, unlike the baseline node that used opaque

62

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Figure 4.6: Unoptimized speculative fanout node

registers since it needs to select the single correct path before sending the packet forward. Normally-

transparent registers in the node have a very simple flow control, implemented by a single XNOR

gate, and also provide very low forward latency.

(iii) a new Ack Module: this Ack Module now synchronizes both output channels before com-

pleting the handshaking on the input channel, i.e. ack to left is sent only after a flit is sent on both the

output channels. In contrast, no such synchronization is required for the ack module of the baseline

as it sends ack after a flit is sent out on one of the two output channels. Hence a C-element is used

to implement the new ack module, as opposed to an XOR gate in the baseline.

4.4.1.2 Operation

This node has a very simple operation, which is the same for any type of packet and its flits: always

broadcast. A packet on the input channel can be a correctly routed unicast, or multicast going to

either or both outputs, or any misrouted packet from previous node. When a flit arrives on the input

63

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

channel, it is directed to both output channels, along with the generation of Reqouts. These Reqouts

perform two concurrent operations: close the Output Port Modules for data protection, and enable

Ack Module to generate Ack. Finally, when the downstream nodes toggle Ackin(s), handshaking is

complete on the output channel(s).

4.4.2 Unoptimized Non-Speculative Fanout Node

The structure, operation and design details of the non-speculative fanout node are now presented,

but without considering any protocol optimizations.

4.4.2.1 Structure

The micro-architecture of the new node is shown in Figure 4.7. Overall, the structure is similar to

the baseline fanout with identical key components: Address Storage Unit, Input Channel Monitor,

two Output Port Modules with their Control Units, and an Ack Module. However, all these units

are now more complex, to support parallel replication for multicast and throttling of any misrouted

received packets.

The Address Storage Unit now stores a 2-bit source routing multicast addressing than 1-bit as

in the baseline.

Similar to the baseline fanout node, the Input Channel Monitor detects arrival of the flits. Ad-

ditionally, this unit now decodes the address bits and generates the correct routing information, and

also checks if the packet is misrouted from the upstream node.

Each Output Port Module still consists of a normally-opaque register with a Control Unit. How-

ever, both Control Units can now enable their corresponding registers for a packet going both ways,

or keep the registers disabled for a misrouted packet.

Finally, the Ack Module now completes handshaking on the input channel for three cases: if a

flit is sent out on exactly one of the output channels, or both output channels, or if it is a misrouted

flit. The Ack Module also notifies the Output Port Module(s) control unit, when a flit has been sent

on the corresponding output channel(s).

64

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Figure 4.7: Unoptimized non-speculative fanout node

4.4.2.2 Operation

Three packet types can arrive on a node’s input channel: unicast, multicast (going to one or two

output ports), and a misrouted packet from the previous node.

In case of a correct unicast packet, the header is first directed to both the Output Port Mod-

ules. The Input Channel Monitor detects the flit arrival, enables storing of the address and also

partly enables both Output Port Modules. Depending on the address, the monitor generates the

top-route/bot-route routing signals to enable the correct Output Port Module, which then sends out

the flit along with its bundling request if there is no congestion on the output channel. The gen-

eration of Reqout leads to two concurrent operations: closing the Output Port Module transiently

for data protection, and enabling the Ack Module to generate the correct Req0/1 sent status signal.

Req0/1 sent signals perform two operations: (i) identify to the Output Port Modules if the flit on the

input channel is new or stale; they disable the Output Port Module, right after a flit is sent out on the

output channel, hence avoiding any potential resampling, and (ii) these signals, together with the

top route and bot route, are used in the Ack Module to generate ack on the input channel. Similar

65

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

operations occur for body and tail flits.

In the case of a correct multicast packet, if intended for exactly one direction, a similar protocol

to the unicast packet is followed. For multicast packets going to both outputs, the Input Channel

Monitor enables both output ports for routing. After Reqouts are generated on both output chan-

nels, the Ack Module completes handshaking on the input channel. All internal operations (data

protection, no resampling) are similar to unicast, but now done for both Output Port Modules.

Finally, for a misrouted packet on the input channel, the Input Channel Monitor detects this

packet, and keeps the Output Port Modules closed while enabling the Ack Module to complete

handshaking on the input channel so that the next packet can arrive and throttle the earlier misrouted

one.

4.4.2.3 Design details of sub-modules

The design details of three important components of the unoptimized non-speculative node are

described below: Input Channel Monitor, Control Units, and Ack Module.

As shown in the Figure 4.8(a), in addition to generating the Flit detect, the new Input Channel

Monitor decodes a 2-bit source routing address to determine whether the packet is intended for one

of the four options: top output port, bottom output port, both output ports or is misrouted from

the upstream node. In particular, the Input Channel Monitor uses the stored address bits from the

Address Register to compute top route, bot route, and Mis detect status signals. If both address bits

are ’0’ then it is misrouted packet, otherwise appropriate routing signals are generated.

Figure 4.8(b) shows the details of the Control Unit of an Output Port Module. This unit produces

the enable for normally-opaque data register of the Output Port Module, and also generates the

output request. To generate both the enable signal for the data register as well as the output request,

all of the following four conditions, corresponding to the four different inputs to this unit, must be

satisfied: (i) a flit has arrived on the input channel (flit detect), (ii) the flit is intended for this output

port (top route or bot route), (iii) the flit is not stale, i.e. the output request for this flit has not been

generated yet (Req sent from Ack Module), and (iv) the output channel is not congested, i.e. Ackin

has been received from the downstream node for the previous flit.

Figure 4.9 shows the design details of the Ack Module. The Ack Module generates the ack on

the input channel, and also produces two status signals (Req0 sent or Req1 sent), showing which

66

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Figure 4.8: Unoptimized non-speculative fanout node: Input Channel Monitor and

Control Unit details

Figure 4.9: Unoptimized non-speculative fanout node: Ack Module details

67

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

output channels have generated the output requests. The Ack Module takes the two output re-

quests as inputs, and the routing information from the Input Channel Monitor (top route, bot route,

Mis detect). The toggling of each two-phase Reqout leads to the generation of the corresponding

level signal (Req sent), through a protocol converter. If a flit was intended for only one output chan-

nel, then the one-way detector detects this case using the appropriate Req sent, otherwise if the flit

has been routed through both output channels then this case is detected by the two-way detector.

Based on the routing information, the output of the correct detector is selected, which is then used

to generate the ack on the input channel. If the flit was misrouted from the upstream node, then

no output requests will be generated, in which case, Mis detect will be simply used to generate the

ack. After generation of the ack, the Input Channel Monitor resets the Flit detect and Mis detect;

the former resets the Ack Module and the Req sents in the case of the correctly routed flit, and the

latter resets the Ack Module for the misrouted flit.

4.4.3 Optimized Speculative Fanout Node

The idea of this optimization is to speculatively route only the header flit through both output ports,

while in parallel storing its address information, which can then be used for body flits to switch to

non-speculative mode. Therefore, the body flits are not misrouted, and are only routed through the

correct output ports, thereby potentially saving significant power. Finally, the arrival of the tail flit

is used to return the node to speculative mode, and the tail is also routed through both the output

ports.

4.4.3.1 Structure

Figure 4.10 shows the micro-architecture of the optimized speculative nodes. There are four main

differences from the basic speculative nodes: (i) the new Input Channel Monitor is instrumented

to detect the arrival of flits on the input channel, and in particular, to detect the tail flit; (ii) more

complex Output Port Modules, which can now store address information while routing the header

flit, and can switch between different operating modes: speculative to non-speculative after routing

of the header flit, and non-speculative to speculative after routing of the tail flit; (iii) a new Ack

Module that generates Ack for two different cases: those body flits that are routed correctly but only

through one output channel in non-speculative, and all other flits in the speculative mode. For the

68

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

former, Ack is sent after the flit is routed on exactly one output channel; for the latter, the protocol

is same as the basic speculative nodes; and (iv) a new Phase Corrector Unit is added, which is used

to generate the output request with the correct phase, corresponding to each output port.

4.4.3.2 Operation

The operation of the optimized speculative fanout node is the same for all types of packet: unicast

or multicast or a misrouted packet from the previous node.

To demonstrate how the optimization works, a multiflit unicast packet intended for only one

output port is assumed. Once the header of this packet arrives, it is speculatively routed in parallel

through both the output channels. Its address is then used by the Output Port Modules to identify the

correct route (top or bottom), and to block the incorrect route for all the subsequent body flits: the

control unit of the incorrect Output Port Module will close the output register for the trailing body

flits. This control unit also generates a power-save status signal to inform the Ack Module about

which output port will be disabled for the body flits. After the ack is sent on the input channel,

corresponding to the header, the Ack Module switches its mode to one of the power-save modes, so

it now only needs to check for the routing of the body flits through one of the output ports before

generating an ack.

After a body flit arrives, it is simply routed through the correct output channel, while the other

channel remains blocked. The Ack Module completes handshaking on the input channel after the

body flit is routed through a single output port.

The arrival of the tail flit leads to two operations in parallel: (i) the tail is detected by the Input

Channel Monitor, which generates a tail-detect status signal, and (ii) the Ack Module switches back

to the normally-transparent mode, where it now checks for routing of a flit through both outputs

before generating an ack on the input channel. The tail-detect status signal is further used by the

control unit of the blocked Output Port Module to re-enable its data register, switching it back to

normally-transparent. Hence, the node returns to speculative mode and the tail flit is routed through

both the output ports. After the tail’s routing, the Ack Module completes handshaking on the input

channel.

69

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Figure 4.10: Optimized speculative fanout node

4.4.3.3 Design details of sub-modules

The designs details of three main components of the optimized speculative node are presented next:

the control unit, the ack module, and the phase corrector.

Figure 4.11 shows the design details of the control unit for an Output Port Module. The request

latch and the data register of the module are initially transparent, i.e. the output of the control unit

is initially asserted. There are two main sub-units of this control unit: power save/normal mode

selector and the flow control unit. In the beginning, the mode selector is in the normal speculative

mode with power save de-asserted low. After the header flit is sent out (identified by tail and

Req sent, and this is not the correct path (determined using p0, p1), then the mode selector switches

to non-speculative power-save mode, asserting power save high, which disables the register in the

Output Port Module for the body flits. After the tail flit arrives, the mode selector switches back to

the speculative normal mode, and the register is back to normally transparent. The flow control unit

simply checks if the output channel is available or congested.

As shown in the Figure 4.12, the Ack Module has a similar structure as the Ack Module of the

unoptimized non-speculative node but now operates in three different modes: (i) normal speculative

70

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

mode, where the ack is generated after a flit is routed through both output ports, (ii) power-save0

mode, where Output Port Module 0 is operating in power-save mode, and ack is generated after a

body flit is routed through port 1, and (iii) power-save1 mode, where the Output Port Module 1 is

operating in power-save mode, and the ack is generated after a body flit is sent out through port 0. A

mode selector unit determines the mode of operation of the Ack Module using the power save status

signals from the control units: initially for the header, the Ack Module is in the normal speculative

mode, after the header is routed, the module switches to one of the two power-save modes for the

body flits, and stays in that mode until the tail flit arrives when it returns to the normal mode. In

addition, these three modes are also used by the Phase Corrector Unit to perform the appropriate

phase correction (using Phase active status signals). For the normal speculative mode, the ack is

generated using both the Req0 sent and Req1 sent, which are asserted high after requests are sent out

on both output channels. For the other power-save modes, the ack is generated using the Req sent,

corresponding to the Output Port Module, which is not closed. Generation of the ack resets the

Flit detect in the Input Channel Monitor, which then resets the Ack Module.

The Figure 4.13 shows the design details of the Phase Corrector Unit, corresponding to Output

Port Module 1. Phase correction may be required for an input request to an Output Port Module, if

the flit is not intended for this output port. In particular, phase correction will be needed if the Output

Port Module is in power-save mode and closed for the body flits. For each flit, initially, Reqin is

toggled, which leads to a transition on Reqin1, which is input to the Output Port Module. But, if the

output port is closed, then Reqin1 is blocked from going out and its phase must be corrected. After

the Phase Selector Unit has determined that the corresponding output port is in power-save mode

using Phase active1 then phase is toggled so that Reqin1 returns to its initial state.

4.4.4 Optimized Non-Speculative Fanout Node

The basic idea of optimization is to use the address of the header to pre-allocate the correct output

channel(s) for remaining body and tail flits, thereby avoiding the overhead of flit-level allocation.

These flits are then fast forwarded on their arrival, without route computation and output channel

allocation, thereby improving network throughput as well as overall latency.

71

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Figure 4.11: Optimized speculative fanout node: control unit details

Figure 4.12: Optimized speculative fanout node: Ack Module details

72

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Figure 4.13: Optimized speculative fanout node: Input Channel Monitor and Phase

Corrector details

4.4.4.1 Structure

As shown in the Figure 4.14, the high-level structure of the optimized non-speculative fanout node is

almost similar to the unoptimized version, with two key differences: (i) new control units of Output

Port Modules, which are able to pre-allocate the correct output channel(s), i.e. keep the correct

output register(s) open after routing the header flit, and to also release the pre-allocated channel

after the tail flit is routed. These control units are now also simplified as they do not generate the

output requests, which are now generated as part of the datapath, similar to Mousetrap; and (ii) a

new Phase Corrector Unit is added, which is used to generate the output request with the correct

phase, corresponding to each output port. All the other units are the same as in the unoptimized

node.

4.4.4.2 Operation

The optimization only affects the unicast and multicast packets that are correctly routed from the

upstream fanout node. The operation for the incorrectly routed packets is the same as for the un-

optimized nodes: these packets are simply throttled. Only correct packets are considered in the

discussion below.

After the header flit of a correct packet arrives on the input channel, its address is stored in

the Address Storage Unit, which is then used by the Input Channel Monitor to generate the top-

73

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Figure 4.14: Optimized non-speculative fanout node

route and/or bot-route status signals. These signals are used by the control units of the Output

Port Modules to enable the correct output register(s). Next, the header flit is sent out along with

its bundling request. Sending of the output request(s) is used by the Ack Module to generate the

Req0/1 sent status signals, which are then used by the control units of the correct Output Port

Module(s) to trigger channel pre-allocation for the trailing body and tail flits: the output register(s)

now switch to transparent mode for the body/tail flits. The Ack Module then completes handshaking

on the input channel so the next body flits can arrive.

For each body flit, it is simply fast forwarded through the already pre-allocated output chan-

nel(s), followed by sending ack to the upstream node.

Finally, after the tail flit is fast forwarded through the pre-allocated output port(s), the corre-

sponding control units release the output channel(s) by disabling the register(s), which return to

their default opaque state.

4.4.4.3 Design details of sub-modules

The design details of the new control unit and the phase corrector are presented.

Figure 4.15 shows the design details of the new control unit of the Output Port Modules. The

74

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Figure 4.15: Optimized non-speculative fanout node: Control Unit details

data register and the request latch of the Output Port Module are initially normally-opaque as the

outputs of the control units are initially de-asserted. The control unit consists of three sub-units:

path selector, channel pre-allocator, and flow control unit. The path selector partially enables the

Output Port Module based on the address decoding from Input Channel Monitor. The channel pre-

allocator asserts its output (pre-allocate), if the header has been sent out of this output port, i.e.

pre-allocates this output port for the trailing body/tail flits, and releases the output port after the tail

has been routed. The flow control unit simply checks if there is congestion on the output channel

or if the channel is available for routing. The output of the control unit is asserted for two cases:

(i) for the header if the header is on the correct path (determined by the path selector) and the flow

control unit sees the output channel as available, and (ii) for the body/tail flits, if the output channel

was pre-allocated by the header and the channel is not congested as determined by the flow control

unit.

Figure 4.16 shows the details of the new Phase Corrector Unit corresponding to the output port

0. Phase correction may be required for an input request to an Output Port Module if the flit is not

intended for this output port. In particular, this correction is performed for two cases: (i) if the flit is

sent out only through the other output port, or (ii) if the flit is misrouted from the upstream router.

For each flit, initially, Reqin is toggled, which leads to a transition on Reqin0, which is input to the

75

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Figure 4.16: Optimized non-speculative fanout node: Phase Corrector details

Output Port Module. However, if the output port is not on the correct path, Reqin0 is blocked from

going out and its phase should be corrected. After the phase selector unit has determined if either

of the above two cases applies, then phase is toggled so that Reqin0 returns to its initial state.

4.5 Experimental Results

The experimental framework for evaluation of the new parallel multicast solutions, along with node

and network-level results on area, performance, and power, are now presented.

4.5.1 Experimental Framework

Some interesting experimental case studies are presented to evaluate the effectiveness of the pro-

posed new multicast approaches. In particular, the new tree-based multicast capability, local spec-

ulation approach, different protocol optimizations, and the novel network architectures. The setup

and the benchmarks used are also presented before presenting the node- and network-level results

in the next section.

76

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Experimental case studies. Two distinct case studies are used to evaluate the proposed paral-

lel multicast solutions: (a) contribution trajectory, and (b) architectural design space exploration.

The contribution trajectory incrementally evaluates the effectiveness of each contribution, in order,

against a serial baseline: use of parallel multicast; local speculation and a hybrid network; and

protocol optimizations. Architectural design space exploration, on the other hand, only evaluates

the effects of varying the degrees of speculation on the new parallel multicast networks. To iso-

late the focus, only optimized networks are targeted, thereby eliminating any interference from the

optimization strategies.

In particular, the contribution trajectory compares 4 networks: (i) Baseline [78], only supporting

serial multicast; (ii) BasicNonSpeculative, using simple tree-based parallel multicast; (iii) BasicHy-

bridSpeculative, using local speculation in a hybrid network; and (iv) OptHybridSpeculative, similar

to the previous one, but including protocol optimizations.

The architecture design space exploration compares 3 optimized new networks, each with vary-

ing degrees of speculation: (i) OptNonSpeculative, with no speculation; (ii) OptHybridSpeculative,

with local speculation; and (iii) OptAllSpeculative, with almost full speculation.

Experimental setup. Six different 8x8 MoT networks are implemented using FreePDK Nan-

gate 45 nm technology. Designs are technology-mapped and pre-layout. Six types of nodes are

implemented, as building blocks: five fanout and one fanin. Nodes are mapped to the Nangate stan-

dard cell library in the Cadence Virtuoso tool. Accurate gate-level models are extracted using the

Spectre simulator (typical process corner), to determine rise/fall times for every I/O path of each

gate. Channel lengths and delays are borrowed from a synchronous MoT chip [78] and scaled to 45

nm technology. These extracted models of nodes and channels are used to implement the networks

in structural Verilog.

An asynchronous NoC simulator is used for both unicast and multicast traffic. It includes a

Programming Language Interface (PLI) to connect a C-based traffic generator and test environment

to the technology-mapped network. This simulator extends a previous one that only supports uni-

cast [67]. For multicast, the latter’s traffic generator is modified to inject multicast packets with

new source routing addressing, and also to include a new validation module that can now verify the

routing of multicast packets to multiple destinations. A fixed packet size of 5 flits is used. Injection

of headers of different packets follows an exponential distribution. A procedure similar to [41] is

77

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

followed to ensure long warmup and measurement phases. Two steps are used to measure power:

(i) record and annotate precise switching activity of every wire in the network over a benchmark

run, and (ii) compute total power using the Synopsys PrimeTime tool.

Benchmarks. Experiments are conducted on six synthetic benchmarks. There are 3 unicast

benchmarks [41]: 1) Uniform random, 2) Bit permutation:shuffle, and 3) Hotspot. There are 3

multicast benchmarks: 4) Multicast5 and 5) Multicast10, where all sources inject multicast traffic

at rates of 5% and 10%, respectively, to random subsets of destinations, and otherwise do uniform

random unicast, and 6) Multicast static, where 3 sources perform only random multicast, and the

others do only uniform random unicast.

4.5.2 Node- and Network-Level Results

Node-level results. Area and latency of the four new fanout nodes (Section 4.4) and Baseline fanout

are shown in Table 4.1.

In terms of area, the unoptimized speculative fanout node has the smallest area due to its very

simple design. This node achieves 27.7% lower area than the Baseline node. Due to the added

multicast capability in the unoptimized non-speculative fanout node, it incurs a moderate overhead

of 18.7% over Baseline. The optimized speculative node includes extra logic to perform power-

aware optimization, and therefore has significant (51%) overhead over the unoptimized version, but

it still has almost the same area as the Baseline. Interestingly, the optimized non-speculative nodes

not only improve performance but also have slightly lower area than the unoptimized ones.

In terms of latency, the unoptimized speculative fanout node has the lowest latency, which is

only 52 ps, due to just the normally-transparent latch register on the forward critical path. Inter-

estingly, even after adding the new replication capability and ability to decode multicast addressing

in the unoptimized non-speculative node, it still has almost the same latency as unicast-only Base-

line node. The optimized speculative node achieves 2× lower latency than the Baseline although

incurs significant overhead over the unoptimized speculative node due to the added power-aware

optimization. However, the optimization in the non-speculative node, interestingly, led to slightly

better latency than both the Baseline node and the unoptimized non-speculative node.

Network-level results: contribution trajectory. This first experimental case study explores

the incremental impact of each key contribution: parallel multicast, local speculation, and optimiza-

78

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

Metrics Baseline Unoptimized Unoptimized Optimized Optimized

Speculative Non-speculative Speculative Non-speculative

Node area 342 µm2 247 µm2 406 µm2 373 µm2 366 µm2

Node latency 263 ps 52 ps 299 ps 120 ps 279 ps

Table 4.1: Node-level area and latency comparisons

2
0

9
0

2
0

3
5

2
1

8
2
 3
5

2
0

5
3

4
2

8
7
5
8

2
1

6
0

2
1

2
5

2
2

4
6

2
1

4
3

2
1

8
2

2
2

7
1

1
8
4
1

1
8
2
2

1
9

4
6

1
8

4
2

1
8

5
7

2
0
3
2

1
6

7
9

1
6

3
8

1
8

3
3

1
7

0
2

1
7

1
6

1
8

6
7

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Uniform random Shuffle Hotspot Multicast5 Multicast10 Multicast_static

A
v
g

 N
et

w
o

rk
 L

at
en

cy
 (

p
s)

Unicast and Multicast Benchmarks

Baseline BasicNonSpeculative

BasicHybridSpeculative OptHybridSpeculative

Figure 4.17: Contribution trajectory: network latency at 25% saturation load of respective

networks

tions.

Network latency. Figure 4.17 shows the average network latency results. We measure latency of

each network at 25% of the saturation throughput of that network, up to the arrival of all headers at

destinations. This load is high enough to show the impact of different benchmarks, while keeping

the network largely uncongested. Moreover, long warmup and measurement times are used, for

example, for Uniform Random/Multicast static benchmarks, warmup is 320 ns/640 ns, and mea-

surement is 3200 ns/6400 ns with injection of 2100/4000 flits at each active source.

For multicast benchmarks, the simple tree-based parallel multicast network, BasicNonSpecula-

tive, obtained significant benefits over the serial Baseline, from 39.1% (Multicast5) to 74.1% (Mul-

ticast static), highlighting the severe overheads of the serial multicast approach. The BasicHybrid-

79

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

1
.2

6

1
.4

8

0
.2

9

1
.2

8

1
.2

8

1
.2

9

1
.2

5

1
.2

2

0
.2

9

1
.4

7

1
.6

3

1
.8

0

1
.4

2

1
.2

5

0
.2

9

1
.6

1

1
.7

3

1
.8

7

1
.6

0

1
.6

2

0
.2

9

1
.7

6

1
.8

4

1
.9

6

0

0.5

1

1.5

2

2.5

Uniform random Shuffle Hotspot Multicast5 Multicast10 Multicast_static S
a

tu
ra

ti
o

n
 T

h
ro

u
g

h
p

u
t

(G
F/

s)

Unicast and Multicast Benchmarks

Baseline BasicNonSpeculative

BasicHybridSpeculative OptHybridSpeculative

Figure 4.18: Contribution trajectory: saturated throughput

Speculative and OptHybridSpeculative show further improvements of 10.5-14.9% and 17.8-21.4%,

respectively, over the BasicNonSpeculative, illustrating the individual benefits of hybrid design and

optimizations.

For unicast benchmarks, BasicNonSpeculative incurs a small latency overhead over Baseline:

since unicast is serial, the added node complexity to support parallel multicast becomes an overhead.

However, the two hybrid networks provide noticeable benefits over BasicNonSpeculative, following

similar trends as observed with multicast benchmarks. Interestingly, these latter results show that

local speculation can significantly accelerate unicast traffic due to very fast speculative nodes.

Saturation throughput. Figure 4.18 shows saturation throughput results. For multicast bench-

marks, the new simple parallel network, BasicNonSpeculative, shows considerable benefits over

the serial Baseline, ranging from 14.8% (Multicast5) to 39.5% (Multicast static). The two hybrid

networks exhibit additional improvements up to 9.5% and 19.7%, respectively, over BasicNon-

Speculative, demonstrating that local speculation, with accelerated packet transmission, provides a

higher threshold for saturation.

For unicast benchmarks, results are more complex. Hotspot is highly-adversarial, with identical

throughput for every network. For Uniform random, the OptHybridSpeculative network showed

substantial improvements (28.0%) over BasicNonSpeculative due to the use of both fast and simple

speculative nodes as well as the use of optimized non-speculative nodes with throughput-oriented

protocol optimizations. For Shuffle, two new networks show moderate throughput degradation (Ba-

80

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

sicNonSpeculative, BasicHybridSpeculative) over the Baseline, while OptHybridSpeculative ob-

tains 32.8% higher throughput than BasicNonSpeculative and 9.5% higher than Baseline.

The creation of redundant copies by the speculative nodes, in case of local speculation, may

result in saturation throughput overheads, as shown for the Shuffle benchmark. The speculation

nodes, although very simple, employ a conservative protocol to send ack upstream: this ack is only

sent after a flit has been routed on both the output channels. While in the Baseline, the ack is sent

after routing the flit through either of the outputs. The speculative node can become a performance

bottleneck if the downstream path taken by the redundant copy gets blocked due to congestion. In

this case, the new flit on the input channel is only routed through the ‘correct’ free output port, but

not routed through the blocked channel, and therefore no ack can be sent upstream for this flit, and no

new flits can arrive on the input channel. Hence, the redundant copy ripples the congestion upstream

affecting the overall network throughput. However, as shown in Figure 4.18, such overheads can

only occur for non-uniform traffic and at injection rates close to saturation.

Total network power. Figure 4.19 shows power results for 4 benchmarks. An injection rate that

is 25% saturation load measured in Baseline, for a normalized comparison of energy per packet.

Overall, as expected, Baseline has the lowest power due to its low complexity and serial multicast

approach. BasicNonSpeculative has moderate overhead over Baseline (5.8-11.9%), due to more

complex nodes. The overhead increases significantly for BasicHybridSpeculative (13.4-23.8% over

Baseline), due to creation of redundant speculative copies. However, using OptHybridSpeculative,

most of this overhead is removed (only 2.9-10.3% over Baseline): due to elimination of all redun-

dant body flits (speculative nodes), and reduced switching activity because of channel pre-allocation

(non-speculative nodes).

Network-level results: architectural design space exploration. This second experimental

case study only includes evaluations of the optimized designs, while varying the degree of specula-

tion.

Network latency. As shown in Figure 4.20, the hybrid network with local speculation (OptHy-

bridSpeculative) achieves 9.7-11.9% latency improvements (unicast and multicast) over OptNon-

Speculative, showing the effectiveness of the proposed techniques. The extreme case, OptAllSpecu-

lative, exhibits 8.7-12.0% additional latency improvements over OptHybridSpeculative (18.5-21.7%

over OptNonSpeculative), due to its almost fully speculative architecture (but will have significant

81

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

1
2

.6

3
.8

1
4

.7
 1
7

.1

1
4

.1

4
.2

1
6

.0
 1
8

.1

1
5

.6

4
.5

1
7

.4
 1
9

.4

1
3

.9

4
.1

1
5

.7
 1
7

.6

0

5

10

15

20

25

Uniform random Hotspot Multicast5 Multicast10

T
o

ta
l

N
et

w
o

rk
 P

o
w

er
 (

m
W

)

Unicast and Multicast Benchmarks

Baseline BasicNonSpeculative

BasicHybridSpeculative OptHybridSpeculative

Figure 4.19: Contribution trajectory: total network power

power overheads).

Saturation throughput. For all benchmarks, in Figure 4.21, the hybrid approach (OptHybrid-

Speculative) and extreme speculation (OptAllSpeculative) have nearly identical throughput to the

non-speculative (OptNonSpeculative).

Total network power. Figure 4.22 shows the power results for the three optimized networks. In-

terestingly, even with its significant performance benefits, the optimized hybrid approach incurs only

minor power overheads of 3.5-6.1% over the non-speculative approach, since redundant copies are

restricted to small local regions, and a power-oriented optimization is applied to disable speculation

for body flits. In contrast, the fully-speculative approach (OptAllSpeculative) incurs considerable

power overheads (10.8-15.8% over OptHybridSpeculative, 14.7-22.9% over OptNonSpeculative)

due to larger regions of speculation in OptAllSpeculative. It is expected that with larger MoT net-

works, these overheads will only increase, due to wider speculative regions.

Network-level results: addressing scheme comparisons. As highlighted earlier, an additional

benefit of local speculation is to reduce the address field size. The serial Baseline has the shortest

address field, using source routing, with a 1-bit address per fanout node on a unicast path: 3 bits for

8x8 MoT, and 4 bits for 16x16 MoT (not evaluated in this chapter). However, the large performance

overheads of these designs make them impractical for multicast.

Of the three proposed parallel architectures, each using source routing, address field sizes for

82

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

1
9
0
6

1
8
4
1

2
0

5
2

1
9
1
2

1
9

0
1

2
1
0
8

1
6
7
9

1
6
3
8

1
8
3
3

1
7
0
2

1
7
1
6

1
8
6
7

1
4
9
3

1
4
7
9

1
6

7
3

1
4
9
7

1
5
3
3

1
6
8
0

0

500

1000

1500

2000

2500

3000

Uniform random Shuffle Hotspot Multicast5 Multicast10 Multicast_static

A
v
g

 N
et

w
o

rk
 L

at
en

cy
 (

p
s)

Unicast and Multicast Benchmarks

OptNonSpeculative OptHybridSpeculative OptAllSpeculative

Figure 4.20: Architectural design space exploration: network latency at 25% saturation

load of respective networks

1
.5

2

1
.5

7

0
.2

9

1
.7

2

1
.8

2

1
.9

3

1
.6

0

1
.6

2

0
.2

9

1
.7

6

1
.8

4

1
.9

6

1
.6

5

1
.7

0

0
.2

9

1
.7

8

1
.8

4

1
.9

6

0

0.5

1

1.5

2

2.5

Uniform random Shuffle Hotspot Multicast5 Multicast10 Multicast_static

S
at

u
ra

ti
o
n

 T
h

ro
u

g
h

p
u
t

(G
F

/s
)

Unicast and Multicast Benchmarks

OptNonSpeculative OptHybridSpeculative OptAllSpeculative

Figure 4.21: Architectural design space exploration: saturated throughput

1
3

.1

3
.9

1
5

.0

1
7

.0

1
3

.9

4
.1

1
5

.7

1
7

.6

1
6

.1

4
.6

1
7

.8

1
9

.5

0

5

10

15

20

25

Uniform random Hotspot Multicast5 Multicast10

T
o

ta
l

N
et

w
o

rk
 P

o
w

er

(m
W

)

Unicast and Multicast Benchmarks

OptNonSpeculative OptHybridSpeculative OptAllSpeculative

Figure 4.22: Architectural design space exploration: total network power

83

CHAPTER 4. A LOCAL SPECULATION APPROACH FOR MULTICAST IN MESH-OF-TREES

NOCS

an 8x8 MoT are: 14 bits in non-speculative, 12 bits in hybrid, and 8 bits in almost fully-speculative.

For a 16x16 MoT, the benefits of speculation are even greater: 30, 20 and 16 bits, respectively. Ef-

fectively, the speculative architectures reduce the total number of address fields, by only addressing

non-speculative nodes.

Overall, the optimized network with local speculation is the best design point considering mul-

tiple cost objectives. This network shows significant latency and throughput improvements with

almost the same power as the non-speculative baseline and tree-based solutions, not just for the

multicast traffic, but also for unicast traffic. The fully-speculative network can achieve better per-

formance than local speculation, but it is not a practical solution given its major power overheads.

4.6 Conclusions

The chapter presents a new lightweight multicast using Mesh-of-Trees based asynchronous NoCs.

A new strategy, local speculation, is introduced, where fixed speculative switches always broadcast,

but redundant packets are restricted to small regions. A hybrid network architecture is proposed,

mixing speculative and non-speculative switches. The approach is the first general-purpose mul-

ticast for asynchronous NoCs. For multicast, the network achieves 17.8-21.4% improvements in

network latency with small power reductions over a tree-based non-speculative approach. Interest-

ingly, similar performance benefits are also observed for unicast traffic. Therefore, local speculation

can also be used for applications involving only unicast, with fast and simple speculative switches,

surrounded by non-speculative switches that will only support one-way transmission, stripping off

any logic for multi-way routing, which can result in even higher performance. For future work, we

plan to extend the approach to larger MoT networks, alternative topologies (e.g. 2D-mesh), as well

as synchronous NoCs.

84

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Chapter 5

A Continuous-Time Replication Strategy

for Multicast in 2D-Mesh NoCs

5.1 Introduction

In contrast to the previous chapter, where the target topology was a variant mesh-of-trees (MoT), this

chapter focuses on the more challenging problem of handling multicast in a 2D-mesh topology [17],

[19]. 2D mesh is more commonly used, contains higher radix routers with greater parallelism, and

employs more complex routing than the variant MoT. Therefore, it is critical to find a simple yet

high-performance multicast solution for this topology.

Achieving high-performance multicast in 2D-mesh topology is a difficult problem. Switches

in 2D mesh exhibit high levels of concurrency, where multiple input ports of a switch can receive

packets in parallel, which need to be routed through different output ports. In addition, some of these

packets are usually intended for the same output ports, leading to contention at these ports. Multicast

transmissions can manifest more contention than unicast, which can impact system performance: a

multicast packet at an input port needs to be routed through multiple output ports, and there can be

multiple such packets routed in parallel. For high performance, there is a need for a routing strategy,

that can route copies of a multicast packet in parallel through different output ports, and eagerly,

where as soon as an output port becomes available, a packet copy is sent through this output even if

other outputs are still blocked. Of course, such a strategy must also be implemented with low area

and energy overheads.

85

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

To this end, a novel continuous-time replication strategy is introduced in this chapter to achieve

high-performance parallel multicast in an asynchronous NoC with low overheads. In particular,

the flits of a multicast packet are first stored in a single buffer at an input port, from where these

flits are then routed through multiple distinct output ports of the router according to each output’s

own rate, concurrently, and in continuous time. Unlike synchronous, this unique asynchronous

approach, not discretized to clock cycles, can provide significant performance benefits by handling

subtle variations in network congestion and operating speeds.

To enable the above replication strategy with low area and energy costs, a new continuous-time

multi-way read (CMR) buffer is also introduced. The CMR buffer is a low-latency asynchronous

FIFO with a single write port and multiple decoupled read controls. The write port is used to store

the flits of each individual multicast packet, which can then be accessed by multiple output ports

of the router in parallel using the independent read pointers of this buffer. Only one CMR buffer

is used per input port, leading to minimum power/area overheads, compared to multiple buffers in

recent synchronous multicast routers [193], [81]. In addition, this buffer is a standalone unit, which

can be useful for a wide variety of asynchronous applications.

The new continuous-time replication strategy along with the CMR buffer form a unique asyn-

chronous paradigm that leads to low-overhead ’sub-cycle’ forking of flits, which is critical for high-

performance multicast. This continuous-time yet simple multi-way routing may not be possible

using synchronous techniques, which rely on discretization.

Finally, for further latency optimization in the new switch, the expensive input buffering opera-

tion is eliminated from the forward critical path by performing it in parallel with route computation

for the packet header. In contrast, asynchronous routers generally perform buffering of the header

and route computation serially [185], [66], [89], resulting in a latency bottleneck. To ensure energy

efficiency, this route computation unit is deactivated for the remaining flits of the packet.

5.2 Baseline Asynchronous NoC

The new multicast NoC builds on a previous highly-efficient 2D-mesh asynchronous NoC, which

only supports unicast [66]. This NoC was developed as part of a joint collaboration between Asyn-

chronous Circuits and Systems Lab at Columbia University and the University of Ferrara, Italy. This

86

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

early work is significantly enhanced to support parallel multicast, and will also be used as a baseline

for the new work.

In addition, this baseline NoC was also extended to include VCs in a collaborative work between

our group at Columbia University and AMD Research [89]. This section first briefly presents the

design of the original NoC without VCs, followed by discussion on the extended design with VCs.

5.2.1 The Baseline NoC Without VCs

This baseline NoC uses 5-port routers, which are designed to be simple, high-performance with low

energy and area costs. Most of the existing asynchronous routers use 4-phase protocol with delay-

insensitive encoding on channels, which can have significant overheads [52], [23], [185]: 4-phase

can be expensive for throughput due to two roundtrip communications per transaction compared

to one roundtrip in 2-phase. DI encoding, on the other hand, leads to significant increase in area

and energy-per-flit. Therefore, the less common but efficient 2-phase communication protocol with

single-rail bundled data is utilized to achieve a cost-effective router design.

Each router of this baseline NoC has two main components: input port modules (IPMs) and

output port modules (OPMs), connected using a shared crossbar. Each IPM has one input channel

and four output channels connected through a crossbar to the OPMs. The IPM performs route

computation on an incoming packet and selects the correct OPM for routing. Each OPM has four

input channels and a single output channel. The OPM arbitrates between packets from the four

IPMs and the winner is forwarded on the output channel. Both the IPMs and the OPMs are based on

Mousetrap pipelines: for high performance, capture-pass registers, i.e. normally-transparent single-

latch registers, are used throughout the router, which provide very low latency as no synchronization

to a latch enable is required to open these registers [147].

5.2.1.1 Input port module

The micro-architecture of the baseline IPM is shown in Figure 5.1. There are four components:

Circular FIFO Buffer, Route Computation Unit, four Request Generators, and Internal Ack Gener-

ator. The Circular Buffer stores the incoming flits. This buffer was proposed as an auxiliary unit

in [66] but was not directly used in its IPM. However, the baseline in this chapter uses this buffer.

The Route Computation Unit uses XY routing to select the correct Request Generator based on the

87

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Figure 5.1: Baseline IPM micro-architecture

destination address in the packet header, which activates the correct OPM for the packet and gener-

ates an output request for each flit. The Internal Ack Generator observes completion of handshaking

between the IPM and the OPM for each flit, and advances the read pointer in the Circular Buffer.

The baseline IPM has a simple operation. A header flit first arrives on the input channel and is

immediately stored in the Circular Buffer. Next, three operations are performed in parallel: (a) the

flit from the buffer is speculatively broadcast to all OPMs, (b) the bundled request is also broadcast

to all the Request Generators, which then toggles the corresponding output requests, and (c) the

Route Computation Unit receives the address field (X/Y coordinates of destination) and selects the

one correct Request Generator. This Request Generator activates the correct OPM by asserting Pa-

thEnabled, which persists for the packet lifetime. Once the flit has been routed and an ack received

from the OPM, the next flit is read from the buffer. Similar operations are performed for body and

tail flits. Finally, the routing of the tail by the OPM deasserts PathEnabled, releasing the OPM’s

arbiter, and completing the packet’s routing.

Circular FIFO structure and operation. The Circular FIFO is a low-latency, area- and energy-

88

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Figure 5.2: Baseline circular FIFO

efficient buffer. This buffer uses single latch-based registers, where each latch register can hold a

distinct item. In contrast, synchronous designs typically use D flipflop-based registers with signifi-

cant overheads, or pulse-mode single-latch designs with challenging two-sided timing constraints.1

Interestingly, the use of capture-pass registers in this FIFO also improves forward latency. As shown

in Figure 5.2 the buffer has one write interface and one read interface. After a flit is written in the

tail cell, the write interface for the cell generates a Full request to the the read interface, followed

by completing the handshaking on the input channel, and incrementing the write pointer. The read

interface, after receiving the Full request, then reads the selected flit, which is forwarded to all the

OPMs along with its req. After AckX is received from the OPM, the read interface advances its read

pointer.

1A synchronous 2D circular FIFO has been proposed for low-voltage operation which, similar to us, uses single-latch

registers; however, it can incur considerable overheads [39]. This FIFO comprises many buffer lanes, where each lane is

a latch-based shift register. Due to the two dimensions, this FIFO can have significant area and power overheads. It is also

expensive in terms of latency due to multiple latches in the shift registers. A 1D version of this FIFO, which is not shown

in this chapter, will be a circular FIFO with each lane consisting of only one latch register. However, the operation of

this 1D FIFO is still aligned to clock cycles and requires complex two-sided timing constraints for pulse-mode operation,

unlike the proposed approach.

89

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Figure 5.3: Baseline OPM micro-architecture

5.2.1.2 Output port module

The baseline OPM micro-architecture is shown in Figure 5.3. There are six main components: a

4-Way Arbiter, four on-demand (i.e. normally-closed) Input Registers corresponding to each IPM,

a 4:1 Data Mux, a capture-pass (i.e. normally-transparent) Output Register, an Ack Generator, and

a Tail Detector.

The low-latency arbiter mediates between packets from four distinct IPMs, and selects a winner.

Since it must operate in continuous time (in contrast to synchronous arbiters), where inputs arrive

at arbitrary temporal intervals not discretized to a clock cycle, it is built using an analog mutual-

exclusion element, and is the only except to use of standard-cell components in the router (see [147],

[66] and Section 2.3.2 for more details). Based on the arbitration, the correct input channel of the

OPM is allocated i.e. enabling the selected input register. The data mux selects the data stream

corresponding to the winning packet. The output register is used to perform flow control on the

output channel to the downstream router. Two types of acks are sent to the winning IPM: one sent

at a flit granularity by the ack generator after routing each flit on the output channel, and the other

sent for the entire packet by the tail detector after routing the tail flit on the output channel.

90

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

In a basic scenario with no contention, a header flit of a packet, intended for the OPM, arrives

from one of the IPMs through the crossbar. The flit is accompanied with its bundling request and

address information in the form of PktPathEnable, which is input to the arbiter. In the absence of

competition, the arbiter rapidly grants access to this header for the packet’s lifetime. This acquisition

is followed by two operations in parallel: (i) the correct L1-L4 input request register is allocated

(i.e. held transparent) for entire processing of the packet, and (ii) the appropriate stream in the data

mux is selected. Next, the header is sent out on the output channel through the capture-pass register.

After the toggling of the output request, two operations occur in parallel: the normally-transparent

output register is closed transiently for protection and flow control, and the ack generator sends the

corresponding ack to the correct IPM.

Similar operations happen for body and tail flits. Since the correct path through the OPM is

already allocated by the header, the new body/tail flits are simply fast forwarded through the OPM

after their arrival. Once the tail flit arrives and is sent out, the tail detector asserts the appropriate

Tail-passed, which then shuts the winning input register for safety. Finally, following a 4-phase

handshaking with the IPM, assertion on the Tail-passed de-asserts PktPathEnable (in IPM), which

then releases the arbiter in the OPM, leading to a complete resetting of the OPM’s input registers,

data mux, and the tail detector in parallel.

In summary, the entire path through the OPM remains flow-through and transparent, after the

header wins the arbitration for all the body and tail flits. The only exception, is transient closing and

opening of the output data register for flow control. If traffic is light or moderate, each body/tail flit

effectively passes directly through the OPM.

5.2.1.3 Results

The baseline NoC router has been shown to handle unicast very efficiently. In a head-to-head post-

layout comparison with a state-of-the-art synchronous router, this baseline asynchronous router

significantly outperformed the latter, achieving 71% lower area, 44% lower energy-per-flit with

39% reduction in latency and comparable throughput [66]. Moreover, an exhaustive analysis was

performed to measure the impact of increasing link lengths on latency: the asynchronous design

showed significantly better latency than the synchronous one as link lengths were increased. In

terms of power analysis, the asynchronous router achieved 90% lower idle power, and 73% and

91

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

45% dynamic power savings in case of hotspot and uniform traffic patterns, respectively.

5.2.1.4 Baseline for the new multicast research

The baseline network does not directly support parallel multicast, but can support serial multicast

using a unicast-based approach. In this approach, for each multicast packet, the source NI creates

multiple unicast copies destined for different destinations, which are then injected and routed seri-

ally. However, as shown in Section 5.5, performing multicast using the serial unicast approach can

have severe performance and power overheads.

In this chapter, the baseline network will be significantly enhanced to support tree-based parallel

multicast. Only the IPM module of the baseline is modified: since it performs route computation

and selects the required output ports, it must be extended to support replication capability, which is

essential for parallel multicast. In contrast, the OPM module remains the same as in the baseline as

it still arbitrates between multiple packets and does not make any routing decisions.

5.2.2 Industrial Extension of the Baseline NoC to VCs

Recently, the above router was fully migrated to a leading commercial technology in an industrial

setting [89]. This work was performed in collaboration between our group and AMD research.

A head-to-head comparison was performed between the asynchronous router and AMD’s leading

synchronous router, where the asynchronous one outperformed the synchronous design. The asyn-

chronous router also supports VCs in a high-performance and low-overhead manner.

This work made important significant advances to the field of asynchronous NoCs. First, it

was the first published comparison between a high-performance asynchronous NoC router vs. an

industrial synchronous NoC router using an advanced 14 nm technology. This synchronous router

is used in high-end AMD processors and graphic products to handle a variety of configuration

and control traffic. The comparison results are therefore more close to reality than the most other

research works in this area. Second, a new end-to-end credit-based VC flow control was proposed,

which leads to a lower number of backward credit synchronizations needed to the upstream router.

Finally, the asynchronous router with 2 VCs significantly outperformed the synchronous AMD

router, showing 55% lower area and 28% reduction in latency in a head-to-head comparison.

92

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Switch 0

Switch 1

W
e
st

 I
n

te
r
fa

c
e

E
a
st

 I
n

te
r
fa

c
e

North Interface

South Interface

L
oc

al
 I
nte

rf
ac

e

Request Plane

West Channel

Router for

Request Plane

Request Plane

South Channel
Response Plane

South Channel

Request Plane

East Channel

Response Plane

East Channel

Request Plane

North Channel

Response Plane

North ChannelLocal

Terminal

Response Plane

West Channel

Router for

Response Plane

† † ‡ ‡

†
‡

—

Intel’s FM5000/6000 series Ethernet switch
BM’s TrueNorth neuromorphic chip

STMicroelectronics’

‘ ’

talian Government through a ‘Fondo Giovani’ fellowship.

Figure 5.4: Node structure for double-plane baseline asynchronous router

5.2.2.1 Overall router structure

Similar to the synchronous AMD router, the baseline router with VCs was designed for a double-

plane NoC. The router for each plane contains uncorrelated and identical sub-routers, as shown in

Figure 5.4. The two planes are: a request plane that routes read and write request packets, and a

response plane that routes read and write response packets. Such request/response traffic is common

for cache coherence protocols.

The router uses a multi-switch architecture to support VCs, which has been shown to be more

effective than a shared-crossbar architecture for the asynchronous routers [136], although the latter

is more common for synchronous routers. As shown in the Figure 5.4, in a multi-switch architecture,

the number of switches are replicated as many times as the number of VCs, for each plane.

For each plane, in addition to the replicated switches, which are the same as in Section 5.2,

interfaces are added for each of the five directions. These interfaces, on the input side, demux

the arriving packet and route them to the switch according to the pre-assigned VC, and on the

93

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Mutex

Mutex

Input Ctl0

Mutex

Input Ctl1

Full

Detector0

Timer 0

mutex
_req0

mutex
_req1

zerowins

forced
_clk0

full0

fu
ll

0
_

v
al

id
Full

Detector1

Timer 1

onewins

forced
_clk1

full1

fu
ll1

_
v

alid

E
D Q

L1 E
D Q

L2

E
D Q

L6
E

D Q
L7

E
D Q

L5

L3

D Q

E

L4

D Q

E

Ackin

Reqout

Credit_increment0

Credit_increment1

Ackout1

Ackout0

Reqin0

Reqin1

D
a

ta
M

u
x

R S

Q

sel

Datain0

Datain1

E

D Q

Data
Reg

Dataout

Q

_

T
w

o
 d

a
ta

 i
n

p
u

t
c
h

a
n

n
e

ls
:

e
a

c
h

 f
ro

m
 a

 d
if
fe

re
n

t

V
C

 a
n

d
 c

o
rr

e
s
p

o
n

d
in

g
 s

w
it
c
h

 (
O

P
M

)

D
a

ta
 o

u
tp

u
t

c
h

a
n

n
e

l:

to
 t

h
e

 o
u

tp
u

t
lin

k

VC controls:

from the output link

–

Figure 5.5: VC control for an output channel interface

output side, perform a merge operation of the traffic from all VCs on to the shared output channel.

Therefore, the VCs separate the different traffic classes inside the router, but these classes are mixed

on the inter-router channel.

5.2.2.2 VC flow control

A credit-based VC flow control is used, which forms the output interface for each direction. In

this approach, the credit count is decreased when the flit is sent out, and increased when a free

slot becomes available in the upstream router’s input buffer. A ’lazy’ approach is used for high-

performance operation, where the non-critical credit increment requests are queued, and are updated

only when performing the next and more critical credit decrement. This approach can lead to po-

tentially better throughput than the other approaches, where the two credit updates are considered

of the same priority, and the non-critical credit increment can block the critical credit decrement

operation and sending out of a flit [136].

Figure 5.5 shows the VC flow control unit of the output interface. This module performs flit-

level arbitration between the two data streams from the two VCs, and merges them on to the single

94

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

output channel. There are two main components of this unit: the full detector and the timer. The

full detector updates the credits every time a flit is sent out, considering both the queued credit-

increment requests and the current credit decrement. This component also blocks further arbitration

requests for a VC in the absence of credit availability. The timer is activated when credit is not

available, and it periodically checks if any credits are released so that the blocking of arbitration can

be removed.

5.2.2.3 Results

Experimental setup and some important results are summarized next.

The asynchronous router and the synchronous AMD router were compared at the pre-layout

level. The synchronous router is a 3-cycle router with fine-grain clock gating, running at 1 GHz

clock rate, based on the performance requirements of several high-end AMD products. The syn-

chronous router was synthesized using the standard automated flow, while the asynchronous router

was synthesized manually to achieve both high performance as well as robust operation. This router

was also laid out using the standard P&R tools, however, the results presented here are only at

pre-layout level, but similar trends are also expected at the post-layout level. Both the routers are

configured to have 2 VCs, each with a 7-slot buffer. The technology used is low-power industrial

14 nm.

The results in terms of the area, latency, idle and active power are shown in Figure 5.6. The

asynchronous router significantly outperforms the synchronous one: 55% lower area, 28% better

latency, with 88% and 58% lower idle and active power.

Finally, Figure 5.7 shows the projected results for two alternative designs: (a) a 7-port router

with 2VCs, which is important for 3D stacking and (b) a 5-port router with 8 VCs, which is a

more realistic VC configuration. For both these cases as well, the asynchronous router dominates

the synchronous router considerably. For the 7-port routers with 2 VCs, the asynchronous design

showed 75% lower area and 25% lower latency. In terms of power, the synchronous design had

85% higher idle power and 50% higher active power than the asynchronous design. Similarly, for

the 5-port routers with 8 VCs, the asynchronous one showed 38.4% lower area with almost the same

latency. In terms of power, the synchronous design had 84.6% higher idle power and 46.1% higher

active power than the asynchronous design.

95

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS



Sync router Async router

Figure 5.6: Baseline asynchronous vs. synchronous router: basic comparison for 2 VCs

0

1

2

3

Area Latency Idle Power Active Power

(*projected results)

Sync node: 5-port 2VC Async node: 5-port 2VC

Sync node: 7-port 2VC* Async node: 7-port 2VC*

Sync node: 5-port 8VC* Async node: 5-port 8VC*

Figure 5.7: Asynchronous vs. synchronous router: projected results

5.3 New Multicast Approach

The new multicast asynchronous NoC is now introduced for 2D-mesh topology, that loosely builds

on the previous unicast solution. The new approach enhances the widely-used tree multicast method

using a novel replication strategy and router architecture. This section presents an overview of this

approach, including its protocol and ability to avoid deadlocks.

5.3.1 Tree-Based Parallel Multicast

Figure 5.8 shows a simple view of the new router micro-architecture and illustrates how it supports

tree-based multicast. The figure only shows one IPM in detail with new enhancements for parallel

96

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Figure 5.8: New router architecture and tree-based multicast operation

multicast, connected to all four OPMs using a partial crossbar. The IPM consists of a single CMR

buffer, which connects both to the input channel and to four OPMs through the crossbar; and a par-

allel Route Compute Unit that also connects to the input channel and identifies the correct OPMs for

routing. As shown in the given example, the flits of a multicast packet are replicated and forwarded

to two output channels in parallel based on the route computation. These new copies will again

follow a tree-based path through the network, performing multiple replications until they reach the

destinations.

5.3.2 Continuous-Time Replication Strategy

The new replication strategy routes the set of flits in a multicast packet through the distinct out-

put ports in parallel, and at each output’s own rate. Unlike synchronous schemes, this replication

and forwarding is performed in continuous time, accommodating the individual read rates of the

97

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

different OPMs, and not discretized to clock cycles.

In more detail, the flits of a multicast packet stored in sequence in a single shared input buffer

are read by multiple OPMs. The OPMs read these flits independently and at their own rates using

decoupled read pointers, not bound to any discrete clock cycle. If an output port gets congested,

others can continue reading the flits of the stored packet. Due to the continuous-time read operation,

the congested output can resume reading the next flits as soon as it becomes available rather than

waiting for the next clock cycle. Hence, unlike synchronous, this design can handle subtle variations

in network congestion. Each OPM stalls once it has read all the currently stored flits. A stored packet

becomes stale after all the required outputs have read all its flits, including the tail.

Figure 5.8 shows the top-level view of the continuous-time multi-way read (CMR) buffer used

to implement the new replication strategy. The buffer has a single write port to store new incoming

flits, and four read ports, which can be accessed by multiple OPMs in parallel using decoupled read

pointers. The CMR buffer is an extension of the baseline single read-ported buffer [66], but with

the new multiple read capability and distributed read control.

5.3.3 Route Computation and Buffering Policy

To remove the overhead of buffering a new header flit, route computation on the header is performed

in parallel, using a separate small dedicated Route Compute Unit. When a header flit arrives, it is

rapidly forked on two paths: to Route Compute and to the CMR Buffer. The former stores the

header only, in a one-place buffer, and holds it for the packet lifetime. The latter is written into the

circular FIFO, as part of the datapath, where it can be read by the different OPM units. Bit string

addressing is used, which is a common efficient multicast encoding [88], [193], [105]. The address

field has a single bit for each node in the network. The bit is 1 if the node is a destination, otherwise

it is 0. Route computation is performed only on the packet header; after address decode, for energy

efficiency, the unit is disabled. XY routing is used, to forward the multicast flit on the appropriate

output ports, which ensures a deadlock-free protocol.

The IPM’s buffering policy is specifically designed for the continuous-time replication strategy.

A new packet can only be buffered when the entire previously-stored packet has been completely

routed. The advantage of this packet-based buffering policy is to allow each OPM to freely read

stored flits, without complex checks and any safety violations. In particular, the Route Compute

98

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Unit only opens after a complete packet has been processed. If multiple flits of the next packet

have already arrived, the unit will not sample its header address. A special synchronization is

enforced, to ensure all OPM’s have read the tail flit before sending the final packet-based upstream

acknowledgment. The buffer size is therefore set equal to the worst-case packet size handled by

the NoC. While the buffer can be under-utilized for shorter packets, an extra regular circular FIFO

can also be added on the input channel to increase capacity. This approach also simplifies the flow

control, since the buffer will never risk overflow.

5.3.4 Simulation of Multicast Routing

The basic operation of the new router is now presented, highlighting the interesting aspects of the

continuous-time replication strategy, route computation, and packet-based buffering. Without loss

of generality, a simple multicast scenario is considered: a 3-flit multicast packet is routed through

two output channels of the new router.

As shown in Figure 5.9(a), first, the header flit of the packet arrives on the input channel. In step

2, two operations occur concurrently: the complete header flit is stored inside the CMR buffer, and

the addressing of the header gets stored in a small buffer inside the route computation unit, where

it is used for rapid address decoding. In step 3, an ack is sent upstream so the body flit can arrive.

This ack also disables the route computation unit for the rest of the packet i.e. holds the head flit

and blocks the remaining flits, improving energy efficiency. Concurrent to the ack, the two selected

OPMs (0 and 1) start reading the header flit from the buffer using their individual read pointers in

continuous time, handling any sub-cycle timing differential between the two read operations. The

header is finally sent out in parallel through the two OPMs at their own rates.

As shown in the Figure 5.9(b), next, the body flit arrives on the input channel. In step 2, different

from the header, the body flit is only stored in the CMR buffer, while the route computation unit

remains deactivated. In step 3, two operations happen concurrently: an ack is sent upstream so the

final tail flit can arrive, and the correct OPMs can now read the stored body flit. To demonstrate the

independent read operation feature of the continuous-time replication strategy, assume that OPM

1 is congested and gets stalled, while OPM 0 is still available. As the OPMs can read the CMR

buffer independently using individual read pointers, OPM 0 reads the body flit and sends it out on

its output channel, while OPM 1 remains stalled.

99

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Figure 5.9: Continuous-time replication strategy operation for a 3-flit packet: highlighting

interesting aspects of parallel route computation, independent read operations, and

packet-based buffering

In Figure 5.9(c), the final tail flit arrives on the input channel and gets stored only in the CMR

buffer (steps 1 and 2), while the route computation unit remains deactivated. Interestingly, no ack

is sent upstream yet after storing of the tail flit as a different ack protocol is followed for the tail to

enable packet-based buffering (Section 5.3.3): ack is sent for tail only after it has been read by all

the required OPMs. This conservative protocol makes the final ack as the acknowledgment of the

completion of routing of a multicast packet through all the required outputs, enabling safe process-

ing of the packet without interference from another packet. In step 3, showing the independent read

operation, the available OPM 0 reads the tail flit from the CMR buffer using its read pointer, while

OPM 1 is still stalled. Since, the tail flit has not been read completely yet, no ack is sent upstream.

Figure 5.9(d) shows the final steps in the tail flit’s processing, after OPM 1 becomes available.

100

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

In step 4, as soon as the congestion clears at OPM 1, without waiting for a clock cycle, OPM 1

reads the stored body and tail flits, using its read pointer, and sends them out on its output channel.

Since the tail flit has now been read by both outputs, the final ack is sent upstream in step 5, which

completes the processing of the current packet, and also re-enables the route computation unit for

the next packet header.

5.3.5 Resource-Dependent Deadlock Avoidance

The new replication strategy not only has a simple operation but also entirely avoids resource-

dependent deadlocks within a router. This section presents the deadlock scenario that can occur

for multicast transmission, and how the new strategy avoids this issue. For further exploration,

two alternative approaches are also presented to avoid multicast deadlocks, but are shown to be

infeasible due to major limitations, which, however, are not seen in the proposed strategy.

Deadlocks using multicast protocols. A potential deadlock may occur due to a cyclic depen-

dency between multi-flit multicast packets arriving at different inputs. This dependency arises when

these multicast packets arrive almost simultaneously and are intended for the same output ports but

acquire different subsets of these outputs. A deadlock can occur if a conservative multicast routing

protocol is followed, where no body flits can be routed until the header has been routed through all

required outputs.1 The new replication strategy eliminates this deadlock, since it allows a packet to

be routed through any OPM, and the OPM is released, regardless of the status of other OPMs.

Figure 5.10 shows a simple example of a resource-dependent deadlock in a conservative mul-

ticast routing protocol. Without loss of generality, a four-port router is considered. The router

receives two multi-flit multicast packets: A and B almost simultaneously on east and west IPMs.

Both these packets are intended for north and south OPMs. Assuming packet A header occupies

the north OPM, while the packet B header occupies the south OPM. A circular dependency has

occurred: packet A requires access to south for its complete routing, but is occupied by B, similarly,

B requires access to north, which is occupied by A. Since, a conservative protocol is followed and

none of the headers have been completely routed, the remaining flits are stuck and a deadlock has

occurred.

1Deadlock will even occur in a more relaxed protocol, where body and tail flits can be sent freely on each OPM, but

no OPM can be released until full multicast is complete.

101

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Figure 5.10: Cyclic dependency between multicast packets

Deadlock avoidance in proposed approach. The new replication strategy breaks this cycle.

The packets can be completely routed through each acquired OPM, releasing these outputs for the

other packet to acquire. In the scenario of Figure 5.10, packet A will be completely routed through

north, releasing this OPM for B to acquire. Similarly, B will release south for A. Hence, both packets

are completely routed through the required outputs.

Alternative approaches for deadlock avoidance. There can be two other ways to avoid

resource-dependent deadlocks that can occur for multi-flit multicast packets: a centralized arbitra-

tion approach, and a flit-level distributed arbitration approach which was used in [164]. However,

both these approaches suffer from major performance and correctness issues and are therefore not

viable solutions.

Centralized arbitration approach. As shown in the Figure 5.11, in this scheme, multiple packets,

arriving at different input ports, compete for the complete control of the router using a centralized

arbiter. The winning packet is then routed through its required output ports, which do not per-

form any further arbitration. After the packet has been completely routed through all the necessary

outputs, the central arbiter is released so that one of the other packets can now acquire the router.

Since, only a single packet can be routed through the router at a time, resource-dependent dead-

lock is avoided in this approach as there can be no dependency between multiple packets. For

example, in Figure 5.11, the headers of the competing packets A and B arrive almost simultaneously

at the input ports east and west, respectively, both intended for north and south, and compete with

102

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Figure 5.11: Centralized arbitration: an alternative approach to avoid resource-dependent

deadlocks for multicast

each other to gain control of the router through the central arbiter. The central arbiter first grants

access to the header A, which is then routed through both the outputs north and south. Similarly,

the remaining flits of A are also routed through these outputs. After routing of the tail, the central

arbiter is released and can now be acquired by B, hence, no cyclic dependency.

This approach is simple, however, it can incur serious performance overheads. In this case, a

normally parallel 5-port router is effectively transformed into a serial router, which can degrade the

system-level throughput considerably and is therefore not a viable solution to avoiding deadlocks.

Flit-level distributed arbitration approach. This scheme uses the similar distributed arbitration

at each output port as shown in Figure 5.10, however, the arbitration is now performed for every

flit, and not just the header. After the winning flit is routed through an output port, the port is

released and can now be acquired by the flit of another competing packet (assuming fair arbitration).

Therefore, an output port is not held for the lifetime of a packet.

This scheme can avoid resource-dependent deadlocks [164]. Releasing the output port after

routing each flit breaks the cyclic dependency between multiple packets. For example, in Fig-

ure 5.10, after the header for packet A acquires the north port, and B header acquires the south

port, each of these output ports are released after the respective headers are routed and can now

be acquired by the other packet’s header. Hence, breaking the cyclic dependency and allowing for

complete routing of the two packets without deadlock.

103

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

This approach, however, suffers from two major limitations concerning performance and cor-

rectness. In terms of performance, arbitrating and releasing an output port for every flit can have

significant impact on throughput, compared to the standard wormhole routing employed in the pro-

posed strategy, where the arbitration is only performed for the header and the output port is allocated

for the entire packet so that the body/tail flits are simply fast forwarded after arrival. In terms of

correctness, this scheme can result in an out-of-order delivery of flits to the local cores, which is

erroneous. Ordering of flits can be guaranteed by tagging each flit with an ID and then performing

a correct re-ordering at the local NI before delivering to the cores. However, this technique can

have extra hardware overhead, such as a re-order buffer, as well as lower coding efficiency due to

added ID bits in each flit. Given the associated prohibitive performance and correctness issues, this

deadlock-avoidance approach is impractical.

5.4 Design Details: New Input Port Module (IPM)

The detailed design of the new IPM is now presented, which supports the continuous-time replica-

tion strategy, along with the details on its route computation unit and the CMR buffer.

5.4.1 IPM Structure and Operation

The structure and operation of the IPM is first described, before going into the design details of its

units.

5.4.1.1 Structure

As shown in the Figure 5.12, the IPM has one input channel that connects to the upstream router and

four output channels towards the OPMs through a crossbar. There are three components in the new

IPM: a Route Computation Unit (RCU), the CMR buffer and four Address Modifier Units (AMUs)

on each output direction. The RCU stores only the header addressing and selects the correct OPMs

for routing. The CMR buffer, however, stores all the flits, which can be accessed by the OPMs

concurrently using its four decoupled read ports. Finally, an AMU is present at each output of

the CMR buffer, which modifies the header address such that there is always a unique path for the

multicast packet to reach each destination, preventing sending multiple copies of the packet to the

104

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Figure 5.12: New IPM micro-architecture with CMR buffer

same destination through different paths.

5.4.1.2 Operation

When a new packet header arrives, it is stored in the CMR buffer and in parallel its address is stored

in a small buffer in the RCU to start route computation. After the header is stored in the CMR buffer,

it is speculatively broadcast to all read interfaces. The write interface, next, generates an Ackout on

the input channel, which is used to (a) advance the buffer’s write pointer, and (b) close the buffer

in the RCU, disabling it for the remainder of the packet to save energy. A similar write protocol is

followed for the body flits until the tail arrives and is stored. The Ackout for the tail is sent only after

the tail has been read by all the correct OPMs of the buffer. This Ackout also re-activates the RCU.

Read operations on the buffer are performed in parallel to the write. The header is first spec-

ulatively read out of all the read interfaces, with AMU address modifications, and sent to all the

105

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Figure 5.13: New route computation unit architecture

OPMs along with Reqouts. After the RCU finishes the route computation, the correct OPMs are

selected using PathEnabled, which are also used by the read interfaces to throttle the copies on the

wrong paths. Each read interface on the correct paths receives an Ackin from its OPM after the

header has been routed through the OPM, and advances its individual read pointer. Similar read

operations are performed for the body and tail flits, where each OPM on the correct path reads these

flits independently.

5.4.2 Route Computation Unit (RCU)

5.4.2.1 Structure of RCU

The RCU has one input channel and four output channels connected to the OPMs through the

crossbar (Figure 5.13). It has three main components: an address register to store the addressing of

the header, a route computation logic to decode the addressing, and an OPM selector that selects the

correct output ports for the lifetime of the packet.

106

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

5.4.2.2 Operation of RCU

The RCU operates only on the arrival of a header flit. When a packet header arrives on the input

channel, its address field is stored in a normally-transparent latch register with the correct phase

of its bundling request. The head predictor controls this register: it is closed immediately after an

Ackout is sent on the input channel for the header and reopens after the Ackout for tail, anticipating

the next header. The stored header address is then used to compute the correct routes for the packet

by the route computation logic.

Route computation algorithm: The correct routes are selected by the route computation logic

based on a network partitioning approach. Four 64-bit partition bit-strings are used corresponding

to each output direction, which have a bit for every node: 1 if the node is reachable through this

direction using XY routing, 0 otherwise. A bit-wise AND is then performed between the destination

bit-string and each of these partition strings: if the result is non-zero then that direction is selected

for routing as there is at least one destination reachable through this direction.

Finally, based on the computed routes from the route computation logic, the OPM selector then

generates the correct PathEnabled signals for the packet lifetime, which are deasserted only after

the appropriate Tailpasseds are received.

5.4.3 CMR Buffer

The micro-architecture and operation of the new CMR buffer is presented, followed by the detailed

designs and functionality of its write and read control interfaces.

5.4.3.1 Structure of the CMR buffer

As shown in Figure 5.12, the CMR buffer consists of one write interface and four decoupled read

interfaces. The buffer can handle up to 5-flit packets.

The write interface has one input channel and 5 output channels, corresponding to each cell

of its storage unit. The input Datain is broadcast to all the storage cells with its handshaking

signals connected to the write interface control. Each cell has an output datapath and a bundling

CellFull broadcast to all the read interfaces. The write interface control selects the correct storage

cell using a 1-hot write pointer. This control also gets 2-phase CellEmpty signals from each read

107

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

interface, which provide the status of the read operations on individual cells, and the Tail flags from

its datapath to determine which cell has the tail flit.

Each read interface is connected to the write interface and to an OPM through the AMU on

datapath. This interface receives the data along with the bundled CellFull requests from each cell

of the write interface and sends back 2-phase CellEmpty status signals. Each read interface has its

own control and a 1-hot read pointer, which selects the correct cell to read using a MUX. The read

interface also gets PathEnabled signals from the RCU to determine if the interface is on the correct

path or not. The read interface control generates Reqouts to the OPM and receives Ackin.

5.4.3.2 Operation of the CMR buffer

A packet header first arrives on the input channel and is written to a cell pointed by the write

interface. Next, the bundling CellFull request for this cell along with the data are speculatively

broadcast to all the read interfaces. This broadcast is followed by an Ackout on the input channel,

which then increments the write pointer. A similar write protocol is followed for the body and

tail flits. However, the Ackout for the tail is generated only after it has been read by all the read

interfaces (i.e. toggle on all the CellEmpty signals), both speculatively and non-speculatively.

The read interfaces of the buffer have a uniform operation for every flit. A cell is read if the

read pointer is pointing to it, and its CellFull signal is toggled. In this case, the cell data is read

out along with its Reqout. There are two types of reads: correct if the interface is on the right path,

or incorrect. With a correct read, an Ackin is received from the OPM, which then increments the

read pointer and toggles the corresponding CellEmpty. However, with an incorrect read, no Ackin

is received. This case is detected using the PathEnabled signals from the RCU, and the speculative

Reqout is canceled by toggling it again. This second toggle on Reqout also increments the read

pointer and toggles the corresponding CellEmpty signal. Due to this uniform operation for both

speculative and non-speculative reads, all the read pointers point to exactly the same location after

all the flits of a packet are read, leading to an overall simple operation.

5.4.3.3 Write interface control structure and operation

Figure 5.14 shows the design of the write interface control, which connects to the input channel on

the left and to all four read interfaces on the right.

108

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Figure 5.14: CMR buffer: write interface control

Structure. There are three main components of this interface: one write counter, five write

control units corresponding to each buffer cell, and an ack generator. The write counter controls

the write pointer, which selects the correct cell for storing the incoming flit. The write control

unit detects writing of a new flit and generates a CellFull bundling request, which is speculatively

broadcast to all the read interfaces. This unit also generates an internal ack following the storage of

a flit. The ack generator merges internal acks from write control units to generate the final Ackout

on the input channel, completing the handshaking.

Operation. A new header flit first arrives on the input channel, and its Reqin is broadcast to

all the write control units. The write control unit, selected by the write pointer (a 1-hot code),

109

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

generates a CellFull signal that signifies completion of the storing of the new flit. Next, an internal

ack is generated by the control unit right after the CellFull. Finally, an Ackout is generated on the

input channel by the ack generator after merging the internal ack outputs of the write control units.

Toggling of the Ackout also increments the write counter, which advances the write pointer to point

to the next cell of the storage unit. Similar operations happen for body/tail flits with one important

distinction for the tail flit: the write control unit generates the internal ack only after the tail flit

has been read by all the OPMs, i.e., all the CellEmpty signals have been received from the read

interfaces, following a packet-based buffering protocol.

5.4.3.4 Read interface control structure and operation

Figure 5.15 shows the design details of a read interface control that connects to the CMR buffer’s

write interface on the left and to the north OPM on the right.

Structure. There are four main components of this interface: one read counter, five read control

units corresponding to each buffer cell, a request generator, and an internal ack generator. The read

counter controls the read pointer, which selects the correct cell for reading. The read control unit

forwards the bundling request of the stored flit to the request generator, and also acknowledges

the write interface by toggling its CellEmpty signal after a completed read operation. The request

generator sends the final request to the OPM, derived from the request outputs of the read control

units. The internal ack generator generates an ack for both speculative read, if the interface is on an

incorrect path of a flit, or a non-speculative read if it is on the correct path. This internal ack is used

to advance the read pointer and generate CellEmpty status signals.

Operation. The read control interface has a uniform operation for all flits of a packet. Initially,

the read pointer, which uses a 1-hot code, selects the tail cell of the buffer. When a CellFull request,

corresponding to any stored flit, arrives for this cell from the write interface, the selected read

control unit will generate an internal request. This request will also be generated in another case,

where CellFull has already arrived to a read control unit, and this unit gets newly selected by the

read counter. After an internal request is generated, the req generator merges this request with the

others and generates a ReqX, which is sent to the OPM. Before the ReqX is forwarded, a phase

correction might be required if the read interface is on the incorrect path (speculative read case),

as determined by the routing information from the RCU. In this case, a toggle is first generated

110

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Figure 5.15: CMR buffer: read interface control

on the Reqout, but it is quickly canceled by the phase selector by toggling the Reqout again. This

cancellation operation does not lead to any malfunctions as the small pulse on the Reqout is blocked

by the normally-opaque input D-latches in the corresponding OPM, which has not been activated

for this packet.

Finally, the ack generator generates an internal ack for both speculative and non-speculative read

cases. In case of a speculative read, the second toggle on Reqout generates the AckX. However, for

a non-speculative read, Ackin received from the correct OPM, showing that the flit has been routed

through the OPM, generates the AckX. AckX is then used to perform two operations concurrently:

(i) send a CellEmpty to the write interface through the selected read control unit, and (ii) increment

the read counter i.e., the read pointer.

5.4.4 Address Modifier Unit (AMU)

Before sending the header to each OPM, a small adjustment is required to its addressing. The

header address must be modified to guarantee that a unique path exists for the multicast packet to

each destination, preventing sending multiple copies of the packet to the same destination through

111

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Figure 5.16: Address modifier unit (AMU)

different paths. The AMU performs this perturbation only on the header address, keeping the data

bits of the header, and the complete body and tail flits unchanged.

As shown in Figure 5.16, the address modification is implemented using a network partitioning

approach. In this approach, four 64-bit partition bit-strings are used, corresponding to each output

direction, which have a bit for every node: 1 if the node is reachable through this direction using XY

routing, 0 otherwise. At each AMU, a bit-wise AND is then performed between the header address

bit-string and the corresponding partition bit-string; the result is a new address bit-string with some

destinations masked that are not reachable by XY routing through this direction.

5.5 Experimental Setup and Node-level Results

The new parallel multicast and the baseline serial multicast networks are implemented and evalu-

ated at post-mapped, pre-layout level. The experimental framework and node-level evaluations in

terms of latency, area and energy are now presented, followed by network-level results in the next

section.

5.5.1 Experimental Framework

5.5.1.1 Experimental setup

Two 8x8 2D-mesh networks, new and baseline, are implemented in Nangate 45 nm technology. One

five-slot buffer is used per input port of the routers: the baseline uses a single read-ported circular

112

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

buffer, while the new network uses a CMR buffer. The datapath width used is 128 bits. Router

nodes are first technology mapped to the Nangate standard cell library using the Cadence Virtuoso

tool. Next, the Spectre simulator is used to extract gate-level models, i.e. determine rise/fall delays

for every I/O path of each gate, at a typical process corner. The channel length and delay are

borrowed from the Freescale PowerPC e200z7 floorplan: 1 mm and 100 ps [105]. The networks are

implemented in Structural Verilog using the extracted models.

An asynchronous NoC simulator, previously developed for unicast [90], was extended to sup-

port multicast. The simulator uses a Programming Language Interface (PLI) to connect a technol-

ogy mapped network to a C-based test environment. This environment was significantly enhanced

to support injection and validation of routing of multicast packets. Packet headers are injected fol-

lowing an exponential distribution. Long warmup and measurement phases are also used based on

a procedure similar to [41]. In addition, asynchronous network energy is measured using two steps:

(a) annotate the precise switching activity of every wire during a benchmark run, (b) run Synopsys

PrimeTime using the recorded activity to compute energy.

5.5.1.2 Benchmarks

Most of the experiments are conducted on 8 synthetic benchmarks, comprising both unicast and

multicast benchmarks.

The unicast benchmarks contain the widely-used communication patterns, common in real ap-

plications, resembling both uniform and congestion traffic scenarios [41].

The multicast benchmarks strongly align with real applications such as cache coherency and

neural networks, which have been shown to exhibit multicast traffic. Cache coherence traffic, e.g.,

due to protocols such as token coherence and region-based coherence, can contain 5-10% of total

injected traffic as multicast [88]. On the other hand, spiking neural networks can contain only

multicast or broadcast traffic; the former is seen in random neural network (RNDC), and the latter

in a Hopfield network [188]. The synthetic multicast benchmarks, created in this chapter, contain

such real multicast patterns, and also provide an opportunity for a thorough evaluation by having

more control on parameters, such as injection rate.

There are 3 unicast benchmarks and 5 multicast benchmarks. The unicast benchmarks are: (1)

uniform random; (2) bit complement; and (3) hotspot10, which is similar to uniform random but

113

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

the middle four routers have 10% higher probability of receiving packets than others. The multicast

benchmarks are: (4) multicast5 and (5) multicast10, where 5% and 10%, respectively, of total in-

jected packets are multicast to random destinations and rest of the traffic is uniform random unicast,

(6) multicast-static, where 16 sources are statically fixed to do random multicast, while remaining

perform uniform random unicast; (7) all-multicast and (8) all-broadcast, where all sources only

perform random multicast or only broadcast.

5.5.2 Node-Level Results

Before presenting the network-level results, node-level comparisons are first performed between

the baseline and the new router in terms of three important cost metrics: area, latency, and energy.

These node-level results are important as they form the basis for the later network-level performance

and energy.

5.5.2.1 Node-Level Area

As shown in Table 5.1, the new router has almost 2× more area than the baseline router. This

overhead is expected and primarily due to the new parallel multicast capability. However, this area

overhead will be amortized when considering the total network-level area, including link area. 1 As

shown later, the simpler baseline incurs significant performance and energy overheads for multicast

traffic, justifying the need for this parallel multicast capability.

It it also useful to get a rough area comparison of the new asynchronous router with a state-of-

the-art single-cycle synchronous multicast router. The latter has an area of 227 230 µm2, using 6

VCs per port and 10 total buffer slots, each with a 64-bit datapath [149]. The total buffering of this

router is similar to our new router (one 5-slot buffer per port with a 128-bit datapath). Therefore,

the two routers are estimated to have similar buffer area, which typically dominates the router area.

1It would be interesting to also analyze how this area overhead will scale with adding VCs. The area overhead of the

new router with VCs over the baseline with VCs will be similar to the current 2× overhead, which does not include VCs in

both the designs. This outcome is due to the use of multi-switch architecture with replicated crossbars for these projected

VC-based routers, rather than the multi-stage architecture with shared crossbar, which is less efficient for asynchronous

designs [89]. Since the switch area is the dominating factor in multi-switch architectures, the areas of the two routers will

scale linearly w.r.t. the switch area as the numbers of VCs are increased.

114

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Metrics Baseline Node New Node

Node area 24 962 µm2 54 083 µm2

Node latency (header) 833 ps 693 ps

Node latency (body) 602 ps 636 ps

Table 5.1: Node-level area and latency comparisons

Both the routers use 45 nm technology, but the synchronous one is laid out in a different process

and also uses lookahead optimization, which should not have considerable impact on area. Overall,

the new asynchronous router is estimated to have roughly 4× lower area than the synchronous one.

5.5.2.2 Node-level latency

As shown in Table 5.1, node latency is measured for both header and body flits. Header latency is

critical, since these flits incur the most overhead setting up the path, and they typically define the

packet latency. Interestingly, unlike synchronous, header and body latency can be different in an

asynchronous NoC as the header takes longer time due to address decoding and arbitration/channel

acquisition, while the body/tail flits can propagate faster after this pre-allocation.

In case of the header, latency of new router is 16% lower than the baseline. The baseline

router performs buffering and route computation serially, while the new router performs buffering in

parallel with route computation. This parallelism significantly improves header latency for the new

router, recouping any overheads due to a more complex route computation that handles multicast

addressing.

For body flits, however, both have almost the same latency as they have similar forward critical

paths.

5.5.2.3 Node-level energy

Figure 5.17 presents the node energy results for the baseline and the new routers considering all

possible transmission scenarios.

Four simple benchmarks were created for this experiment that capture all possible unicast and

multicast transmissions across a node, and their impact on energy as the degree of multicast in-

115

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

4
2

.8

7
2

.4

9
9

.9

1
3

0
.5

7
5

.4
 8
5

.6
 9
6

.9

1
0

8
.1

0

20

40

60

80

100

120

140

one-way

unicast

two-way

multicast

three-way

multicast

four-way

broadcast

N
o
d
e

E
n
er

g
y

(p
J)

Unicast and Multicast Benchmarks

Baseline Node New Node

Figure 5.17: Node-level energy results for different unicast and multicast transmission

scenarios

creases. All of these benchmarks comprise of 5-flit packet transmissions: (i) one-way unicast:

single unicast packet is sent from an input port of a router to an output port, (ii) two-way multicast:

in case of the new router, single multicast packet is injected at an input port, however, since the

baseline performs unicast-based serial multicast, this multicast packet is divided into two unicast

packets and injected serially, (iii) three-way multicast: for the new router, single multicast packet is

injected at an input port, but for the baseline, this packet is divided into three unicasts and injected

serially, and (iv) four-way broadcast: in this final transmission, single broadcast packet is injected

at an input port of the new router, while the same packet is divided into four unicasts and injected

serially in case of the baseline.

As shown in the Figure 5.17, there are two important observations for the four different trans-

mission benchmarks:

• Individual node trends: energy vs. multicast degree. Considering the energy trends of a single

node as the number of outputs in the multicast transmissions increase, the new router shows

significantly lower energy overheads than the baseline. The baseline shows 69.04% higher

energy for two-way multicast over one-way unicast, 38.02% higher energy for three-way

multicast over two-way, and 30.61% more energy for four-way than three-way. In contrast,

these overheads for the new router are significantly lower: 13.51%, 13.09%, and 11.57%

116

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

respectively. The benefits seen by the new router are due to the use of parallel multi-way

replication of a single packet, which is much more energy-efficient than serial routing of

multiple packet copies for each multicast transmission, as employed by the baseline. The

latter approach leads to extra switching activity in the IPM due to buffering of each additional

packet copy and performing route computation for this copy.

• Pairwise node trends: baseline vs. new approach. Comparing the two nodes for each trans-

mission scenario, the baseline shows moderate to significant (18.30-76.19%) energy improve-

ments for one-way and two-way scenarios, but the new router demonstrates 3.06-17.18% bet-

ter energy for three-way and broadcast. Energy overhead for the new node in case of one-way

and two-way multicasts is due to its higher complexity than the baseline, but which is required

for parallel multicast support. In contrast, for multicasts intended for more number of outputs,

the baseline’s routing of multiple packet copies for a single multicast leads to significantly

higher switching activity than new, recouping any overheads due to the new router’s higher

complexity.

5.6 Network-level results

Network latency, throughput and energy results are now presented for the new and the baseline

networks, considering both multi-flit and single-flit packets. In addition, a new metric, multicast

delivery time, is also introduced and evaluated for multi-flit packets. Furthermore, an interesting

case study is performed to measure the critical latency and energy of an isolated multi-flit multicast

packet. Finally, careful analytical comparisons are made to three different synchronous NoCs.

In the above experiments, a multi-flit packet consist of 5 flits, which is a general size for various

parallel computing applications. Single-flit is also common for multicast control packets in cache

coherency, e.g. write-invalidates [1], and in neural network applications, where the packet size can

be as small as 8 bits [196].

Benchmarks are considered in three distinct categories: unicast, a mix of unicast and multicast,

and only multicast/broadcast. Unicast benchmarks show the impact of the new parallel multicast

capability on basic unicast performance and energy. The mix of two types of traffic is common

117

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

in cache coherence1 and therefore is also evaluated. Finally, all multicast/broadcast represents an

extreme scenario, common in emerging applications like neuromorphic computing.

5.6.1 Multi-Flit Network-Level Results

This section presents the network-level results for multi-flit packets, in terms of latency, multicast

delivery time, throughput and energy. An interesting evaluation of an isolated single multicast

packet for latency and energy is also performed.

5.6.1.1 Network latency

For multi-flit packets, network latency is measured for all unicast and multicast benchmarks. For

unicast and mix of multicast/unicast benchmarks, latency is measured both at a fixed rate as well as

at varying injection rates. For extreme multicast benchmarks, latency is only measured at a fixed

injection point.

Unicast latency. Figure 5.18 shows the average latency results for all three unicast benchmarks:

Uniform Random, Bit Complement, and Hotspot10. Latency is measured for header at 25% of

saturation load of baseline. This injection rate is high enough to show interesting benchmark char-

acteristics with network largely uncongested. The new network shows moderate latency reductions

from 6.1% (uniform random) to 14% (hotspot10). This important result shows that the new network

not only supports parallel multicast but also improves unicast latency.

Figure 5.19 shows the average latency results for the same three unicast benchmarks but now at

a varying injection rate, covering a complete range from zero-load to saturation. For all three bench-

marks, the new network achieves significantly lower latency than the baseline for low to moderate

injection rates, while incurring overheads close to the saturation. The latency improvements seen

1Cache coherence traffic may also include aggregation patterns (many-to-1 or many-to-few), where multiple process-

ing nodes send back individual ACKs to a single node or a small number of nodes. The proposed network can handle

this traffic as these ACKs are sent using unicast packets, which can then be aggregated at the network interface attached

to the receiving router, followed by delivering the combined packet to the processor. This approach, although simple,

can have energy overheads due to increased network utilization. These overheads can be minimized using an interme-

diate ACK aggregation protocol: instead of aggregating at the destination, ACKs can be coalesced at the intermediate

routers, and then the combined ACK forwarded to the next router, followed by further aggregation, until the destination

is reached [118].

118

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

6
3

2
7
 8

5
1

3

5
9

7
6

1
2

6
8

9
 1
5

4
2

0

1
6

4
9

9

5
9

3
9

7
4

9
9

5
1

3
4

5
5

6
7

5
7

5
9

6
1

3
9

2000

4000

6000

8000

10000

12000

14000

16000

18000

Uniform

Random

Bit Complement Hotspot10 Multicast5 Multicast10 Multicast_Static

A
vg

 N
et

w
o

rk
 L

a
te

n
cy

 (
p

s)

Unicast and Mixed Unicast/Multicast Benchmarks

Baseline New Network

Figure 5.18: Network latency for unicast and mixed unicast/multicast benchmarks at 25%

saturation load of baseline

by the new network for low to moderate injection rates are due to the critical path optimization in its

router node that performs buffering of the header in parallel with the route computation rather than

serially as in the baseline. However, the new network saturates earlier than the baseline and incurs

latency overheads at high-traffic load as the new network uses packet-based buffering policy. In this

policy, ack to upstream for the tail flit of a packet has a conservative synchronization, which can

be sent only after the tail has been routed on the output channel. This protocol incurs significantly

longer delay than the flit-based buffering in the baseline, where ack can be sent right after the tail is

buffered. At high-traffic load, for the new network, this long wait for ack to upstream can become a

bottleneck for routing of the next packet, hence, degrading network latency.

Mixed unicast/multicast latency. Figure 5.18 also shows the average network latency results

for the three mixed unicast/multicast benchmarks: Multicast5, Multicast10, and Multicast-Static.

Latency is measured at 25% saturation load of the baseline. The latency for a multicast packet is

measured from the time of injection of header (or first header for serial baseline) to the arrival of

the last header at any destination. As shown, the new network achieves significantly lower latency

(56.13-62.65%) than the baseline. These results show that parallel replication strategy of the new

network considerably outperforms the serial unicast-based multicast approach of the baseline. In

case of the baseline, the time from injection of the first header to the arrival of the last header at any

destination can be very long due to the serial injection and routing of each unicast copy.

119

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36

A
ve

ra
g

e
 L

a
te

n
cy

 (
p

s)

Data rate per active input (GF/s)

Uniform-Random-Baseline

Uniform-Random-New

BitComplement-Baseline

BitComplement-New

Hotspot10-Baseline

Hotspot10-New

Figure 5.19: Unicast network latency at varying injection loads

Baseline New Network

all-multicast 60842 ps 7872 ps

all-broadcast 307108 ps 9744 ps

Table 5.2: Zero-load latency for all-multicast and all-broadcast

Figure 5.20 shows the average latency results for the same mixed unicast/multicast benchmarks

at a varying injection rate, covering a complete range from zero-load until saturation. There are

three important trends visible from these results: (i) latency magnitudes, (ii) shape of curves, and

(iii) points of saturation. The baseline incurs significant latency overheads: for each benchmark, the

gap between the curves increases significantly as injection rate increases. Also, note the steep rise

in latency for baseline as the number of multicast packets injected increase. The baseline curves

are steeper for a higher degree of multicast (multicast10 and multicast-static). Finally, the baseline

saturates very early compared to the new network, showing the effectiveness of parallel multicast.

Extreme multicast latency. Finally, zero-load latency is measured for two extreme cases, as

shown in Table 5.2: all-multicast and all-broadcast. Even at zero-load, with a single packet injected

120

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

1000

4000

7000

10000

13000

16000

19000

22000

25000

28000

0 0.05 0.1 0.15 0.2

A
ve

ra
g

e
 L

a
te

n
cy

 (
p

s)

Data rate per active input (GF/s)

Multicast5-Baseline

Multicast5-NewNetwork

Multicast10-Baseline

Multicast10-NewNetwork

Multicast-Static-Baseline

Multicast-Static-NewNetwork

Figure 5.20: Mixed unicast/multicast latency at varying injection loads

from each source, the latency for serial baseline is severely degraded for both benchmarks, showing

that the baseline is not a practical solution to support traffic comprising only multicast and broad-

cast. In contrast, the new network handles this traffic well and achieves 87.0% and 96.8% latency

improvements for all-multicast and all-broadcast, respectively.

5.6.1.2 Multicast delivery time

While the previous sub-section evaluates latency, which is the time to deliver the last header flit of

a multicast packet, this section measures delivery time of complete multicast packet copies, i.e. tail

flits. This metric is important as it shows how fast entire multicast packet copies can be delivered to

the destination computing nodes, which can then start processing the packets. Such delivery time

has a direct impact on the overall application execution time. This metric is also critical to evaluate

the effectiveness of the continuous-time replication strategy, which allows the copies of a multicast

121

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

Multicast5 Multicast10 Multicast-Static All-Multicast All-Broadcast

Min. Multicast Delivery Time (ps)

Baseline
11485.75 11890.53 14989.86 9927.83 7618.36

New
5117.31 5105.14 5354.43 5094.67 4801.10

Avg. Multicast Delivery Time (ps)

Baseline
43672.76 37179.04 30492.23 36481.54 188076.02

New
9036.59 9099.94 8498.87 8160.25 8575.39

Max. Multicast Delivery Time (ps)

Baseline
73665.08 63090.93 51697.08 63694.01 309975.88

New
13773.72 14043.22 12595.75 11241.57 13109.37

Table 5.3: Minimum, average, and maximum multicast delivery time for different

benchmarks, averaged over the total number of multicast packets injected for each

benchmark.

packet to be routed to different destinations at varying speeds.

Table 5.3 compares the baseline and new network for three different multicast delivery times:

minimum, average, and maximum. These metrics are measured for both mixed unicast/multicast

benchmarks, and the extreme all-multicast and all-broadcast. For the mixed unicast/multicast bench-

marks, these metrics are measured at 25% of the saturated load of baseline, while for the extreme

cases, zero load is used.

For a multicast packet, three different delivery metrics are explored. The first is the minimum

multicast delivery time, defined as time from injection of the header (or first header for the baseline)

to the delivery of the first tail to any destination. Average multicast delivery time is the average of

the delivery times of all the multicast copies to their respective destinations. Maximum delivery time

is a dual of the minimum delivery time, and is defined as the time from injection of the header to

the last tail delivery to any destination. While the min time reflects the fastest a multicast packet

can be delivered to any destination, the max time shows the slowest delivery time, perhaps due to

network congestion. The average case is also important to get an overall sense of the multicast

122

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

packet delivery and its impact on application performance.

As shown in the table, the new network consistently outperforms the serial baseline, for all three

metrics, with improvements ranging from 36.9% to 95.7%. These three metrics truly capture the

effect of the new continuous-time replication strategy, which allows copies of a multicast packet to

be routed to different destinations, in parallel, and at varying speeds, where some copies traversing

less congested regions are delivered very fast (e.g. min time of 5105 ps for Multicast10), while

others can take longer time (max time of 14043 ps for Multicast10). The baseline, however, suffers

major overheads due to the serial injection/routing of each unicast copy of a multicast packet, lead-

ing to severe congestion, which degrades not only the avg/max multicast delivery times but also the

minimum (11890 ps for Multicast10).

5.6.1.3 Output throughput at saturation load

Figure 5.21 shows the output throughput results for all benchmarks at each network’s saturation

load.

For unicast, the new network incurs an overhead of 13.3% (hotspot10) to 30.9% (uniform ran-

dom). This overhead is the result of packet-based buffering in the new network, which leads to

longer delay in acknowledging to the upstream router after the tail flit is stored in the current router,

compared to the flit-based buffering used in baseline.

However, for multicast, the new network shows significant improvements: 25.6% (multicast5)

to 88.2% (multicast-static) and 170.2% (all-broadcast) higher throughput. In summary, more gains

are seen for benchmarks with a higher multicast amount as the parallel multicast capability provides

a higher threshold for saturation than serial.

5.6.1.4 Total network energy

Figure 5.22 shows total network energy results for all benchmarks.

For unicast, the new network incurs 2× overhead over the serial baseline due to the extra in-

strumentation for parallel multicast.

However, for multicast benchmarks, the routing of several unicasts for each multicast in serial

baseline leads to higher resource utilization than the new network. Interestingly, this low utilization

in the new network overcomes the complexity overhead as multicast amount increases, showing a

123

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

0
.4

2

0
.1

6

0
.1

5
 0
.3

9

0
.3

8

0
.3

4

0
.3

8

0
.3

7

0
.2

9

0
.1

3

0
.1

3
 0

.4
9

0
.5

8

0
.6

4

0
.7

5
 1
.0

1

0

0.5

1

1.5

U
n
if

o
rm

R
an

d
o
m

B
it

C
o
m

p
le

m
en

t

H
o
ts

p
o
t1

0

M
u
lt

ic
as

t5

M
u
lt

ic
as

t1
0

M
u
lt

ic
as

t-
S

ta
ti

c

A
ll

-M
u
lt

ic
as

t

A
ll

-B
ro

ad
ca

st
 O

u
tp

u
t

T
h
ro

u
g
h
p

u
t

a
t

S
a
tu

ra
ti

o
n
 L

o
a
d

 (
G

F
/s

)

Unicast/Multicast Benchmarks

Baseline New Network

Figure 5.21: Output throughput at saturation load

28.7% degradation for multicast5 to 2.7-57.2% lower energy than baseline for benchmarks with

higher multicast portion.

Overall, in terms of multi-objective design space exploration for multicast traffic, the new net-

work has a clear advantage over baseline. As one important example, for mixed traffic like multi-

cast10, the new network shows significant improvements in latency and throughput, with slightly

lower energy, but with an expected area overhead.

5.6.1.5 Isolated multicast case study

Finally, limited experiments are conducted to measure latency and energy of a single isolated mul-

ticast packet. These results are critical to give insight into the actual delivery time and energy of a

single multicast packet, not averaged with other traffic.

A head-to-head comparison is performed, while varying the number of destinations and the lo-

cation of the packet source. Four multicast benchmarks are created with a single 5-flit packet: (i)

short-multicast: to 2 immediate neighboring destinations, (ii) typical-multicast: to 30 destinations

uniformly distributed across network, (iii) extreme-multicast: to 62 destinations, and (iv) broad-

cast. Two different source locations are considered: corner and center, covering a range of possible

multicasts.

As shown in Figure 5.23, new network achieves 72.9% (short-multicast) to 95.2% (broadcast)

lower latency for a corner source. The absolute latency for both networks increases with the longest

124

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

1
2

3
6

7
0
5

4
3

6
 1
1
4
1

1
5
1
5

2
2

3
6

2
2
3
2

4
3
4
0

2
7

3
8

1
5
6
1

9
6

4

1
4
6
9

1
4

7
3

1
5

9
8

1
2

9
9

1
8

5
6

0

1000

2000

3000

4000

5000

U
n

if
o
rm

 R
an

d
o

m

B
it

 C
o

m
p

le
m

en
t

H
o

ts
p

o
t1

0

M
u

lt
ic

as
t5

M
u

lt
ic

as
t1

0

M
u

lt
ic

as
t-

S
ta

ti
c

A
ll

-M
u

lt
ic

as
t

A
ll

-B
ro

ad
ca

st

T
o

ta
l

N
et

w
o

rk
 E

n
er

g
y

(n
J)

Unicast/Multicast Benchmarks

Baseline New Network

Figure 5.22: Total network energy results measured at 25% saturation load of baseline

5
4

9
2

 1
2

0
6

9
5

 2
4

2
0

5
1

2
4

6
7

5
2

1
4

8
6

1
1

0
1

0

1
1

0
1

0

1
1

8
0

8

0
50000

100000
150000
200000
250000
300000

short typical extreme broadcast

A
v
e

ra
g

e
 L

a
te

n
cy

 (
p

s)

Custom Multicast Benchmarks

Baseline New

Figure 5.23: Isolated multicast case study: network latency for corner source

path length: 2 hops in short-multicast, 13 hops in typical/extreme multicast and 14 hops in broad-

cast. The poor baseline results (and up to 37× worse than new for center source as shown in

Figure 5.24) are due to the long delay from injection of first header to the arrival of last header.

For energy comparison, as shown in Figure 5.25 and Figure 5.26, for both sources, the new

network incurs 59.8% overhead over baseline for short-multicast. In contrast, in case of the corner

source, for typical-multicast and broadcast, with more destinations, the new network achieves 29.6%

to 58% lower energy, respectively, due to the lighter traffic in parallel multicast. Similar results are

shown for the center source.

125

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

5
4

9
2

 1
1

5
3

1
8

 2
3

5
5

6
0

2
3

9
3

1
6

1
4

8
6

6
2

5
2

6
2

5
2

7
0

4
9

0
50000

100000
150000
200000
250000
300000

short typical extreme broadcast

A
v
e

ra
g

e
 L

a
te

n
cy

 (
p

s)

Custom Multicast Benchmarks

Baseline New

Figure 5.24: Isolated multicast case study: network latency for center source

1
.7

2

8
.1

5

1
5

.3
0

1
6

.0
1

2
.7

5

5
.7

3

6
.7

1

6
.7

1

0

2

4

6

8

10

12

14

16

18

short typical extreme broadcast

N
e

tw
o

rk
 E

n
e

rg
y

 (
n

J)

Custom Multicast Benchmarks

Baseline New

Figure 5.25: Isolated multicast case study: network energy for corner source

1
.7

2

5
.7

2

1
0

.3
1

1
0

.5
6

2
.7

5

5
.4

0
 6
.6

3

6
.6

3

0

2

4

6

8

10

12

short typical extreme broadcast

N
e

tw
o

rk
 E

n
e

rg
y

 (
n

J)

Custom Multicast Benchmarks

Baseline New

Figure 5.26: Isolated multicast case study: network energy for center source

126

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

5.6.2 Single-Flit Network-Level Results

While the network-level evaluation of the routers on steady-state traffic of multi-flit packets is quite

useful, it is also interesting to compare the operation of the routers on single-flit packets, which are

often part of typical applications; and can dominate traffic in control-oriented transmissions. A lim-

ited set of experiments measures performance and energy of single-flit packets for two benchmarks:

uniform random and multicast10.

5.6.2.1 Network latency

Figure 5.27 shows the network latency results for both benchmarks, measured at 25% of the satu-

ration load of the baseline. For the unicast uniform random, as expected, the new network achieves

11.6% lower latency than baseline. This result is due to the critical path optimization in the new

router that performs buffering of the header in parallel to the route computation. For multicast10,

the new network achieves 33.6% lower latency than the baseline due to its efficient parallel multicast

capability.

5.6.2.2 Output throughput at saturation load

In terms of saturation throughput (Figure 5.28), the new network incurs a 57% degradation over

the baseline due to its conservative write protocol performed at a packet granularity. However, for

multicast10, the new network achieves almost the same throughput as the serial baseline, where the

new network’s parallel multicast capability recoups some of the overheads due to its packet-based

buffering protocol.

5.6.2.3 Total network energy

Figure 5.29 shows the total network energy results for the two benchmarks in case of single-flit

packets. The trends are similar to the multi-flit packets: (i) for unicast uniform random, the new

network incurs almost 2X overhead due to the more complex router design, but which is required

for parallel multicast capability, and (ii) for multicast10, the new network achieves a 2.52% lower

energy than the baseline as the latter leads to extra network utilization due to routing of multiple

unicast packets for each multicast packet. For single-flit traffic also, like multi-flit packets, this

127

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

6
3

7
6

7
6

2
9

5
6

3
5

5
0

5
9

2000

4000

6000

8000

Uniform Random Multicast10

A
vg

.
N

et
w

o
rk

 L
a
te

n
cy

 (
p
s)

Unicast and Multicast Benchmarks

Baseline

New Network

Figure 5.27: Network latency for single-flit traffic at 25% saturation load of baseline
0
.4

2

0
.3

7

0
.1

8

0
.3

9

0.1

0.2

0.3

0.4

0.5

Uniform Random Multicast10

O
u
tp

u
t

T
h
ro

u
g
h
p
u
t

a
t

S
a
tu

ra
ti

o
n
 L

o
a
d
 (

G
F

/s
)

Unicast and Multicast Benchmarks

Baseline

New Network

Figure 5.28: Saturation throughput for single-flit traffic

improvement is expected to increase for benchmarks with higher amount of multicast

5.6.3 Analytical comparison with state-of-the-art synchronous multicast NoCs

While the previous comparisons only use an asynchronous NoC baseline, it is also important to

compare the the proposed asynchronous NoC with state-of-the-art synchronous multicast NoCs.

Three synchronous multicast NoCs are considered: (i) a high-performance tree-based multi-

cast [149], (ii) multicast SMART NoC [105], and (iii) a hypothetical ”reduced-overhead” multicast

SMART NoC. The first NoC supports highly-efficient multicast using single-cycle routers, where

a flit traverses both router and link in a single clock cycle. The second NoC extends the original

unicast-only SMART NoC [104] to perform multicast. This multicast SMART NoC is aggressive

and achieves full-chip broadcast in just 2 cycles for an 8x8 2D mesh, where multiple routers can

128

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

9
6

9
.4

8

9
0

0
.2

4

2
0

1
2

.1
2

8
7

7
.5

5

400

600

800

1000

1200

1400

1600

1800

2000

Uniform Random Multicast10

T
o

ta
l

N
et

w
o

rk
 E

n
er

g
y

(n
J)

Unicast and Multicast Benchmarks

Baseline

New Network

Figure 5.29: Total network energy for single-flit traffic at 25% saturation load of baseline

be bypassed in a single cycle, using an early arbitration and channel pre-allocation approach. The

third NoC does not exist, and is a hypothetical potential future version of a recent unicast-only

low-overhead SMART NoC [31], which currently only supports unicast, but now imagined to be

extended to support multicast for the purpose of comparisons.

The aim of this analysis is to provide relatively normalized comparison of these three syn-

chronous NoCs with the proposed asynchronous NoC. While the focus is mainly on network latency,

switch-level area, channel overhead, and protocol operation are also compared when possible. To

compare latency, the benchmark considered is all-broadcast, where each source sends every packet

to all destinations, and single-flit packets are used. This benchmark was used as its latency can be

easily extracted for the synchronous NoCs from the corresponding papers, while new experiments

were performed for the proposed asynchronous NoC. All three NoCs are at the same pre-layout level

of implementation, target 8x8 2D mesh, and use similar 45 nm technology, although in different pro-

cesses, which, however, should not have considerable impact on latency comparison. Furthermore,

these synchronous NoCs also use VCs, where tree-based multicast [149] uses 6 VCs per port but

with almost the same total amount of buffering as the proposed asynchronous NoC, while the mul-

ticast SMART NoC [105] uses 12 VCs per port but the amount of buffering is different. Although

the proposed asynchronous NoC does not use VCs, it can be extended to include VCs with minimal

latency overhead, as discussed later.

(i) High-performance tree-based multicast [149]. For zero-load network latency, for all-broadcast,

the synchronous NoC reported 11500 ps, while the asynchronous NoC achieved 9102.9 ps, i.e.

129

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

20.8% lower latency. Additionally, at a switch-level comparison, the router of this synchronous

NoC was shown to have a 4× area overhead over the new asynchronous router (see Section 5.5.2),

which can potentially also lead to lower total power for the asynchronous NoC.

(ii) Multicast SMART NoC [105]. The multicast SMART NoC is compared in terms of network

latency as well as area and energy costs. This design showed a zero-load network latency of 5600 ps

for all-broadcast traffic, which is significantly better than the asynchronous NoC latency of 9102.9

ps. This result is expected due to the aggressive optimization of bypassing multiple routers in a

single cycle in the SMART NoC, while the proposed NoC is the first basic solution to support

multicast in asynchronous NoCs, and does not include such optimizations.

Moreover, in terms of other costs such as area, energy and power, the SMART NoC is expected

to have substantial overheads compared to the proposed NoC. There are two primary reasons: use

of an expensive multicast protocol, and hardware overheads due to the extra monitoring network.

In terms of protocol, the SMART NoC performs multicast using either a full-chip broadcast and

then dropping packets at non-destinations or using a serial unicast-based approach, both of which

are very power-hungry operations. In terms of hardware overhead, switch-level area is not explic-

itly provided by the paper, however, this multicast SMART NoC uses almost the same monitoring

network as the original unicast SMART NoC [104], where each monitoring link is wide (2-4 bits)

and a large number of such links (24) emanating from each router (see Section 5.1). As a result, the

monitoring network requires dozens of extra wires. In contrast, the proposed asynchronous NoC

targets the precise destinations in parallel, without packet dropping or unicast, and entirely avoids

the use of an extra monitoring network. Therefore, while the SMART NoC achieves better latency

than the proposed NoC, it is expected to incur significant overheads for other costs.

(iii) Reduced-overhead SMART multicast NoC. As a final analytical comparison, we hypothe-

size potential future research from the synchronous NoC community, where the multicast SMART

NoC [105] is combined with the reduced-overhead techniques proposed for SMART NoCs [31].

The design for this hypothetical NoC does not exist, but an extrapolated comparison is being per-

formed in terms of network latency. This NoC can be imagined as an extension of a recent unicast-

only SMART NoC but with an optimized low-overhead monitoring network [31], to perform mul-

ticast using the above SMART multicast approach. Such an extension, however, is non-trivial.

Although the unicast reduced-overhead SMART NoC achieved 8× reduction in the monitoring

130

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

network wiring overhead of the original unicast SMART NoC [104], it still leaves extra wiring

compared to the proposed asynchronous NoC that does not use monitoring network. Since the uni-

cast reduced-overhead SMART NoC had similar latency as the original unicast SMART NoC, we

extrapolate that a future solution of the multicast reduced-overhead SMART NoC will also have

a similar latency as the multicast SMART NoC. Therefore, such an extrapolated multicast NoC

might achieve better network latency than the proposed asynchronous NoC, but is still expected to

incur significant energy/power overheads due to the limitations of the SMART multicast protocol

as highlighted in the above paragraph.

Finally, although the synchronous routers for the above NoCs use VCs, while the asynchronous

router does not, the latter can be extended to include VCs without much latency overhead. An exist-

ing work added VCs to a unicast-only asynchronous router using a simple approach with minimal

overheads [89], as also described in Section 5.2.2. A similar approach can be used to extend the pro-

posed multicast-enabled asynchronous router to include VCs as well. These projected asynchronous

routers will use a multi-switch architecture with replicated crossbars, which has been shown to be

more efficient than the shared crossbar architecture for asynchronous designs [135]. An advantage

of the multi-switch architecture is minimal latency overhead for VC management (simple addition

of a demux and an arbiter on the forward datapath of the non-VC design) [89]. In particular, a head-

to-head comparison of the baseline asynchronous router with a leading synchronous router from

AMD, both with 2 VCs, implemented in 14 nm technology, showed that the asynchronous router

achieved 55% lower latency and 28% smaller area. Similar improvements were also estimated for

this asynchronous router with 8 VCs. Therefore, overall, the new asynchronous NoC also, after

addition of VCs, is expected to have minimal overheads in terms of latency.

5.7 Conclusions

This chapter proposes a new parallel multicast asynchronous NoC with 2D-mesh topology. A novel

continuous-time replication strategy is proposed, where the flits of a multicast packet are routed

through the distinct outputs of the router according to each output’s own rate, in parallel and in

continuous time. A new continuous-time multi-way read (CMR) buffer is also proposed to enable

this strategy. For multicast benchmarks, the new parallel multicast network achieved significantly

131

CHAPTER 5. A CONTINUOUS-TIME REPLICATION STRATEGY FOR MULTICAST IN

2D-MESH NOCS

better network latency and saturation throughput over a serial baseline, with reductions in energy

for benchmarks with a high multicast portion. In addition, in an analytical comparison with three

synchronous multicast NoCs, the proposed asynchronous NoC is expected to show some estimated

cost benefits. While a thorough evaluation has been performed using synthetic benchmarks, that

contain common traffic patterns from cache coherence and neural networks, this work will be ex-

tended to target real applications. Moreover, future work also includes using the proposed NoC

to build a GALS system and performing system-level evaluation, and supporting many-to-1 traffic

more efficiently.

132

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

Chapter 6

Synthesizing Asynchronous NoCs on

FPGAs: a Systematic Methodology

6.1 Introduction

While the previous chapters focused on only pre-layout implementation of asynchronous NoCs,

this chapter targets a complete physical design on FPGAs for a more realistic evaluation. Recent

advancements in FPGA technology have led to a wide-ranging use of these devices for not only

rapid prototyping but also being deployed for applications such as hardware-assisted acceleration

of machine learning algorithms. However, there has been only very limited research on how to

implement asynchronous NoCs on modern commercial FPGAs. This chapter takes on this challenge

and makes an important advancement in the field of asynchronous NoCs.

A systematic CAD methodology is proposed for mapping asynchronous NoCs on FPGAs. The

target asynchronous NoCs use bundled-data design style instead of quasi-delay-insensitive style,

where the former may lead to more efficient design but involves modest timing constraints for

correct operation [147]. For bundled-data NoCs, the proposed methodology targets a two-fold chal-

lenging goal: the final implementation on FPGA should achieve both high performance, and must

also satisfy all timing constraints, which includes bundling constraints in the datapath as well as

any relative timing constraints in the control path. This approach uses a semi-automated tool flow,

where automation is used to achieve high-performance mapping, while checking that all timing

constraints are satisfied, is performed manually. The latter manual operations can also be easily

133

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

automated. In addition, the tool flow only uses the existing Xilinx Vivado tool set, leading to ease

of implementation and convenience for the designers. To the best of our knowledge, this is the first

systematic methodology for efficiently mapping asynchronous NoCs on commercial FPGAs.

Asynchronous NoCs also use some special asynchronous components, which are not used in

synchronous designs, and must be correctly mapped on FPGAs. These components are: the C-

element, used for storage, and the mutex for arbitration. This work introduces a comprehensive

guide on how to efficiently and safely map these elements on FPGAs. Only the standard Xilinx

Vivado tool is used for mapping, combined with some small manual interventions, which may be

needed to meet the timing requirements for some of these components. Moreover, the latter can be

easily automated using simple scripts.

There are unique challenges with mapping these special components on FPGAs, which are

addressed. The C-element is an asynchronous state machine, which must be implemented in a

glitch-free manner. To this end, not just a robust but also a highly-efficient implementation of

the C-element was achieved. On the other hand, the mutex is a continuous-time arbiter, which is

implemented using analog circuits. However, since no such implementation is possible for FPGAs,

an efficient digital standard-cell mutex is used for synthesis on FPGAs, and its final implementation

was stress tested to ensure its reliable operation. Finally, a high-performance 4-input arbiter, which

is a critical component of asynchronous NoCs and built using the mutex and the C-element, was

also synthesized and validated on FPGAs.

Two bundled-data asynchronous NoC switches were synthesized using the proposed tool flow

on a commercial FPGA, to demonstrate not only the effectiveness of the flow, but also significantly

advancing the field of asynchronous NoCs. Both asynchronous switches are highly-efficient: one

performs only unicast [66] and has been used as an effective baseline throughout this thesis, while

the other also supports lightweight multicast [17], which was proposed in Chapter 5. The implemen-

tations of these switches were compared to a high-performance single-cycle synchronous switch that

only supports unicast, and has been used in accelerator-based systems for image processing appli-

cations [121]. The target FPGA is Xilinx Virtex 7 in 28 nm, which has been commercially deployed

in line cards as well as in portable RADAR systems.

134

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

6.2 Implementing Asynchronous Circuits on FPGAs: Related Work

As an alternative to commercial synchronous FPGAs, custom asynchronous FPGAs have been de-

veloped to implement asynchronous circuits, which, however, are not mainstream and therefore not

the focus of this work. One of the earliest works, from 1992, is the MONTAGE asynchronous FPGA,

which had custom functional units and routing structures that could handle both bundled-data and

QDI circuits [75]. The early 2000s also saw some interesting asynchronous FPGAs, that had ’island-

style’ architectures [199], [183], [82], which is commonly used in the commercial synchronous FP-

GAs. While some of these works could support both bundled-data and QDI circuits [82], others

were only able to handle QDI circuits [199], [183]. Although there has been considerable research

on developing asynchronous FPGAs, these devices are not mainstream like the commercial syn-

chronous FPGAs from Xilinx and Altera, which are seeing a major interest for several applications

from Microsoft, Amazon, etc. (see Section 1.5.2). Given the increasing importance of the syn-

chronous FPGAs, there is a need for a systematic tool flow to map asynchronous NOCs on these

devices. Therefore, this work targets these commercial FPGAs only.

Early works have a narrow focus and only target synthesizing small asynchronous components

and designs on FPGAs. Some works focus on special components, such as a C-element [77], or a

mutual exclusion element [137]. The former only presents one possible implementation of the C-

element, which uses 4 gates. In contrast, the current work performs thorough exploration of various

implementations and selects the most efficient and robust one. The latter mutex implementation is

very complex, consisting of 4 FFs and 2 gates, as opposed to a much more efficient mutex imple-

mentation in the current work. Other works have targeted small designs, such as a simple pausable

clock generator [64].

There has been only limited research on synthesizing asynchronous/GALS NoCs on commercial

FPGAs. Earlier works target a quasi-delay insensitive (QDI) design style with one simple timing

assumption that all wire forks must be isochronic [194], [157], while recent ones use bundled-

data [110], [97]. The former NoCs use delay-insensitive data encoding [147], and therefore do

not have any timing constraints but can incur large area/power overheads. These NoCs also use

expensive FF- or latch-based mutex implementations. The latter bundled-data NoCs rely on non-

trivial timing constraints, but an implementation methodology is largely missing.

Recently, two CAD flows have been proposed to map bundled-data circuits on FPGAs [180],

135

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

[207], which, however, do not target NoCs. Both flows have several limitations: (i) they do not

address how to handle the special asynchronous components of NoCs; (ii) they focus only on cor-

rectness, while performance optimization, which is critical, is not targeted, in contrast, to the pro-

posed approach; (iii) one approach requires a set of six specialized and custom tools, which are used

in addition to the standard FPGA synthesis tool [180]. A preferable alternative is to only use the

FPGA synthesis tool, as in the proposed work, exploiting the recent advances; and (iv) the second

approach focuses only on click-based asynchronous pipelines, that employ high-overhead FF-based

datapaths and control to simplify automation [207]. However, this flow may not be used for the

majority of more efficient bundled-data NoCs based on lightweight Mousetrap pipelines and use

normally-transparent single-latch registers with different timing constraints [83], [89].

Given the limitations of the above approaches, there is a need for a comprehensive as well as a

systematic CAD methodology to map bundled-data asynchronous NoCs on FPGAs. This methodol-

ogy should not only target correctness but also achieve a high-performance implementation. More-

over, the special asynchronous elements, which form the critical components of these NoCs, must

also be mapped in an efficient and safe manner.

6.3 Mousetrap Pipeline and Timing Requirements of Bundled-Data

Circuits: A Brief Background

A brief recap on Mousetrap pipelines is presented, as these pipelines are the simplest, yet an impor-

tant example of bundled-data circuits, and they also form the basis of the asynchronous NoC routers

in this chapter. The Mousetrap pipeline will be used in the next section to demonstrate the proposed

CAD methodology for FPGAs. In addition, the timing requirements associated with bundled-data

circuits, and in particular, the Mousetrap pipelines are also revisited, which must be satisfied when

mapping these circuits on FPGAs.

6.3.1 Mousetrap Pipeline

As discussed in Section 2.4 of Chapter 2, Mousetrap is a high-performance pipeline that uses a

two-phase handshaking protocol and single-rail bundled data encoding. Figure 6.1 shows a 3-stage

Mousetrap pipeline. Its operation is based on a capture-pass protocol, using normally-transparent

136

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

Figure 6.1: A 3-stage Mousetrap pipeline

latches, as covered in more details in Section 2.4.

6.3.2 Timing Requirements of Bundled-Data Circuits

Satisfying all timing constraints is an important step for mapping bundled-data circuits correctly

on FPGAs. As discussed before in Section 2.4.3 of Chapter 2, to ensure correct operation of the

bundled-data circuits, two types of timing constraints must be satisfied: (i) bundling constraint in

datapath: req must transition after data is stable, and (ii) relative timing constraints (or RTCs) in

control: delay across one path should be less or greater than the other. Mousetrap exhibits both

bundling constraints as well as relative timing constraints such as data protection.

6.4 A CAD Methodology for Bundled-Data Asynchronous Circuits

A systematic methodology is proposed to synthesize bundled-data asynchronous circuits on com-

mercial FPGAs. This approach largely uses the standard synthesis tool flow for both mapping as

well as validation of the final implementation. The tool flow for implementation and validation is

presented, followed by illustrating the methodology using an example of a Mousetrap pipeline.

6.4.1 Tool Flow

The basic strategy of the tool flow is first presented, followed by the detailed steps involved in the

flow.

137

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

6.4.1.1 Basic strategy of the tool flow

The tool flow not only targets a high-performance mapping of a bundled-data circuit but also makes

sure that it is robust. As a result, there are two phases in the flow: one that achieves high perfor-

mance, and the other that makes sure all timing constraints are satisfied. In this flow, a design is first

mapped focusing only on maximizing the performance, entirely ignoring the robustness aspect, in

a performance-oriented mapping stage. Next, the flow enters a robustness-oriented mapping stage,

which takes a set of bundling and relative timing constraints, supplied by the user for the input de-

sign, and checks to make sure these constraints are satisfied. If a subset of these constraints are not

satisfied, then small incremental delay insertions are performed in the initial design on the offending

paths of each of these constraints, thereby concluding this stage.

The updated design is then re-synthesized using the performance-oriented stage, followed by

re-checking the implementation for timing constraints. The two stages are iterated until all timing

constraints are satisfied, and the result is an efficient and safe mapping on the FPGA. More details

are presented below.

Performance-oriented mapping stage. In the performance-oriented mapping stage, the syn-

thesis tool tries to find the implementation with the best performance by executing the standard

synthesis steps under some performance constraints.

This stage takes the gate-level RTL of a design as input. In this design, first, all the critical

control and datapaths that govern latency are determined, in a critical path determination step. For

example, in Mousetrap, such paths include the forward request paths and the forward datapaths.

Next, performance constraints are imposed on these critical paths in the form of max delay

constraints - this step is referred to as performance constraints application step. The max delay

values for these paths are intuitively decided based on the gates involved: these values are picked to

be somewhat relaxed for these paths, and not overly aggressive.

However, a problem arises, as max delay constraints can only be applied in a synchronous set-

ting, i.e. between clocked registers. For asynchronous designs, this limitation is overcome by using

hypothetical clock boundaries. In particular, enable signals of the registers in the asynchronous de-

sign can declared as ’fake’ clocks. Such declarations are performed only for the registers that are

on the critical paths, in a step called fake clock declarations.

The gate-level RTL, the set of max delay constraints, and the fake clock declarations are then

138

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

used in the implementation step. This step only uses the FPGA synthesis tool to perform the fol-

lowing automated steps: logic synthesis, placement and routing.

The resulting implementation is then checked to see if all the max delay constraints are satisfied

in the performance constraints checking step. There can be two outcomes: (i) all performance

constraints are satisfied or (ii) some performance constraints are not satisfied. In the former case,

the tool flow tries to find a better mapping with a higher performance: if possible, the performance

constraints are tightened using smaller max delays (tighten max delay constraints step), followed

by re-implementation under the new constraints. In the latter case, the max delay constraints are

relaxed to allow the tool to meet timing in the relax max constraints step, and then the design

is re-implemented. After each re-implementation, the performance constraints checking is again

performed, and based on the outcome, max constraints are relaxed or tightened. This complete

mapping stage, therefore, follows an iterative process to get a high-performance implementation on

FPGAs, where all the max delay constraints satisfied and no further slack optimization is possible.

Robustness-oriented mapping stage. The high-performance implementation from the previ-

ous stage may not satisfy all the timing constraints, and therefore a robustness-oriented stage is

required to make sure all these constraints are satisfied.

First, as a pre-processing step, all the bundling and relative timing constraints are determined in

the initial gate-level RTL design in a timing constraints enumeration step. The next steps are then

performed on the implementation obtained from the previous stage to check and make sure all these

constraints are satisfied.

A path delay extraction step is first used on the previous implementation, where the delays

across all the paths involved in all the timing constraints are extracted using the synthesis tool.

These path delays are then used to check if all the timing constraints are satisfied by a safe

margin of more than 300 ps in a timing constraints checking step. If all the constraints are met then

no further action is required and the final high-performance and robust implementation is obtained.

However, if a subset of constraints are not satisfied by a margin more than 300 ps, then an ad-

ditional step, called adding delay is used, where the offending paths of these constraint are slowed

down by adding localized delay lines in the initial gate-level RTL, keeping the rest of the design

unmodified. These delay values are picked intuitively based on the differences by which the con-

straints were not satisfied.

139

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

The updated RTL is then re-synthesized using the performance-oriented stage, followed by

again checking if all the timing constraints are satisfied in the robustness-oriented stage. The two

stages are repeated until all timing constraints are satisfied, and a high-performance and a safe map-

ping is obtained on the FPGA.

6.4.1.2 Tool flow details

Figure 6.2 shows the steps involved in this tool flow using the Xilinx Vivado tool set. The performance-

oriented stage uses an automated flow, while the robustness-oriented stage is performed manually.

Although the latter is currently done manually, this flow can be automated in the future.

Performance-oriented mapping stage. The steps involved in the performance-oriented map-

ping stage are shown as gray boxes in the Figure 6.2. In this stage, the Xilinx Vivado tool takes

the gate-level RTL model of a hazard-free bundled-data design as the input. This RTL model also

contains DONT TOUCH attributes to disable any logic manipulations that can introduce hazards.

In Step 1a, critical paths determination is performed to get all critical control and datapaths of the

design. In Step 1b of performance constraints application step, max delay constraints are applied

to all critical paths using set max delay. In parallel, Step 1c (fake clock declarations) is performed,

where the enable signals of all registers on the critical paths are declared as ’fake’ clocks using the

create clock construct. Next, the implementation Step 1d takes the RTL, the max delay constraints,

and the fake clock declarations to perform the following: (i) logic synthesis that maps the design to

the appropriate LUTs and FLOPs, (ii) placement that places these cells on to the FPGA, and (iii)

routing interconnect wires between these cells. The resulting implementation is then checked to see

if all the max delay constraints are satisfied in the Step 1e of performance constraints checking. If

so, then in Step 1f, if possible, these constraints are further tightened to get a better performance,

called the tighten max delay constraints. The design is re-implemented under these new constraints

using Step 1d, followed by rechecking in Step 1e. However, if in Step 1e, some of these constraints

are not satisfied, then Step 1g of relaxing max delay constraints is used, and the design is again

implemented, then rechecked in Step 1e. These steps are iterated until the best high-performance

mapping is obtained with all the performance constraints satisfied.

Robustness-oriented mapping stage. The steps involved in the robustness-oriented stage are

shown as blue boxes in the Figure 6.2. This stage takes the performance-oriented mapping from the

140

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

Figure 6.2: Tool flow for implementing bundled-data asynchronous circuits on FPGAs

previous stage and follows these steps in Vivado to make sure all the timing constraints are satisfied.

In the first pre-processing Step 2a, all the bundling and relative timing constraints are determined

and enumerated in the initial gate-level RTL design. Next, in Step 2b of path delay extraction, the

delays of the paths, involved in all the timing constraints, in the implementation from the previous

stage are extracted. This delay extraction is performed using get timing paths. Using these path

delays, all the timing constraints are then checked to see if they are satisfied by more than 300 ps

in Step 2c of timing constraints checking.1 If so, then the procedure terminates. If, however, a

constraint is not satisfied, then Step 2d of adding delay is used to enable meeting of this constraint,

where a delay line, comprising buffer LUTs, is added to the offending path in the initial RTL model.

1For a Virtex 7, fabricated in 28 nm, 300 ps is equivalent to adding a buffer LUT delay, and can be considered a safe

margin.

141

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

Since, an extra delay is added, max delay constraints for these paths are slightly relaxed in Step

2d of relax max delay constraints, followed by re-implementing the design using the performance-

oriented stage, and rechecking the timing constraints in the robustness-oriented stage. The two

stages are iterated until all the timing constraints are satisfied, yielding a final high-performance

and robust implementation on the FPGA.

6.4.2 Validation Approach

The implemented asynchronous design is validated using a synchronous test wrapper, exploiting

the existing Xilinx Vivado validation tools. This wrapper involves both injecting test inputs to the

asynchronous design-under-test (DUT) as well as monitoring its internal signals and outputs. A hi-

erarchical validation approach is used where the DUT is implemented in isolation first, followed by

locking its implementation on FPGA (using lock design) and then interfacing with the test wrapper.

An advantage of this approach is that it isolates the DUT from the test circuits, so any change to

the synchronous test wrapper will not impact the DUT. Validation is performed at two levels: (i)

post place-and-route back-annotated timing simulation, and (ii) emulation of the the implemented

hardware on FPGA, where the synchronous wrapper uses a Xilinx integrated logic analyzer (ILA)

hardware core to monitor the DUT’s internal wires and outputs during emulation.

6.4.3 Tool Flow Illustration: A Mousetrap Pipeline

A Mousetrap pipeline is used to illustrate the CAD methodology presented in Section 6.4.1, as

it is a simple example of bundled-data circuits, as well as forms the basis of the routers. As de-

scribed earlier, the tool flow iteratively goes through two stages to find the best mapping on FPGAs:

performance-oriented stage and robustness-oriented stage, both of which are now illustrated using

the Mousetrap example.

Performance-oriented mapping stage. Figure 6.3 shows how the performance-oriented stage

is used to synthesize a Mousetrap pipeline. A gate-level RTL model of the Mousetrap pipeline is

input to this stage. This model describes the behavior of each of the components of the pipeline:

the XNOR gates and the latch-based registers, along with the DONT TOUCH primitives. In Step

1a, the forward critical control and datapaths, responsible for latency of the design are determined

as shown in the Figure. Next, in Step 1b, max delay constraints are applied on all these critical

142

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

Figure 6.3: Illustrating the proposed tool flow of performance-oriented stage on a

Mousetrap pipeline example

paths. The figure shows an example of max delay constraints for critical req/data paths between

stage i and stage i + 1. In parallel, in Step 1c, register enables of all the latch registers on the

critical paths (eni−1, eni, eni+1) are declared as fake clocks. In Step 1d, gate-level RTL, max

delay constraints, and fake clock declarations, are then used to implement the Mousetrap design

following the standard synthesis steps: logic synthesis, which maps the registers to FLOPs that

implement the latch functionality and maps the XNORs to 2-input LUTs that performs the XNOR

operation, followed by place and route. The iterative procedure (involving steps 1d, 1e, 1f and 1g)

is then followed to tighten the max delay constraints if possible, and re-implementing the design,

until no further tightening is possible, and a high-performance mapping of the Mousetrap pipeline

is obtained with all the max delay constraints satisfied.

Robustness-oriented mapping stage. Figure 6.4 shows the robustness-oriented mapping stage.

This stage takes the performance-oriented implementation of the Mousetrap, and manually checks

and makes sure all timing constraints are satisfied. First, as a pre-processing step, all the bundling

timing constraints and relative timing constraints, such as data protection, in the initial gate-level

RTL design of Mousetrap are determined and enumerated in Step 2a. The Step 2b takes the high-

143

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

Figure 6.4: Illustrating the proposed tool flow of robustness-oriented stage on a Mousetrap

pipeline example

performance Mousetrap implementation from the previous stage as input, and the delays across the

various timing paths involved in all the timing constraints are extracted in Vivado. For example,

the datapath delays between any two registers, delays of the req paths between any two registers,

delays across each of the the backward acknowledge paths, and delays across the self-closing paths

of the different latch registers. Next, in Step 2c, all these path delays are used to check if all the

bundling constraints, and relative timing constraints are satisfied by a margin more than 300 ps. If a

constraint is not satisfied, for example, a bundling constraint between stage i and stage i+1, then in

Step 2d, a matched delay line, comprising appropriate buffer LUTs, must be added to the req path

in the initial RTL, as shown in the figure. Similarly, all the other timing constraints are checked, and

delay is added if needed. In Step 2e, the max delay constraints across the paths that involved adding

delay are relaxed slightly, and the design is then re-implemented using the performance-oriented

stage.

The two stages are iterated until the final high-performance mapping with all the timing con-

straints satisfied is achieved.

144

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

6.5 Synthesis of Special Asynchronous Components on FPGAs

Implementation of the special asynchronous elements on FPGAs is now presented, which form the

critical components of asynchronous NoCs: the C-element, the mutex, and a 4-input arbiter. These

elements are implemented largely following the standard FPGA synthesis tool flow.

6.5.1 C-Element

A C-element is an asynchronous state-holding component, discussed in detail in Section 2.3.1 of

Chapter 2. Synthesizing a C-element on FPGAs, both efficiently and safely, is a challenging task

with only limited research that has tackled this problem. In this work, three different standard-cell

designs of the C-element are explored for mapping on to FPGAs, and the best design in terms of

performance, resource utilization, and robustness is selected.

Figure 6.5 shows the three designs for a C-element: using AND/OR gates, AOI222 complex

gate, and a D-latch based design. Since, the C-element is an asynchronous state machine, the two

combinational designs require the output of the C-element to be fed back to provide state infor-

mation. In contrast, the latch-based design does not require any feedback, but it can be very slow.

However, the latch-based design is more robust than the former combinational ones as these require

an extra timing constraint for glitch-free operation: after any change in the output, the feedback

input must arrive before the primary inputs change.

All three designs are synthesized on the FPGA using the standard FPGA synthesis tool flow. For

each design, a gate-level RTL model is the input to the tool, which is then used to perform the fol-

lowing automated steps: logic synthesis, placement, and routing to get the final physical design on

the FPGA. In more details, the input RTL model also contains DONT TOUCH directives to disable

any logic manipulations that can introduce hazards. Xilinx Vivado tool is used for implementation,

which takes the RTL model as input, and first performs logic synthesis, mapping the gates/latches

to LUTs or FLOPs, respectively. The placement step is then performed, which places these cells

on the FPGAs, followed by the routing step, which routes the appropriate interconnections between

these cells.

Figure 6.5 shows the FPGA mappings obtained for each of the three C-element designs, which

are analyzed in terms of resource utilization, performance and robustness to select the best one. The

145

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

Figure 6.5: C-element: Standard-cell designs and FPGA mappings

FPGA considered is Xilinx Virtex 7 in 28 nm. As shown in the figure, the AND-OR design leads

to a mapping with 4 LUTs and has a post place-and-route latency of 434 ps. The complex-gate

design, on the other hand, only uses 1 LUT and has a latency of just 43 ps due to the absence of

any other LUT or wire delays. The latch-based design is the most expensive, and uses 3 LUTs and

1 FLOP with a latency of 778 ps, which is large due to the FLOP on the critical path that has a

delay of around 330 ps. Therefore, in terms of latency and resource utilization, the complex-gate

design that leads to a 1-LUT mapping is the best. This design is also very robust as the feedback

wire delay from output to input is small (159 ps), and will arrive significantly faster than the new

primary inputs after any change in the output, leading to a glitch-free operation. Given these results,

the 1-LUT mapping is picked out of the three implementations.

Each of the three final implementations of the C-element were exhaustively validated to make

sure they operate correctly. The validation was performed using a synchronous test wrapper, fol-

lowing the similar methodology as in Section 6.4.2, at two levels: (i) post place-and-route back-

annotated timing simulation, and (ii) emulation of the using the integrated logic analyzer (ILA). All

146

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

Figure 6.6: The analog mutex

three implementations of the C-element were validated at both these levels using a wide-range of

inputs.

6.5.2 Mutex

Unlike the synchronous arbiters, a mutex performs arbitration between two requests in continuous

time, and therefore, faces unique challenges for its correct and efficient implementation on FPGAs.

While a synchronous arbiter arbitrates based on input arrival order per discrete clock cycles, an

asynchronous mutex must resolve arrival order in continuous time. The correct mutex is imple-

mented using analog circuits [147], as shown in Figure 6.6, and also discussed in Section 2.3.2 of

Chapter 2. This mutex has two stages: an arbiter stage that mediates between the two requests

using cross-coupled NANDs and an analog filter. The filter keeps the grant outputs low until the

arbitration is resolved, and cleanly asserts exactly one grant after the arbitration is complete. How-

ever, since an analog implementation is not possible on FPGAs, a digital mutex, with some inherent

mean time between failure (MTBF), must be used for mapping. The next sub-sections present the

structure/operation of this digital mutex, any requirements for its correct and high-performance op-

eration, followed by details on the mapping approach, and exhaustive validation to ensure its reliable

operation.

147

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

6.5.2.1 Structure and operation of the digital mutex

As shown in the Figure 6.7, the digital mutex, similar to the analog mutex, also has two stages: an

arbiter, and a filter [68]. The arbiter stage performs arbitration between the two incoming requests,

designed using cross-coupled NAND gates. The filter stage, on the other hand, is used to keep both

the grant outputs deasserted while the arbitration is being resolved, and only after the arbitration

is complete, it allows exactly one of the grant outputs to be cleanly asserted high. The filter stage

is designed using digital AND gates, each of which has two inputs: an intermediate grant request

(mid0/mid1 through the inversion), and a filter enable (mid0/mid1 without inversion). If a filter AND

is enabled, then the corresponding grant output is low, otherwise, the grant output is an inversion of

the intermediate grant request.

There can be three important operating scenarios for the mutex: no contention with only one

request arriving, basic contention with one request arriving well before the other, and extreme con-

tention, where both requests arrive very close to each other. The digital mutex, like the analog one,

uses a four-phase handshaking protocol.

In a simple case of no contention, during the set phase, an assertion on a single req causes the

corresponding mid output of the arbiter level to be asserted low, which was initially high, followed

by assertion on the grant output of the filter stage. In the reset phase, deassertion of the req deasserts

the mid wire to high, leading to deassertion of the grant.

During basic contention, assuming req0 arrives well before req1, mid0 output of the arbiter

level is asserted low first, followed by three operations in parallel: blocking of req1 (keeping mid1

deasserted high) in the arbiter level, asserting grant0 output of the filter, as well as masking of mid1

in the filter level, i.e., keeping grant1 low. After the req0 releases the mutex, req1 will be granted

next.

In the extreme contention case, when both requests arrive very close to each other, the arbiter

stage can become metastable, where the internal mid values can exhibit either oscillations or inter-

mediate voltage levels. As an example of the oscillations, after the arrival of the requests, the outputs

of the arbiter stage will both go low. As a result, both ‘A’ and ‘B’ inputs will go low, flipping the

outputs of the NANDs, making them high again. This cycle continues leading to oscillations. Dur-

ing this metastability, the filter safely keeps the grant outputs low. The metastability will be resolved

eventually, with one request blocking the other, followed by a clean assertion on exactly one of the

148

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

Figure 6.7: The digital standard-cell mutex

grant outputs.

6.5.2.2 Requirements for correct and high-performance operation of the digital mutex

For the digital mutex to operate correctly as well as achieve high performance in case of contention,

two issues must be addressed. First, for high performance, a request must be able to quickly block

a competing request to achieve fast arbitration resolution time. Second, for correctness, while the

arbitration is being performed, the digital filter stage must keep both grant outputs low, and assert

exactly one of the outputs only after the arbitration has been resolved. If the filter stage is not

effective then it can lead to unwanted glitches on the outputs of the mutex.

The focus for achieving high performance is on the arbiter stage. A simple timing requirement

must be satisfied in the arbiter stage to enable quick blocking of a competing request, leading to

fast resolution time. In particular, the wire delays of the two feedback wires, i.e. mid0 to A and

mid1 to B, must be small. If these wire delays are large, and assuming the two requests arrive close

to each other, where req0 arrives slightly before req1, then mid0 is asserted low first but due to

the long wire delay, req1 is not blocked on time, resulting in assertion of mid1, potentially leading

to metastability. On the other hand, if the two feedback wires have very small delays, then the

assertion on mid0 can quickly block req1, which can either lead to a runt pulse on mid1 or keeps

mid1 at deasserted high, potentially leading to a very fast resolution of arbitration in favor of req0.

The focus of the correctness issue is on the filter stage. Contrary to the analog mutex, where the

149

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

filter stage performs a stable masking of any internal glitches while resolving arbitration, the filter

stage of the digital mutex is unstable and can get transiently disabled during the internal oscillations.

Therefore, to improve its filtering capability, an electrical intervention in the form of large inertial

delay is required at the inputs of the filter stage. To this end, large input capacitances can be used.

For example, if two requests arrive close to each other, oscillations can occur on mid0 and mid1,

and while the arbitration is being resolved, mid0 going low blocks mid1 at the filter stage from

going to the grant1 output, and vice versa. However, mid0 can become deasserted high shortly

after, removing the blocking on mid1, which can then allow the value of mid1 to get out on grant1,

even before the arbitration has resolved. To enable the filter stage to perform consistent and robust

filtering, the controlling inputs of its AND gates (inputs with the inversions) must have high input

capacitance, which can block internal fast oscillations or any intermediate voltage levels, that can

occur while arbitration is being resolved, hence keeping the grant outputs safely low during this

time.

6.5.2.3 Mapping of digital mutex on FPGAs

The above requirements on correctness and high performance are used to guide the mapping of the

mutex on FPGAs. These requirements can be simply met by manually forcing the placement of its

components on certain locations. First, each gate of the mutex must be mapped to a LUT. For fast

arbitration resolution, both the arbiter LUTs should be placed symmetrically in the same CLB such

that the wire delays from mid1-A and mid0-B will be small. For correctness, the filter stage must

have a high input capacitance. Since, no such high-capacitive elements exist on FPGAs, long wires

can be used between the arbiter stage and the filter as such wires can exhibit high capacitance, both

due to the wire length as well as the presence of buffers [113], [35]. Hence, the LUTs of the filter

stage must be placed in the CLB next to the arbiter CLB.

The implementation procedure for the digital mutex largely uses the standard synthesis flow. In

more details, the Xilinx Vivado tool is used, which takes two inputs: (i) a gate-level RTL model with

DONT TOUCH directives forcing each gate to be mapped to a LUT, and (ii) a set of constraints to

manually force these LUTs to be placed at the above discussed locations on the FPGA. The tool then

performs the following automated synthesis steps: logic synthesis for mapping to LUTs, followed

by placement that uses the above location constraints to place the LUTs, and finally routing the

150

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

interconnection wires between these LUTs. It is important to note that even though the locations

of LUTs are manually specified, these locations on the CLBs are relative and any two CLBs can be

chosen on the FPGA, and therefore, mapping of several instances of this mutex can be automated

using simple scripts that specify these relative placements. The final implementation is then checked

for any relative timing constraints, which were inherently satisfied with good timing margins.

The final mutex implementation operates with equalized paths and achieves high performance.

In this implementation, the wire delays between the cross-coupled LUTs of the arbiter (mid0-B and

mid1-A delays) are small and almost the same for fast and fair arbitration resolution: ∼ 114ps on

Xilinx Virtex 7 in 28 nm. Also, longer wires are used between the arbiter and the filter stage for

high-capacitive filtering, with delays of ∼ 350ps. The resulting mapping is high-performance and

balanced with a latency of nearly ∼ 445ps between the reqs and the corresponding grants.

6.5.2.4 Validation of mapped mutex on FPGA

Since a digital mutex is mapped on the FPGA, it is important to stress test its final implementation

to check its reliability. Similar to Section 6.4.2, a hierarchical validation approach is used, where

the mutex is first implemented in isolation and its implementation is locked on the FPGA, followed

by interfacing it with a synchronous test wrapper.

Figure 6.8 shows the setup used to exhaustively validate the mapped mutex using a synchronous

test wrapper during emulation. Two extreme cases are considered: requests arriving simultaneously

and near simultaneously (3 ps apart). The outputs of the mutex are checked to see if the arbitration

is resolved cleanly without glitches. A specialized glitch catcher is used on each output: the glitches

are very short transients (oscillation period ∼ 300ps) and cannot be directly detected by the logic

analyzer as its sampling frequency is small. A FF-based glitch catcher is used, clocked by the

negative edge of the grant output, with its D input tied to 1. If a glitch occurs while resolving

arbitration, the glitch catcher output, which is normally reset, will become 1, which can then be

detected by the ILA during its sampling window. A similar latch-based glitch catcher was also

used, which can be more sensitive than the FF-based; the same result is achieved from both the

catchers. An exhaustive testing was performed by running 10000 samples of each of the above

cases: no glitches were observed and the mutex was shown to perform correctly. Although such

extreme cases are very rare in a NoC of a real system, this test gives strong confidence that the

151

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

Mutex
Glitchs

Catcher

Req0

Req1

Grant0

Grant1

Check0

Check1

Tos

ILA

Grant0

Check0QD1

From

Sync

Test

Env

Glitchs

Catcher

Figure 6.8: Validation setup for mapped mutex

MTBF of the mapped design will be very high for more realistic traffic.

6.5.3 4-Input Arbiter

The 4-input arbiter is a critical component of the asynchronous NoC routers, and therefore must be

synthesized correctly and efficiently.

As shown in Figure 6.9, and covered in more detail in Section 2.3.3 of Chapter 2, the arbiter

takes four input requests and has grant output corresponding to each request. This design achieves

high performance using three mutexes in parallel [135]: left and right mutexes arbitrate between the

requests req0/req1 and req2/req3, respectively, while the middle mutex arbitrates between the two

pairs. The final decision on which request to grant access is made using a merge of the individual

arbitration results of the mutexes, performed using C-elements.

A hierarchical approach is used to synthesize the arbiter. In this approach, each of the three mu-

texes are first implemented in isolation, using the approach of Section 6.5.2.3, followed by synthe-

sizing the remaining design and interfacing with the mutexes. The three mutexes, after implemen-

tation, are placed and locked side-by-side on the FPGA to achieve a similar symmetrical structure

of Figure 6.9, which will minimize different wire delays, leading to an overall high-performance

and robust implementation. The remaining design is synthesized using largely the standard syn-

thesis flow but with small manual interventions, performed to optimize the latency of the mapped

design. In this method, the synthesis tool takes the gate-level RTL model of the remaining design

and performs the following automated steps: logic synthesis, followed by placement of LUTs on

152

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

Figure 6.9: A 4-input arbiter

the FPGA, but where the locations of mapping of the LUTs, that are part of the critical paths, are

manually specified so as to achieve low latency, and finally the routing step.

The Xilinx Vivado tool is used to synthesize the remaining arbiter. In more details, the tool

gets two inputs: (i) a gate-level RTL model of the remaining arbiter design, with DONT TOUCH

primitives to disable any logic manipulations that can introduce hazards, forcing each gate to be

mapped to a LUT, and (ii) a set of constraints to manually force the LUTs on the critical paths (such

as the C-elements and the ANDs) to be placed at specific locations on the FPGA, such that the

resulting wire delays between these LUTs will be minimized and the post place-and-route latencies

from each req to the corresponding grant will be small. The latter enables a high-performance

implementation. Finally, the Xilinx tool performs logic synthesis on the input RTL, and places the

LUTs according to the location constraints, followed by the routing step. The final implemented

design is checked for relative timing constraints, which are inherently satisfied with good timing

margins.

153

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

The resulting implementation is high-performance. In addition, the implementation also achieves

very balanced latencies between the requests and their corresponding grants: 1.8 ns, 1.8 ns, 1.7 ns,

and 1.9 ns, respectively on Xilinx Virtex 7 in 28 nm.

The final mapped design was also exhaustively validated to ensure correct operation. Similar

hierarchical validation approach was followed as for the above components: the arbiter was imple-

mented in isolation, followed by locking its implementation on the FPGA, and then interfacing with

a synchronous test wrapper. Validation was performed using both the post place-and-route timing

simulation, and a logic analyzer based emulation, for variety of test scenarios.

6.6 Case Study: Asynchronous NoC Routers

To demonstrate the effectiveness of the proposed tool flow, as well as to advance the field of asyn-

chronous NoCs, two highly-efficient asynchronous 5-port routers are synthesized on commercial

FPGAs. The two implementations will also be used in a head-to-head comparison with a syn-

chronous router in the next section. One of these asynchronous routers only supports unicast [66],

which has been used in several works to achieve high performance at low overheads [89], [134],

while the other router also supports lightweight multicast [17], proposed in Chapter 5. Structure

and operation of these routers are briefly recapped, followed by the details on how these routers are

implemented on FPGAs.

6.6.1 A Brief Recap: Unicast-Only and Multicast Asynchronous Routers

As described in Chapter 5, these routers have two main components: input port modules (IPMs)

and output port modules (OPMs), connected using a shared crossbar. The IPM performs route

computation on an incoming packet and selects the correct output port, while the OPM arbitrates

between packets from the four IPMs and selects the winner for routing on the output channel. The

two routers have different IPM designs but use the same OPM: the IPM of the multicast router sup-

ports extra replication capability and uses a different multicast addressing scheme than the unicast

one, while the OPM for both the routers performs the same arbitration operation. The structure and

functionality of these components are briefly presented. The IPMs and the OPMs are based on the

Mousetrap pipeline.

154

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

Figure 6.10: Asynchronous unicast router input port module

Unicast IPM. Figure 6.10 shows the micro-architecture of the IPM. There are four main com-

ponents: circular buffer, route computation unit, request generators, and an internal ack generator.

The buffer stores the incoming flits in single latch-based registers. The route computation unit reads

the destination address of the header from the buffer then selects the correct request generator based

on XY routing. The selected request generator then activates the correct OPM for the packet life-

time. The internal ack generator advances the read pointer in the circular buffer, after handshaking

is complete between the IPM and the OPM for each flit.

Unicast/Multicast OPM. Figure 6.11 shows the micro-architecture of the OPM. There are five

main components: a 4-way arbiter, four normally-closed input register for each IPM, a data mux,

normally-transparent output register, and an ack generator. The arbiter arbitrates between packet

headers from the four IPMs and selects the winner. The winning input channel of the OPM is

allocated for the entire packet lifetime by enabling the selected input register, and selecting the

correct data stream in the data mux. The winning header is then routed through the normally-

transparent output register, followed by sending ack to the correct IPM by the ack generator. The

trailing body/tail flits are then fast forwarded through the path pre-allocated by the header without

performing arbitration. Finally, after the tail has been routed, as detected by the tail detector, a

special end-of-packet ack (tailpassed) is sent to the correct IPM, along with the ack from the ack

155

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

Figure 6.11: Asynchronous unicast/multicast router output port module

generator. The correct IPM releases the OPM after receiving the tailpassed corresponding to the

tail, which then resets the entire OPM.

Multicast IPM. Figure 6.12 shows the micro-architecture of the multicast IPM. This IPM has

three main components: a continuous-time multi-way read (CMR) buffer, route computation unit

(RCU), and an address modifier unit (AMU). The CMR buffer stores all the flits of a packet in a

single write interface, which can be accessed by multiple OPMs in parallel using the buffer’s four

decoupled read interfaces. On the other hand, the RCU only stores the header addressing, performs

address decoding on the multicast bit-string address, and selects the correct OPMs for routing for

the packet lifetime. To achieve low header latency, route computation on header is performed in

parallel to its buffering in the CMR buffer, as opposed to serially in the unicast-only router. Finally,

an AMU is used on each of the four outputs of the CMR buffer, which modifies the multicast header

addressing, to guarantee that there is always a unique path for the multicast packet to reach each

destination.

6.6.2 Implementing Asynchronous Routers on FPGAs

A hierarchical implementation approach is used to synthesize each of the above asynchronous

routers on FPGAs. In this approach, the arbiters of a router’s OPMs are first synthesized in isolation,

156

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

Figure 6.12: Asynchronous multicast router input port module

using the approach from Section 6.5.3, and then placed and locked on the FPGA, followed by syn-

thesizing the remaining router design. The remaining design is synthesized using the proposed tool

flow for bundled-data circuits from Section 6.4. The tool flow iterates through the performance-

oriented mapping stage and the robustness-oriented stage to yield a final high-performance and

robust router implementation on the FPGA.

The performance-oriented mapping stage for the router follows the steps shown in the gray

boxes of the Figure 6.2. A gate-level RTL model of a hazard-free router design, keeping the arbiters

as black boxes, is input to this stage. This RTL model also contains DONT TOUCH directives to

disable any logic manipulations that can introduce hazards. Step 1a of critical paths determination

is performed to extract all data and control paths that are critical for both the header and body

latencies from each IPM to each OPM. In Step 1b, set max delay constraints are applied to all these

critical paths. In order for the max delay constraints to be applied, the Fake clock declarations step

(Step 1c) is used to declare the latch register enable signals of all the registers on these critical paths

(for example, in the input buffers and the OPMs) as ’fake’ clocks using the create clock construct.

Next, the implementation step (Step 1d) is performed: logic synthesis, and place and route. The

157

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

resulting implementation then undergoes an iterative process (involving steps 1d, 1e, 1f, and 1g) to

check if all max delay constraints were met, and if possible perform slack optimization, followed

by re-implementation or if not all constraints are met then relax the unsatisfied constraints and re-

implement the design. The result of this stage is a high-performance mapping with all the max delay

constraints satisfied.

The robustness-oriented stage follows the blue boxes in the Figure 6.2. First, as shown in Step

2a, all the bundling and relative timing constraints are enumerated in a pre-processing step. Next,

the high-performance router implementation from the previous stage is input to the Step 2b of path

delay extraction, where get timing paths is used to extract the delays across the paths involved in

these timing constraints. Step 2c then checks if all the bundled-data and relative timing constraints

are satisfied by more than 300 ps. In the router implementation, all the relative timing constraints

were met by a margin more than 300 ps, however, some of the bundled-data constraints were not

satisfied. So, the adding delay step (Step 2d), in the input RTL, appropriate delay lines, comprising

buffer LUTs, are added to the request paths of these unsatisfied bundling constraints, to match the

corresponding datapaths. Finally, in Step 2e, the max delay constraints for these paths were slightly

relaxed, followed by re-implementation using the performance-oriented stage.

The two stages are repeated until the final high-performance and robust implementation of the

router, with all timing constraints satisfied, is obtained on the FPGA.

The final implementations were stress-tested using different traffic patterns, e.g. uniform, hotspot,

multi-way transmissions, and various packet sizes. Both the routers were shown to operate cor-

rectly.

6.7 Experimental Results

The asynchronous switches are implemented using the proposed methodology, and are compared

with a state-of-the-art synchronous switch. The experimental setup, followed by the results, in

terms of different metrics such as resource utilization, performance, and energy, are presented in

this section.

158

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

6.7.1 Experimental Setup

The final implementations of the two asynchronous switches, one that only handles unicast and

the other that also supports multicast, are compared with a high-performance synchronous switch.

The latter is a single-cycle switch, which performs all operations in parallel: buffer write, route

computation, arbitration and even link traversal, and also includes aggressive optimizations such

as lookahead routing, which are not used in the asynchronous switches. This synchronous switch

only supports unicast and has been used in efficient accelerator-based systems for image processing

applications [121]. The two asynchronous switches are referred to as Uni-Async, and Multi-Async,

respectively, and the synchronous switch is called Uni-Sync. All three switches use the same 34-bit

datapath with no virtual channels. Each input port is buffered with a FIFO queue of depth 5. The

asynchronous switches are implemented using the proposed methodology, as in Section 6.6.2, while

the synchronous switch is implemented using the standard Vivado Design Flow. The target FPGA

is a Xilinx Virtex 7 with speed grade -2, implemented in 28 nm technology.

All the performance and power evaluations are performed at a post place-and-route level. Vivado

Post-Implementation Timing Simulator is used to get the switch latency while routing a single flit

through a switch from an input port to an output port. A 2-step procedure is used for accurate switch

energy/power measurements in Vivado: (i) for each switch, record the precise switching activity of

its wires during a simulation while routing a single 5-flit packet through a switch, but isolating the

switch from any other traffic injection circuits or any clock buffers, and (ii) perform report power

in Vivado using the recorded activity and the post place-and-route netlist.

6.7.2 Results

6.7.2.1 Resource utilization on FPGA

Figure 6.13 shows the number of LUTs/FLOPs used on the FPGA for each of the three switches.

Uni-Async takes 28% more LUTs and 15.7% more FLOPs than Uni-Sync. However, due to the

predominantly latch-based asynchronous design, the majority of the FLOPs for Uni-Async are used

as latches (1120/1210). On the other hand, the Uni-Sync only uses flip-flops. The use of latches in

former may lead to overall better performance and reduced switching energy. Moreover, the future

generations of FPGAs might use explicit single latches that are smaller than the FLOPs, which can

159

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

1
0

2
5

1
3
1
2

3
1

2
0

1
0

4
5

1
2

1
0

1
6

0
0

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Uni-Sync Uni-Async Multi-Async

R
es

o
u

rc
e

U
ti

li
za

ti
o

n

Switch Designs

#LUTs #FLOPs

Figure 6.13: Resource utilization for the three switch designs

then lead to overall area reduction for the asynchronous switch.

Further, Multi-Async uses significantly more number of LUTs/FLOPs than the other unicast

switches. This result is expected as the multicast switch supports an additional capability and will

require extra instrumentation to achieve high-performance parallel multicast. However, similar to

the unicast asynchronous switch, Multi-Async is also predominantly latch-based design, where 1355

out of 1600 FLOPs are latches, which can lead to improved performance and energy, compared to

the synchronous switch that only uses flip-flops.

6.7.2.2 Switch latency

Figure 6.14 shows the switch latency results for routing the header and the body flits through each

switch. While the synchronous switch shows a fixed latency for each flit traversal, the asynchronous

switches incur different latency based on the type of the flit. In addition, for asynchronous switches,

the latency is measured as the average of latencies between different input/output pairs, although

these latencies show very slight variation from each other.

Comparing Uni-Async and Uni-Sync, the former shows 75% longer header latency, but achieves

30.7% lower body latency than the latter. For the header, Uni-Async performs all critical operations

in series: buffering, route computation and arbitration, while the synchronous switch performs all

these operations in parallel, and hence achieves significantly better latency. However, improved

header latency results are expected for the asynchronous switch after incorporating optimizations

such as lookahead optimizations. Further, for the body flits, the routing of the previous header

160

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

5
.2

9
.1

8
.3

5
.2

3
.6

 4
.6

0

1

2

3

4

5

6

7

8

9

10

Uni-Sync Uni-Async Multi-Async

S
w

it
ch

 L
a
te

n
cy

 (
n
s)

Switch Designs

Header Body

Figure 6.14: Switch latency for the header and body flits

through the asynchronous switch pre-allocates the path, such that the trailing body flits are simply

fast forwarded using this path. The critical path for the body flits through the asynchronous switch is

very simple and only involves latches, rather than FFs in the synchronous design, leading to consid-

erably better latency for these flits. Moreover, this improvement in body latency can lead to overall

system performance improvement, particularly for loosely-coupled accelerators that leverage long

packets (1000s of body flits) to fill in their local memories and perform batch computation [121].

Multi-Async showed 59.6% higher header latency than Uni-Sync, which is moderately less ex-

pensive than its unicast counterpart, but still achieved 11.5% lower body latency than Uni-Sync. For

the header, Multi-Async performs the buffering and route computation operation in parallel, which

leads to 8.8% lower latency than the unicast asynchronous switch. Both these operations are still

followed by a serial arbitration for Multi-Async, which leads to overheads compared to the Uni-Sync.

However, for body flits, which are again fast forwarded in Multi-Async, the critical path involves

latches rather than FFs, and is moderately faster than Uni-Sync despite the added new components

such as a simple address modifier unit for multicast.

6.7.2.3 Switch energy

Figure 6.15 shows the energy-per-packet results for four different transmission scenarios: one uni-

cast and three multicast. In the unicast transmission, a 5-flit packet is sent from one input port to

161

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

0
.3

6

0
.1

9
 0

.3
9

0
.6

4

0
.3

7

0
.4

6

0
.9

6

0
.5

5

0
.4

7

1
.2

6

0
.7

3

0
.4

8

0

0.2

0.4

0.6

0.8

1

1.2

Uni-Sync Uni-Async Multi-Async

S
w

it
ch

 E
n

er
g

y
p

er
 P

a
ck

e
t

(n
J)

Switch Designs

1-way 2-way 3-way 4-way

Figure 6.15: Switch energy per packet for different unicast and multicast transmissions

one output port. While in the multicast scenarios, the packet is sent from one input to multiple

output ports. Unicast is the most common traffic pattern, and it is important to evaluate the energy

consumption for each of the three routers for this pattern. It would also be interesting to see how

the Multi-Async energy for transmitting a unicast packet compares with the energy of the other uni-

cast routers, given the additional logic for multicast in the former. Evaluating energy for multicast

transmission is also very important given the significance of supporting this traffic efficiently for

applications such as cache coherency as well as emerging areas of neuromorphic computing. In

the absence of multicast support, Uni-Async and Uni-Sync switches serially inject and route multi-

ple unicast copies for each multicast packet, while Multi-Async routes the single multicast packet

through multiple output ports in parallel.

For all these transmissions, Uni-Async achieves significantly lower energy than the synchronous

switch, in the range of 42-47.2%. This result is due to the absence of the clock switching energy in

the former. The clock net in the synchronous switch has a large fanout to nearly 1000 FFs, which

can lead to a lot of extra switching activity than asynchronous.

Similarly, even though Multi-Async is more complex than Uni-Sync, it still has almost the same

energy under a unicast transmission, and achieves significantly lower energy (28.1-61.9%) for mul-

ticast transmissions. For the latter, the absence of clock energy and the parallel routing of a multi-

cast packet in Multi-Async leads to lower energy than Uni-Sync. For each multicast transmission,

162

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

Uni-Sync serially routes multiple copies leading to a significant extra switching activity than Multi-

Async, which always routes a single packet for these transmissions.

In addition, to isolate the effect of adding the new multicast capability in Multi-Async, the

energy for this switch is compared with Uni-Async. The energy comparisons for these two switches

for various transmissions depend on two major factors: (i) the difference in the design complexity

of the two switches, and (ii) the serial vs. parallel handling of multicast transmissions. For unicast

scenario, since Multi-Async is significantly more complex than Uni-Async, the former incurs almost

2× overhead. For 2-way multicast transmission, this overhead is reduced to 24.3% as the unicast

switch serially injects and routes two copies for a single multicast packet, which leads to extra

switching activity compared to Multi-Async, recouping some of the complexity overheads of the

latter However, for the other 3-way and 4-way transmissions, the extra switching activity due to

routing of multiple packet copies becomes a major overhead for Uni-Async, leading to 17-52%

higher energy than Multi-Async.

6.7.2.4 Idle power

While the previous energy results consider routing activity, it is interesting to evaluate these routers

under no activity, i.e. in terms of idle power. As expected, the asynchronous routers achieve signifi-

cantly lower idle power, 75% and 25% than the synchronous router, respectively, due to the absence

of any clocking activity in the former (Uni-Async: 2 mW, Multi-Async: 6 mW, Uni-Sync: 8 mW).

6.8 Conclusions

This chapter makes significant advances in the field of asynchronous NoCs by proposing a CAD

methodology for implementing bundled-data asynchronous NoCs on commercial FPGAs. The pro-

posed tool flow not only achieves a high-performance mapping on FPGAs but also makes sure that

all timing constraints are satisfied for correctness. For ease of mapping and compatibility with syn-

chronous tools, only existing Xilinx tool is used for implementation and validation of these NoCs.

In addition, as asynchronous NoCs also use some special asynchronous components such as the

C-element, and the mutex; a comprehensive guide is introduced to map these elements efficiently

and safely on the FPGAs. To demonstrate the effectiveness of the proposed tool flow, two highly-

163

CHAPTER 6. SYNTHESIZING ASYNCHRONOUS NOCS ON FPGAS: A SYSTEMATIC

METHODOLOGY

efficient asynchronous NoC routers are synthesized on Xilinx Virtex 7 in 28 nm, where one only

supports unicast and the other also handles multicast. The former achieved significant energy and

idle power improvements with some performance benefits over a high-performance synchronous

router. Interestingly, similar benefits were also shown by the multicast asynchronous router, despite

the extra instrumentation for multi-way transmissions.

As a future work, the proposed tool flow will be used to implement complete asynchronous

NoCs. These NoCs which will then be used to interface synchronous cores, accelerators, and mem-

ories, building an entire GALS system on FPGAs. This system will be evaluated for wide-ranging

applications, such as image processing and convolutional neural networks, and compare its perfor-

mance and power with a synchronous system.

164

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis makes significant contributions in the field of asynchronous NoCs, advancing the state-

of-the-art considerably. The main focus of the thesis is on supporting a new type of traffic pattern:

multicast, where a source sends a packet to arbitrary number of destinations. Multicast is common

in parallel computing applications such as cache coherence and barrier synchronization, as well as

in emerging areas of neuromorphic computing. However, there has been only limited research on

supporting this important capability in asynchronous NoCs. This thesis proposes new techniques

and architectures to support efficient multicast in asynchronous NoCs, targeting a variant mesh-of-

trees topology and a 2D-mesh topology. To the best of our knowledge, these are the first general-

purpose asynchronous NoCs to support multicast.

Additionally, for a more realistic analysis and evaluation, and also to further advance the field of

asynchronous NoCs, a systematic CAD methodology is introduced to synthesize these NoCs on FP-

GAs. A challenging two-fold goal is targeted for the final implementation: it must be highly robust,

and achieves high performance. To the best of our knowledge, this is the first systematic methodol-

ogy to efficiently map asynchronous NoCs on commercial FPGAs using existing synchronous tools.

The asynchronous NoCs targeted in this thesis use single-rail bundled data encoding and two-

phase handshaking protocol. This combination can lead to cost-effective NoC solutions [89], [83],

[66], but also rely on modest timing constraints for correct operation.

Overall, this thesis makes the following three contributions.

165

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

(i) Multicast in variant mesh-of-trees NoCs using local speculation. For variant MoT, a

novel strategy, local speculation, is introduced for high-performance and low-overhead multicast.

In this strategy, a packet (unicast or multicast) is always broadcast at a fixed subset of speculative

switches in the network. To restrict the distance traveled by any redundant packets to small local

regions, these packets are throttled by neighboring non-speculative switches, hence, limiting the

penalties of speculation to minimal impact on congestion and power. Speculative switches are very

simple and fast as they do not perform route computation or channel allocation. Non-speculative

switches perform throttling with almost no hardware overhead. This mix of speculative and non-

speculative switches leads to a new hybrid network architecture. For multicast traffic, significant

performance benefits with small power savings are obtained by the new hybrid network over a fully

non-speculative baseline. Interestingly, similar improvements are also shown for unicast. This latter

result makes local speculation suitable for not just multicast-enabled NoCs but also for unicast-only

NoCs to achieve high performance with low power/area overheads.

While introduced for the NoC domain, the local speculation based hybrid architecture paradigm

can also be useful in other domains to achieve high performance at low overheads. For example,

in many-accelerator heterogeneous SoCs, a fixed subset of the accelerators can be approximate,

performing fast computation and are very simple, which can be used for applications that do not

require very accurate results, such as in image processing. The other accelerators in the system

can be accurate, to be used by applications that require full accuracy. Such a system can be asyn-

chronous or synchronous, but the former can be a better option to exploit all the benefits of this

hybrid architecture.

(ii) Multicast in 2D-mesh NoCs using a continuous-time replication strategy. For 2D mesh,

a new replication strategy is introduced to achieve high-performance multicast while still maintain-

ing low overheads. In this approach, the flits of a multicast packet are first stored in a single buffer at

an input port, from where they are routed through the distinct outputs of the router according to each

outputs own rate, in parallel and in continuous time. Unlike synchronous, this unique asynchronous

approach, not discretized to clock cycles, can provide considerable performance benefits by accom-

modating subtle variations in network congestion and exploiting sub-cycle differences in interface

operating rates. In addition, a new continuous-time multi-way read (CMR) buffer is introduced to

enable the above strategy at low overheads. This buffer is a low-latency FIFO with multiple read

166

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

controls that can be accessed in parallel. It is also a standalone architecture that can also be used

for different applications. Exhaustive experiments on wide-ranging multicast benchmarks, show

significant performance gains for the new approach, with small-moderate energy improvements

over a baseline network that performs multicast using several unicasts, injected and routed serially.

Interestingly, moderate latency improvements were also shown for unicast.

The continuous-time replication strategy and the CMR buffer can also be used for different

applications to achieve high system performance. For example, the CMR buffer can be used to

implement a shared memory, to be concurrently accessed by multiple accelerators/cores in a het-

erogeneous SoC. These units can exploit the decoupled read pointers of this memory to perform

parallel read operations in continuous time, without waiting for any clock cycles, and exploiting

any sub-cycle delay differentials in operating speeds.

(iii) A systematic methodology for synthesizing asynchronous NoCs on FPGAs. Finally, a

comprehensive CAD tool flow is proposed for mapping asynchronous NoCs on modern commercial

FPGAs. The target of this work is single-rail bundled-data asynchronous NoCs, which are shown to

be highly-efficient but also involve complex timing constraints for correct operation. The proposed

methodology not only makes sure that all timing constraints are satisfied but also achieves high

performance for these NoCs. For ease of implementation and convenience for the designs, only the

existing commercial synchronous FPGA synthesis tool is used. In addition, asynchronous NoCs

also use some special asynchronous components such as a C-element, and a mutex; a systematic

guide is also proposed on how to map these components, as well as a 4-input arbiter, both efficiently

and safely. Two distinct bundled-data 5-port switches are synthesized using the proposed tool flow

on Xilinx Virtex 7 in 28 nm: one that only supports unicast, and the other that also handles multicast

(Chapter 5). Compared to a high-performance unicast-only synchronous switch, the unicast asyn-

chronous switch achieved 47% lower energy and 75% lower idle power with some performance

benefits. Interestingly, the multicast asynchronous switch also achieved similar benefits over the

synchronous switch, despite the extra instrumentation for multicast support.

While introduced for asynchronous NoCs, the proposed CAD methodology and the guide to

map asynchronous components are generic and can be used for different asynchronous designs and

systems. In addition, the proposed validation approaches for asynchronous circuits can also be

useful for testing the implemented systems on FPGAs.

167

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2 Future Work

There are a few potential areas for future work.

Post-layout implementations of new multicast-enabled asynchronous NoCs. The new asyn-

chronous NoCs proposed in Chapters 4 and 5 are pre-layout implementations. For a more realistic

analysis, these NoCs can be implemented and evaluated at post-layout level.

Full-system ASIC implementation and evaluation. The proposed NoCs in Chapters 4 and 5

are evaluated only at the NoC-level. For more exhaustive system-level evaluation, complete GALS

systems can be built, where multiple synchronous cores, operating at different clock speeds, are

connected using these asynchronous NoCs through mixed-timing interfaces. These systems can then

be evaluated using real applications running on these systems, and compared to fully-synchronous

systems.

Evaluation using real traffic benchmarks. The NoCs in Chapters 4 and 5 are evaluated using

only synthetic traffic. For more realistic evaluation and thorough analysis, application benchmarks

such as SPLASH and PARSEC can be used to further evaluate these NoCs. These benchmarks

model real-world multi-threaded behavior, including multicast traffic, and therefore, will be very

useful for more accurate analysis.

Complete GALS systems on FPGAs for accelerating real applications. While the CAD

methodology introduced in Chapter 6 has been demonstrated on mapping an asynchronous NoC

switch on FPGAs, it can also be used to synthesize complete NoCs. Such NoCs can then be used to

integrate multiple synchronous cores, memories and accelerators, building complete GALS systems

on FPGAs. These systems can be evaluated in terms of performance, power, as well as scalability,

and compared with other fully-synchronous systems on FPGAs for real applications such as image

processing and convolutional neural networks.

Support for many-to-1 traffic. Another common traffic pattern seen in cache coherence traffic

as well as neural networks is many-to-1 or many-to-few, also known as ACK aggregation. A poten-

tial future area of research can be to introduce new efficient methods to support this communication

in asynchronous NoCs.

168

BIBLIOGRAPHY

Bibliography

[1] S. Abadal, A. Mestres, E. Alarcón, A. Cabellos-Aparicio, and R. Martinez. Multicast on-chip

traffic analysis targeting manycore NoC design. In Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing (PDP), pages 370–378, 2015.

[2] F. Akopyan, J. Sawada, A. Cassidy, R.A.-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Naka-

mura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J.B. Kuang, R. Manohar, W.P.

Risk, B. Jackson, and D.S. Modha. TrueNorth: Design and tool flow of a 65 mW 1 million

neuron programmable neurosynaptic chip. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 34:1537–1557, 2015.

[3] R. Au. Intel FPGAs accelerate artificial intelligence for deep learning in Microsoft’s Bing

intelligent search. https://newsroom.intel.com/editorials/intel-fpgas-accelerating-artificial-

intelligence-deep-learning-bing-intelligent-search/, 2018.

[4] P. Bahrebar and D. Stroobandt. The hamiltonian-based odd-even turn model for maximally

adaptive routing in 2D mesh networks-on-chip. Journal of Computers & Electrical Engi-

neering, 45:386–401, 2015.

[5] A.O. Balkan, M.N. Horak, G. Qu, and U. Vishkin. Layout-accurate design and implemen-

tation of a high-throughput interconnection network for single-chip parallel processing. In

IEEE Symposium on High-Performance Internconnects (HOTI), pages 21–28, 2007.

[6] A.O. Balkan, G. Qu, and U. Vishkin. A mesh-of-trees interconnection network for single-chip

parallel processing. In International Conference on Application-Specific Systems, Architec-

ture and Processors (ASAP), pages 73–80, 2006.

169

BIBLIOGRAPHY

[7] A.O. Balkan, G. Qu, and U. Vishkin. Mesh-of-trees and alternative interconnection networks

for single-chip parallelism. IEEE Transactions on VLSI Systems, 17:1419–1432, 2009.

[8] P. Beerel, G.D. Dimou, and A.M Lines. Proteus: an ASIC flow for GHz asynchronous

designs. IEEE Design and Test, 28:38–51, 2011.

[9] P. Beerel and T.H.-Y. Meng. Automatic gate-level synthesis of speed independent circuits. In

International Conference on Computer-Aided Design (ICCAD), pages 581–587, 1992.

[10] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, L. Bao,

J. F. Brown III, M. Mattina, C. Miao, C. Ramey, D. Wentzlaff, W. Anderson, E. Berger,

N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook. TILE64 - processor: a 64-

core SoC with mesh interconnect. In International Solid-State Circuits Conference (ISSCC),

pages 88–89, 2008.

[11] L. Benini, E. Flamand, D. Fuin, and D. Melpignano. P2012: building an ecosystem for a scal-

able, modular and high-efficiency embedded computing accelerator. In Design, Automation

and Test in Europe DATE, pages 983–987, 2012.

[12] L. Benini and G.D. Micheli. Networks on chip: A new SoC paradigm. IEEE Transactions

on Computers, 35:70–78, 2002.

[13] B.V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. Chandrasekaran, J. Bussat,

R. Alvarez-Icaza, J. V. Arthur, P. Merolla, and K. Boahen. Neurogrid: a mixed-analog-digital

multichip system for large-scale neural simulations. Proceedings of the IEEE, 102(5):699–

716, 2014.

[14] K.V. Berkeal, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij. The VLSI-programming

language Tangram and its translation into handshake circuits. In European Conference on

Design Automation (EDAC), pages 384–389, 1991.

[15] D. Bertozzi, G. Dimitrakopoulos, J. Flich, and S. Sonntag. The fast evolving landscape of on-

chip communication - selected future challenges and research avenues. Design Automation

for Embbeded Systems, 19:59–76, 2015.

170

BIBLIOGRAPHY

[16] E. Bezati, S.C. Brunet, M. Mattavelli, and J.W. Janneck. Coarse grain clock gating of stream-

ing applications in programmable logic implementations. In IEEE Electronic System Level

Synthesis Conference (ESLsyn), pages 1–6, 2014.

[17] K. Bhardwaj, W. Jiang, and S.M. Nowick. Achieving lightweight multicast in asynchronous

NoCs using a continuous-time multi-way read buffer. In International Symposium on

Networks-on-Chip (NOCS), pages 6:1–6:8, 2017.

[18] K. Bhardwaj and S.M. Nowick. Achieving lightweight multicast in asynchronous networks-

on-chip using local speculation. In Design Automation Conference (DAC), pages 38:1–38:6,

2016.

[19] K. Bhardwaj and S.M. Nowick. A continuous-time replication strategy for efficient multicast

in asynchronous NoCs. In To appear in IEEE Transactions on VLSI Systems, 2019.

[20] R. Bielby and G. Brown. Advantages of Xilinx 7 Series all programmable FPGA and SoC

devices. http://www.ni.com/white-paper/14583/en/, 2017.

[21] E.E. Bilir, R.M. Dickson, Y. Hu, M. Plakal, D.J. Sorin, M.D. Hill, and D.A. Wood. Multicast

snooping: a new coherence method using a multicast address network. In International

Symposium on Computer Architecture (ISCA), pages 294–304, 1999.

[22] T. Bjerregaard and S. Mahadevan. A survey of research and practices of network-on-chip.

Journal of ACM Computing Surveys, 38:1–51, 2006.

[23] T. Bjerregaard and J. Sparsø. A router architecture for connection-oriented service guaran-

tees in the MANGO clockless network-on-chip. In Design, Automation and Test in Europe

(DATE), pages 1226–1231, 2005.

[24] P. Bogdan, T. Majumder, A. Ramanathan, and Y. Xue. NoC architectures as enablers of

biological discovery for personalized and precision medicine. In International Symposium

on Networks-on-Chip (NOCS), pages 27:1–27:11, 2015.

[25] M. Branscombe. Why Microsoft has bet on FPGAs to infuse its cloud with

AI. http://www.datacenterknowledge.com/microsoft/why-microsoft-has-bet-fpgas-infuse-its-

cloud-ai, 2018.

171

BIBLIOGRAPHY

[26] L.P. Carloni, P. Pande, and Y. Xie. Networks-on-chip in emerging interconnect paradigms:

advantages and challenges. In International Symposium on Networks-on-Chips (NOCS),

pages 93–102, 2009.

[27] M.F. Chang, J. Cong, A. Kaplan, C. Liu, M. Naik, J. Premkumar, G. Reinman, E. Socher,

and S. Tam. Power reduction of CMP communication networks via RF-interconnects. In

International Symposium on Microarchitecture (MICRO), pages 376–387, 2008.

[28] M.F. Chang, J. Cong, A. Kaplan, M. Naik, G. Reinman, E. Socher, and S. Tam. CMP

network-on-chip overlaid with multi-band RF-interconnect. In International Conference on

High-Performance Computer Architecture (HPCA), pages 191–202, 2008.

[29] T. Chelcea and S.M. Nowick. Robust interfaces for mixed-timing systems. IEEE Transations

on VLSI Systems, 12:857–873, 2004.

[30] G. Chen, M.A. Anders, H. Kaul, S.K. Satpathy, S.K. Mathew, S.K. Hsu, A. Agarwal, R.K.

Krishnamurthy, V. De, and S. Borkar. A 340 mV-to-0.9 V 20.2 Tb/s source-synchronous hy-

brid packet/circuit-switched 16x16 network-on-chip in 22 nm Tri-Gate CMOS. IEEE Journal

of Solid-State Circuits, 50:1444–1454, 2015.

[31] X. Chen and N.K. Jha. Reducing wire and energy overheads of the SMART NoC using a

setup request network. IEEE Transactions on VLSI, 24:3013–3026, 2016.

[32] Y. Chen, T. Krishna, J.S. Emer, and V. Sze. Eyeriss: an energy-efficient reconfigurable

accelerator for deep convolutional neural networks. Journal of Solid-State Circuits (JSSC),

52:127–138, 2017.

[33] L. Cheng, M. Browning, P. V. Gratz, and S. Palermo. Energy-efficient optical broadcast for

nanophotonic networks-on-chip. In Optical Interconnects Conference, pages 64–65, 2012.

[34] J.F. Christmann, E. Beigne, C. Condemine, N. Leblond, P. Vivet, G. Waltisperger, and

J. Willemin. Bringing robustness and power efficiency to autonomous energy harvesting

microsystems. In International Symposium of Asynchronous Circuits and Systems (ASYNC),

pages 62–71, 2010.

172

BIBLIOGRAPHY

[35] J.A. Clarke, G.A. Constantinides, and P.Y.K. Cheung. On the feasibility of early routing

capacitance estimation for FPGAs. In International Conference on Field Programmable

Logic and Applications (FPL), pages 234–239, 2007.

[36] K. Constantinides, S. Plaza, J.A. Blome, B. Zhang, V. Bertacco, S.A. Mahlke, T.M. Austin,

and M. Orshansky. Bulletproof: a defect-tolerant CMP switch architecture. In International

Symposium on High-Performance Computer Architecture (HPCA), pages 5–16, 2006.

[37] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Complete

state encoding based on the theory of regions. In International Symposium on Asynchronous

Circuits and Systems (ASYNC), pages 36–47, 1996.

[38] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify: A tool

for manipulating concurrent specification and synthesis of asynchronous controllers. IEICE

Transactions on Information and Systems, E80-D:315–325, 1997.

[39] D. Jeon et al. An energy efficient full-frame feature extraction accelerator with shift-latch

FIFO in 28 nm CMOS. IEEE Journal of Solid-State Circuits (JSSC), 49:1271–1284, 2014.

[40] W.J. Dally and B. Towles. Route packets, not wires: On-chip interconnection networks. In

Design Automation Conference (DAC), pages 684–689, 2001.

[41] W.J. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan

Kaufmann, 2004.

[42] M. Daneshtalab, M. Ebrahimi, S. Mohammadi, and A. Afzali-Kusha. Low-distance path-

based multicast routing algorithm for network-on-chips. IET Computers & Digital Tech-

niques, 3:430–442, 2009.

[43] S. Das, J.R. Doppa, P.P. Pande, and K. Chakrabarty. Energy-efficient and reliable 3D

network-on-chip (NoC): Architectures and optimization algorithms. In International Con-

ference on Computer-Aided Design (ICCAD), pages 1–6, 2016.

[44] S. Das, A. Fan, K.-N. Chen, C.S. Tan, N. Checka, and R. Reif. Technology, performance, and

computer-aided design of three-dimensional integrated circuits. In International Symposium

on Physical Design (ISPD), pages 108–115, 2004.

173

BIBLIOGRAPHY

[45] M. Davies, A. Lines, J. Dama, A. Gravel, R. Southworth, G. Dimou, and P. Beerel. A

72-port 10G ethernet switch/router using quasi-delay-insensitive asynchronous design. In

International Symposium of Asynchronous Circuits and Systems (ASYNC), pages 103–104,

2014.

[46] M. Davies, N. Srinivasa, T. Lin, G.N. Chinya, Y. Cao, S.H. Choday, G.D. Dimou, P. Joshi,

N. Imam, S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul,

J. Tse, G. Venkataramanan, Y. Weng, A. Wild, Y. Yang, and H. Wang. Loihi: a neuromorphic

manycore processor with on-chip learning. IEEE Micro, 38:82–99, 2018.

[47] B.K. Daya, C.O. Chen, S. Subramanian, W. Kwon, S. Park, T. Krishna, J. Holt, A.P. Chan-

drakasan, and L.S. Peh. SCORPIO: a 36-core research chip demonstrating snoopy coherence

on a scalable mesh NoC with in-network ordering. In International Symposium on Computer

Architecture (ISCA), pages 25–36, 2014.

[48] M.E. Dean, T.E. Williams, and D.L. Dill. Efficient self-timing with level-encoded 2-phase

dual-rail (LEDR). In University of California/Santa Cruz Conference on Advanced Research

in VLSI, pages 55–70, 1991.

[49] S. Deb, A. Ganguly, P.P. Pande, B. Belzer, and D. Heo. Wireless NoC as interconnection

backbone for multicore chips: Promises and challenges. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, 2:228–239, 2012.

[50] D. DiTomaso, A.K. Kodi, D.. Matolak, S. Kaya, S. Laha, and W. Rayess. A-winoc: adap-

tive wireless network-on-chip architecture for chip multiprocessors. IEEE Transactions on

Parallel and Distributed Systems, 26:3289–3302, 2015.

[51] R. Dobkin, R. Ginosar, and I. Cidon. QNoC asynchronous router with dynamic virtual chan-

nel allocation. In International Symposium on Networks-on-Chips (NOCS), page 218, 2007.

[52] R. Dobkin, V. Vishnyakov, E. Friedman, and R. Ginosar. An asynchronous router for multiple

service levels networks on chip. In International Symposium on Asynchronous Circuits and

Systems (ASYNC), pages 44–53, 2005.

174

BIBLIOGRAPHY

[53] M. Ebrahimi, X. Chang, M. Daneshtalab, J. Plosila, P. Liljeberg, and H. Tenhunen. DyXYZ:

Fully adaptive routing algorithm for 3D NoCs. In Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing, pages 499–503, 2013.

[54] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, J. Flich, and H. Tenhunen. Path-

based partitioning methods for 3D networks-on-chip with minimal adaptive routing. IEEE

Transactions on Computers, 63:718–733, 2014.

[55] V. Ekanayake, C. Kelly, and R. Manohar. An ultra low-power processor for sensor networks.

In International Conference on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS), pages 27–36, 2004.

[56] R. Ezz-Eldin, M.A. El-Moursy, and H.F.A. Hamed. Asynchronous high throughput NoC un-

der high process variation. In International Conference on Electronics, Circuits, and Systems

(ICECS), pages 361–364, 2013.

[57] G. Faldamis, W. Jiang, G. Gill, and S.M. Nowick. A low-latency asynchronous interconnec-

tion network with early arbitration resolution. In Asia and South Pacific Design Automation

Conference (ASPDAC), pages 329–336, 2014.

[58] R. Farah and H. Harmanani. A method for efficient NoC test scheduling using deterministic

routing. In International System-on-Chip Conference (SoCC), pages 363–366, 2010.

[59] D. Fick, A. DeOrio, G.K. Chen, V. Bertacco, D. Sylvester, and D. Blaauw. A highly resilient

routing algorithm for fault-tolerant nocs. In Design, Automation and Test in Europe (DATE),

pages 21–26, 2009.

[60] R.M. Fuhrer, B. Lin, and S.M. Nowick. Symbolic hazard-free minimization and encoding of

asynchronous finite state machines. In International Conference on Computer-Aided Design

(ICCAD), pages 604–611, 1995.

[61] S.B. Furber and P. Day. Four-phase micropipeline latch control circuits. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 4:247–253, 1996.

[62] S.B. Furber, F. Galluppi, S. Temple, and L.A. Plana. The SpiNNaker project. Proceedings of

the IEEE, 102:652–665, 2014.

175

BIBLIOGRAPHY

[63] H.V. Gageldonk, K.V. Berkel, A. Peeters, D. Baumann, D. Gloor, and G. Stegmann. An asyn-

chronous low-power 80C51 microcontroller. In International Symposium on Asynchronous

Circuits and Systems (ASYNC), pages 96–107, 1998.

[64] R. Gagne, J. Belzile, and C. Thibeault. Asynchronous component implementation method-

ology for gals design in fpgas. In IEEE North-East Workshop on Circuits and Systems and

TAISA Conference, pages 1–4, 2009.

[65] J.D. Garside, S.B. Furber, S. Temple, and V. Woods. The Amulet chips: Architectural de-

velopment for asynchronous microprocessors. In International Conference on Electronics,

Circuits, and Systems (ICECS), pages 343–346, 2009.

[66] A. Ghiribaldi, D. Bertozzi, and S.M. Nowick. A transition-signaling bundled data NoC

switch architecture for cost-effective GALS multicore systems. In Design, Automation and

Test in Europe (DATE), pages 332–337, 2013.

[67] G. Gill, S.S. Attarde, G. Lacourba, and S.M. Nowick. A low-latency adaptive asyn-

chronous interconnection network using bi-modal router nodes. In International Symposium

on Networks-on-Chip (NOCS), pages 193–200, 2011.

[68] R. Ginosar. Handshake circuit implementations: slide 13.

http://slideplayer.com/slide/4906671/, 2009.

[69] C.J. Glass and L.M. Ni. The turn model for adaptive routing. In International Symposium on

Computer Architecture (ISCA), pages 278–287, 1992.

[70] K. Goossens, J. Dielissen, and A. Radulescu. AEthereal network on chip: concepts, archi-

tectures and implementation. IEEE Design and Test of Computers, 22:414–421, 2005.

[71] P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P. Shivakumar, S.W. Keckler, and D. Burger.

On-chip interconnection networks of the TRIPS chip. IEEE Micro, 27(5):41–50, 2007.

[72] P. Guerrier and A. Greiner. A generic architecture for on-chip packet-switched interconnec-

tions. In Design, Automation and Test in Europe (DATE), pages 250–256, 2000.

176

BIBLIOGRAPHY

[73] M. Halpern, Y. Zhu, and V.J. Reddi. Mobile cpu’s rise to power: Quantifying the impact

of generational mobile CPU design trends on performance, energy, and user satisfaction. In

International Symposium on High Performance Computer Architecture (HPCA), pages 64–

76, 2016.

[74] D. Hand, M.T. Moreira, H. Huang, D. Chen, F. Butzke, Z. Li, M. Gibiluka, M.A. Breuer,

N.L.V. Calazans, and P.A. Beerel. Blade - A timing violation resilient asynchronous template.

In International Symposium on Asynchronous Circuits and Systems (ASYNC), pages 21–28,

2015.

[75] S. Hauck, G. Borriello, S. Burns, and C. Ebeling. MONTAGE: an FPGA for synchronous

and asynchronous circuits. In International conference on Field Programmable Logic and

Applications (FPL), pages 44–51, 1992.

[76] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D. Lindqvist.

Network on chip: An architecture for billion transistor era. In IEEE Nordic Microelectronics

Conference (NORCHIP), pages 1–8, 2000.

[77] Q.T. Ho, J. Rigaud, L. Fesquet, M. Renaudin, and R. Rolland. Implementing asynchronous

circuits on LUT based FPGAs. In International Conference on Field Programmable Logic

and Applications (FPL), pages 36–46, 2002.

[78] M.N. Horak, S.M. Nowick, M. Carlberg, and U. Vishkin. A low-overhead asynchronous

interconnection network for GALS chip multiprocessors. IEEE Transactions on Computer-

Aided Design (TCAD), 30:494–507, 2011.

[79] J. Hu and R. Marculescu. Exploiting the routing flexibility for energy/performance aware

mapping of regular NoC architectures. In 2003 Design, Automation and Test in Europe

(DATE), pages 10688–10693, 2003.

[80] J. Hu and R. Marculescu. DyAD: Smart routing for networks-on-chip. In Design Automation

Conference (DAC), pages 260–263, 2004.

177

BIBLIOGRAPHY

[81] W. Hu, Z. Lu, A. Jantsch, and H. Liu. Power-efficient tree-based multicast support for

networks-on-chip. In Asia and South Pacific Design Automation Conference (ASP-DAC),

pages 363–368, 2011.

[82] N. Huot, H. Dubreuil, L. Fesquet, and M. Renaudin. FPGA architecture for multi-style

asynchronous logic. In Design, Automation and Test in Europe (DATE), pages 32–33, 2005.

[83] M. Imai, T.V. Chu, K.K., and T. Yoneda. The synchronous vs. asynchronous NoC routers:

an apple-to-apple comparison between synchronous and transition signaling asynchronous

designs. In International Symposium on Networks-on-Chip (NOCS), pages 1–8, 2016.

[84] M. Imai and T. Yoneda. Improving dependability and performance for fully asynchronous on-

chip networks. In International Symposium of Asynchronous Circuits and Systems (ASYNC),

pages 65–76, 2011.

[85] M. Imai and T. Yoneda. Multiple-clock multiple-edge-triggered multiple-bit flip-flops for

two-phase handshaking asynchronous circuits. In International Symposium on Circuits and

Systems (ISCAS), pages 141–144, 2014.

[86] National Instruments. Advantages of Xilinx 7 series all programmable FPGA and SoC de-

vices. http://www.ni.com/white-paper/14583/en/#toc3, 2017.

[87] S. Ishihara, M. Hariyama, and M. Kameyama. A low-power FPGA based on autonomous

fine-grain power gating. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

19:1394–1406, 2011.

[88] N.D.E. Jerger, L.S. Peh, and M.H. Lipasti. Virtual circuit tree multicasting: a case for on-chip

hardware multicast support. In International Symposium on Computer Architecture (ISCA),

pages 229–240, 2008.

[89] W. Jiang, D. Bertozzi, G. Miorandi, S.M. Nowick, W. Burleson, and G. Sadowski. An asyn-

chronous NoC router in a 14nm FinFET library: comparison to an industrial synchronous

counterpart. In Design, Automation and Test in Europe (DATE), pages 732–733, 2017.

178

BIBLIOGRAPHY

[90] W. Jiang, K. Bhardwaj, G. Lacourba, and S.M. Nowick. A lightweight early arbitration

method for low-latency asynchronous 2D-mesh NoC’s. In Design Automation Conference

(DAC), pages 1–6, 2015.

[91] A.P. Johnson, R.S. Chakraborty, and D. Mukhopadhyay. A PUF-enabled secure architecture

for FPGA-based IoT applications. IEEE Transactions on Multi-Scale Computing Systems,

1:110–122, 2015.

[92] J.W. Joyner, P. Zarkesh-Ha, and J.D. Meindl. A stochastic global net-length distribution for

a three-dimensional system-on-a-chip (3D-SoC). In IEEE International ASIC/SOC Confer-

ence, pages 147–151, 2001.

[93] F. Karim, A. Nguyen, and S. Dey. An interconnect architecture for networking systems on

chips. IEEE Micro, 22:36–45, 2002.

[94] A. Karkar, N. Dahir, R. Al-Dujaily, K. Tong, T.S.T. Mak, and A. Yakovlev. Hybrid wire-

surface wave architecture for one-to-many communication in networks-on-chip. In Design,

Automation and Test in Europe (DATE), pages 1–4, 2014.

[95] A. Karkar, J.E. Turner, K. Tong, R. Al-Dujaily, T.S.T. Mak, A. Yakovlev, and F. Xia. Hybrid

wire-surface wave interconnects for next-generation networks-on-chip. IET Computers &

Digital Techniques, 7:294–303, 2013.

[96] E. Kasapaki and J. Sparso. Argo: A time-elastic time-division-multiplexed NoC using

asynchronous routers. In International Symposium of Asynchronous Circuits and Systems

(ASYNC), pages 45–52, 2014.

[97] H. Katabami, H. Saito, and T. Yoneda. Design of a GALS-NoC using soft-cores on FPGAs.

In International Symposium on Embedded Multicore SoCs, pages 31–36, 2013.

[98] S. Kilts. Advanced FPGA Design. Wiley-IEEE Press, 2007.

[99] J. Kim, W.J. Dally, S. Scott, and D. Abts. Technology-driven, highly-scalable Dragonfly

topology. In International Symposium on Computer Architecture (ISCA), pages 77–88, 2008.

179

BIBLIOGRAPHY

[100] M.M. Kim, K.M. Fant, and P. Beckett. Design of asynchronous RISC CPU register-file write-

back queue. In International Conference on Very Large Scale Integration (VLSI-SoC), pages

31–36, 2015.

[101] M.A. Kinsy, M.H. Cho, T. Wen, G.E. Suh, M. Dijk, and S. Devadas. Application-aware

deadlock-free oblivious routing. In International Symposium on Computer Architecture

(ISCA), pages 208–219, 2009.

[102] A.K. Kodi, A. Louri, and J.M. Wang. Design of energy-efficient channel buffers with router

bypassing for network-on-chips (NoCs). In International Symposium on Quality of Electronic

Design (ISQED), pages 826–832, 2009.

[103] T. Krishna. Garnet2.0: a detailed on-chip network model inside a full-system simulator.

http://www.gem5.org/wiki/images/d/d4/Summit2017 garnet2.0 tutorial.pdf, 2017.

[104] T. Krishna, C.-H. Chen, W.-H. Kwon, and L.-S. Peh. SMART: single-cycle multihop traver-

sals over a shared network on chip. IEEE Micro, 34:43–56, 2014.

[105] T. Krishna and L.S. Peh. Single-cycle collective communication over a shared network fabric.

In International Symposium on Networks-on-Chip (NOCS), pages 1–8, 2014.

[106] T. Krishna, L.S. Peh, B.M. Beckmann, and S.K. Reinhardt. Towards the ideal on-chip fabric

for 1-to-many and many-to-1 communication. In International Symposium on Microarchi-

tecture, pages 71–82, 2011.

[107] M. Krstic, E. Grass, F.K. Gurkaynak, and P. Vivet. Globally asynchronous, locally syn-

chronous circuits: overview and outlook. IEEE Design and Test, 24:430–441, 2007.

[108] A. Kumar, P. Kundu, A.P. Singh, L.S. Peh, and N.K. Jha. A 4.6 Tbits/s 3.6 GHz single-cycle

NoC router with a novel switch allocator in 65 nm CMOS. In International Conference on

Computer Design (ICCD), pages 63–70, 2007.

[109] H. Kwon, A. Samajdar, and T. Krishna. Rethinking NoCs for spatial neural network acceler-

ators. In International Symposium on Networks-on-Chip (NOCS), pages 19:1–19:8, 2017.

[110] J. Lassen. FPGA prototyping of asynchronous networks-on-chip. M.Sc. thesis, DTU, Kon-

gens Lyngby, 2008.

180

BIBLIOGRAPHY

[111] S. Lee, S. Tam, I. Pefkianakis, S. Lu, M.F. Chang, C. Guo, G. R., C. Peng, M. Naik, L. Zhang,

and J. Cong. A scalable micro wireless interconnect structure for CMPs. In International

Conference on Mobile Computing and Networking (MOBICOM), pages 217–228, 2009.

[112] W. Lee and G.E. Sobelman. Mesh-star hybrid noc architecture with CDMA switch. In

International Symposium on Circuits and Systems (ISCAS), pages 1349–1352, 2009.

[113] G. Lemieux, E. Lee, M. Tom, and A.J. Yu. Directional and single-driver wires in FPGA

interconnect. In International Conference on Field Programmable Technology (FPT), pages

41–48, 2004.

[114] M. Lewis, J. Garside, and L. Brackenbury. Reconfigurable latch controllers for low power

asynchronous circuits. In International Symposium of Asynchronous Circuits and Systems

(ASYNC), pages 27–35, 1999.

[115] M. Li, Q. Zeng, and W. Jone. DyXY: a proximity congestion-aware deadlock-free dynamic

routing method for network on chip. In Design Automation Conference (DAC), pages 849–

852, 2006.

[116] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev. Asynchronous design using

commercial HDL synthesis tools. In International Symposium on Asynchronous Circuits and

Systems (ASYNC), pages 1–12, 2000.

[117] A. Lines, P. Joshi, R. Liu, S. McCoy, J. Tse, Y. H. Weng, and M. Davis. Loihi asynchronous

neuromorphic research chip. International Symposium of Asynchronous Circuits and Systems

(ASYNC), 2018.

[118] M. Lodde, J. Flich, and M. E. Acacio. Heterogeneous NoC design for efficient broadcast-

based coherence protocol support. In International Symposium on Networks-on-Chip

(NOCS), pages 59–66, 2012.

[119] J. Luo, A. Elantably, V.D. Pham, C. Killian, D. Chillet, S.L. Beux, O. Sentieys, and

I. O’Connor. Performance and energy aware wavelength allocation on ring-based WDM 3D

optical NoC. In Design, Automation and Test in Europe (DATE), pages 1372–1375, 2017.

181

BIBLIOGRAPHY

[120] S. Ma, N.D.E. Jerger, and Z. Wang. Whole packet forwarding: Efficient design of fully

adaptive routing algorithms for networks-on-chip. In International Symposium on High Per-

formance Computer Architecture (HPCA), pages 467–478, 2012.

[121] P. Mantovani, G.D. Guglielmo, and L.P. Carloni. High-level synthesis of accelerators in

embedded scalable platforms. In Asia and South Pacific Design Automation Conference

(ASP-DAC), pages 204–211, 2016.

[122] R. Marculescu, Y. Ogras, L.S. Peh, N.D.E. Jerger, and Y.V. Hoskote. Outstanding research

problems in NoC design: system, microarchitecture, and circuit perspectives. IEEE Transac-

tions on Computer-Aided Design (TCAD), 28:3–21, 2009.

[123] A.J. Martin. Programming in VLSI: from Communicating Processes to Delay-Insensitive Cir-

cuits. Technical report, Department of Computer Science, California Institute of Technology,

1989.

[124] A.J. Martin, S. Burns, T.K. Lee, D. Borkovic, and P.J. Hazewindus. The design of an asyn-

chronous microprocessor. In Advanced Research in VLSI, pages 351–373, 1989.

[125] A.J. Martin, M. Nystrom, and C.G. Wong. Three generations of asynchronous microproces-

sors. IEEE Design and Test, 20:9–17, 2003.

[126] M.M.K. Martin, M.D. Hill, and D.A. Wood. Token coherence: decoupling performance and

correctness. In International Symposium on Computer Architecture (ISCA), pages 182–193,

2003.

[127] H. Matsutani, M. Koibuchi, H. Amano, and T. Yoshinaga. Prediction router: Yet another

low latency on-chip router architecture. In International Conference on High-Performance

Computer Architecture (HPCA), pages 367–378, 2009.

[128] P.B. McGee, M.Y. Agyekum, M.A. Mohamed, and S.M. Nowick. A level-encoded transitions

signaling protocol for high-throughput asynchronous global communication. In International

Symposium of Asynchronous Circuits and Systems (ASYNC), pages 116–127, 2008.

[129] M. McKeown, A. Lavrov, M. Shahrad, P.J. Jackson, Y. Fu, J. Balkind, T.M. Nguyen, K. Lim,

Y. Zhou, and D. Wentzlaff. Power and energy characterization of an open source 25-core

182

BIBLIOGRAPHY

manycore processor. In International Symposium on High Performance Computer Architec-

ture (HPCA), pages 762–775, 2018.

[130] P. Merolla, J. V. Arthur, R. Alvarez-Icaza, J. Bussat, and K. Boahen. A multicast tree router

for multichip neuromorphic systems. IEEE Transactions on Circuits and Systems, 61-I:820–

833, 2014.

[131] P. Messina and S. Lee. The U.S. Exascale Computing Project. https://exascaleproject.org/wp-

content/uploads/2017/03/Messina ECP-IC-Mar2017-compressed.pdf, 2017.

[132] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed bandwidth using looped con-

tainers in temporally disjoint networks within the Nostrum network on chip. In Design,

Automation and Test in Europe (DATE), pages 1–6, 2004.

[133] D.A.B. Miller. Device requirements for optical interconnects to silicon chips. Proceedings

of the IEEE, 97:1166–1185, 2009.

[134] G. Miorandi, M. Balboni, S.M. Nowick, and D. Bertozzi. Accurate assessment of bundled-

data asynchronous NoCs enabled by a predictable and efficient hierarchical synthesis flow.

In International Symposium of Asynchronous Circuits and Systems (ASYNC), pages 10–17,

2017.

[135] G. Miorandi, D. Bertozzi, and S.M. Nowick. Increasing impartiality and robustness in high-

performance n-way asynchronous arbiters. In International Symposium on Asynchronous

Circuits and Systems (ASYNC), pages 108–115, 2015.

[136] G. Miorandi, A. Ghiribaldi, S.M. Nowick, and D. Bertozzi. Crossbar replication vs. sharing

for virtual channel flow control in asynchronous NoCs: A comparative study. In International

Conference on Very Large Scale Integration (VLSI-SoC), pages 1–6, 2014.

[137] S.W. Moore and P. Robinson. Rapid prototyping of self-timed circuits. In International

Conference on Computer Design (ICCD), pages 360–365, 1998.

[138] S. Moradi, N. Imam, R. Manohar, and G. Indiveri. A memory-efficient routing method for

large-scale spiking neural networks. In European Conference on Circuit Theory and Design

(ECCTD), pages 1–4, 2013.

183

BIBLIOGRAPHY

[139] M. Moreira, A. Neutzling, M. Martins, A. Reis, R. Ribas, and N. Calazans. Semi-custom

NCL design wth commercial EDA frameworks: Is it possible? In International Symposium

of Asynchronous Circuits and Systems (ASYNC), pages 53–60, 2014.

[140] A. Moreno and J. Cortadella. Synthesis of all-digital delay lines. In International Symposium

on Asynchronous Circuits and Systems (ASYNC), pages 75–82, 2017.

[141] T.P. Morgan. Intel Knights Landing yields big bang for the buck jump.

https://www.nextplatform.com/2016/06/20/intel-knights-landing-yields-big-bang-buck-

jump/, 2016.

[142] S.T. Muhammad, M.A. El-Moursy, A.A. El-Moursy, and H.F.A. Hamed. Architecture level

analysis for process variation in synchronous and asynchronous networks-on-chip. Journal

of Parallel and Distributed Computing, 102:175–185, 2017.

[143] D.E. Muller and W.S. Bartky. A theory of asynchronous circuits. In International Symposium

on the Switching Theory in Harvard University, pages 204–243, 1959.

[144] J. Navaridas, M. Luján, L.A. Plana, S. Temple, and S.B. Furber. On generating multicast

routes for SpiNNaker. In Computing Frontiers Conference (CF), pages 2:1–2:10, 2014.

[145] S.M. Nowick and D.L. Dill. Synthesis of asynchronous state machines using a local clock.

In International Conference on Computer Design (ICCD), pages 192–197, 1991.

[146] S.M. Nowick and D.L. Dill. Exact two-level minimization of hazard-free logic with multiple-

input changes. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 14:986–997, 1995.

[147] S.M. Nowick and M. Singh. Asynchronous design - part 1: overview and recent advances.

IEEE Design & Test, 32:5–18, 2015.

[148] S.M. Nowick and M. Singh. Asynchronous design - part 2: system and methodologies. IEEE

Design & Test, 32:19–28, 2015.

[149] S. Park, T. Krishna, C.H. Owen Chen, B.K. Daya, A. Chandrakasan, and L.S. Peh. Ap-

proaching the theoretical limits of a mesh NoC with a 16-node chip prototype in 45 nm SOI.

In Design Automation Conference (DAC), pages 398–405, 2012.

184

BIBLIOGRAPHY

[150] L.S. Peh and W.J. Dally. A delay model and speculative architecture for pipelined routers.

In International Symposium on High-Performance Computer Architecture (HPCA), pages

255–266, 2001.

[151] M.D.V. Pena, J.J. Rodriguez-Andina, and M. Manic. The internet of things: the role of

reconfigurable platforms. IEEE Industrial Electronics Magazine, 11:6–19, 2017.

[152] L.A. Plana and S.H. Unger. Pulse-mode macromodular systems. In International Conference

on Computer Design (ICCD), pages 348–353, 1998.

[153] S. Poddar, P. Ghosal, and H. Rahaman. Adaptive CDMA based multicast method for photonic

networks on chip. In International System-on-Chip Conference (SOCC), pages 298–303,

2015.

[154] J. J. H. Pontes, P. Vivet, and Y. Thonnart. Two-phase protocol converters for 3D asynchronous

1-of-n data links. In Asia and South Pacific Design Automation Conference (ASP-DAC),

pages 154–159, 2015.

[155] G. Pouiklis and G. C. Sirakoulis. Clock gating methodologies and tools: a survey. I. J. Circuit

Theory and Applications, 44:798–816, 2016.

[156] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide. Immunet: A cheap and robust fault-

tolerant packet routing mechanism. In International Symposium on Computer Architecture

(ISCA), pages 198–211, 2004.

[157] J. Quartana, S. Renane, A. Baixas, L. Fesquet, and M. Renaudin. GALS systems prototyping

using multiclock FPGAs and asynchronous network-on-chips. In International Conference

on Field Programmable Logic and Applications (FPL), pages 299–304, 2005.

[158] A. Rahimi, I. Loi, M.R. Kakoee, and L. Benini. A fully-synthesizable single-cycle intercon-

nection network for shared-L1 processor clusters. In Design, Automation and Test in Europe

(DATE), pages 491–496, 2011.

[159] D. Rahmati, H. Sarbazi-Azad, S. Hessabi, and A.E. Kiasari. Power-efficient deterministic and

adaptive routing in torus networks-on-chip. Microprocessors and Microsystems - Embedded

Hardware Design, 36:571–585, 2012.

185

BIBLIOGRAPHY

[160] M. Renaudin and A. Fonkoua. Tiempo asynchronous circuits system verilog modeling lan-

guage. In International Symposium on Asynchronous Circuits and Systems (ASYNC), pages

105–112, 2012.

[161] J.J. Rodrı́guez-Andina, M.D. Valdes-Pena, and M.J. Moure. Advanced features and industrial

applications of fpgas - a review. IEEE Transactions on Industrial Informatics, 11:853–864,

2015.

[162] D. Rostislav, V. Vishnyakov, E. Friedman, and R. Ginosar. An asynchronous router for mul-

tiple service levels networks on chip. In International Symposium of Asynchronous Circuits

and Systems (ASYNC), pages 1–10, 2005.

[163] P. Russell, J. Döge, C. Hoppe, T.B. Preußer, P. Reichel, and P. Schneider. Implementation of

an asynchronous bundled-data router for a GALS NoC in the context of a VSoC. In Inter-

national Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS),

pages 195–200, 2017.

[164] F.A. Samman, T. Hollstein, and M. Glesner. Multicast parallel pipeline router architecture

for network-on-chip. In Design, Automation and Test in Europe (DATE), pages 1396–1401,

2008.

[165] F.A. Samman, T. Hollstein, and M. Glesner. Adaptive and deadlock-free tree-based multicast

routing for networks-on-chip. IEEE Transactions on VLSI Systems, 18:1067–1080, 2010.

[166] K. Sankaralingam, R. Nagarajan, R.G. McDonald, R. Desikan, S. Drolia, M.S. Govin-

dan, P. Gratz, D. Gulati, H. Hanson, C. Kim, H. Liu, N. Ranganathan, S. Sethumadhavan,

S. Sharif, P. Shivakumar, S.W. Keckler, and D. Burger. Distributed microarchitectural pro-

tocols in the TRIPS prototype processor. In International Symposium on Microarchitecture

(MICRO), pages 480–491, 2006.

[167] D. Seo, A. Ali, W. Lim, N. Rafique, and M. Thottethodi. Near-optimal worst-case through-

put routing for two-dimensional mesh networks. In International Symposium on Computer

Architecture (ISCA), pages 432–443, 2005.

186

BIBLIOGRAPHY

[168] A. Shacham, K. Bergman, and L.P. Carloni. Photonic network-on-chip for future generations

of chip multiprocessors. IEEE Transactions on Computers, 57:1246–1260, 2008.

[169] L. Shang, L.S. Peh, and N.K. Jha. Dynamic voltage scaling with links for power optimization

of interconnection networks. In International Symposium on High-Performance Computer

Architecture (HPCA), pages 91–102, 2003.

[170] K.S. Shim, M.H. Cho, M.A. Kinsy, T. Wen, M. Lis, G.E. Suh, and S. Devadas. Static virtual

channel allocation in oblivious routing. In International Symposium on Networks-on-Chips

(NOCS), pages 38–43, 2009.

[171] M. Singh and S.M. Nowick. MOUSETRAP: high-speed transition-signaling asynchronous

pipelines. IEEE Transactions on VLSI Systems, 15:684–698, 2007.

[172] M. Singh, J.A. Tierno, A. Rylyakov, S.V. Rylov, and S.M. Nowick. An adaptively pipelined

mixed synchronous-asynchronous digital FIR filter chip operating at 1.3 Gigahertz. IEEE

Transactions on VLSI Systems, 18:1043–1056, 2010.

[173] B. Sinharoy, J.A. Van Norstrand, R.J. Eickemeyer, H.Q. Le, J. Leenstra, D.Q. Nguyen,

B. Konigsburg, K. Ward, M.D. Brown, J.E. Moreira, D. Levitan, S. Tung, D. Hrusecky, J.W.

Bishop, M. Gschwind, M. Boersma, M. Kroener, M. Kaltenbach, T. Karkhanis, and K.M.

Fernsler. IBM POWER8 processor core microarchitecture. IBM Journal of Research and

Development, 59:2:1–21, 2015.

[174] C. Sitik, W. Liu, B. Taskin, and E. Salman. Design methodology for voltage-scaled clock

distribution networks. IEEE Transactions on VLSI Systems, 24:3080–3093, 2016.

[175] R. Sivaram, C.B. Stunkel, and D.K. Panda. A reliable hardware barrier synchronization

scheme. In International Parallel Processing Symposium (IPPS), pages 274–280, 1997.

[176] W. Song, G. Zhang, and J.D. Garside. On-line detection of the deadlocks caused by perma-

nently faulty links in quasi-delay insensitive networks on chip. In Great Lakes Symposium

on VLSI (GLSVLSI), pages 211–216, 2014.

187

BIBLIOGRAPHY

[177] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi, and G.D. Micheli. xpipesLite: A

synthesis oriented design library for networks on chip. In Design, Automation and Test in

Europe (DATE), pages 1188–1193, 2005.

[178] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam, K. Michelson, M. Oskin,

and S. J. Eggers. The wavescalar architecture. ACM Transactions on Computing Systems,

pages 4:1–4:54, 2007.

[179] A. Takamura, M. Kuwako, M. Imai, T. Fujii, M. Ozawa, I. Fukasaku, Y. Ueno, and

T. Nanya. TITAC-2: An asynchronous 32-Bit microprocessor based on scalable-delay-

insensitive model. In International Conference on Computer Design (ICCD), pages 288–294,

1997.

[180] K. Takizawa, S. Hosaka, and H. Saito. A design support tool set for asynchronous circuits

with bundled-data implementation on FPGAs. In International Conference on Field Pro-

grammable Logic and Applications (FPL), pages 1–4, 2014.

[181] M.B. Taylor, W. Lee, S.P. Amarasinghe, and A. Agarwal. Scalar operand networks: on-

chip interconnect for ILP in partitioned architecture. In International Symposium on High-

Performance Computer Architecture (HPCA), pages 341–353, 2003.

[182] P. Teehan, M. Greenstreet, and G. Lemieux. A survey and taxonomy of GALS design styles.

IEEE Design and Test, 24:418–428, 2007.

[183] J. Teifel and R. Manohar. Highly pipelined asynchronous FPGAs. In International Sympo-

sium on Field Programmable Gate Arrays (ISFPGA), pages 133–142, 2004.

[184] Y. Thonnart, E. Beigne, and P. Vivet. A pseudo-synchronous implementation flow for WCHB

QDI asynchronous circuits. In International Symposium of Asynchronous Circuits and Sys-

tems (ASYNC), pages 73–80, 2012.

[185] Y. Thonnart, P. Vivet, and F. Clermidy. A fully-asynchronous low-power framework for

GALS NoC integration. In Design, Automation and Test in Europe (DATE), pages 33–38,

2010.

188

BIBLIOGRAPHY

[186] A.W. Topol, D.C. La Tulipe, L. Shi, D.J. Frank, K. Bernstein, S.E. Steen, A. Kumar, G.U.

Singco, A.M. Young, K.W. Guarini, and M. Leong. Three-dimensional integrated circuits.

IBM Journal of Research and Development, 50:491–506, 2006.

[187] S.H. Unger. Asynchronous Sequential Switching Circuits. New York, NY: Wiley, 1969.

[188] D. Vainbrand and R. Ginosar. Network-on-chip architectures for neural networks. In Inter-

national Symposium Networks-on-Chip (NOCS), pages 135–144, 2010.

[189] S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer, A. Singh,

T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar. An 80-tile 1.28TFLOPS

network-on-chip in 65nm CMOS. In International Solid-State Circuits Conference (ISSCC),

pages 98–589, 2007.

[190] P. Vivet, Y. Thonnart, R. Lemaire, C. Santos, E. Beigne, C. Bernard, F. Darve, D. Lattard,

I. M.-Panades, D. Dutoit, F. Clermidy, S. Cheramy, A. Sheibanyrad, F. Petrot, E. Flamand,

J. Michailos, A. Arriordaz, L. Wang, and J. Schloeffel. A 4x4x2 homogeneous scalable 3D

network-on-chip circuit with 326 MFlit/s 0.66 pJ/b robust and fault tolerant asynchronous 3D

links. IEEE Journal of Solid-State Circuits, 52:33–49, 2017.

[191] C. Wang, X. Li, P. Chen, A. Wang, X. Zhou, and H. Yu. Heterogeneous cloud framework

for big data genome sequencing. IEEE/ACM Transactions on Computational Biology and

Bioinformatics, 12:166–178, 2015.

[192] H. Wang, L.S. Peh, and S. Malik. Power-driven design of router microarchitectures in on-chip

networks. In International Symposium on Microarchitecture, pages 105–116, 2003.

[193] L. Wang, Y. Jin, H. Kim, and E.J. Kim. Recursive partitioning multicast: a bandwidth-

efficient routing for networks-on-chip. In International Symposium on Networks-on-Chip

(NOCS), pages 64–73, 2009.

[194] X. Wang, T. Ahonen, and J. Nurmi. Prototyping a globally asynchronous locally synchronous

network-on-chip on a conventional FPGA device using synchronous design tools. In Interna-

tional Conference on Field Programmable Logic and Applications (FPL), pages 1–6, 2006.

189

BIBLIOGRAPHY

[195] X. Wang, T. Ahonen, and J. Nurmi. Applying CDMA technique to network-on-chip. IEEE

Transactions on VLSI Systems, 15:1091–1100, 2007.

[196] P. Warden. Why are eight bits enough for deep neural networks.

https://petewarden.com/2015/05/23/why-are-eight-bits-enough-for-deep-neural-networks/,

2015.

[197] D. Wiklund and D. Liu. Switched interconnect for system-on-a-chip designs. In IP 2000

Europe Conference (IP2000), pages 1–6, 2000.

[198] T.E. Williams and M.A. Horowitz. A zero-overhead self-timed 160-ns 54-b CMOS divider.

IEEE Journal of Solid-State Circuits, 26:1651–1661, 1991.

[199] C.G. Wong, A.J. Martin, and P. Thomas. An architecture for asynchronous FPGAs. In

International Conference on Field Programmable Technology (FPT), pages 170–177, 2003.

[200] X. Xiang, W. Shi, S. Ghose, L. Peng, O. Mutlu, and N. Tzeng. Carpool: a bufferless on-chip

network supporting adaptive multicast and hotspot alleviation. In International Conference

on Supercomputing (ICS), pages 19:1–19:11, 2017.

[201] J. Xue, A. Garg, B. Ciftcioglu, J. Hu, S. Wang, I. Savidis, M. Jain, R. Berman, P. Liu, M. C.

Huang, H. Wu, E. G. Friedman, G. Wicks, and D. Moore. An intra-chip free-space optical

interconnect. In International Symposium on Computer Architecture (ISCA), pages 94–105,

2010.

[202] S. Yan and B. Lin. Design of application-specific 3d networks-on-chip architectures. In

International Conference on Computer Design (ICCD), pages 142–149, 2008.

[203] K.Y. Yun, P.A. Beerel, and J. Arceo. High-performance asynchronous pipeline circuits. In In-

ternational Symposium of Asynchronous Circuits and Systems (ASYNC), pages 17–28, 1996.

[204] C.A. Zeferino and A.A. Susin. Socin: A parametric and scalable network-on-chip. In Sym-

posium on Integrated Circuits and Systems Design (SBCCI), page 169, 2003.

[205] G. Zhang, J.D. Garside, W. Song, J. Navaridas, and Z. Wang. Deadlock recovery in asyn-

chronous networks on chip in the presence of transient faults. In International Symposium

on Asynchronous Circuits and Systems (ASYNC), pages 100–107, 2015.

190

BIBLIOGRAPHY

[206] G. Zhang, W. Song, J.D. Garside, J. Navaridas, and Z. Wang. An asynchronous SDM

network-on-chip tolerating permanent faults. In International Symposium on Asynchronous

Circuits and Systems (ASYNC), pages 9–16, 2014.

[207] J. Zhang, F. Guangbo, A. He, and H. Chen. From click based asynchronous design to Xilinx

FPGA. In International Symposium on Asynchronous Circuits and Systems (ASYNC), 2018.

[208] Y. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, and G.R. Gao. A study of the on-chip

interconnection network for the IBM Cyclops64 multi-core architecture. In International

Parallel and Distributed Processing Symposium (IPDPS), pages 1–10, 2006.

[209] Z. Zhang, A. Greiner, and S. Taktak. A reconfigurable routing algorithm for a fault-tolerant

2d-mesh network-on-chip. In Design Automation Conference (DAC), pages 441–446, 2008.

191

	List of Figures
	List of Tables
	1 Introduction
	1.1 Synchronous Design: Challenges
	1.2 Asynchronous Design: An Alternative Paradigm
	1.2.1 Advantages of Asynchronous Design
	1.2.2 Challenges with Asynchronous Design
	1.2.3 History and Overview of Recent Success

	1.3 Networks-on-Chip: An Introduction
	1.3.1 NoCs: Motivation, Basics, and Advantages
	1.3.2 Advances in Synchronous NoCs
	1.3.3 Advances in Asynchronous NoCs

	1.4 Multicast Communication and its Applications
	1.5 FPGAs: Architecture, and Applications
	1.5.1 FPGA Architecture
	1.5.2 FPGA Applications

	1.6 Research Focus
	1.6.1 Challenges with Supporting Multicast in Asynchronous NoCs
	1.6.2 Challenges with Implementing Asynchronous NoCs on FPGAs

	1.7 Contribution of Thesis
	1.8 Organization of Thesis

	2 Background: Asynchronous Design
	2.1 Handshaking Protocols
	2.1.1 Four-Phase Protocol
	2.1.2 Two-Phase Protocol
	2.1.3 Trade-Offs

	2.2 Data Encoding Schemes
	2.2.1 Delay-Insensitive (DI) Codes
	2.2.2 Single-Rail Bundled Data
	2.2.3 Trade-Offs

	2.3 Special Asynchronous Components
	2.3.1 The C-Element
	2.3.2 The Mutex
	2.3.3 The N-Way Arbiters

	2.4 Mousetrap Pipelines
	2.4.1 Mousetrap Structure
	2.4.2 Mousetrap Operation
	2.4.3 Timing Constraints

	2.5 Mixed-Timing Interfaces

	3 Background: Networks-on-Chip
	3.1 Network Topologies
	3.1.1 A Variant MoT Topology
	3.1.2 A 2D-Mesh Topology

	3.2 Routing Algorithms
	3.2.1 Deterministic Routing
	3.2.2 Oblivious Routing
	3.2.3 Adaptive Routing

	3.3 Packet Encoding Schemes
	3.4 Synchronous Unicast Router: Micro-Architectures and Performance Optimizations
	3.4.1 A Traditional 5-Cycle Router
	3.4.2 Recent Single-Cycle Routers
	3.4.3 Extreme Bypassing in Single Cycle Using SMART NoCs

	3.5 Multicast Techniques and Related Work
	3.5.1 Techniques
	3.5.2 Related Work

	3.6 Leading Synchronous Multicast NoCs
	3.6.1 Multicast Using Single-Cycle Routers
	3.6.2 Multicast Using SMART NoCs

	4 A Local Speculation Approach for Multicast in Mesh-of-Trees NoCs
	4.1 Introduction
	4.2 Baseline Asynchronous NoC
	4.2.1 Fanout Node
	4.2.2 Fanin Node
	4.2.3 Results
	4.2.4 Baseline for the New Multicast Research

	4.3 Proposed Multicast Approaches
	4.3.1 Simple Tree-Based Multicast
	4.3.2 Local Speculation-Based Multicast
	4.3.3 Protocol Optimizations
	4.3.4 Target Parallel Multicast Networks

	4.4 Proposed Fanout Node Designs
	4.4.1 Unoptimized Speculative Fanout Node
	4.4.2 Unoptimized Non-Speculative Fanout Node
	4.4.3 Optimized Speculative Fanout Node
	4.4.4 Optimized Non-Speculative Fanout Node

	4.5 Experimental Results
	4.5.1 Experimental Framework
	4.5.2 Node- and Network-Level Results

	4.6 Conclusions

	5 A Continuous-Time Replication Strategy for Multicast in 2D-Mesh NoCs
	5.1 Introduction
	5.2 Baseline Asynchronous NoC
	5.2.1 The Baseline NoC Without VCs
	5.2.2 Industrial Extension of the Baseline NoC to VCs

	5.3 New Multicast Approach
	5.3.1 Tree-Based Parallel Multicast
	5.3.2 Continuous-Time Replication Strategy
	5.3.3 Route Computation and Buffering Policy
	5.3.4 Simulation of Multicast Routing
	5.3.5 Resource-Dependent Deadlock Avoidance

	5.4 Design Details: New Input Port Module (IPM)
	5.4.1 IPM Structure and Operation
	5.4.2 Route Computation Unit (RCU)
	5.4.3 CMR Buffer
	5.4.4 Address Modifier Unit (AMU)

	5.5 Experimental Setup and Node-level Results
	5.5.1 Experimental Framework
	5.5.2 Node-Level Results

	5.6 Network-level results
	5.6.1 Multi-Flit Network-Level Results
	5.6.2 Single-Flit Network-Level Results
	5.6.3 Analytical comparison with state-of-the-art synchronous multicast NoCs

	5.7 Conclusions

	6 Synthesizing Asynchronous NoCs on FPGAs: a Systematic Methodology
	6.1 Introduction
	6.2 Implementing Asynchronous Circuits on FPGAs: Related Work
	6.3 Mousetrap Pipeline and Timing Requirements of Bundled-Data Circuits: A Brief Background
	6.3.1 Mousetrap Pipeline
	6.3.2 Timing Requirements of Bundled-Data Circuits

	6.4 A CAD Methodology for Bundled-Data Asynchronous Circuits
	6.4.1 Tool Flow
	6.4.2 Validation Approach
	6.4.3 Tool Flow Illustration: A Mousetrap Pipeline

	6.5 Synthesis of Special Asynchronous Components on FPGAs
	6.5.1 C-Element
	6.5.2 Mutex
	6.5.3 4-Input Arbiter

	6.6 Case Study: Asynchronous NoC Routers
	6.6.1 A Brief Recap: Unicast-Only and Multicast Asynchronous Routers
	6.6.2 Implementing Asynchronous Routers on FPGAs

	6.7 Experimental Results
	6.7.1 Experimental Setup
	6.7.2 Results

	6.8 Conclusions

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography

